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Abstract. An edge-girth-regular graph egr(v, k, g, λ), is a k-regular graph of order v, girth

g and with the property that each of its edges is contained in exactly λ distinct g-cycles.

An egr(v, k, g, λ) is called extremal for the triple (k, g, λ) if v is the smallest order of any

egr(v, k, g, λ).

In this paper, we introduce two families of edge-girth-regular graphs. The first one is a

family of extremal egr(2q2, q, 6, (q − 1)2(q − 2)) for any prime power q ≥ 3 and, the second

one is a family of egr(q(q2 + 1), q, 5, λ) for λ ≥ q − 1 and q ≥ 8 an odd power of 2. In

particular, if q = 8 we have that λ = q− 1. Finally, we construct an egr(32, 5, 5, 12) and we

prove that it is extremal.

1. Introduction

This paper deals with simple graphs, i.e. graphs with no loops and no multiple edges.

A graph G is k-regular if each of its vertices has exactly k neighbours. It is of girth g if its

smallest cycles have g vertices. The number of vertices of G is also called the order of G.

In this paper we study a family of graphs called edge-girth-regular graphs that were first

defined in [19]. These graphs are k-regular, of order v and girth g. Moreover, they are such

that each of their edges is contained in λ distinct g-cycles (cycles of length g). They are

denoted by egr(v, k, g, λ) .

In the latter paper, the authors expose that their motivation is based on the fact that Moore

cages (that are k-regular graphs of fixed girth g having their number of vertices matching the

Moore bound, for more information of this topic see [16]) are edge-girth-regular graphs.
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Throughout this paper, we use the natural lower bound for the order of a cage, called

Moore’s lower bound and denoted by n0(k, g). It is obtained by counting the vertices of a

tree, T(g−1)/2, rooted on a vertex and with radius (g − 1)/2, if g is odd; or the vertices of a

“double-tree” rooted at an edge (that is, two different T(g−3)/2 trees rooted each one at the

vertices incident with an edge) if g is even (see [16]):

(1) n0(k, g) =

 1 +
∑ g−3

2
i=0 k(k − 1)i = k(k−1)

g−1
2 −2

k−2 , if g is odd;

2
∑ g−2

2
i=0 (k − 1)i = 2(k−1)

g
2−2

k−2 , if g is even.

Moreover, the well-known Cage Problem consists in finding k-regular graphs of fixed girth

g and minimum order, denoted by n(k, g), that we call (k; g)-cages.

If G is a (k; g)-cage of order n0(k; g), it is a Moore Cage. If G is a (k; g)-graph of order

|V (G)| then we call the excess of G the difference |V (G)|−n0(k; g). It is well known (see [16])

that there are very few graphs that attain the Moore Bound and the existence of such graphs

is related with the existence of some specific finite geometries or generalized quadrangles (see

[7, 8, 16]). Consequently, the main challenge of this problem is not only to find small graphs,

but also to prove that they are the smallest that exist and have order n(k; g), or in other

words that they are cages.

In [19] the authors introduce the concept of edge-girth-regular graphs and give results

about their structure. One of them implies the relationship between these graphs and the

Moore cages. They analyze the egr(v, 3, g, λ)-graphs for 3 ≤ g ≤ 6 and prove that K4 is

the unique egr(4, 3, 3, 2)-graph, K3,3 the unique egr(6, 3, 4, 4)-graph and the cube Q3 the

unique egr(4, 3, 4, 2)-graph. For girth g = 5 they also prove that the Petersen graph1 and the

skeleton graph of the dodecahedron are the unique egr(10, 3, 5, 4)-graph and egr(20, 3, 5, 2)-

graph respectively; and, for girth six they give four egr(v, 3, 6, λ)-graphs, namely the Heawood

graph which is the unique egr(14, 3, 6, 8)-graph that is the cubic Moore Cage of girth six, the

Möebius graph that is an egr(16, 3, 6, 6)-graph, and two egr(v, 3, 6, 4)-graphs, the Pappus

graph (which is the incidence graph of Pappus configuration) and Desargues graph (which

is the incidence graph of Desargues configuration). The Pappus graph has order 18 and

the Desargues graph has order 20. Also in [19] the authors give several constructions that

produce infinite families of egr-graphs, as well as a general result of edge-girth-regular graphs

for λ = 2 and any regularity and girth, related with topological graph theory.

1The Petersen graph is the cubic Moore cage of girth 5.
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Recently, Drglin, Filipovski, Jajcay and Raiman [14] introduced a special class of these

graphs called extremal edge-girth-regular graphs. These are egr(v, k, g, λ) with v = n(k, g, λ)

where n(k, g, λ) is the smallest order of a (v, k, g, λ)-graph fixing the triplet (k, g, λ) (see [14]).

As usual if we have an egr(v, k, g, λ)-graph G, the excess of G is |V (G)|-n(k, g, λ).

In the same paper, the authors provide lower bounds for n(k, g, λ) depending of the parity

of g and related with the Moore bound for k-regular cages of girth g, denoted by n0(k, g).

Specifically, they improve the lower bound of n(k, g, λ) for bipartite graphs. Moreover, they

give results for some special classes of extremal edge-girth-regular graphs with λ = 1, called

girth-tight in [23], and some constructions though the concept of canonical double cover used

on topological graph theory, especially in order to obtain extremal edge-girth-regular graphs

of girth 4.

The purpose of our paper is to introduce new techniques to construct infinite families of

(v, k, g, λ)-graphs for some specific values of k ≥ 4, g = {5, 6} and λ ≥ 3 (which do not appear

in [19, 14]) and prove that some of these families are extremal.

The paper is organized as follows. In Section 2 we introduce a family of graphs given in [10]

and we prove that, for q a prime power they are egr(2q2, q, 6, (q−1)2(q−2)). Moreover, using

the algebraic properties of the incidence graph of a projective plane and the graph described

above for q = 4, we construct an specific (32, 5, 5, 12)-graph. In Section 3 we introduce a

family of egr(q(q2 + 1), q, 5, λ)-graphs with λ ≥ q− 1 and q = 22α+1 and α a strictly positive

integer. In particular, if q = 8 we have that λ = q − 1; these graphs arise from the Suzuki

simple groups. Finally, in Section 4 we introduce the bounds given in [14] and we prove that

the graphs given in Section 2.1 and the graph constructed in Section 2.2 are extremal, in

particular that n(q, 6, (q− 1)2(q− 2)) = 2q2 and that n(5, 5, 12) = 32. In particular, if we let

q = 3 in the family of egr(2q2, q, 6, (q − 1)2(q − 2))-graphs, we obtain the Pappus graph that

was mentioned in [14] to be extremal.

2. Edge-girth-regular graphs from Moore cages of girth 6

Let q be a prime power and consider the Levi graph or incidence graph Bq of elliptic

semiplanes of type C that is obtained from the projective plane of order q by choosing an

incident point-line pair (p, l) and deleting all the lines incident with p and all the points

belonging to l. Thus, the Levi (or incidence) graph Bq is bipartite, q-regular and has 2q2

vertices, which correspond in the elliptic semiplane to q2 points and q2 lines both partitioned

into q parallel classes or blocks of q elements each. It is also known as the biaffine plane (see

[1, 10]). The following description of Bq appears in [5] and it was used to construct families



4 GABRIELA ARAUJO-PARDO AND DIMITRI LEEMANS

of graphs and mixed graphs of girth 5 or diameter 2 (see [1, 2, 5, 6]).

The following Remark 2.1 describes the biaffine plane and its incidence graph.

Remark 2.1. [5]. Let Fq be the finite field of order q with q a power of a prime.

(i) Let L = Fq×Fq and P = Fq×Fq. Denote the elements of L and P using “brackets”

and “parenthesis”, respectively. The following set of q2 lines define a biaffine plane:

(2) [m, b] = {(x,mx+ b) : x ∈ Fq} for all m, b ∈ Fq.

(ii) The incidence graph of the biaffine plane is a bipartite graph Bq = (P,L ) which is

q-regular, has order 2q2, diameter 4 and girth 6, if q ≥ 3; and girth 8, if q = 2.

(iii) The vertices mutually at distance 4 are the elements of the sets Lm = {[m, b] : b ∈ Fq},
and Px = {(x, y) : y ∈ Fq} for all x,m ∈ Fq.

2.1. A family of egr(2q2, q, 6, (q−1)2(q−2))-graphs for q a prime power. In the following

Theorem we prove that Bq is an edge-girth-regular graph.

Theorem 2.1. For any q ≥ 3, q a prime power, Bq is an egr(2q2, q, 6, (q − 1)2(q − 2)).

Proof. The order, degree and girth are given in Remark 2.1, hence we only have to prove

that any edge is in exactly (q − 1)2(q − 2) 6-cycles. Let u1u2 be any edge in Bq, then we can

suppose, without loss of generality that u1 ∈ Px and u2 ∈ Lm, for some x,m ∈ Fq. We then

have (q − 1) possible choices for a neighbour u3 6= u1 of u2, one in each P ′x for x′ ∈ Fq and

x′ 6= x. Again, to select a neighbour u4 of u3 that is not u2, we have (q − 1) options, one in

each L′m for m′ ∈ Fq and m′ 6= m.

Until here, we have a path (u1, u2, u3, u4). Finally if we select a new neighbor u5 6= u3 of

u4 in Px, as u1 ∈ Px, by item (iii) of Remark 2.1 we have that then d(u1, u5) = 4 and it is

impossible than we close this path as a 6-cycle. Hence we have only (q − 2) options to select

u5 in Px′′ , with x′′ ∈ Fq and x′′ 6= x, x′. Then we have a path (u1, u2, u3, u4, u5) of length four

and there is a unique way to close this path in a 6-cycle, namely by taking u6 ∈ Lt such that,

if u1 = (x, y) and u5 = (x′′, y′′), t = y′′−y
x′′−x . Finally, C = (u1, u2, u3, u4, u5, u6) is a 6-cycle of

Bq.

In total, we have (q − 1)2(q − 2) cycles of length 6 in Bq that contain the edge u1u2.
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2.2. The special graph egr(32, 5, 5, 12). In the following theorem, we construct a special

edge-girth-regular graph using B4.

Theorem 2.2. There exists an egr(32, 5, 5, 12).

Proof. Let B4 the incidence graph of the biaffine plane of order 4 given in Remark 2.1.

Let F4 be the Galois Field of order 4 constructed as an extension field of Z2, that is, the

elements of F4 are {0, 1, α, α2}, where α is a primitive root of the irreducible polynomial

f(x) = x2 + x+ 1 over Z2. Recall that, in this case α2 = α+ 1.

Note that B4 has 32 vertices distributed in 8 sets of size 4. The vertex-set V (B4) =

P0 ∪ P1 ∪ Pα ∪ Pα2 ∪ L0 ∪ L1 ∪ Lα ∪ Lα2 . The vertices in the sets Pi for i ∈ F4 correspond

to points of the biaffine plane and the vertices in the sets Lj for j ∈ F4 correspond to lines.

We call the vertices that correspond to points P -vertices and the vertices that correspond to

lines L-vertices. Starting with B4 we construct a graph H with same vertex-set as B4 and

the following set of edges.

E(H) = E(B4) ∪ E

where

E = {(i, 0)(i, 1), (i, α)(i, α2)|i ∈ F4} ∪ {[j, 0][j, α], [j, 1][j, α2]|j ∈ F4}.

Note that, as B4 is 4-regular and E is a matching, the graph H is a 5-regular graph of order

32. It remains to show that H has girth 5 and that λ = 12.

First we prove that H is a vertex-transitive graph (this proof is analogous to the one

given in [3]). Note that the translations of the biaffine plane still act as automorphisms of

H, that is τ(a,b)(i, j) = (i + a, j + b) and the same holds for the lines of B4. Moreover, let

Φα be an automorphism that exchanges points and lines and preserves incidences defined as

Φα(i, j) = [i, αj] and Φα[i, j] = (αi, αj). The τ(a, b)’s show that all elements of P are in a

same orbit and the elements of L are also in a same orbit. An element Φα swaps elements of

P with elements of L. Hence there is a unique orbit on the vertices of B4 under the action of

the automorphism group of B4 and the graph is vertex-transitive.

To prove that H has girth 5, notice that as B4 has girth equal to 6, we have to prove

that by adding the edges of E to construct H we do not produce 3-cycles or 4-cycles but we

produce 5-cycles. Clearly, H does not have 3-cycles, because as B4 is bipartite, any 3-cycle

would have at least one edge in E . But as E is a matching it should have at most one edge

in E . By construction if e = uv ∈ E we have that N(u) ∩ N(v) = ∅, and we do not have a

3-cycle. As B4 has girth 6, if H has a 4-cycle, this cycle has edges in E . Moreover as E is
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Figure 1. A part of the egr(32, 5, 5, 12) graph H, with some of the edges

a matching we have to prove that if we have an edge e = uv ∈ E the neighbors of u and v

on L, called u′ and v′ respectively, do not induce an edge in E . Let uv be an edge between

vertices of P. Then u = (x, y) and v = (x, y + 1) for some x and y ∈ Fq and let u′ = [m, b]

adjacent to u. By construction y = mx + b and y + 1 = mx + b + 1. Hence v′ = [m, b + 1].

But, by construction of H we have that u′v′ /∈ E . Hence we do not have 4-cycles.

Now, to prove that the girth is equal to 5, we only have to give one 5-cycle. C =

((0, 0), (0, 1), [1, 1], (1, 0), [0, 0], (0, 0)). A part of the graph H is depicted in Figure 1. For

clarity in the picture we do not draw all edges. The cycle C is depicted in red.

To prove that λ = 12 we have to analyze three types of edges, namely edges joining vertices

both in P or both in L, and edges joining a vertex in P to a vertex in L. Note that, by

construction, the 5-cycles do not have more than one edge in E . Moreover, as B4 is bipartite

they have exactly one edge on E .

Let us first consider the case where a, b ∈ P and ab ∈ E(H). Then a = (x, y) and

b = (x, y + 1) for some x, y ∈ F4. We have four options to choose one neighbour c of b in

the L-vertices (we can pick one in each Lj for j ∈ F4). Suppose that bc ∈ E(H) and c is

a L-vertex. To take a neighbour d of c in P we have three possibilities (one in each P ′x for

x′ ∈ Fq and x′ 6= x), that is we have the path (a, b, c, d) of length 3 and now the rest of the

cycle is determined by the common neighbour of a and d in L. Then, we have 12 options to

complete a 5-cycle that contains ab.

A similar proof to the one above can be written if a, b ∈ L.
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Finally, let u ∈ P, v ∈ L and uv ∈ E(H). Then u = (x, y) and v = [m, b] with {x, y,m, b} ∈
F4, and let C = (u′, u, v, v′, w) be a 5-cycle that contains uv. As we said before, C has exactly

one edge in E . Obviously, u, v 6∈ E . Suppose that either u′u or vv′ is in E . If u′u ∈ E , we

have only one option to take a neighbour u′ of u in Px, and we have tree options to take a

neighbour w of u′ in P ′x for x′ ∈ F4 and x 6= x′. The same happens if vv′ ∈ E . This gives six

circuits of length 5 containing uv. Now, suppose that either wu′ or v′w be in E . If wu′ ∈ E ,

we have three options to select u′ (the neighbour of u) in L′m for m′ ∈ F4 and m 6= m′, and

we have only one option to select the neighbour of u′ in L′m (that is the edge wu′ ∈ E) and

the rest of the cycle is determined by v′ (the neighbour of v and w in P ). We can make a

similar proof if v′w be in E . This gives another six circuits of length 5 containing uv. Hence

in total we have 12 circuits of length 5 containing the edge uv.

2.3. Analysing the graph with Magma. Let G be the egr(32, 5, 5, 12) that we constructed

in the previous section. It can be constructed in Magma [9] using the following code.

gr:=Graph<32|

[{ 2, 24, 17, 20, 21 },{ 22, 1, 25, 18, 30 },{ 23, 26, 6, 17, 30 },

{ 14, 26, 27, 19, 31 },{ 25, 27, 17, 28, 9 },{ 3, 28, 18, 31, 21 },

{ 22, 27, 29, 20, 10 },{ 22, 16, 17, 31, 32 },{ 26, 5, 18, 20, 32 },

{ 24, 25, 7, 19, 32 },{ 23, 13, 24, 27, 18 },{ 22, 23, 15, 19, 21 },

{ 11, 28, 19, 30, 20 },{ 23, 4, 28, 29, 32 },{ 12, 24, 29, 30, 31 },

{ 25, 26, 29, 8, 21 },{ 1, 3, 5, 8, 19 },{ 11, 2, 6, 29, 9 },

{ 12, 13, 4, 17, 10 },

{ 1, 13, 7, 9, 31 },{ 1, 12, 16, 27, 6 },{ 12, 2, 28, 7, 8 },

{ 11, 12, 3, 14, 25 },

{ 11, 1, 15, 26, 10 },{ 23, 2, 5, 16, 10 },{ 24, 3, 4, 16, 9 },

{ 11, 4, 5, 7, 21 },{ 22, 13, 14, 5, 6 },{ 14, 15, 16, 7, 18 },

{ 2, 13, 3, 15, 32 },

{ 4, 15, 6, 8, 20 },{ 14, 8, 30, 9, 10 }]>;

It is then easy to check that indeed this graph is 5-regular (that can be seen from the

construction) and has girth five using Magma built-in functions. To check that every edge

is on 12 pentagons, one can write a program that will construct all pentagons of that graph

and count on how many pentagon each edge is. Such a brute-force program takes less than

2/10th of a second to run and get that λ = 12. We provide in an appendix at the end of the

paper a Magma function to check this.
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The automorphism group of G is E16 : C3. It is the semi-direct product of an elementary

abelian group of order 16 with a cyclic group of order 3.

3. A family of egr(q(q2 + 1), q, 5, λ)-graphs

In [20], Leemans classified rank two incidence geometries that satisfy some properties for

the infinite family of finite simple groups Sz(q). Among the geometries found, one is a family

of graphs that are of interest for this paper. It is the first geometry of [20, Table 2]. We

recall here how to construct it. But first, we need to give a small introduction to incidence

geometry and coset geometries.

3.1. Incidence geometries and coset geometries. An incidence system [13], Γ :=

(X, ∗, t, I) is a 4-tuple such that

• X is a set whose elements are called the elements of Γ;

• I is a set whose elements are called the types of Γ;

• t : X → I is a type function, associating to each element x ∈ X of Γ a type t(x) ∈ I;

• ∗ is a binary relation on X called incidence, that is reflexive, symmetric and such

that for all x, y ∈ X, if x ∗ y and t(x) = t(y) then x = y.

The incidence graph of Γ is the graph whose vertex set is X and where two vertices are joined

provided the corresponding elements of Γ are incident.

A flag is a set of pairwise incident elements of Γ, i.e. a clique of its incidence graph. The

type of a flag F is {t(x) : x ∈ F}. A chamber is a flag of type I. An element x is incident to

a flag F and we write x ∗ F for that, when x is incident to all elements of F . An incidence

system Γ is a geometry or incidence geometry if every flag of Γ is contained in a chamber (or

in other words, every maximal clique of the incidence graph is a chamber). The rank of Γ is

the number of types of Γ, namely the cardinality of I.

Let Γ := (X, ∗, t, I) be an incidence system. Given J ⊆ I, the J–truncation of Γ is the

incidence system ΓJ := (t−1(J), ∗|t−1(J)×t−1(J), t|J , J). In other words, it is the subgeometry

constructed from Γ by taking only elements of type J and restricting the type function and

incidence relation to these elements.

Let Γ := (X, ∗, t, I) be an incidence system. Given a flag F of Γ, the residue of F in Γ is

the incidence system ΓF := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x 6∈ F};
• IF := I \ t(F );
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• tF and ∗F are the restrictions of t and ∗ to XF and IF .

An incidence system Γ is residually connected when each residue of rank at least two of Γ

has a connected incidence graph. It is called firm (resp. thick) when every residue of rank

one of Γ contains at least two (resp. three) elements.

Let Γ := (X, ∗, t, I) be an incidence system. An automorphism of Γ is a mapping α :

(X, I)→ (X, I) : (x, t(x)) 7→ (α(x), t(α(x)) where

• α is a bijection on X inducing a bijection on I;

• for each x, y ∈ X, x ∗ y if and only if α(x) ∗ α(y);

• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

An automorphism α of Γ is called type preserving when for each x ∈ X, t(α(x)) = t(x).

The set of all automorphisms of Γ together with the composition forms a group that is

called the automorphism group of Γ and denoted by Aut(Γ). The set of all type-preserving

automorphisms of Γ is a subgroup of Aut(Γ) that we denote by AutI(Γ). An incidence system

Γ is flag-transitive if AutI(Γ) is transitive on all flags of a given type J for each type J ⊆ I.

A rank two geometry with points and lines is called a generalized digon if every point is

incident to every line.

Let Γ be a firm, residually connected and flag-transitive geometry. As defined in [11], the

Buekenhout diagram of Γ is a graph whose vertices are the elements of I and with an edge

{i, j} with label dij−gij−dji whenever every residue of type {i, j} is not a generalized digon.

The number gij is called the gonality and is equal to half the girth of the incidence graph of a

residue of type {i, j}. The number dij is called the i-diameter of a residue of type {i, j} and

is the longest distance from an element of type i to any element in the incidence graph of

the residue. Moreover, to every vertex i is associated a number si, called the i-order, which

is equal to the size of a residue of type i minus one, and a number ni which is the number

of elements of type i of the geometry. If gij = dij = dji = n, then every residue of type

{i, j} of Γ is called a generalized n-gon and we do not write dij and dji on the picture. If

gij = dij = dji − 1 = 3, and si = 1, then every residue of type {i, j} of Γ is the incidence

geometry corresponding to the complete graph of sj + 1 vertices and we write c instead of

dij − gij − dji on the picture.

The basic concepts about geometries constructed from a group and some of its subgroups

are due to Jacques Tits [24] (see also [12], chapter 3). Let I be a finite set and let G

be a group together with a family of subgroups (Gi)i∈I . We define the incidence system

Γ = Γ(G, (Gi)i∈I) as follows. The set X of elements of Γ consists of all cosets Gig, g ∈ G,
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i ∈ I. We define an incidence relation * on X by : Gig1 * Gjg2 iff Gig1 ∩Gjg2 6= ∅. The type

function t on Γ is defined by t(Gig) = i. The type of a subset Y of X is the set t(Y ); its rank

is the cardinality of t(Y ) and we call | t(X) | the rank of Γ. The incidence system Γ is also

called a coset geometry as it is build from cosets of subgroups of a group. The group G acts

on Γ as an automorphism group, by right translation, preserving the type of each element.

Every coset geometry of rank at most three is a geometry.

Let Γ(G;G0, . . . , Gn−1) be a rank n pre-geometry. We call C = {G0, . . . , Gn−1} the max-

imal parabolic chamber associated to Γ. Assuming that F is a subset of C, the residue of F

is the pre-geometry

ΓF = Γ(∩j∈t(F )Gj , (Gi ∩ (∩j∈t(F )Gj))i∈I\t(F ))

If Γ is flag-transitive and F is any flag of Γ, of type t(F ), then the residue ΓF of Γ is isomorphic

to the residue of the flag {Gi, i ∈ t(F )} ⊆ C.

Given a rank two coset geometry Γ(G, {G0, G1} , the 0-incidence graph or point-incidence

graph of Γ is the graph whose vertices are the orbits of the action of G0 on the cosets of G0

and G1. An orbit A is joined to an orbit B provided there are cosets in A that are incident

to cosets in B. Moreover, on the edge, we add two numbers, one of each closer to one of the

vertices. The number X near the orbit A tells us how many cosets in the orbit B are incident

to a given coset of the orbit A, and the number Y near the vertex B tells us how many cosets

in the orbit A are incident to a given coset of the orbit B. Finally, inside a vertex, we put the

number of elements of the orbit the vertex represents. Usually, we use two types of vertices

to distinguish easily from which types of cosets the orbits are. We can define the 1-incidence

graph or line-incidence graph by swapping the roles of 0 and 1 in the above.

3.2. A family of egr(q(q2 + 1), q, 5, q − 1)-graphs. Let G ∼= Sz(q) (with q = 22e+1 and e

a strictly positive integer) be a Suzuki group acting on an ovoid D of PG(3, q). Let p be a

point of D and Gp be the stabilizer of p in G. The subgroup Gp ∼= Eq ·Eq : Cq−1 has a class

of q maximal subgroups isomorphic to Eq : Cq−1. Let G1
∼= Eq : Cq−1 be the stabilizer of a

circle of D. It has a special point n called the nucleus. Its orbits on D are of respective sizes

[1, q, q2 − q]. Pick a point p in the orbit of size q. Let G2 be the stabilizer of {n, p} in G.

Then G2
∼= D2(q−1) is such that G1 ∩G2

∼= Cq−1. The coset geometry Γ(G; {G1, G2}) is such

that the index of G1∩G2 in G2 is two, meaning we can construct a graph from this geometry.

Let Gq(V,E) be the graph whose vertex-set V is the set of cosets of G1 in G ∼= Sz(q) and

whose edge-set is the set of cosets of G2 in G. A vertex G1g is on an edge G2h if and only if

G1g ∩G2h 6= ∅.
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Lemma 3.1. The graph Gq(V,E) has girth at most five.

Proof. This is a direct consequence of the fact that Γ(G; {G1, G2}) is a rank two truncation

of a geometry of rank three of the second family described in [21, Theorem 5.3]. One can check

that the geometry Γ := Γ(G; {G1, G2, G3}) with G3
∼= D10 such that G1∩G3

∼= C2
∼= G2∩G3

and G1 ∩ G2 ∩ G3
∼= {1G} exists even when q − 1 is not a prime. In that case, Γ is not

residually weakly primitive but this is not important for our purpose. The geometry Γ has

the following Buekenhout diagram (see [21] for the definitions).u u u5 c

1 1 q − 2

(q2 + 1)q2 (q2 + 1)q (q2 + 1)q2(q − 1)/10

D2(q−1) Eq : Cq−1 D10

The geometry Γ(G; {G1, G2}) being a truncation of Γ and the rank two residues of type {1, 2}
being pentagons, we can conclude that the girth of Gq(V,E) is at most five.

Lemma 3.2. The graph Gq(V,E) has girth five.

Proof. A careful analysis of the point and line incidence graphs of Γ := Γ(G; {G1, G2})
shows that the gonality of Γ(G; {G1, G2} has to be at least five. Let us call the cosets of

G1 the points and the cosets of G2 the lines. There are [G : G1] = (q2 + 1)q points and

[G : G2] = (q2 + 1)q2/2 lines. The point-incidence graph of Γ starts as follows thanks to the

two-transitive action of G on the ovoid.

1
q ���q1 1

q
x

We know that x is equal to 1 for, if it were greater than 1, it would contradict the fact that

through two distinct points there is exactly one line in a projective space. Now, because Cq−1

is the stabilizer of two points, there is a unique orbit of lines at distance 3 of the starting

point. The point-incidence graph can therefore be extended as follows.

1
q ���q1 1

q
1

�
�
�
�q(q − 1)

q − 1 y

Here, y cannot be equal to 2 for otherwise, we would have q + q(q − 1) lines, which is not

enough. Hence y = 1 and this already shows that the girth of the graph is at least 4. We can

also draw the line-incidence graph of the geometry. It starts as follows.
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���1 2
2
q − 11
�
�
�
�2(q − 1)

12
2(q − 1)

1 1

This graph continues on the right with q − 1 branches having a weight of 1 each. Each of

these branches leads to an orbit of 2(q− 1) lines, each of them being adjacent to exactly one

of the 2(q − 1) points of the box at the right of the picture. Hence the girth is at least five.

By Lemma 3.1, we can conclude that the girth is indeed five.

Theorem 3.1. The family of graphs Gq(V,E) is a family of egr-graphs of girth five.

Proof. For a give q = 22e+1, the graph Gq(V,E) is a regular graph with q(q2 + 1) vertices

since [G : G1] = q(q2 + 1). Its degree is [G1 : G1 ∩ G2] = q(q − 1)/(q − 1) = q. By

Lemma 3.2, we already know that the girth is five. As the graph is arc-transitive, it has to

be an edge-girth-regular graph.

The only unknown parameter for these graphs is λ. We know that λ is at least q − 1.

This is an immediate consequence of the geometry Γ of rank three described in the proof of

Lemma 3.1. Indeed, the circuits of length five are the elements of type 3 of that geometry.

Each edge of the graph is incident to [G2 : G2 ∩ G3] pentagons of that geometry, that is

2(q − 1)/2 = q − 1 pentagons. Hence λ ≥ q − 1. We conjecture that λ = q − 1.

Conjecture 3.2. The family of graphs Gq(V,E) is a family of egr(q(q2+1), q, 5, q−1)-graphs.

We managed to check that conjecture with Magma for q = 8.

4. Extremal Edge-girth-regular graphs

As we said in the introduction, recently Drglin, Filipovski, Jajcay and Raiman [14] intro-

duced a special class of edge-girth-regular graphs called extremal edge-girth-regular graphs.

These are egr(v, k, g, λ) with v = n(k, g, λ) where n(k, g, λ) is the smallest order of a

(v, k, g, λ)-graph fixing the triplet (k, g, λ). Recall that, for an egr(v, k, g, λ) graph G, the

excess of G is the difference |V (G)|-n(k, g, λ).

In this section we state the lower bounds for extremal edge-girth-regular-graphs, we recall

some edge-girth-regular graphs that are also extremal (the Pappus graph and others given

also by Jajcay in [14]) and prove that the graphs given in Section 2.1 are extremal. In

particular, for q = 3, we obtain the Pappus graph. Also we give the excess for the other
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graphs constructed in this paper. In fact, we conjecture that the construction given in

Section 2.1 produces ”small” girth-regular graphs that is graphs with order ”close” to be

extremal. In particular, we analyze the (32, 5, 5, 12)-graph given in Section 2.2 that should

be an extremal (32, 5, 5, 12)-graph.

The lower bound for extremal edge-girth-regular graphs given in [14] is the following.

Theorem 4.1. [14] Let k and g be a fixed pair of integers greater than or equal to 3, and let

λ ≤ (k − 1)
g−1
2 , when g is odd and λ ≤ (k − 1)

g
2 , when g is even. Then:

(3) n(k, g, λ) ≥ n0(k, g) +

 (k − 1)
g−1
2 − λ, if g is odd;

d2 (k−1)
g−1
2 −λ
k e, if g is even.

Moreover, in the same paper, the authors improve the lower bound for bipartite graphs

and give the following Theorem:

Theorem 4.2. [14] Let k ≥ 3 and g ≥ 4 be even, and let λ ≤ (k − 1)
g−1
2 . If G is a bipartite

egr(v, k, g, λ)-graph, then:

v ≥ n0(k, g) + 2d(k − 1)
g−1
2 − λ

k
e

We now use Theorem 4.2 and the fact that Bq is a bipartite graph to prove the following

theorem.

Theorem 4.3. For q a prime power, the graph Bq defined in Remark 2.1 is extremal.

Proof. Let Bq be the graph constructed in Remark 2.1. As pointed out in Theorem 2.1, this

graph is an egr(2q2, q, 6, (q − 1)2(q − 2)). Theorem 4.2 gives that

n(q, 6, (q − 1)2(q − 2)) ≥ 2(q2 − q + 1) + 2d(q − 1)2

q
e = 2q2.

The order of Bq is exactly 2q2. Hence it is an extremal edge-girth-regular graph.

Observe that the graph B3, that is an egr(18, 3, 6, 4), is the Pappus Graph.

Let us come back to the special egr(32, 5, 5, 12)-graph, constructed in Section 2.2. The

bound given in Theorem 4.1 implies that n(5, 5, 12) ≥ 30 and therefore the egr(32, 5, 5, 12)-

graph has excess at most 2, but as we said in the introduction, the order of a (5, 5)-cage is

exactly 30, as n0(5, 5) = 26, if H is a (5, 5)-cage, H has excess 4, and there exist four different
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cages with excess 4 (see [16]). Then, to make sure that our construction gives an extremal

graph we have to prove that none of the four (5, 5)-cages are edge-girth-regular-graphs and

that there is no (5, 5)-graph or order 31.

Theorem 4.4. The egr(32, 5, 5, 12)-graph defined in Section 2.2 is extremal.

Proof. There are four Moore cages of type (5,5) and order 30. These are the only possible

graphs that would have a smaller order than the egr(32, 5, 5, 12)-graph and therefore make

it not extremal. These graphs are available for instance from Andries Brouwer’s website (see

https://www.win.tue.nl/~aeb/graphs/cages/cages.html). An easy and quick computa-

tion with Magma [9] then permits to check that none of these four graphs are egr-graphs.

One way to do this is to use the Magma function we provide in the appendix at the end

of the paper. Following Brouwer’s website ordering, the first and third graphs have edges

that belong to 12 pentagons and edges that belong to 14 pentagons, the second has edges

that belong to 12 pentagons, edges that belong to 13 pentagons and edges that belong to 14

pentagons and, finally, the fourth has edges that belong to 12 pentagons, edges that belong

to 13 pentagons and edges that belong to 16 pentagons.

The fact that there is no (5, 5)-graph of order 31 is due to the fact that the degree of each

vertex is 5 and therefore the order has to be even by the handshaking lemma (the number of

vertices times 5 is equal to the number of edges times 2).

Finally we note that, as n(q, 5, q − 1) ≥ 2q2 − 3q + 3 the graphs constructed in Section 3

have excess at most q3−2q2 +4q−3 if the Conjecture 3.2 is true and λ = q−1. In particular,

it is true for q = 8.

We conclude this paper with two conjectures.

Taking into account the fact that edge-regular-graphs should have a lot of symmetries,

that the family of graphs given on Remark 2.1 induces extremal edge-regular-graphs and

that there exists a generalization of the construction of Bq for girth g = {8, 12}, given in [4],

using the incidence graphs of generalized quadrangles and hexagons (see [7]), or the (k, g)-

Moore cages for g = {8, 12}, give us (k, g)-graphs for k a prime power and order 2k
g−2
2 , we

conjecture the following.

Conjecture 4.5. For q ≥ 3 a prime power and g = {8, 12} there exist a family of

egr(2q
g−2
2 , q, g, (q − 1)

g−2
2 (q − 2))-graphs.

Conjecture 4.6. The family of graphs conjectured in 4.5 are extremal-edge-girth-regular

graphs.

https://www.win.tue.nl/~aeb/graphs/cages/cages.html
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5. Appendix

We give here the little piece of Magma code we wrote to check whether the graphs we

mention in this paper are egr-graphs. This function receives as input a graph and returns

either false if the graph is not an egr-graph, or true and the parameters v, k, g, λ if the graph

is an egr-graph.

function IsEdgeGirthRegular(gr);

n:=Order(gr);

g:=Girth(gr);

V:=VertexSet(gr);

E:=EdgeSet(gr);

c2:= [[i,j] : j in {i+1..n},i in {1..n}| {V!i,V!j} in E];

if IsRegular(gr) then

k := #Neighbours(V!1);

while #c2 ne 0 and #Rep(c2) le g-1 do

cNext:=[];

for x in c2 do

for j := 1 to n do

if x[#x] ne j and {V!x[#x],V!j} in E and not(j in Set(x))

and (#x lt g-1 or {V!x[1],V!j} in E) then

Append(~cNext,x cat [j]);

end if;

end for;

end for;

c2 := cNext;

end while;

c2 := [x cat [x[1]] : x in c2];

m := {* {y[i],y[i+1]} : i in [1..g], y in c2 *};

m2 := {Multiplicity(m,x)/g : x in m};

if #m2 eq 1 then

return true, #V, k, g, Rep(m2);

end if;

end if;

return false;

end function;
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1 (1998), 97–120.

[21] D. Leemans, The rank 3 geometries of the simple Suzuki groups Sz(q), Note Mat., 19, no. 1 (1999), 43–63.

http://arxiv.org/abs/2009.13709


EDGE-GIRTH-REGULAR GRAPHS ARISING FROM BIAFFINE PLANES AND SUZUKI GROUPS 17

[22] H. Van Maldeghem, Generalized Polygons, Birkhauser, Basel, 1998.
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