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Abstract

In this article, we construct bipartite graphs which are cospectral for both the
adjacency and normalized Laplacian matrices using the notion of partitioned tensor
products. This extends the construction of Ji, Gong, and Wang [9]. Our proof of the
cospectrality of adjacency matrices simplifies the proof of the bipartite case of Godsil
and McKay’s construction [4], and shows that the corresponding normalized Laplacian
matrices are also cospectral. We partially characterize the isomorphism in Godsil and
McKay’s construction, and generalize Ji et al.’s characterization of the isomorphism to
biregular bipartite graphs. The essential idea in characterizing the isomorphism uses
Hammack’s cancellation law as opposed to Hall’s marriage theorem used by Ji et al.
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1 Introduction

We consider simple and undirected graphs. Let G = (V (G), E(G)) be a graph with the vertex

set V (G) = {1, 2, . . . , n} and the edge set E(G). If two vertices i and j of G are adjacent,

we denote it by i ∼ j. For a graph G on n vertices, the adjacency matrix A(G) = [aij] is the

n× n matrix defined by

aij =

{
1, if i ∼ j,

0, otherwise.
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The spectrum of a graph G is the set of all eigenvalues of A(G), with corresponding multiplic-

ities. Two graphs are cospectral for the adjacency matrices if they have the same adjacency

spectrum. It has been a longstanding problem to characterize graphs that are determined

by their spectrum [12, 13]. If any graph which is cospectral with G is also isomorphic to

it, then G is said to be determined by its spectrum (DS graph for short), otherwise we say

that the graph G has a cospectral mate or we say that G is not determined by its spectrum

(NDS for short). To show that a graph is NDS, we provide a construction of a cospectral

mate. In [11], Schwenk proved that almost all trees are NDS. In [5], Godsil and McKay

provided a method for constructing cospectral nonisomorphic graphs. In [12], van Dam and

Haemers mentioned that: If we were to bet, it would be for: ‘almost all graphs are DS’.

Later Haemers conjectured the same in [6]. For each vertex i of a graph G, let di denote the

degree of the vertex i. Let D(G) denote the diagonal degree matrix whose (i, i)-th entry is

di. Then the matrix L(G) = D(G)−A(G) is the Laplacian matrix of the graph G, and if G

has no isolated vertices, then the matrix L(G) = I−D(G)−
1
2A(G)D(G)−

1
2 is the normalized

Laplacian matrix of G. The normalized Laplacian specturm of a graph G is the spectrum

of L(G). Two graphs are cospectral for the normalized Laplacian matrices if they have the

same normalized Laplacian spectrum. For more details, we refer to [1, 3, 5, 12, 13].

In [4], Godsil and McKay constructed cospectral graphs for the adjacency matrices using

the notion of partitioned tensor products of matrices (See Section 2 for the definition).

Recently, Ji, Gong, and Wang proposed a construction for cospectral bipartite graphs for

the adjacency and normalized Laplacian matrices using the unfolding technique [9]. This

construction is a generalization of the unfoldings of a bipartite graph considered by Butler[2].

In this paper, first, we note that the proof of the construction of cospectral bipartite graphs

[9, Theorem 2.1] can be done by expressing the matrices involved as the partitioned tensor

products, and our proof works for larger classes of graphs. This is done in Theorem 3.1 (for

adjacency matrices) and Theorem 3.3 (for normalized Laplacian matrices). Also, the proof

of Theorem 3.1 provides an alternate proof of Godsil and McKay’s result for the bipartite

graphs.

Weichsel proved that if G1 and G2 are two connected bipartite graphs, then their direct

product G1 × G2 has exactly two connected bipartite components [15]. Jha, Klavžar and

Zmazek [8] showed that if either G1 or G2 admits an automorphism that interchanges its

partite sets, then the components of G1 ×G2 are isomorphic. Hammack [7] proved that the

converse is also true. Hammack’s proof uses a cancellation property (see Theorem 2.2), which

we call Hammack’s cancellation law. Surprisingly, we are able to use this result to prove the

isomorphism of the cospectral graphs that we construct in Section 3. The characterization
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theorem for isomorphism of Ji et al. [9, Theorem 3.1], is a particular case of our result. Also,

their proof uses Hall’s Marriage theorem, whereas we do not.

The outline of this paper is as follows: In Section 2, we include some needed known

results for graphs and matrices. In Section 3, the main results about the construction of

cospectral bipartite graphs for the adjacency and normalized Laplacian matrices are stated

and proved. Section 4 is devoted to the study of the existence of isomorphisms between the

cospectral pairs constructed in Section 3.

2 Preliminaries

The notion of partitioned tensor products of matrices is used extensively in this article. This

is closely related to the well known Kronecker product of matrices. The Kronecker product

of matrices A = [aij] of size m×n and B of size p×q, denoted by A⊗B, is the mp×nq block

matrix [aijB]. The partitioned tensor product of two partitioned matrices M =

[
U V
W X

]
and H =

[
A B
C D

]
, denoted by M⊗H, is defined as

[
U ⊗ A V ⊗B
W ⊗ C X ⊗D

]
. Given the matrices

U , V , W and X, define I(U,X) =

[
U 0
0 X

]
and P(V,W ) =

[
0 V
W 0

]
where 0 is the zero

matrix of appropriate order. A 2×2 block matrix is diagonal (resp., an anti diagonal) block

matrix if it is of the form I(U,X) (resp., P(V,W )). The above notions were introduced by

Godsil and McKay [4]. The following proposition is easy to verify.

Proposition 2.1. Let Q and R be the matrices of the form I(Q1, Q2) and I(R1, R2), re-

spectively. If M =

[
U V
W X

]
and H =

[
A B
C D

]
are 2× 2 block matrices, then

(Q⊗R)(M⊗H) = (QM)⊗(RH).

The same holds true when the matrices Q and R are both of the form P(Q1, Q2) and

P(R1, R2), respectively.

Two matrices A and B are said to be equivalent, if there exists invertible matrices P and

Q such that Q−1AP = B. If the matrices P and Q are orthogonal, then matrices A and B

are said to be orthogonally equivalent. If the matrices P and Q are permutation matrices,

then matrices A and B are said to be permutationally equivalent. Using the singular value

decomposition, it is easy to see that any square matrix is orthogonally equivalent to its

transpose.
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A square matrix A is said to be a PET matrix if it is permutationally equivalent to its

transpose. If the set of row sums of an n× n matrix A is different from the set of columns

sums of A, then A is non-PET.

We recall the cancellation law of matrices given by Hammack.

Theorem 2.2. [7, Lemma 3] Let A, B and C be (0, 1)-matrices. Let C be a non-zero matrix

and A be a square matrix with no zero rows. Then, the matrices C ⊗ A and C ⊗ B are

permutationally equivalent if and only if A and B are permutationally equivalent. Similarly,

the matrices A ⊗ C and B ⊗ C are permutationally equivalent if and only if A and B are

permutationally equivalent.

An isomorphism of two graphs G1 and G2 is a bijection f : V (G1) −→ V (G2) such that

any two vertices u and v are adjacent in G1 if and only if f(u) and f(v) are adjacent in

G2. Two graphs G1 and G2 are isomorphic if there exists an isomorphism between them.

It is easy to see that G1 and G2 are isomorphic if and only if the corresponding adjacency

matrices are permutationally similar. An automorphism of a graph G is an isomorphism

from the graph G to itself and the set of automorphisms Aut(G) of a graph is a group with

respect to the composition of functions. Every automorphism of a graph G on n vertices can

be represented by an n×n permutation matrix. Thus Aut(G) can be identified with the set

of permutation matrices P such that P TA(G)P = A(G).

A graph G is bipartite if its vertex set can be partitioned into two parts X and Y such

that every edge has one end in X and the other end in Y . We refer to V (G) = X ∪ Y as a

bipartition of G, and X and Y as the partite sets of G. A bipartite graph is balanced if its

partite sets have the same number of elements. If G is a bipartite graph with the adjacency

matrix

[
0 B
BT 0

]
, then the matrix B is the biadjacency matrix of G. Let G1 and G2 be two

isomorphic bipartite graphs, and let V (Gi) = Xi ∪ Yi be the bipartition of Gi for i ∈ {1, 2}.
An isomorphism f from G1 to G2 respects the partite sets if it satisfies either f(X1) = X2

and f(Y1) = Y2 or f(X1) = Y2 and f(Y1) = X2. If G1 and G2 are two connected isomorphic

bipartite graphs, then any isomorphism between them respects the partite sets.

Let G be a bipartite graph whose partite sets are X and Y . An automorphism f of

G fixes the partite sets if f(X) = X and f(Y ) = Y , and interchanges the partite sets if

f(X) = Y and f(Y ) = X.

Definition 2.3. [7] A connected bipartite graph has property π if it admits an automorphism

that interchanges its partite sets.

The next proposition connects PET matrices to automorphisms of bipartite graphs. We

skip the proof.
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Proposition 2.4. Let G be a bipartite graph with the adjacency matrix

[
0 B
BT 0

]
. Then

the biadjacency matrix B is PET if and only if there exists an automorphism f ∈ Aut(G)

that interchanges its partite sets, where the partite sets are induced by the biadjacency

matrix B.

The direct product or tensor product G1 × G2 of graphs G1 and G2 is the graph with

vertex set V (G1)× V (G2)(the cartesian product V (G1) and V (G2)) and two vertices (g, h)

and (g′, h′) are adjacent in G1×G2 if and only if g is adjacent to g′ in G1 and h is adjacent to

h′ in G2. The adjacency matrix of the graph G1×G2 is given by A(G1)⊗A(G2). Here A(Gi)

denotes the adjacency matrix of the graph Gi (for i = 1, 2), and ⊗ denotes the Kronecker

product.

3 Construction of the cospectral pairs

In this section, we give a construction of cospectral bipartite graphs for both the adjacency

and the normalized Laplacian matrices. Let Im and 0n denote the identity and zero matrices

of orders m and n, respectively. Let V be an m× n matrix and B be a p× q matrix. Define

the matrices L =

[
0 V
V T 0

]
, H =

[
0 B
BT 0

]
and H# =

[
0 BT

B 0

]
. Note that the matrices

L⊗H =

[
0 V ⊗B

V T ⊗BT 0

]
and L⊗H# =

[
0 V ⊗BT

V T ⊗B 0

]
are of orders mp+ nq and

mq + np, respectively.

For an n × n symmetric (0, 1) matrix A with zero diagonal entries, let GA denote the

simple graph whose adjacency matrix is A. The (0, 1) matrices V , B and BT are the

biadjacency matrices for the bipartite graphs GL, GH and GH# , respectively. Since H and

H# are permutationally similar, the graphs GH and GH# are isomorphic. The next theorem

is about a construction of cospectral graphs for the adjacency matrices. The proof of this

theorem could found in [4]. Our proof gives an alternate simple proof for this result, and

the proof idea could be extended for normalized Laplacian matrices as well.

Theorem 3.1. The bipartite graphs GL⊗H and GL⊗H# are cospectral for the adjacency

matrices if and only if at least one of the bipartite graphs GL or GH is balanced.

Proof. First let us show if either m = n or p = q, the matrices L⊗H and L⊗H# are

orthogonally similar, and hence they are cospectral.

Case 1: Let m = n. Then V is a square matrix and V is orthogonally equivalent to

V T . Thus there exist two orthogonal matrices R1 and R2 such that RT
1 V R2 = V T . Define
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R = P(R1, R2). Now,

RTLR =

[
0 R1

R2 0

]T [
0 V
V T 0

] [
0 R1

R2 0

]
=

[
0 RT

2 V
TR1

RT
1 V R2 0

]
=

[
0 V
V T 0

]
= L.

Let Q = P(Ip, Iq) and P = R⊗Q. Then Q is a permutation matrix, P is an orthogonal

matrix and Q satisfies QTHQ = H#. Now

P T (L⊗H)P = (R⊗Q)T (L⊗H)(R⊗Q)

= (RTLR)⊗(QTHQ)

= L⊗H#.

Note that the second step uses Proposition 2.1. Thus GL⊗H and GL⊗H# are cospectral.

Case 2: Let p = q. Then the matrix B is orthogonally equivalent to BT . Hence, there exist

two orthogonal matrices Q1 and Q2 such that QT
1BQ2 = BT . Let Q = I(Q1, Q2). Then

QTHQ = H#. Let R = I(Im, In) and P = R⊗Q. Then RTLR = L. Rest of the proof of

this case is similar to that of Case 1.

Conversely, let the matrices L⊗H and L⊗H# have the same spectrum. Then mp+nq =

mq + np, and hence (m− n)(p− q) = 0. Thus the result follows.

Next, we establish an identity for the partitioned tensor product for the normalized

Laplacian matrices, which is useful in the construction of cospectral graphs for the normalized

Laplacian matrices.

Lemma 3.2. Let G1 and G2 be two bipartite graphs with no isolated vertices. If the

matrices A(G1) (resp., A(G2)) and L(G1) (resp., L(G2)) are partitioned into 2× 2 matrices

conformally with the partite sets, then L(GA(G1)⊗A(G2)) = 2I − (L(G1)⊗L(G2)).

Proof. Let D(G1) and D(G2) denote the degree matrices corresponding to the graphs G1

and G2 respectively. Then,

L(GA(G1)⊗A(G2)) = I −
(
D(GA(G1)⊗A(G2))

−1/2(A(G1)⊗A(G2))D(GA(G1)⊗A(G2))
−1/2

)
= I −

(
D(G1)−1/2A(G1)D(G1)−1/2

)
⊗
(
D(G2)−1/2A(G2)D(G2)−1/2

)
= I −

(
(I − L(G1))⊗(I − L(G2))

)
= 2I − (L(G1)⊗L(G2)).
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In the next theorem, we establish the cospectrality for the normalized Laplacian matrices

of partitioned tensor products graphs GL⊗H and GL⊗H# .

Theorem 3.3. Let GL and GH be two bipartite graphs with no isolated vertices. The

bipartite graphs GL⊗H and GL⊗H# are cospectral for the normalized Laplacian matrices if

and only if at least one of GL or GH is balanced.

Proof. Let D(GL), D(GH) and D(GH#) denote the degree matrices for the graphs GL, GH

and GH# , respectively. Let either m = n or p = q.

Case 1: Suppose m = n. Then V is an n× n matrix. Let D(GL) = I(C1, C2) where C1

and C2 are n× n diagonal degree matrices of the respective partite sets. Since GL does not

have any isolated vertices, C
−1/2
1 and C

−1/2
2 exist. Let E = C

−1/2
1 V C

−1/2
2 . Then there exist

two orthogonal matrices R1 and R2 such that E = RT
2E

TR1. Set R = P(R1, R2). Now,

L(GL) = I −D(GL)−1/2A(GL)D(GL)−1/2

= I −
[

0 E
ET 0

]
= I −

[
0 RT

2E
TR1

R2ER
T
1 0

]
=

[
0 R1

R2 0

]T (
I −

[
0 E
ET 0

])[
0 R1

R2 0

]
= RTL(GL)R.

The permutation matrix Q = P(Ip, Iq) satisfies QTL(GH)Q = L(GH#), and P = R⊗Q is an

orthogonal matrix. By Proposition 2.1, it follows that P T (L(GL)⊗L(GH))P = L(GL)⊗L(GH#).

Case 2: Suppose p = q. Then B is a p × p matrix. Let D(GH) = I(D1, D2) where D1

and D2 are p × p diagonal matrices. Then, D(GH#) = I(D2, D1). Since GH does not have

any isolated vertices, D
−1/2
1 and D

−1/2
2 exist. Let F = D

−1/2
1 BD

−1/2
2 . Then there exist two

orthogonal matrices Q1 and Q2 such that QT
1 FQ2 = F T . Let Q = I(Q1, Q2), R be the iden-

tity matrix such that RTL(GL)R = L(GL) and P = R⊗Q. Then P T (L(GL)⊗L(GH))P =

L(GL)⊗L(GH#).

In both the cases, the matrices L(GL)⊗L(GH) and L(GL)⊗L(GH#) are orthogonally

similar. By Lemma 3.2, we have L(GL⊗H) = 2I − L(GL)⊗L(GH) and L(GL⊗H#) = 2I −
L(GL)⊗L(GH#). Then the matrices L(GL⊗H) and L(GL⊗H#) are orthogonally similar, and

hence they are cospectral.

Converse is easy to verify.

Remark 3.4. By taking V = Jm,n, J1,n, and J1,2, in Theorem 3.1 and Theorem 3.3, we get
7



the constructions of Ji et al. given in [9, Theorem 2.1], Kannan and Pragada given in [10,

Theorem 3.1], and Butler given in [2, Theorem 2.1], respectively.

4 Property η and Isomorphism

We assume from here on that the bipartite graphs GL and GH have no isolated vertices,

and they are not necessarily connected. In this section, we investigate the existence of

isomorphism between the cospectral pair obtained in Theorem 3.1 and Theorem 3.3. We

show that, under appropriate restrictions, the isomorphism is closely related to the PET

matrices and the automorphisms of bipartite graphs.

If a bipartite graph G is disconnected, then G has more than one bipartition. Next we

extend the property π for disconnected bipartite graphs. Let G be a bipartite graph with

biadjacency matrix B. We say that G has property π with respect to B, if B is a PET matrix.

We define the canonical partite sets of the partitioned tensor product graph GL⊗H (resp.,

GL⊗H#) to be the bipartition induced by the biadjacency matrix V ⊗ B (resp., V ⊗ BT ),

where V and B are biadjacency matrices of GL and GH , respectively.

The next theorem connects the property π with the isomorphism between the graphs

GL⊗H and GL⊗H# .

Theorem 4.1. Let GL and GH be bipartite graphs (not necessarily connected) with biad-

jacency matrices V and B, respectively. Then the following statements are equivalent:

(a) There exists an isomorphism between the graphs GL⊗H and GL⊗H# which respects the

partite sets of the canonical bipartitions.

(b) At least one of GL or GH has property π.

Proof. (a) =⇒ (b) By assumption, there exists a permutation matrix P of the form either

I(P1, P4) or P(P2, P3), where Pi is a permutation matrix for i ∈ {1, 2, 3, 4}, such that

P T

[
0 V ⊗B

V T ⊗BT 0

]
P =

[
0 V ⊗BT

V T ⊗B 0

]
.

If P = I(P1, P4), then P T
1 (V ⊗ B)P4 = V ⊗ BT . The matrices V ⊗ B and V ⊗ BT

are permutationally equivalent. Then, by Theorem 2.2, B is PET. If P = P(P2, P3), then

P T
3 (V T ⊗BT )P2 = V ⊗BT . Hence V is PET.

(b) =⇒ (a) Let either GL or GH has property π. Suppose GL has the property π,

that is, GL admits an automorphism that interchanges its partite sets. Then, there exist
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two permutation matrices R2 and R3 such that RTLR = L where R = P(R2, R3). Set

Q = P(Ip, Iq) and P = R⊗Q. Then QTHQ = H#, and

P T (L⊗H)P = (R⊗Q)T (L⊗H)(R⊗Q)

= (RTLR)⊗(QTHQ)

= L⊗H#.

Thus the graphs GL⊗H and GL⊗H# are isomorphic, and the isomorphism induced by the

permutation matrix P respects the partite sets.

Proof idea of the other case is similar.

Weichsel proved that if GL and GH are two connected bipartite graphs, then GL×GH has

exactly two connected bipartite components [15]. Godsil and McKay noted that the disjoint

union of the bipartite graphs GL⊗H and GL⊗H# is the direct product GL × GH [4]. Hence,

if GL and GH are connected, then the two connected components of GL⊗H are GL⊗H and

GL⊗H# . Using these observations, we obtain Hammack’s result as a corollary of Theorem

4.1.

Corollary 4.2. [7, Theorem 1] Suppose G1 and G2 are connected bipartite graphs. The

two components of G1 × G2 are isomorphic if and only if at least one of G1 or G2 has the

property π.

The bipartite graphs constructed by Ji, Gong and Wang have the property that any

isomorphism between them respects the partite sets [9, Lemma 3.2]. From Theorem 4.1, we

observe that respecting partite sets is the key property for characterizing isomorphism in

terms of PET matrices (property π). To this end, we define property η, which relaxes the

connectedness assumption in the Hammack’s result and includes a broader class of bipartite

graphs.

Definition 4.3. Two bipartite graphs GL and GH are said to have property η, if whenever

the bipartite graphs GL⊗H and GL⊗H# are isomorphic, there exists an isomorphism between

GL⊗H and GL⊗H# that respects the partite sets of the canonical bipartitions.

Next we show that any pair of connected bipartite graphs have property η and thus

property η is relaxation of connectedness requirement from Hammack’s result [7, Theorem

1].

Theorem 4.4. Let GL and GH be connected bipartite graphs. Then, they have property η.

9



Proof. Suppose GL and GH are connected, and GL⊗H and GL⊗H# are isomorphic. Since

GL⊗H and GL⊗H# are connected bipartite graphs, thus any isomorphism between them

respects the partite sets. Hence GL and GH have property η.

A biregular bipartite graph is a bipartite graph G for which any two vertices in the same

partite sets have the same degree as each other. If degree of the vertices in one of the partite

sets is k and degree of the vertices in the other partite set is l, then the graph is said to be

(k, l)-biregular. We say that a biregular bipartite graph has distinct degrees if k 6= l. Next

we prove that property η is satisfied if one of the bipartite graphs is biregular with distinct

degrees.

Theorem 4.5. Let GL and GH be bipartite graphs. If GL is a non-empty (k, l)-regular

bipartite graph with k 6= l, then GL and GH have property η.

Proof. Let the graphs Γ1 = GL⊗H and Γ2 = GL⊗H# be isomorphic. Then, Γ1 and Γ2 are

cospectral. By Theorem 3.1, the graph GH is balanced, since GL cannot be balanced as

k 6= l.

Let V (Γi) = Xi ∪ Yi be the canonical vertex partitions of the graphs Γi for i = 1, 2.

Without loss of generality, assume that k < l. Let f be an isomorphism from Γ1 to Γ2. Let

bi and b′i denote the ith row sum of the matrices B and BT , respectively. Let x1 be the vertex

of maximum degree in X1. Suppose that f(x1) ∈ Y2. Then dΓ1(x1) = lbi for some 1 ≤ i ≤ p,

and dΓ2(f(x1)) = kbj for some 1 ≤ j ≤ p. Since the isomorphism preserves the degrees, we

have lbi = kbj. Since x1 has maximum degree in X1, bi ≥ bj for any 1 ≤ j ≤ p, and hence

kbj ≥ lbj. If bj 6= 0, then k ≥ l, a contradiction to the initial assumption that k < l. Hence,

if x1 ∈ X1, then f(x1) ∈ X2. If bj = 0 then lbi = kbj, bi = 0. But x1 is a vertex of maximum

degree lbi in the set X1 and thus B = 0. So we could choose f(x1) ∈ X2. In any case,

f(x1) ∈ X2.

Let x1, . . . , xrm be the vertices ofX1 with the same maximum degree such that dΓ1(x1+(s−1)m) =

. . . = dΓ1(xm+(s−1)m) = lbis for s ∈ {1, 2, . . . , r} where bi1 = . . . = bir for 1 ≤ i1, . . . , ir ≤ p.

Then, using the previous argument, f(x1), . . . , f(xrm) ∈ X2 such that dΓ2(f(x1+(s−1)m)) =

. . . = dΓ2(f(xm+(s−1)m)) = lb′js for s ∈ {1, 2, . . . , r} where b′j1 = . . . = b′jr for 1 ≤ j1, . . . , jr ≤
p. Define B′ to be the matrix obtained by removing the iths row and jths column of B for

all s ∈ {1, 2, . . . , r}. Define Γ′1 and Γ′2 to be the induced bipartite graphs corresponding to

the biadjacency matrices V ⊗B′ and V ⊗B′T , respectively. Since Γ′1 and Γ′2 are isomorphic

as well, apply the same argument for Γ′1 and Γ′2 until all the rows and columns of B are

exhausted. Thus f(X1) = X2 and hence f(Y1) = Y2.
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Similarly, if k > l, then consider the set of vertices of maximum degree in Y1 and show

that f(Y1) = Y2 and hence f(X1) = X2. Hence, GL and GH satisfy property η.

Note that at each step, the vertices from both the partite sets of the induced bipartite

graphs of Γ1 and Γ2 are being removed. This is justified since our motive is to first show

just f(X1) = X2. Ji, Gong and Wang in Lemma 3.2. [9] remove vertices from only X1 and

X2 at each step.

Since we are interested in the construction of cospectral nonisomorphic graphs, we use

this result to construct cospectral graphs that are not isomorphic.

Theorem 4.6. Let GL and GH be bipartite graphs. Let GL be a biregular bipartite graph

with distinct degrees and let GH be balanced. Then the graphs GL⊗H and GL⊗H# are

nonisomorphic if and only if GH does not admit an automorphism that interchanges its

partite sets.

Proof. Since GL is a biregular bipartite graph with distinct degrees, the corresponding m×n
biadjacency matrix V has constant row sum k and constant column sum l. Since the sum

of row sums must be the same as the sum of column sums, we have km = ln. But k 6= l,

hence m 6= n. Hence, GL has unequal partition sizes. Since GH has equal partition sizes,

by Theorem 3.1 and Theorem 3.3, the graphs GL⊗H and GL⊗H# are cospectral. Now, as GL

has unequal partitions sizes, it doesn’t admit an automorphism that interchanges its partite

sets. Hence, the condition for non-isomorphism follows from Theorems 4.1 and 4.5.

Now as a corollary, we obtain the result of Ji, Gong and Wang.

Corollary 4.7. [9, Theorem 3.1] Let V = Jm,n such that m 6= n and let B is a square

matrix. Then, the bipartite graphs GL⊗H and GL⊗H# are cospectral for the adjacency as

well as the normalized Laplacian matrices, and they are isomorphic if and only if B is PET.

Proof. Since V = Jm,n and m 6= n, the corresponding bipartite graph GL is a biregular

bipartite graph with distinct degrees. Hence, the result follows from Theorem 4.6.

Now, let us illustrate the construction given in Theorem 4.6 with an example.

Example. The following pair of matrices V and B satisfy all the conditions stated in The-

orem 4.5 and corresponding graphs are illustrated below.

V =


1 0
1 0
0 1
0 1

 and B =

1 1 0
1 0 1
1 0 0

 .
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In the following figure, GL and GH denote the bipartite graphs with biadjacency matrices

V and B, respectively. The graphs GL⊗H and GL⊗H# are the cospectral nonisomorphic pairs.

Note that this example of cospectral bipartite graphs is not obtainable from the results of

Ji et al. and Hammack.

Figure 1: GL, GH , GL⊗H and GL⊗H#
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