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Abstract

Let G be a prolific graph, by which we mean a finite connected simple
graph which is not isomorphic to a cycle nor a path nor the star graph
K1,3. The line-graph of G, denoted by L(G), is defined by having its
vertex-set equal to the edge-set of G and two vertices of L(G) are adjacent
if the corresponding edges are adjacent in G. For a positive integer k, the
iterated line-graph Lk(G) is defined recursively by Lk(G) = L(Lk−1(G)).

In this paper we shall consider fifteen well-known graph parameters
and study their behaviour when the operation of taking the line-graph is
iterated. We shall first show that all of these parameters are unbounded,
that is, if P = P (G) is such a parameter defined on any prolific graph
G, then P (Lk(G)) → ∞ when k → ∞. This idea of unboundedness is
motivated by a well-known old result of van Rooij and Wilf that says that
the number of vertices is unbounded if and only if the graph is prolific.

Following this preliminary result, the main thrust of the paper will
be the study of the value of k(P,F), which is the index of a family of
prolific graphs with regards to a given graph parameter P (G). For a given
parameter P (G), the index of G is denoted by ind(P,G) = min{r : P (G) <
P (Lr(G)}.

Now for a family F of prolific graphs, the index of the family is k(P,F) =
max{ind(P,G) : G ∈ F}, that is k(P,F ) is the smallest integer k such that
for every prolific graphs G ∈ F , ind(P,G) ≤ k(P,F).

The problem of determining the index of a parameter over the family of
prolific graphs is motivated by a classical result of Chartrand who showed
that it could require k = |V (G)|−3 iterations to guarantee that Lk(G) has
a hamiltonian cycle.

For twelve of the fifteen parameters considered, we exactly determine
k(P,F) where F is the family of all prolific graphs, and for some parameters
we also characterize the class of prolific graphs realizing the extremal value
k(P,F).
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For example, for the matching number µ, we show that the index of
every prolific graph is at most 4 which is sharp, namely k(µ,F) = 4 and
we further characterize those graphs for which ind(µ,G) = 4.

Interesting open problems remain, in particular completing the deter-
mination of k(P,F) for the three parameters: the independence number,
independent domination number and domination number, where we obtain
partial results.

1 Introduction

The taking of the line-graph L(G) of a graph G is perhaps the most widely studied
graph operation. This is probably because it is such a natural operation on
graphs: a graph tells us which pairs of vertices are related by letting them be in the
same 2-subset, and the line-graph takes this one step further by telling us which
two subsets are related by containing a common vertex. The two fundamental
theorems of line-graphs are arguably the characterisations by Krausz [27] and
Beineke [3]. The latter’s result is one of the most well-known characterisations
of a class of graphs in terms of “forbidden subgraph”.

In this paper we shall study the effect of taking the line graph on fifteen well-
known parameters. Our interest is in studying their behaviour when the operation
of taking the line-graph is iterated. We denote by Lk(G) the kth iterated line
graph of G. In particular L(G) = L1(G), L2(G) = L(L(G)) etc. We consider
prolific graphs — a connected graph G is called prolific if G is none of Pk, the
path on k vertices, Ck, the cycle on k vertices or K1,3. Van Rooij and Wilf [33]
consider the sequence Lk(G) of iterated line graphs and show that, when G is a
finite connected graph, only four behaviours are possible for this sequence:

• if G is a cycle graph then L(G) and each subsequent graph in this sequence
are isomorphic to G itself. These are the only connected graphs for which
L(G) is isomorphic to G.

• if G is a claw K1,3, then L(G) and all subsequent graphs in the sequence
are triangles.

• if G is a path graph then each subsequent graph in the sequence is a shorter
path until eventually the sequence terminates with an empty graph.

• in all remaining cases, the sizes of the graphs in this sequence eventually
increase without bound.

The notion of boundedness of parameters follows naturally from the work
of van Rooij and Wilf whose ideas were, thirty years later, also extended by
Chartrand et al. [9] to a modified form of the iterated line graph which they
called the iterated H-line graph.

Formally, we define unbounded parameters as follows:
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• Let G be a prolific graph. A graph parameter P (G) is unbounded for G if
P (Lk(G)) → ∞ as k → ∞. (Clearly P (G) is unbounded for G if and only
if it is unbounded for P (Lk(G)) for k ≥ 0.)

• Let F be a family of prolific graphs. A graph parameter P (G) is unbounded
on F if P (Lk(G)) → ∞ as k → ∞ for all members G of F .

• A graph parameter is called unbounded if it is unbounded on the family of
all prolific graphs.

We first show that all of the fifteen parameters which we consider are un-
bounded. This is the result which one would intuitively expect, since |V (Lk(G))|
is unbounded. Yet, in some cases, we shall see that it does require some work to
show unboundedness.

Following this, our attention then focuses not on the asymptotic behaviour of
these parameters as the operation of taking the line-graph is iterated, but rather
on their behaviour in the initial stages of this iterating process. Formally, for a
given parameter P (G), the index of G is denoted by ind(P,G) = min{r : P (G) <
P (Lr(G)}.

Now for a family F of prolific graphs, the index of the family is k(P,F) =
max{ind(P,G) : G ∈ F}, that is k(P, F ) is the smallest integer k such that
for every prolific graphs G ∈ F , ind(P,G) ≤ k(P,F). In the case where this
maximum over a family F or over all prolific graphs, is finite, P is called universal
over F or just universal in case it is over all prolific graphs. Otherwise P is non-
universal and we write k(P,F) = ∞, k(P ) = ∞ respectively.

The motivation for this definition can best be described using Chartrand’s
result on the Hamiltonicity [12] of line-graphs. Chartrand showed that, for min-
imum degree δ at least 3, there are non-Hamiltonian graphs G such that L2(G)
is still not Hamiltonian, but that L3(G) is hamiltonian for every such graph.
Therefore if P (G) denotes the number of hamiltonian cycles of G, then the index
k(P,F) of P over F , the family of all graphs with δ ≥ 3 is 3. But for general pro-
lific graphs Chartrand showed that it could require n− 3 iterations to guarantee
a Hamiltonian graph,and this is sharp, therefore the index k(P,F) of P over all
prolific graphs is ∞.

Our aim is to find, for each of the fifteen parameters under consideration, their
indices for as wide a family of prolific graphs as possible, and to characterise those
extremal graphs which attain this value of the index k(P,F), that is, those G
with the property that ind(P,G) = k(P,F).

The notion of the index of a parameter was formally introduced for connectiv-
ity by Chartrand and Stewart in [11] but in the past fifty years it was studied by
numerous authors for hamiltonicity [12], matching number [31], maximum and
minimum degree [18], connectivity [21, 29], linkability [5], maximally ordered
graphs [23], independence number [22], the independent domination number [1],
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more recently, the 1-crossing number [35], to mention only a few. Other inves-
tigators also showed that there is interest in studying not only in the numerical
behaviour of parameters for iterated line graphs but also qualitative properties
such as planarity [16] or, even more recently, generalized outerplanarity [2].

Surprisingly, perhaps, the study of iterated line graphs has also found its
way in the vast literature of the applications of graph theory to chemistry. For
example, we can cite two very recent papers on the iterated line graphs and
chemistry: in [25] the authors study the Wiener index of iterated line graphs,
and in [17] the authors investigate the possible link between what are called the
Bertz indices of the sequence of iterated line graphs and the study of quantitative
structure-properties of molecules. It seems that the history of the relationship
between line graphs and chemistry goes back a long time to a paper by Lennard-
Jones and Hall in 1952!

However, in spite of all this interest, we are unaware of the existence of a
comprehensive survey on families of iterated line-graphs which collects the various
results obtained in the last sixty years on both unboundedness of parameters and
of their index. Such results are found in dozens of journals, so we have tried to
collect those related to the fifteen parameters under consideration in this paper.
This paper therefore serves partly as a survey on this topic by collecting and
presenting systematically results which are scattered in the literature, and partly
as a presentation of new results in the hope that others might be interested in
studying this aspect of iterated line graphs. Throughout the paper, we follow
general graph theory notation as in [36].

The parameters of prolific graphs which we shall consider are the following:

1. n(G), the number of vertices of G

2. e(G), the number of edges of G

3. ∆(G), the maximum degree of G

4. δ(G), the minimum degree of G

5. d(G), the average degree of G

6. c(G), the longest cycle in G

7. µ(G), the matching number of G

8. χ(G), the chromatic number of G

9. χ′(G), the chromatic index of G

10. ω(G), the clique number of G

11. λ(G), the edge connectivity of G
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12. κ(G), the vertex connectivity of G

13. α(G), the independence number of G

14. i(G), the independent domination of G

15. γ(G), the domination number of G

In order to give the reader a taste of what will be covered, we finish this in-
troduction by giving a table which summarises the main results which we present
in this paper. In this table, the class of all prolific graphs is denoted by F and an
asterisk by the name of a theorem means that part or all of the characterisation
of the extremal graphs is still open.

Table 1: The fifteen unbounded parameters and their indices
Parameter Family of

graphs
k(P,F) Theorem

Number of vertices n(G) F 4 Theorem B
Number of edges e(G) F 2 Theorem A
Maximum degree ∆(G) F 3 Theorem C
Minimum degree δ(G) F , δ ≤ 2 ∞ Theorem D

F , δ ≥ 3 1 Theorem D
Average degree d(G) F 1 Theorem E
Longest cycle c(G)) F 1 Theorem F
Matching number µ(G) F 4 Theorem G
Chromatic number χ(G) F 3 Theorem H*
Chromatic index χ′(G) F 3 Theorem I
Clique number ω(G) F 3 Theorem J
Edge connectivity λ(G) F , δ ≤ 2 ∞ Theorem K

F , δ ≥ 3 1 Theorem K
Vertex connectivity κ(G) F , δ ≤ 2 ∞ Theorem L

F , δ ≥ 3 2 Theorem L*
Independence number α(G) F , d ≥ 4 ≤ 2 Theorem M*

F , δ ≥ 3 ≤ 2 Theorem M*
F , d ≥ 3 ≤ 3 Theorem M*
F , δ = 2 ≤ 3 Theorem M*

Independent domination number i(G) Open
Domination number γ(G) F , δ ≥ 4 ≤ 2 Theorem N*

F , δ = 3 ≤ 3 Theorem N*
F , d ≥ 3 ≤ 3 Theorem N*

- -

As regards notation, we shall use P (Lk(G)) = Pk(G) when no ambiguity is
involved . For example, αk(G) = α(Lk(G)) is the independence number of Lk(G),
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the k-th iteration of L(G). Also, we use xj to denote the number of vertices of
degree j in a graph G.

2 Unbounded Parameters

We first state the following results which will be used in the main proof.

Theorem 2.1 (Sumner [31]). Let G be a connected K1,3-free graph on n vertices.
Then µ(G) = ⌊n

2
⌋.

Corollary 2.2. If G is a connected graph having m edges then α2(G) = µ1(G) =
⌊m

2
⌋.

This is found in [24] and is obtained using an old result of Kotzig from 1957 in
[26]. An alternative proof is found in [7]. However it is immediate from Sumner’s
theorem and the facts that n1(G) = e(G) and µ1(G) = α2(G).

We now state the main theorem for this section.

Theorem 2.3. All the fifteen parameters listed above are unbounded.

Proof.

1. For n(G) the number of vertices of G, as already mentioned, it is known
from [33] that n(G) is unbounded if G is prolific.

2. For e(G), the number of edges of G, the result follows directly from case 1,
since the line graph of a prolific graph G is connected therefore ek ≥ nk − 1
for k ≥ 1.

3. For ∆(G), maximum degree of G, the result can be deduced from the the-
orem proved in [18], which states that, for a prolific graph G, there exists
a constant c(G) such that for k ≥ c(G), ∆k+1 = 2∆k − 2, and since G is
prolific ∆(G) ≥ 3 and hence ∆k → ∞ when k → ∞.

4. For δ(G), the minimum degree of G, this is proved explicitly in [19], where
it is shown that for a prolific graph G, there exists a constant c(G) such
that for k ≥ c(G), δk ≥ 3 and δk+1 = 2δk − 2.

5. For d(G), the average degree of G, we know that ∆(G) ≥ d(G) ≥ δ(G) and
due to item 4, we infer that d(G) is unbounded.

6. For c(G), the longest cycle in G, the result follows from a theorem of Char-
trand proved in [8], which states that for a prolific graph G on n vertices,
Ln−3(G) is Hamiltonian, and this fact together with item 1 prove that c(G)
is unbounded.

It is worth noting that if δ(G) ≥ 3, then already L2(G) is Hamiltonian as
proved in [12].
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7. For µ(G), the matching number of G, we use item 2 and Theorem 2.1, and
also item 6, since if G is Hamiltonian then clearly µ(G) = ⌊n

2
⌋.

8. For χ(G), the chromatic number of G, it is clear that χ′(G) = χ1(G) hence
by Vizing’s theorem χk+1(G) = χ′

k(G) ≥ ∆k(G), and the result follows from
item 3.

9. For χ′(G), the chromatic index of G, again by Vizing’s theorem χ′
k(G) ≥

∆k(G) and the result follows from item 3.

10. For ω(G), the clique number of G, clearly ω(L(G)) = ∆(G) and hence
ωk+1(G) = ∆k(G) and the result follows from item 3.

11. For λ(G), the edge connectivity of G, there are results in [21, 29] which
prove that for a prolific graph G, there exists a constant c(G) such that for
k ≥ c(G), λk(G) = δk(G) and the result follows from item 4.

12. For κ(G), the vertex connectivity of G, there are results in [21, 29] which
proves that for a prolific graph G, there exists a constant c(G) such that
for k ≥ c(G), κk(G) = δk(G), and the result follows from item 4.

13. For α(G), the independence number of G, the result follows from Corollary
2.2 and item 2. A proof with details on the growth of αk is given in [22].

14. For i(G), the independent domination number of G we use a theorem by
Allan-Laskar [1], which states that, for a K1,3-free graph G (hence for line
graphs and iterations of line graphs), i(G) = γ(G), and the proof of item
15.

15. For γ(G), the domination number of G, we observe the following. Define
µ∗(G) to be the minimum cardinality of a maximal matching in G. Then

(a) it is well known (Lemma 1 in [4]) that µ∗ ≤ µ ≤ 2µ∗, hence µ∗ ≥ µ

2

and since by item 7 µ is unbounded, so is µ∗.

(b) it is clear that i(L(G)) = µ∗(G) [32]. Hence γk+1 = ik+1 = µ∗
k so all

parameters are unbounded since µ∗ is unbounded.

In order to present the main contribution of this paper, namely computing
the indices of the various parameters presented in section 2, we need several
preparatory results, which are collected in the following section.
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3 Preparatory Tools

We first consider some results and facts which we will use in our proofs. These
results mainly involve convexity and the well-known Jensen inequality [20].

Theorem 3.1 (Jensen). If f is a real continuous function that is convex, then

f

(∑n

i=1 xi

n

)

≤

∑n

i=1 f(xi)

n
.

Equality holds if and only if x1 = x2 = . . . = xn or if f is a linear function on a
domain containing x1, x2, . . . , xn.

The first known and important result (unpublished [14]) which we shall use
in further proofs concerns the average degree.

Theorem 3.2. For a graph G we have d1(G) ≥ 2(d(G) − 1) and equality holds
if and only if G is regular, where d(G) is the average degree of G.

Proof. Clearly n1(G) = e(G) =
∑

deg(vj)

2
and 2e(G) = nd(G).

Also e1(G) =
∑

(

deg(vj )
2

)

and hence

2e1(G) = 2
∑

(

deg(vj)

2

)

≥ 2n

(

d

2

)

by the Jensen inequality, since the function
(

x

2

)

is convex.
Therefore

d1(G) =
2e1(G)

n1(G)
≥

2nd(G)(d(G)− 1)

2e(G)
=

2nd(G)(d(G)− 1)

nd(G)
= 2(d(G)− 1)

with equality if and only G is regular, again by the Jensen inequality.

We now consider the difference between the number of edges.

Theorem 3.3. For a graph G,

2(e1(G)− e(G)) = 2

(

∑

(

deg(vj)

2

)

−

∑

deg(vj)

2

)

=
∑

deg(vj)(deg(vj)− 2) ≥ nd(G)(d(G)− 2)

with equality if and only if G is regular.

Proof. This result is clear using the Jensen inequality.
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We now consider the balanced degree sequence. First we give some notation.
We let F (n,m) denote the set of all non-increasing non-negative integer sequences
consisting of n terms summing to m, and let y = y(n,m) = y1, . . . yn be the unique
sequence in F (n,m) such that y1 − yn ≤ 1.

Theorem 3.4. For any sequence t = t1 . . . tn ∈ F (n,m),

n
∑

j=1

(

tj
2

)

≥
n

∑

j=1

(

yj
2

)

≥ n

(

m/n

2

)

and equality holds for the rightmost inequality if and only if y1 = yn.

Proof. The first inequality comes from the fact that if t1 ≥ tn + 2 then the
sequence with t∗1 = t1−1, . . . , t∗n = tn+1 (with reordering if necessary) is again a
member of F (n,m) and has a strictly smaller (triangular) sum, because it is an
easy fact that

(

t1
2

)

+
(

tn
2

)

>
(

t1−1
2

)

+
(

tn+1
2

)

.
The rightmost inequality is then the extremal case where all members of (n,m)

are equal and d =
∑n

j=1 yj

n
is the common value of the members of y(n,m).

Remark 3.5. We sometimes need to know the second best possible minimum
sequence in F (n,m), which we may need if y(n,m) is not graphical or is realized
only by non-prolific graphs. We consider the following. Suppose n ≥ 4 (otherwise
there is no prolific graph), and consider the sequence y = y(n,m). Then, either
the value of y1 repeats at least twice or the value of yn repeats at least twice. Say
yj = yj+1 for j = 1 or j = n−1. Then replace y∗j = yj+1 and y∗j+1 = yj+1−1 (for
either j = 1 or j = n−1) and for the rest of the indices set y∗i = yi and rearrange
the sequence accordingly. Let the obtained sequence be denoted y∗ = y∗(n,m),
then clearly

∑

(

y∗i
2

)

= 1 +
∑

(

yi
2

)

.

So the sequence y∗(n,m) derived from y(n,m) by this switching operation (in case
y(n,m) is not graphic or not realizable by any prolific graph) realizes the second
best possible minimum after y(n,m), as it differs by 1 and is a candidate to check
if it is realizable by prolific graph.

Lastly, we consider the line graph of a tree and the difference in the number
of edges.

Theorem 3.6. If T is a tree with xj vertices of degree j then

2e1(T )− 2e(T ) = −2 +
∑

j≥3

(j − 1)(j − 2)xj .
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Proof. In trees we have x1 = 2+
∑

j≥2(j−2)xj , where xj is the number of vertices
of degree j.

Clearly 2e(T ) =
∑

deg(vj) =
∑

jxj while

2e1(G) =
∑

deg(vj)(deg(vj)− 1) =
∑

j(j − 1)xj .

Hence

2e1(T )−2e(T ) =
∑

j(j−2)xj = −x1+
∑

j≥2

j(j−2)xj = −2−
∑

(j−2)xj+
∑

j(j−2)xj =

−2 +
∑

j≥3

(j − 1)(j − 2)xj .

Theorem 3.7. Let G be a connected graph and H a non-empty subgraph of G,
then e1(G)− e1(H) ≥ e(G)− e(H).

Proof. For n = 2 it follows that G = H = K2 and this is trivially true. For
n = 3, the only graphs for G are P3 and C3, and the only graphs for H (ignoring
isolated vertices) are P2, P3 and C3 and the above holds.

Suppose G is a minimum counter example with respect to n = |V (G)|, namely
there exists non-empty subgraph H of G such that e1(G)−e1(H) < e(G)−e(H).
Clearly n ≥ 4. Let aj = deg(vj) be the degree of vj in G and bj be the degree of
vj in H and observe that aj ≥ bj . Then for this counter example pair we have

2(e1(G)− e(G)) =
∑

aj(aj − 2) <
∑

bj(bj − 2) = 2(e1(H)− e(H)).

However this can happen only if G contains a vertex w of degree 1 which is
not in H , since otherwise aj(aj − 2) ≥ bj(bj − 2).

Define G∗ = G\{w}. Then G∗ is connected, e(G∗) = e(G)− 1 and |V (G∗)| ≥
3. We apply the fact that G is minimum counter example. Then

e1(G
∗)− e1(H) ≥ e(G∗)− e(H) = e(G)− 1− e(H).

So e1(G
∗) ≥ e(G)− 1+ e1(H)− e(H). Hence if e1(G) ≥ e1(G

∗) + 1 we are done .
Let z be the neighbour in G of the deleted leaf w. The leaf w contributes

nothing to e1(G) but since G is connected and n ≥ 4, deg(z) ≥ 2, and in G∗,
deg(z) decreases by 1 and is at least 1 so we have

e1(G)− e1(G
∗) =

(

deg(z)

2

)

−

(

deg(z)− 1

2

)

≥ 1

and equality holds only if deg(w) = 2 and the claim is proved.
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Certain graphs play an important role in extremal cases of the indices of
several parameters. We describe and define the following:

Definition 3.8. A subdivision graph of K1,3 is called type A, B, C respectively if
the centre vertex of degree 3 is adjacent to 2, 1, 0 leaves respectively.

These graphs are illustrated in Figure 1.

b

b b b

x

Type A subdivision

b

b b b

x

Type B subdivision

b

b b b

x

Type C subdivision

b

b

b b b b b

b
b

b
b b

Figure 1: Subdivision types of K1,3

We will also use the double star S2,2 and its subdivisions as shown in Figure 2.

b

b

b b

b

b

b

b

b b

b

b

b b

S2,2

Figure 2: S2,2 and its subdivision type

Another useful graph is CP (k, n− k) which consists of a cycle and a pendant
path as illustrated in Figure 3.
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b

b

bb

b

b

b b b bCk

n− k

Figure 3: The graph CP (k, n− k): a path of length n− k attached to a k-cycle

We state the following three lemmas first, then we give their proofs.

Lemma 3.9. Let G be a type C subdivision of K1,3 with the three paths at the
centre vertex v having respectively m1 ≥ m2 ≥ m3 ≥ 2 edges. Then

e1(G) = e(G), e2(G) = e(G) + 3, e3(G) ≥ e(G) + 15.

Lemma 3.10. Let G be a type B subdivision of K1,3 with the three paths at the
centre vertex v having respectively m1 ≥ m2 > m3 = 1 edges. Then

e1(G) = e(G), e2(G) = e(G) + 2, e3(G) ≥ e(G) + 9.

Lemma 3.11. Let G be a type A subdivision of K1,3 with the three paths at the
centre vertex v having respectively m1 > m2 = m3 = 1 edges. Then

1. if m1 ≥ 3 then e1(G) = e(G), e2(G) = e(G) + 1, e3(G) ≥ e(G) + 4.

2. if m1 = 2 then e1(G) = e(G), e2(G) = e(G) + 1, e3(G) = e(G) + 4.

Proof of Lemmas 3.9, 3.10 and 3.11

• Lemma 3.9: By Theorem 3.7, it suffices to check the case where H is the
type C subdivision graph with m1 = m2 = m3 which gives the result.

• Lemma 3.10: By Theorem 3.7, it is suffices to check the case where H is
the type B subdivision with m1 = m2 = 2, m3 = 1 which gives the result.

• Lemma 3.11: By Theorem 3.7 it suffices to check the case where H is a
type A subdivision with m1 = 3, m2 = m3 = 1 and the case where H is a
type A subdivision with m1 = 2, m2 = m3 = 1 which gives the result.

Lemma 3.12. Suppose G is a prolific graph on n vertices.
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1. If e(G) = n + 2 then e1(G) ≥ n + 8, namely e1(G) ≥ e(G) + 6. Equality is
achieved for all realizations of the graphic sequence with n − 4 vertices of
degree 2 and four vertices of degree 3.

2. If e(G) = n + 1 then e1(G) ≥ n + 4, namely e1(G) ≥ e(G) + 3. Equality
is achieved for a cycle with one chord or for n ≥ 6, in two vertex-disjoint
cycles of order n1 ≥ n2 ≥ 3 with n1 + n2 = n connected by a path with
n+ 1− (p1 + p2) edges.

3. If e(G) = n then e1(G) ≥ n + 1, namely e1(G) ≥ e(G) + 1. Equality is
achieved for a cycle Ck with an attached path on n− k edges.

Proof.

1. By Theorem 3.4, the best possible sequence must be the sequence y(n, 2n+
4) and in this case it is precisely the sequence containing n − 4 vertices
of degree 2 and 4 vertices of degree 3. This is a graphical sequence with
several realizations including cycles with two disjoint chords.

2. By Theorem 3.4, the best possible sequence must be the sequence y(n, 2n+
2) and in this case it is precisely the sequence containing n− 2 vertices of
degree 2 and 2 vertices of degree 3. This is a graphical sequence and can
be realized by either a cycle with a chord or, for n ≥ 6, also by two vertex-
disjoint cycles of order p1 ≥ p2 ≥ 3 connected by a path on n+1− (p1+p2)
edges.

3. By Theorem 3.4, the best possible sequence must be the sequence y(n, 2n)
and in this case it is precisely the sequence containing n vertices of degree
2 which forms a cycle Cn. But Cn is not prolific. Hence the best second
possible sequence, by Remark 3.5, is n− 2 vertices of degree 2, one vertex
of degree 1 and one vertex of degree 3. This second best possible sequence
is graphically realized only by a cycle Ck with an attached path on n − k
edges.

Lemma 3.13. Let G be a prolific graph on n vertices.

1. Suppose e(G) = n + k where n ≥ 2k. Then e1(G) ≥ e(G) + 3k and this is
sharp.

2. Suppose e(G) ≥ n+ 2. Then we have e1(G) ≥ e(G) + 6.

Proof.
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1. Since n ≥ 2k we have 2 < d(G) = 2e(G)
n

≤ 2(n+k)
n

≤
2(n+n

2
)

n
≤ 3, so equality

holds only if n = 2k. By Theorem 3.4 the best possible lower bound is
y(n, n+k) which must be precisely n−k vertices of degree 2 and k vertices
of degree 3. This sequence is graphical and as n increases with respect
to k, many realizations exist including always the cycle Cn with k vertex
–disjoint chords (as n ≥ 2k).

2. For n = 4 the condition is possible only for K4 and the conclusion is true.
So we start induction on n. Suppose n ≥ 5 and e(G) ≥ n + 3 (otherwise
it is already proved in Lemma 3.12 and Lemma 3.13 for k = 2). Then we
can delete an edge e such that H = G − e is prolific, and e(H) ≥ n + 2.
Hence, by induction, using the fact that H ⊂ G implies L(H) ⊂ L(G), we
get e1(G) ≥ e1(H) + 1 ≥ e(H) + 7 = e(G) + 6.

4 Universal Parameters

4.1 The number of edges e(G): k(e,F) = 2

Theorem A. Let G be a prolific graph on n ≥ 4 vertices. Then

1. e1(G) ≥ e(G) with equality holding if and only if G is a subdivision of K1,3.

2. e1(G) ≥ e(G) + 1 when G is not a subdivision of K1,3 and equality holds
if and only if G is the double star S2,2 or its subdivisions, or the graph
CP (k, n− k).

3. e2(G) ≥ e(G)+1 and equality holds if and only if G is a type A subdivision
of K1,3 and e2(G) = e1(G) + 1 = e(G) + 1.

4. e3(G) ≥ e(G) + 4 with equality if and only if G is a type A subdivision of
K1,3 on four edges, otherwise e3(G) ≥ e(G) + 5.

5. k(e,F) = 2

Proof.

1. Since G is connected it follows that L(G) is connected and e1(G) ≥ e(G)−1
since e(G) = n1(G). If e1(G) = e(G) − 1 = n1(G) − 1, it means L(G) is
a tree and this is possible only if G is a path (as a vertex of degree d ≥ 3
creates a clique Kd in L(G)), but then G is not prolific. So we may assume
e1(G) = e(G) = n(G). Then we have d1(G) = 2, and if d(G) = 2 we get
d1(G) = 2(d(G)− 1) which is possible by Theorem 3.2 if and only if G is 2-
regular which is not the case here since G is prolific. Hence 2 > 2(d(G)−1)
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and d(G) < 2 and hence, since G is connected, n(G) = e(G) + 1 and G is
a tree. However, by Theorem 3.6, we know that

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj .

Now it is clear that, if x3 ≥ 2 or, for some j ≥ 4, xj ≥ 1, we then have
∑

j≥3

(j − 1)(j − 2)xj − 2 > 0

contradicting e1(G) = e(G). Hence 2e1(G)− 2e(G) = 0 if and only if G is
a tree with x3 = 1 and xj = 0 for j ≥ 4, hence G is a subdivision of K1,3.

2. Now suppose e1(G) = e(G) + 1 = n1(G) + 1.

(a) If e(G) = n(G) − 1 then G is a tree, but is not a subdivision of K1,3

by part 1. If, for some j ≥ 4, xj ≥ 1, then we get

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj ≥ 4

and hence e(L(G)) ≥ e(G) + 2. If x3 ≥ 3 then we get

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj ≥ 4

hence e1(G) ≥ e(G) + 2. Hence, since x3 = 1 this would mean that
G is a subdivision of K1,3, and the remaining possibility is that G is
a tree with x3 = 2 containing exactly two vertices of degree 3 hence
G is the double star S2,2 (6 vertices, 5 edges) or its subdivisions, and
indeed for such trees e1(G) = e(G) + 1.

(b) If e(G) = n(G) then d(G) = 2 and since G is prolific it is not 2-regular
and hence it is a unicyclic graph which is not a cycle. Furthermore,
by the assumption in part 2, we have e1(G) = e(G) + 1 = n(G) + 1 =
n1(G) + 1. Now, applying Theorem 3.3

2 = 2(e1(G)− e(G)) =
∑

deg(vj)(deg(vj)− 2)

and we proceed as per item 1 with xj being the number of vertices of
degree j in G:

•
∑

j≥1 xj = n.
•
∑

j≥1 jxj = 2n

15



and hence subtracting the two equations we get
∑

j≥1(j − 2)xj = 0.
Hence x1 =

∑

j≥2(j − 2)xj . So we have

2 = 2(e1(G)− e(G)) =
∑

deg(vj)(deg(vj)− 2) =
∑

j≥1

j(j − 2)xj

and substituting the value of x1 we finally obtain

1 = e1(G)− e(G) =
∑

j≥1

(

j − 1

2

)

xj .

Now if for some j ≥ 4, xj ≥ 1, the right side is at least 3. If x3 ≥ 2,
the right side is at least 2. So we are left with x3 = 1. Since G is a
prolific graph with e(G) = n(G), it must be unicyclic (but not a cycle)
having exactly one vertex of degree 3, hence it must be a cycle Ck,
n > k ≥ 3 with a path Pn−k attached.

(c) If e(G) ≥ n(G) + 1 then

e1(G) = e(G) + 1 ≥ n(G) + 2.

But then

d(G) =
2e(G)

n(G)
=

2n1(G)

n(G)

and
2e1(G)

n1(G)
= d1(G) ≥ 2(d(G)− 1) > d(G) =

2n1(G)

n(G)
.

From this we deduce the following:

e(G)2 − 1 = (e(G) + 1)(e(G)− 1) = e1(G)(e(G)− 1)

≥ e1(G)n(G) > (n1(G))2 = e(G)2

a contradiction. Hence if e(G) ≥ n(G) + 1, the assumption e1(G) =
e(G) + 1 = n1(G) + 1 cannot also hold.

3. If G is not a subdivision of K1,3 then by part 1, e1(G) > e(G) and since L(G)
is not a subdivision of K1,3 we have, again by part 1, e2(G) > e1(G) > e(G)
and hence e2(G) ≥ e(G) + 2. If G is a subdivision of K1,3 then by part 1,
e1(G) = e(G). But L(G) itself is not a subdivision of K1,3 (as it contains
K3 formed by the edges incident with the vertex of degree 3) nor a cycle,
hence by part 1, e2(G) > e1(G) = e(G) . Now checking subdivisions of K1,3

according to the three types of paths having the root at v of degree 3, we
have by Lemmas 3.9 - 3.11

• if G is a type C subdivision, then e2(G) = e1(G) + 3 = e(G) + 3.
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• if G is a type B subdivision, then e2(G) = e1(G) + 2 = e(G) + 2.

• if G is a type A subdivision, then e2(G) = e1(G) + 1 = e(G) + 1.

4. If e2(G) ≥ e1(G) + 2, then, by Lemma 3.12, we have

e3(G) ≥ n2(G) + 6 = e2(G) + 6 ≥ e1(G) + 8 ≥ e(G) + 7.

So we assume e2(G) = n2(G) + 1 = e1(G) + 1, and we can use item 2 with
H = L(G) and L2(G) = L(H). But this implies that H = L(G) is either
a subdivision of S2,2 or the graph CP (k, n − k), and of these graphs only
CP (3, n − 3) is a line graph of a type A subdivision of K1,3, and now by
Lemma 3.11 we are done.

Lastly, we assume e2(G) = n2(G) = e1(G) and hence, by part 1, L(G) is a
subdivision of K1,3 which is impossible.

5. Now k(e,F) = 2 follows directly from the steps above.

4.2 The number of vertices n(G): k(n,F) = 4

Theorem B. Suppose G is a prolific graph on n ≥ 4 vertices and e(G) edges.

1. If e(G) ≥ n+ 1, then n1(G) > n(G).

2. If e(G) = n, then n2(G) > n(G).

3. If e(G) = n− 1, then G is a tree and

(a) if xj > 0 for some j ≥ 4, then n2(G) > n(G).

(b) if x3 ≥ 3, then n2(G) > n(G).

(c) if x3 = 2, then n2(G) = n(G) but n3(G) > n(G) and G is S2,2 or a
subdivision of S2,2.

(d) if x3 = 1 and G is a type B or type C subdivision of K1,3, then n3(G) >
n(G).

(e) if x3 = 1 and G is a type A subdivision of K1,3, then n4(G) > n(G).

4. k(n,F) = 4.

Proof.

1. Clearly n(L(G)) = e(G) ≥ n+ 1 > n(G).
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2. If n = e(G) then n1(G) = e(G) = n = n(G) but since G is prolific it is not
a cycle and hence by Theorem 3.2 d1(G) > 2 and

e1(G) =
d1(G)n1(G)

2
>

2n1(G)

2
= n1(G) = n.

Hence e1(G) = n2(G) > n(G).

3. Since G is a tree we use Theorem 3.6, 2e1(G) − 2e(G) = −2 +
∑

j≥3(j −
1)(j − 2)xj . As G is not a path, xj > 0 for some j ≥ 3.

(a) if xj > 0 for some j ≥ 4 then

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj ≥ −2 + 6 = 4,

hence e1(G)− e(G) = n2(G)−n+1 ≥ 2. And we get n2(G) ≥ n+1 >
n(G) and we are done. So we may assume xj = 0 for j ≥ 4.

(b) if x3 ≥ 3 then

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj ≥ −2 + 6 = 4,

hence e1(G)− e(G) = n2(G)−n+1 ≥ 2. And we get n2(G) ≥ n+1 >
n(G) and we are done.

(c) if x3 = 2 then G is S2,2 or obtained by subdivisions from S2,2 and

2e1(G)− 2e(G) = −2 +
∑

j≥3

(j − 1)(j − 2)xj = −2 + 4 = 2,

hence e1(G)−e(G) = n2(G)−n+1 = 1. And we get n2(G) = n = n(G).
But then e2(G) = d2(G)n2(G)

2
= d2(G)n

2
. Also d2(G) > 2(d1(G) − 1) as

L(G) is not regular. Hence

d2(G) > 2(
2e1(G)

n1(G)
− 1) = 2(

2n

n− 1
− 1) =

2(n+ 1)

n− 1
.

Hence n3(G) = e2(G) > 2(n+1)n
2(n−1)

> n and n3(G) ≥ n+ 1 > n(G).

(d) if x3 = 1 then G is a subdivision of K1,3.
If G is a type C subdivision of K1,3 then by Lemma 3.9, n3(G) =
e2(G) = e(G) + 3 = n + 2 and we are done.

If G is a type B subdivision of K1,3 then by Lemma 3.10, n3(G) =
e2(G) = e(G) + 2 = n + 1 and we are done.

(e) if G is a type A subdivision of K1,3 then by Lemma 3.11, n3(G) =
e2(G) = e(G) + 1 = n, but n4(G) = e3(G) ≥ e(G) + 4 ≥ n+ 3 and we
are done.

4. Now k(n,F) = 4 follows directly from the steps above.
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4.3 The maximum degree ∆(G): k(∆,F) = 3

Definition 4.1. We say that a connected graph G is fine if it contains an edge
e = uv such that deg(u) + deg(v)− 2 > ∆(G).

Theorem C. Let G be a prolific graph with maximum degree ∆ ≥ 3. Then

1. ∆1(G) > ∆(G) if and only if G is a fine graph.

2. if G is not a fine graph and ∆ ≥ 4, then ∆2(G) > ∆(G) unless G = K1,4

where ∆3(G) = 6 > ∆2(G) = ∆(G) = 4 > ∆1(G) = 3.

3. if G is not a fine graph and ∆ = 3, then ∆2(G) > ∆(G) unless G is either
a type A subdivision of K1,3 or a tree obtained from S2,2 by subdividing the
middle edge at least twice.

4. k(∆,F) = 3.

Proof.

1. This follows from the fact that

∆1(G) = max{deg(u) + deg(v)− 2, uv ∈ E(G)}.

2. We assume ∆ ≥ 4. Let v be a vertex of maximum degree ∆. Then all the
neighbours of v are of degree 1 or 2 otherwise G is fine.

If all neighbours of v have degree 1, then G is the star K1,∆ and L(G) = K∆

which is regular of degree ∆−1 and hence ∆2(G) = 2∆−4 > ∆ for ∆ > 4.

So we need to consider G = K1,4 with L(G) = K4, L2(G) = K2,2,2 where
∆2(G) = 4 and ∆3(G) = 6 > ∆(G).

If at least one neighbour of v has degree 2, let us consider the vertices in
L(G) formed by the ∆ edges incident with v. These edges form K∆ in L(G)
and since at least one of these edges is incident with a vertex of degree 2 in
G, it must have degree ∆ in L(G).

Consider an edge e∗ in this K∆ incident with the vertex of degree ∆ and
another vertex of degree at least ∆−1. The vertex e∗ in L2(G) correspond-
ing to the edge e∗ in L(G) has degree 2∆ − 3 > ∆ for ∆ ≥ 4 and we are
done.

3. Suppose ∆(G) = 3, recall that we may assume that the vertices of degree
3 are non-adjacent as all their neighbours are of degree 1 or 2 (by item 1),
and at least one neighbour is of degree 2 (otherwise G = K1,3).

Suppose deg(u) = 3 and v, w are neighbours of u of degree 2 and z is the
third neighbour. Then, in L(G), the vertices representing the edges uv and
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uw are adjacent vertices of degree 3 and hence the edge between them has
degree 4 in L2(G). So in this case ∆2(G) = 4 > ∆1(G) = ∆(G) = 3.

So we consider the case in which all vertices of degree 3 have exactly one
neighbor of degree 2 and two leaves. This forces G to be a tree because
consider a cycle in G. Since G is prolific there must be a vertex not on the
cycle adjacent to a vertex v on the cycle. But then v is of degree 3 and is
adjacent to two vertices of degree 2 on the cycle, a contradiction.

Hence either G is a tree with exactly one vertex of degree 3 with two
leaves and a path on at least two edges starting from u, which is a type A
subdivision of K1,3 or G is a tree having exactly two vertices of degree 3, u
and v, with distance between these vertices at least 2. Observe G cannot
have three such vertices of degree 3.

If G is a type A subdivision of K1,3 we have ∆2(G) = ∆1(G) = 3, while
∆3(G) = 4.

Otherwise if G has two vertices u, v of degree 3 with distance between these
vertices exactly 2 then ∆1(G) = 3, but L(G) contains two adjacent vertices
of degree 3 hence ∆2(G) = 4.

On the other hand if the distance between these vertices is at least 3 then
∆2(G) = ∆1(G) = 3 but L2(G) contains adjacent vertices of degree 3 hence
∆3(G) = 4.

Lastly, since in this case the vertices of degree 3 can have only one adjacent
vertex of degree 2 it must be that G is obtained from S2,2 by subdividing
the middle edge at least twice.

4. Now k(∆,F) = 3 follows directly from the steps above.

4.4 The minimum degree δ(G): k(δ,F) = ∞ if δ = 1, 2, oth-

erwise k(δ,F) = 1

Theorem D. Let G be a prolific graph on n ≥ 4 vertices. Then

1. Let F = {G : δ(G) ∈ {1, 2}}. Then k(δ,F) = ∞.

2. Let F = {G : δ(G) ≥ 3}. Then k(δ,F) = 1.

Proof.

1. For δ = 1, consider the prolific graph G which contains an arbitrary long
path say of length k, then we need k iterations of the line graph before the
vertex of degree 1 disappears.
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For δ = 2 consider the prolific graph G which contains two vertices u and
v joined by a path of length k say, and we need ⌈k

2
⌉ iterations of the line

graph before the vertices of degree 2 of this path disappear.

2. For δ ≥ 3 we clearly have δ1(G) ≥ 2δ(G)− 2 > δ(G).

4.5 The average degree d(G): k(d,F) = 1

Theorem E. Let G be a prolific graph on n ≥ 4 vertices. Then d1(G) > d(G),
that is k(d,F) = 1.

Proof. By Theorem 3.2, d1(G) ≥ 2(d(G) − 1) with equality if and only if G is
regular. Since G is prolific, it is either a tree with d(G) = 2− 2/n or non-regular
with d(G) ≥ 2.

If G is a tree, L(G) is connected and contains a cycle hence d1(G) ≥ 2 > d(G).
In the case d(G) ≥ 2 and G is not 2-regular the result follows directly from
Theorem 3.2.

4.6 The longest cycle c(G) in G: k(c,F) = 1

Theorem F. Let G be a prolific graph on n ≥ 4 vertices. Then c1(G) > c(G),
that is k(c,F) = 1.

Proof. If G is Hamiltonian then L(G) is Hamiltonian and since G is prolific it
follows that e(G) > n(G) which implies that n1G) > n(G) and hence c1(G) >
c(G).

If G is a tree then clearly G has no cycle but as G is prolific it must contains
a vertex of degree at least 3, and hence L(G) contains a cycle and we are done.

So assume G is such that c(G) = q, 3 ≤ q ≤ n − 1. Since G is connected
there is a vertex w not on the longest cycle but adjacent to a vertex v on the
longest cycle with edges xv and yv being the edges incident to v on the longest
cycle. Then in L(G) the longest cycle (now the edges of G are represented by
vertices in L(G)) is extended by a vertex representing the edge wv and hence
c1(G) > c(G).

4.7 The matching number µ(G): k(µ,F) = 4

We first need a definition.

Definition 4.2. A graph G on n vertices is said to have a 1-factor/near 1-factor
if µ(G) =

⌊

n
2

⌋

.
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Hence referring to Theorem 2.1, we can say that if G is a connected K1,3-free
graph, then G has a 1-factor/near 1-factor accordingly with n ≡ 0, 1 (mod 2).

Also, for a connected graph G, µ1 =
⌊

e(G)
2

⌋

. This follows directly from Theo-
rem 2.1 since n1 = e(G) and line graphs are in particular K1,3-free graphs.

First we need several lemmas dealing with the index of the matching number
µ and the cases where G has n vertices and m edges where m ≥ n+2, m = n+1,
m = n and m = n− 1.

Lemma 4.3. Let G be a prolific graph on n vertices and m edges such that
m ≥ n + 2. Then µ1 ≥ µ + 1 with equality if and only if n ≡ 1 (mod 2),
m = n+ 2 and G has a near 1-factor, or n ≡ 0 (mod 2) and m ∈ {n+ 2, n+ 3}
and G has a 1-factor.

Proof. If n ≡ 1 (mod 2) and m ≥ n + 3, then n1 ≥ n + 3 ≡ 0 (mod 2) and
µ1 ≥

n+3
2

= n−1
2

+ 2 ≥ µ(G) + 2.
If n ≡ 1 (mod 2) and m = n + 2, then n1 = n + 2 ≡ 1 (mod 2) and µ1 =

n+1
2

= n−1
2

+1 ≥ µ(G)+ 1, where the last inequality holds as equality if and only
if G has near 1-factor.

If n ≡ 0 (mod 2) and m ≥ n + 3, then n1 ≥ n + 3 ≡ 1 (mod 2) and µ1 ≥
n+2
2

= n
2
+ 1 ≥ µ(G) + 1, where the last inequality holds as equality if and only

if G has a 1-factor and m = n+ 3.
If n ≡ 0 (mod 2) and m = n + 2, then n1 = n + 2 ≡ 0 (mod 2) and µ1 =

n+2
2

= n
2
+ 1 ≥ µ(G) + 1, where the last inequality holds as equality if and only

if G has a 1-factor.

Lemma 4.4. Let G be a prolific graph on n vertices, m edges such that m = n+1.
Then

1. if n ≡ 1 (mod 2), then µ1 ≥ µ+1 with equality if and only if G has a near
1-factor.

2. if n ≡ 0 (mod 2), then µ1 ≥ µ(G) + 1 unless G has 1-factor in which case
µ1 = µ(G) but µ2 ≥ µ+ 1.

Proof.

1. Suppose n ≡ 1 (mod 2). Clearly n1 = m = n + 1 ≡ 0 (mod 2), hence
µ = n+1

2
= n−1

2
+ 1 ≥ µ(G) + 1 where the last inequality holds as equality

if and only if G has a near 1-factor.

2. Suppose n ≡ 0 (mod 2). Clearly n1 = m ≡ 1 (mod 2), hence µ1 = n
2
. If

µ < n
2

we are done, otherwise µ(G) = n
2

and G has 1-factor.
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By Theorem 3.2, d1 ≥ 2(d−1) = 2(2m
n
−1) = 2(2(n+1)

n
−1) = 2(n+2)

n
. Hence

e1 =
d1n1

2
≥ 2(n+1)(n+2)

2n
> n+2. Hence n2 = e1 ≥ n+3 and we deduce that

µ2 ≥
n+2
2

= n
2
+ 1 > µ.

Lemma 4.5. Let G be a prolific graph on n vertices and m edges such that m = n.
Then

1. if n ≡ 1 (mod 2), then µ1 = n−1
2

≥ µ with the last inequality holding as
equality if and only if G has a near 1-factor, and then µ2 > µ1 = µ.

2. if n ≡ 0 (mod 2) and G has no 1-factor, then µ1 =
n
2
> µ(G).

3. if n ≡ 0 (mod 2) and G has a 1-factor, then µ2 > µ1 = µ = n
2

unless G is
the graph CP (k, n− k) in which case µ3 > µ2 = µ1 = µ = n

2
.

Proof.

1. Suppose n ≡ 1 (mod 2). Clearly n1 = n and µ1 = n−1
2

≥ µ, with the last
inequality holding as equality if and only if G has a near 1-factor.

Since G is not 2-regular, we have, by Theorem 3.2, d1 > 2(d(G)− 1) = 2.
Hence e1 =

d1n1

2
> n implying n2 = e1 ≥ n+ 1 and µ2 ≥

n+1
2

> n−1
2

= µ.

2. Suppose n ≡ 0 (mod 2) and G has no 1-factor. Then immediately µ1 =
n
2
> µ.

3. Suppose n ≡ 0 (mod 2) and G has a 1-factor. Clearly µ1 = µ = n
2
. We

observe that since G is prolific, there are no isolated vertices in G. Consider
the following two equations:

∑

j≥1

xj = n = m = n1 (where xj = number of vertices of degree j) (1)

∑

j≥1

jxj = 2n (counting the degrees in G) (2)

From these we get the equations
∑

j≥1

(j − 2)xj = 0 (3)

x1 =
∑

j≥2

(j − 2)xj (4)

Observe, by Theorem 3.3, that

2(e1 − e(G)) =
∑

j≥2

j(j − 2)xj = −x1 +
∑

j≥2

j(j − 2)xj =
∑

j≥3

(j − 1)(j − 2)xj

23



by substituting for x1 using equation (4).

We consider the following cases:

Case 1: if for some j ≥ 4, xj > 0, then e1−e(G) ≥ 3 hence n2 ≥ e(G)+3 =
n+ 3 and µ2 ≥

n
2
+ 1 > µ = n

2
.

Case 2: if x3 ≥ 2 and xj = 0 for j ≥ 4, then e1 − e(G) ≥ 2 hence
n2 = e1 = e(G) + 2 = n+ 2 and µ2 ≥

n
2
+ 1 > µ = n

2
.

Case 3: if x3 = 1 and xj = 0 for j ≥ 4 then by equation (4) above
x1 = x3 = 1 and x2 = n− 2.

This forces e1 − e(G) = 1 and e1 = n + 1 implying that G is CP (k, n− k)
and for n = 0 (mod 2), CP (k, n− k) has indeed 1-factor. Also n2 = e1 =
n+ 1 = 1 (mod 2) and hence µ2 =

n
2
= µ1 = µ(G).

Clearly L(G) is not a tree or a cycle and we already have n2 = e1 = m+1 =
n+ 1, and n1 = m = n. Hence,

d2 > 2(d1 − 1) = 2

(

2e1
n1

− 1

)

= 2

(

2(n + 1)

n
− 1

)

=
2(n+ 2)

n

and e2 =
d2n2

2
> 2(n+2)(n+1)

2n
> n + 2 forcing e2 ≥ n + 3 ≡ 1 (mod 2) hence

µ3 ≥
n
2
+ 1 > µ(G).

Lemma 4.6. Let G be a prolific graph on n vertices and m edges such that
m = n− 1. Then ind(µ,G) ≤ 4 and this is sharp.

Proof. Clearly G is a tree T which is neither K1,3 nor a path. Recall Theorem
3.6 which states that

2e1(T )− 2e(T ) = −2 +
∑

j≥3

(j − 1)(j − 2)xj

where xj is the number of vertices of degree j.
We consider two cases according to the parity of n.

Case 1 : n ≡ 1 (mod 2)

Clearly if T has no near 1-factor then µ ≤ n−3
2

while µ1 = n−1
2

and we are
done.

Hence we assume in the sequel that T has a near 1-factor and µ1 = µ = n−1
2

.
We consider the following cases:

1. Suppose for some j ≥ 4, xj > 0. Then using Theorem 3.6 we get e1−e(T ) ≥
2 and n2 = e1 ≥ n + 1 ≡ 0 (mod 2) hence µ2 ≥

n+1
2

> n−1
2

= µ.
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2. Suppose x3 ≥ 3 and xj = 0 for j ≥ 4. Then Theorem 3.6 we get e1−e(T ) ≥
2 and n2 = e1 ≥ n + 1 ≡ 0 (mod 2) hence µ2 ≥

n+1
2

> n−1
2

= µ.

3. Suppose x3 = 2 and xj = 0 for j ≥ 4. Then Theorem 3.6 we get e1−e(T ) =
1 and n2 = e1 = n ≡ 1 (mod 2) hence µ2 = µ1 = µ = n−1

2
.

But by Theorem 3.2,

d2 > 2(d1 − 1) = 2(
2n

n− 1
− 1) =

2(n+ 1)

n− 1

since L(T ) is not regular because d1 =
2n
n−1

is not an integer for n ≥ 4.

Thus we have e2 = d2n2

2
> 2(n+1)n

2(n−1)
> n + 1 and hence n3 = e2 ≥ n + 2 and

µ3 ≥
n+1
2

> n−1
2

= µ.

4. Suppose x3 = 1 and xj = 0 for j ≥ 4. It follows that T is a subdivision of
K1,3. Clearly e1 = e(T ) = n − 1 hence µ2 = µ1 = µ = n−1

2
. We consider

the three types of subdivisions of K1,3.

If T is a type C subdivision of K1,3 then by Lemma 3.9, e2 = e(T ) + 3,
hence n3 = n+ 2 and µ3 =

n+1
2

> n−1
2

= µ.

If T is a type B subdivision of K1,3 then by Lemma 3.10, e2 = e(T ) + 2,
hence n3 = n+ 1 ≡ 0 (mod 2) and µ3 =

n+1
2

> n−1
2

= µ.

If T is a type A subdivision of K1,3 then by Lemma 3.11, e2 = e(T ) + 1,
hence n3 = n ≡ 1 (mod 2) and µ3 = µ2 = µ1 = µ = n−1

2
. But e3 ≥ e(T )+4

hence n4 ≥ n + 3 ≡ 0 (mod 2) and µ4 ≥
n+3
2

> n−1
2

= µ and we are done.

Case 2 : n ≡ 0 (mod 2)

Clearly if µ(T ) ≤ n−4
2

it follows that µ1 =
n−2
2

> µ. So we consider two cases
according to µ = n−2

2
or µ = n

2
.

Case 2.1 : µ = n−2
2

= µ1

1. Suppose for some j ≥ 4, xj > 0. Then we get e1 − e(T ) ≥ 2 and n2 = e1 ≥
n+ 1 ≡ 1 (mod 2) hence µ2 ≥

n
2
> n−2

2
= µ.

2. Suppose x3 ≥ 3 and xj = 0 for j ≥ 4. Then we get e1 − e(T ) ≥ 2 and
n2 = e1 ≥ n + 1 ≡ 1 (mod 2) hence µ2 ≥

n
2
> n−2

2
= µ.

3. Suppose x3 = 2 and xj = 0 for j ≥ 4. Then we get e1 − e(T ) = 1 and
n2 = e1 = n ≡ 0 (mod 2) hence µ2 =

n
2
> n−2

2
= µ.

4. Suppose x3 = 1 and xj = 0 for j ≥ 4. It follows that T is a subdivision of
K1,3. Clearly e1 = e(T ) = n − 1 hence µ2 = µ1 = µ = n−2

2
. We consider

the three types of subdivisions of K1,3.
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If T is a type C subdivision of K1,3 then by Lemma 3.9, e2 = e(T ) + 3,
hence n3 = n+ 2 ≡ 0 (mod 2) and µ3 =

n+2
2

> n−2
2

= µ.

If T is a type B subdivision of K1,3 then by Lemma 3.10, e2 = e(T ) + 2,
hence n3 = n+ 1 ≡ 1 (mod 2) and µ3 =

n
2
> n−2

2
= µ.

If T is a type A subdivision of K1,3 then by Lemma 3.11, e2 = e(T ) + 1,
hence n3 = n ≡ 0 (mod 2) and µ3 =

n
2
> n−2

2
= µ.

Case 2.2 : µ = n
2

and µ1 =
n
2
− 1

1. Suppose for some j ≥ 5, xj > 0. Then we get e1 − e(T ) ≥ 5 and n2 = e1 ≥
n+ 4 ≡ 0 (mod 2) hence µ2 ≥

n
2
+ 2 > n

2
= µ.

2. Suppose x4 ≥ 2. Then we get e1 − e(T ) ≥ 5 and n2 = e1 ≥ n + 4 = 0
(mod 2) hence µ2 ≥

n
2
+ 2 > n

2
= µ.

3. Suppose x4 = 1 and x3 ≥ 1. Then we get e1 − e(T ) ≥ 3 and n2 = e1 ≥
n+ 2 ≡ 0 (mod 2) hence µ2 ≥

n
2
+ 1 > n

2
= µ.

4. Suppose x4 = 1 and x3 = 0 and xj = 0 for j ≥ 5. Then x1 = 4 and
x2 = n− 5 and T 6= K1,4 as n = 0 (mod 2) so T is a subdivision of K1,4.

Using Theorem 3.6 we get e1 − e(T ) = 2 hence n2 = e1 = n + 1 ≡ 1
(mod 2) and µ2 = n

2
= µ. However L(T ) is not regular as it must contain

a vertex of degree 4 and a vertex of degree 1. By Theorem 3.2 d2 >
2(d1 − 1)) = 2(2(n+1)

n−1
− 1) = 2(n+3)

n−1
and e2 = d2n2

2
> 2(n+3)(n+1)

2(n−1)
> n + 3

hence n3 = e2 ≥ n + 4 ≡ 0 (mod 2) and µ3 ≥
n
2
+ 2 > n

2
= µ.

5. Suppose x3 ≥ 4 and xj = 0 for j ≥ 4. Then we get e1 − e(T ) ≥ 3 and
n2 = e1 ≥ n + 2 ≡ 0 (mod 2) hence µ2 ≥

n
2
+ 1 > n

2
= µ.

6. Suppose x3 = 3 and xj = 0 for j ≥ 4. Then we get e1 − e(T ) = 2 and
n2 = e1 = n + 1 hence µ2 =

n
2
= µ. But clearly L(T ) is not regular hence

d2 > 2(d1 − 1) = 2(2(n+1)
n−1

− 1) = 2(n+3)
n−1

and e2 =
d2n2

2
> 2(n+3)(n+1)

2(n−1)
> n+ 3

hence n3 = e2 ≥ n + 4, forcing µ3 ≥
n
2
+ 2 > n

2
= µ.

7. Suppose x3 = 2 and xj = 0 for j ≥ 4. Then we get e1 − e(T ) = 1 and
n2 = e1 = n = 0 (mod 2) and µ2 = n

2
= µ. But d2 > 2(d1 − 1) =

2( 2n
n−1

− 1) = 2(n+1)
n−1

(since L(T ) is not regular because d1 = 2n
n−1

is not an
integer for n ≥ 4).

Hence e2 = d2n2

2
> 2(n+1)n

2(n−1)
> n + 1 hence n3 = e2 ≥ n + 2 = 0 (mod 2)

forcing µ3 ≥
n
2
+ 1 > n

2
= µ.

8. Suppose x3 = 1 and xj = 0 for j ≥ 4. Then T is a subdivision of K1,3.
Clearly we get e1 = e(T ) = n − 1 ≡ 1 (mod 2), hence µ2 = µ1 = n

2
− 1 <

n
2
= µ.
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If T is a type C subdivision of K1,3 then by Lemma 3.9, e2 = e(T ) + 3,
hence n3 = n+ 2 ≡ 0 (mod 2) and µ3 =

n+2
2

> n
2
= µ.

If T is a type B subdivision of K1,3 then by Lemma 3.10, e2 = e(T )+2, hence
n3 = n + 1 ≡ 1 (mod 2) and µ3 =

n
2
= µ. But e3 > e(T ) + 7 = n + 6 = 0

(mod 2) hence n4 = e3 ≥ n + 6 and µ4 ≥
n
2
+ 3 > n

2
= µ. We note that T

has a 1-factor if and only if m1 and m2 are even, where mi is the length of
path i as per Lemma 3.10, and m1 ≥ m2 > m3 = 1.

If T is a type A subdivision of K1,3 then T has no 1-factor contradicting
the assumption for Case 2.2.

Theorem G. Let G be a prolific graph, then ind(µ,G) ≤ 4. Moreover ind(µ,G) =
4 if and only if n ≡ 1 (mod 2) and G is a type A subdivision of K1,3 or n ≡ 0
(mod 2) and G is a type B subdivision of K1,3 with m1 and m2 even. Hence
k(µ,F) = 4.

4.8 The chromatic number χ(G): k(χ,F) = 3

For this parameter we use a result by Stacho in [30]. The author defines the
following parameter. Let

φ(G) = max
u∈V (G)

max
v∈N(u)

deg(v)≤deg(u)

deg(v).

The following theorem is then proved:

Theorem 4.7 (Stacho). Let G be a graph. Then χ(G) ≤ φ(G) + 1.

Observation 4.8. For a graph G, χ1(G) = χ′(G) ∈ {∆(G),∆(G)+1} by Vizing’s
Theorem [34].

Theorem H. Let G be a prolific graph, then ind(χ,G) ≤ 3 and there are infinitely
many prolific graphs for which ind(χ,G) = 3. Hence k(χ,F) = 3.

Proof.

1. Suppose χ′(G) = ∆(G) + 1.

If χ(G) = ∆(G) we are done as, by Observation 4.8 above, χ1(G) > χ(G).

So assume χ(G) = ∆(G) + 1. Then, since G is prolific, ∆ ≥ 3, and by
Brook’s theorem, G = K∆+1. Also, by the chromatic index for complete
graphs, ∆+ 1 ≡ 1 (mod 2) hence ∆ ≥ 4 is even.

We can observe that L(K∆+1) is 2∆− 2-regular and hence L2(K∆+1) con-
tains a clique on 2∆−2 vertices and χ2(K∆+1) ≥ 2∆−2 > ∆+1 for ∆ ≥ 4
and we are done.
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2. Suppose χ′(G) = ∆(G).

(a) if χ(G) < ∆(G) we are done since χ1(G) > χ(G).

(b) if χ(G) = ∆(G) + 1 then by Brook’s theorem G = K∆+1 and by the
chromatic index of complete graphs, ∆+ 1 ≡ 0 (mod 2) hence ∆ ≡ 1
(mod 2) and ∆ = 3 or ∆ ≥ 5.

• If ∆ ≥ 5 then since L(G) is 2∆−2-regular, χ2(K∆+1) ≥ 2∆−2 >
∆+ 1 for ∆ ≥ 4 and we are done.

• If ∆ = 3, then G = K4, L(K4) is 4-regular and by direct checking
we get χ′

1(K4) = 4, hence χ2(K4) = 4 but L2(K4) is 6-regular
hence χ3(K4) ≥ 6 > χ(K4).

(c) Suppose χ′(G) = χ(G) = ∆(G). If deg(u) = ∆ and w is a vertex
adjacent to u with deg(w) ≥ 3 then the degree of the edge uw in L(G)
is deg(u) + deg(w)− 2 ≥ ∆+ 1 and χ2(G) ≥ ∆+ 1, and we are done.
So we may assume that the only neighbours of a vertex of degree ∆
are of degrees 1 and 2.
Now by Theorem 4.7, φ(G) ≤ max{2,∆ − 1}, since vertices of max-
imum degree are non-adjacent, and ∆ = χ(G) ≤ φ(G) + 1, forcing
φ(G) = ∆ − 1 and hence there exist two adjacent vertices u and
v of degree ∆ − 1 unless ∆ = 3, in which case it is possible that
∆− 1 = deg(u) ≤ deg(v) ≤ ∆.
So assume ∆ ≥ 4. The edge uv forms a vertex of degree 2∆ − 4 in
L(G) hence a clique of order 2∆−4 in L2(G) and χ2(G) ≥ 2∆−4 > ∆
for ∆ ≥ 5.
So it remains to consider the cases χ = ∆ ∈ {3, 4}.
Let χ′ = χ = ∆ = 4. Consider a vertex v of degree 4 in G and let
u1, . . . , u4 be its neighbours.

• If there is an edge say u1u2 then these five edges form, in L(G),
K4 with a vertex adjacent to the vertices representing the edges
vu1 and vu2 which are adjacent of degree 4. Hence ∆2(G) ≥ 6
and χ3(G) ≥ 6 > χ(G) = 4.

• If there is an edge say wu1, then these 5 edges form, in L(G),
K4 with an attached leaf to the vertex representing vu1. So L(G)
contains a vertex of degree 4 adjacent to a vertex of degree at least
3 hence ∆2(G) ≥ 5 and χ3(G) ≥ 5 > χ(G) = 4.

Let χ′ = χ = ∆ = 3. Consider a vertex v of degree 3 in G and let
u1, u2, u3 be its neighbours.

• If there is an edge in the neighborhood of v, say u1u2, then G
contains the graph H = K3+ attached leaf. L(H) = K4 − e,
L2(H) = W5, the wheel with four vertices and a centre vertex of
degree 4 hence χ3(G) ≥ ∆2(G) ≥ 4 > χ(G).
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• If the neighborhood of v has no edges then, since χ(G) = ∆ = 3,
G must contains an odd cycle and since G is prolific there is a
vertex v of degree 3 on the odd cycle adjacent to two vertices u
and w of degree 2 on the odd cycle. If u and w are adjacent we
again obtain the graph H = K3+ attached leaf (because of the
third edge in v) and we are done as before.
Otherwise u and w are nonadjacent and let u∗ be adjacent to u and
w∗ be adjacent to w on the odd cycle. Observe that if v is adjacent
to either u∗ or w∗ we again have the subgraph H = K3+attached
leaf and we are done.
So the tree on the vertices u∗, u, v, w, w∗+ the third edge in v form
in L(G) the Bull graph B, which is K3 with an attached leaf to
two of its vertices, and in particular we have in L(G) a copy of
K3+attached leaf and we are done as before.

The infinite family of graphs CP (3, n−3) is such that χ(G) = χ1(G) = χ2(G) = 3
and only χ3(G) = 4, hence k(χ,F) = 3.

4.9 The chromatic index χ′(G): k(χ′,F) = 3

Theorem I. Let G be a prolific graph, then ind(χ′, G) ≤ 3. Moreover ind(χ′, G) =
3 if and only if G = K1,4, G is a type A subdivision of K1,3 or G is obtained by
a subdivision of the middle edge of S2,2 at least twice. Hence k(χ′,F) = 3.

Proof. We consider the following cases:

1. χ′(G) = ∆(G) + 1, and G is in Vizing class 2.

By a result of Fournier [15], the graph G∆, induced in G by the vertices of
maximum degree, contains a cycle C. Let e1 and e2 be two incident edges
on the cycle C. In L(G), the vertices representing e1 and e2 are adjacent
and have degree 2∆− 2 each. This shows that χ′

1 ≥ ∆1 = 2∆− 2 > ∆+ 1
for ∆ ≥ 4.

Observe also that χ′
2 ≥ ∆2 ≥ 2∆1 − 2 ≥ 4∆ − 6 > ∆ + 1 for ∆ ≥ 3

(∆ ≥ 3 forced by G being prolific) which shows that for every prolific graph
of Vizing type 2, one iteration suffices if ∆ ≥ 4 and at most two iterations
suffice if ∆ = 3.

2. χ′(G) = ∆(G).

(a) If ∆ ≥ 5 then L(G) contains K∆ and hence two adjacent vertices of
degree ∆−1. So χ′

2 ≥ ∆2 ≥ 2∆−4 > ∆ for ∆ ≥ 5, and two iterations
suffice.

(b) If ∆ = 4, consider the vertex v of degree 4. The edges incident with v
form K4 in L(G). We consider two cases:
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• If G = K1,4 then χ′ = 4. Now L(G) = K4, χ′(K4) = 3 and also
L2(G) is K2,2,2 which is regular of degree 4 and in Vizing class 1.
Hence χ′

2 = 4, and lastly χ′
3 ≥ ∆3 = 6 and we are done.

• Suppose G is not K1,4 and let v be a vertex of degree 4. Then
either there is an edge between two neighbours of v, say u1u2 is
such an edge, or there is an edge incident with say u1.
If there is an edge u1u2 then in L(G) we have K4 and an extra
vertex represents e = u1u2 adjacent to the vertices representing
vu1 and vu2, and these two vertices are adjacent vertices of degree
4 in L(G). Hence χ′

2 ≥ ∆2 ≥ 6, and we are done.
If there is an edge incident with u1, say u1w, then, in L(G), we
have K4 with one vertex adjacent to the vertex representing the
edge u1w of degree at least 4 and the other vertices of K4 with
degrees at least 3. Hence χ′

2 ≥ ∆2 ≥ 5, and we are done.

(c) If ∆ = 3 then if there are two adjacent vertices of degree 3, χ′
1 ≥ ∆1 =

4 and we are done.
So consider a vertex v of degree 3 and let u1, u2 and u3 be its neigh-
bours, all of degree at most 2.

• Suppose there are two edges, one edge incident with u1 but not
u2 and u3, and another edge incident with u2 but not with u1 and
u3. Then L(G) contains two adjacent vertices of degree 3 and
χ′
2 ≥ ∆2 = 4 and we are done.

• Suppose there is an edge incident with u1 and u2. Again L(G)
contains two adjacent vertices of degree 3 and χ′

2 ≥ ∆2 = 4 and
we are done.

• Suppose every vertex of degree 3 is adjacent with two leaves. Then
we assume G is a tree, for if it contains a cycle, since G is prolific
there must be a vertex of degree 3 on the cycle which satisfies
one of the cases above and we are done. However, we proved in
Theorem C that in this case, when we considered the parameter
∆, ∆3 > ∆ but ∆2 = ∆ if and only if G = K1,4, G is a type A
subdivision of K1,3, or G is obtained by subdivision the middle
edge of S2,2 at least twice.
For K1,4 we already proved that three iterations are necessary and
sufficient. For G a type A subdivision of K1,3 we note that both
G, L(G) and L2(G) are in Vizing class 1 hence 3 iterations are
necessary and sufficient.
Lastly for the trees obtained by subdividing the middle edge of S2,2

at least twice we note that both L(G) and L2(G) are in Vizing
class 1 and hence 3 iterations are necessary and sufficient, thus
completing the proof.
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4.10 The clique number ω(G): k(ω,F) = 3

Observation 4.9. For a graph G, ω1(G) = ∆(G).

Theorem J. Let G be a prolific graph then ind(ω,G) ≤ 3. Moreover, ind(ω,G) =
3 if and only if ω = 4 and G = K4 or ω = ∆ = 3 and the set of vertices of degree
3 forms an independent set in G. Hence k(ω,F) = 3.

Proof. We consider the following cases:

1. If ω(G) = 2 (G triangle free) then, since G is prolific, ∆ ≥ 3 hence ω1 ≥
3 > ω.

2. If ω(G) ≥ 5 then there are adjacent vertices u and v in the clique whose
degree is at least ω − 1. The edge uv forms a vertex of degree 2ω − 4 in
L(G) hence ω2 ≥ 2ω − 4 > ω for ω ≥ 5.

3. If ω(G) = 4 then there are two adjacent vertices of degree at least three.
If G = K4 then ω(K4) = 4 but ω1(K4) = ω(K2,2,2) = 3 and L(K4) is
4-regular. Hence ω2 = 4 and L2(K4) is 6-regular forcing ω3 = 6 > ω.

If G contains at least 5 vertices then one of the vertices of the 4-clique, say
v, is adjacent to a further vertex w not in the clique. Hence, in the 4-clique
there is a vertex v of degree at least 4 adjacent to a vertex u of degree at
least 3. Therefore ∆1 ≥ 5 and ω2 = ∆1 ≥ 5 > ω.

4. If ω(G) = 3 then

• if ω < ∆ we are done since ω1 = ∆ > ω.

• if ω = ∆ + 1, then ∆ = 2 but G is prolific and ∆ ≥ 3 and this is
impossible.

• if ω = ∆ = 3, then, if two vertices of degree 3 in G are adjacent,
∆1 = 4 and ω2 = ∆1 = 4 > ∆.
If on the other hand, no two vertices of degree 3 are adjacent, then
observe that for all prolific graphs with ω = ∆ = 3 and with no two
vertices of degree 3 being adjacent we must have ∆1 = 3, ∆2 = 4 and
ω3 = ∆2 = 4 > ∆1 = ∆ = ω = 3.
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4.11 The vertex connectivity κ(G) and the edge connectiv-
ity λ(G)

We will consider these two parameters together because they are very much re-
lated. We use a number of known results which we now list in one main theorem.

Theorem 4.10. For a graph G:

1. [37] κ(G) ≤ λ(G) ≤ δ(G).

2. [29] λ1(G) ≥ 2λ(G)− 2.

3. [29] κ2(G) ≥ 2κ(G)− 2.

4. [11] if λ(G) ≥ 2 then κ1(G) ≥ λ(G).

5. [21] if δ(G) ≥ 3, then κ2(G) ≥ δ(G)− 1.

6. [38]

• if δ1(G) ≤ λ(G)
⌈

λ(G)+1
2

⌉

, then λ1(G) ≥ δ1(G).

• if δ1(G) ≥ λ(G)
⌈

λ(G)+1
2

⌉

, then δ1(G) ≥ λ1(G) ≥ λ(G)
⌈

λ(G)+1
2

⌉

.

4.11.1 Minimum degree δ ≤ 2: both connectivities not universal

We simply observe that in the case where δ(G) ∈ {1, 2}, we know that the
parameter δ is not universal, so since κ(G) ≤ λ(G) ≤ δ(G), and considering the
examples given for the non-universality of δ in which κ(G) = λ(G) = δ(G), we
infer that both κ(G) and λ(G) are non-universal for families of graph in which
δ ∈ {1, 2}.

4.11.2 Minimum degree δ ≥ 3: k(κ,F) = 2 and k(λ,F) = 1

Theorem K. Let G be a prolific graph with δ ≥ 3. Then λ1 > λ.

Proof. We consider the following cases for λ(G).

1. If λ ≥ 3 then by Theorem 4.10 part 2, λ1 ≥ 2λ− 2 > λ and we are done by
one iteration.

2. If λ = 2 then λ
⌈

λ+1
2

⌉

= 4. Since δ ≥ 3, it follows that δ1 ≥ 2δ− 2 hence in
both cases of Theorem 4.10 part 6, we have δ1 ≥ 4 and we are done by one
iteration.
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3. If λ(G) = 1 and δ ≥ 3 we show that λ1 ≥ 2 and we are done by one
iteration. Consider L(G) and suppose on the contrary λ1 = 1 implying
L(G) has a bridge. Let e = uv be the bridge in L(G) so that if we remove
e then u and v are disconnected. It follows then that u and v were incident
edges in G, say u = xy and v = xz, forming the bridge uv in L(G). But
since δ(G) ≥ 3 there must be another edge say xw incident with the vertex
x.

Now, in L(G), the vertex b representing the edge xw in G is adjacent to
both u and v so deleting the edge uv does not disconnect u from v as they
can reach each other via b, a contradiction.

Theorem L. For every prolific graph G with δ(G) ≥ 3, we have ind(κ,G) ≤ 2.
Furthermore, for every κ ≥ 1 and δ ≥ 3, there are graphs with ind(κ,G) = 2.
Hence k(κ,F) = 2.

Proof. We consider the following cases:

1. If κ ≥ 3 then by Theorem 4.10 part 3, κ2 ≥ 2κ−2 > κ(G) and we are done
by two iterations which are necessary (since in fact we can have κ1 = λ(G)
and we can construct graphs with κ(G) = λ(G) = t for any value of t).

2. if κ = 2 then λ ≥ 2 by Theorem 4.10 part 1. However, if λ(G) = 2 and
δ(G) ≥ 3, we have shown above that λ1 ≥ 4. But then applying Theorem
4.10 part 4, κ2 ≥ λ1 ≥ 4 and we are done by two iterations.

3. if κ(G) = 1 then we apply Theorem 4.10 part 5 so that κ2 ≥ δ − 1 ≥ 2.
And we are done in two iterations.

Chartrand and Harary [10] constructed, for every triple of positive integers
1 ≤ κ ≤ λ ≤ δ, graphs with κ(G) = κ, λ(G) = λ and minimum degree δ(G), and
these graphs also satisfy κ1 = λ [21].

So the Chartrand-Harary graphs for the triples κ = λ and every δ ≥ 3 satisfy
κ2 > κ1 = λ = κ, completing the proof of the theorem.

4.12 The independence number α(G)

Recall Theorem 2.1 which states that a connected K1,3-free graph on n vertices
has a matching of order ⌊n

2
⌋.

We shall use the following chain of equalities

αk+2 = µk+1 =
⌊nk+1

2

⌋

=
⌊ek
2

⌋

.
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Lemma 4.11. Let G be a graph on n vertices and m edges with minimum degree
δ. Then

⌊

m
δ

⌋

≥ α(G), with equality if and only if G is bipartite with one part a
maximum independent set with all vertices of degree δ.

Proof. Suppose A is a maximum independent set. Let B = V \A. Let e(A,B) be
the number of edges from A to B. Then δ|A| ≤ e(A,B) ≤ e(G), and for equality
we need both all vertices in A have degree δ, and also B to be an independent
set so that G is bipartite.

Theorem M. Let G be a prolific graph on n ≥ 4 vertices of average degree d,
minimum degree δ and independence number α. Then

1. if d ≥ 4 then ind(α,G) ≤ 2.

2. if δ ≥ 3 then ind(α,G) ≤ 2.

3. if d ≥ 3 then ind(α,G) ≤ 3.

4. if δ = 2 then ind(α,G) ≤ 3.

Proof.

1. Suppose d ≥ 4. Then n1 = e(G) ≥ 2n and by Theorem 2.1 α2 = µ1 ≥ n >
n− 1 ≥ α.

2. Suppose δ ≥ 3. Then by Lemma 4.11, α ≤
⌊

e(G)
δ

⌋

≤ e(G)
3

while α2 = µ1 =
⌊

e(G)
2

⌋

>
⌊

e(G)
3

⌋

≥ α since δ ≥ 3.

3. Suppose d ≥ 3, then d1 ≥ 2(d(G)− 1) ≥ 4 and

n1 = e(G) =
nd

2
≥

3n

2
.

Hence e1 =
d1n1

2
≥ 3n, and we get

α3 = µ2 =
⌊n2

2

⌋

=
⌊e1
2

⌋

≥

⌊

3n

2

⌋

> n− 1 ≥ α.

Moreover if α <
⌊

3n
4

⌋

, then already, from e(G) ≥ 3n
2

, we get

α2 = µ1 =

⌊

e(G)

2

⌋

≥

⌊

3n

4

⌋

> α

and two iterations suffice.
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4. since δ = 2 and G is prolific, it follows that ∆ ≥ 3. Hence e(G) ≥ n + 1
and by Lemma 3.12 part 2 we have e1 ≥ e(G) + 3.

Now since δ = 2, by Lemma 4.11 we have α(G) ≤ e(G)
2

and n2 = e1 ≥
e(G) + 3 hence

α3 = µ2 =
⌊e1
2

⌋

≥

⌊

(e(G) + 3)

2

⌋

≥
e(G)

2
+ 1 ≥ α(G) + 1 > α.

4.13 The domination number γ(G)

Theorem N. Let G be a prolific graph.

1. If δ ≥ 4, then ind(α,G) ≤ 2.

2. If δ = 3, then ind(α,G) ≤ 3.

3. If d ≥ 3, then ind(α,G) ≤ 3.

Proof.

Consider γ(G) for a graph G on n vertices and its upper bound in terms of n.
In [6] the best upper bounds are summarized in a table according to the value of
δ, citing various theorems related to this upper bound.

1. For a graph with δ ≥ 4, γ(G) ≤ 0.3637n.

Now we know that

γ2 = i2 = µ∗
1 ≥

⌊n1

4

⌋

≥

⌊

e(G)

4

⌋

≥

⌊

2n

4

⌋

=
n

2
.

So for δ ≥ 4, two iterations suffice.

2. For δ = 3, γ(G) ≤ 3n
8

. A similar argument as above shows that

γ2 = i2 = µ∗
1 ≥

µ1

2
≥

⌊n1

4

⌋

≥

⌊

e(G)

4

⌋

≥

⌊

3n

8

⌋

and this might not be enough. But

γ3 = i3 = µ∗
2 ≥

µ2

2
≥

⌊n2

4

⌋

≥

⌊

e1(G)

4

⌋

≥

⌊

n1d1
8

⌋

≥

⌊

4(3n
2
)

8

⌋

=

⌊

3n

4

⌋

>
3n

8
≥ γ(G)

and 3 iterations suffice.
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3. Clearly by Ore’s theorem, γ(G) ≤ n
2
. On the other hand, d1 ≥ 2(d−1) ≥ 4

and hence we have n1 = e(G) = dn
2

≥ 3n
2

. Therefore n2 = e1 = d1n1

2
≥ 3n

and µ2 =
⌊

n2

2

⌋

≥
⌊

3n
2

⌋

and therefore

γ3 = µ∗
2 ≥

µ2

2
≥

3n

4
> γ.

Hence three iterations suffice.

5 Conclusion

There are, of course, several open questions which one can obtain by considering
the unboundedness or otherwise and the index of parameters other than the fifteen
which we have identified in this paper, for example, the largest eigenvalue, which
is unbounded (see [13, 28] combined with Theorem 2.3 part 3), the spectral gap,
or the size of the automorphism group, to mention only a few. We have chosen
fifteen parameters which are very basic in graph theory and whose study in the
context of iterated line graphs seems quite natural and interesting.

For the independence number, determining whether the index k(α,F) < ∞,
F being the family of all prolific graphs with δ(G) = 1, is an interesting problem.
Also, to get sharp bounds for k(α,F), where F is the family of prolific graphs
with respectively d ≥ 4, d = 3, δ ≥ 3, δ = 2 are also interesting tasks.

Similar and even harder problems remains open for the domination and in-
dependent domination parameters. As to characterization of extremal graphs
realizing ind(P,F) = k(P,F), open problems remains for the parameters chro-
matic number (Theorem H), vertex connectivity (Theorem L), together with the
already mentioned parameters independence number (Theorem M), independence
domination number, and domination number (Theorem N).
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