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Abstract

Let G be a graph. We say that G is perfectly divisible if for each induced subgraph

H ofG, V (H) can be partitioned into A and B such thatH [A] is perfect and ω(H [B]) <

ω(H). We use Pt and Ct to denote a path and a cycle on t vertices, respectively. For two

disjoint graphs F1 and F2, we use F1 ∪F2 to denote the graph with vertex set V (F1)∪

V (F2) and edge set E(F1)∪E(F2), and use F1+F2 to denote the graph with vertex set

V (F1)∪ V (F2) and edge set E(F1)∪E(F2)∪ {xy | x ∈ V (F1) and y ∈ V (F2)}. In this

paper, we prove that (i) (P5, C5,K2,3)-free graphs are perfectly divisible, (ii) χ(G) ≤

2ω2(G)−ω(G)− 3 if G is (P5,K2,3)-free with ω(G) ≥ 2, (iii) χ(G) ≤ 3

2
(ω2(G)−ω(G))

if G is (P5,K1+2K2)-free, and (iv) χ(G) ≤ 3ω(G)+11 if G is (P5,K1+(K1∪K3))-free.

Key words and phrases: P5-free; chromatic number; induced subgraph; perfect

divisibility

AMS 2000 Subject Classifications: 05C15, 05C78

1 Introduction

All graphs considered in this paper are finite, simple, and connected. Let G be a graph.

The clique number ω(G) of G is the maximum size of the cliques of G, and the independent

number α(G) of G is the maximum size of the independent sets of G. We use Pk and Ck

to denote a path and a cycle on k vertices respectively. The complete bipartite graph with

partite sets of size p and q is denoted by Kp,q, and the complete graph with l vertices is

denoted by Kl.

Let G and H be two vertex disjoint graphs. The union G ∪ H is the graph with

V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H). Similarly, the join G+H is the
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§Email: yian xu@seu.edu.cn
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graph with V (G+H) = V (G)∪V (H) and E(G+H) = E(G)∪E(H)∪{xy|for each pair x ∈

V (G) and y ∈ V (H)}. For positive integer k, kG denotes the union of k copies of G.

We say that G induces H if G has an induced subgraph isomorphic to H, and say that

G is H-free if G does not induce H. Let H be a family of graphs. We say that G is H-free

if G induces no member of H. For a subset X ⊆ V (G), let G[X] denote the subgraph of G

induced by X. A hole of G is an induced cycle of length at least 4, and a k-hole is a hole

of length k. A k-hole is said to be an odd (even) hole if k is odd (even). An antihole is the

complement of some hole. An odd (resp. even) antihole is defined analogously.

A coloring of G is an assignment of colors to the vertices of G such that no two adjacent

vertices receive the same color. The minimum number of colors required to color G is said

to be the chromatic number of G, denoted by χ(G). Obviously we have that χ(G) ≥

ω(G). However, determining the upper bound of the chromatic number of some family of

graphs G, especially, giving a function of ω(G) to bound χ(G) is generally very difficult.

Throughout the literature, plenty of work has been taken to investigate this problem. A

family G of graphs is said to be χ-bounded if there is a function f such that χ(G) ≤ f(ω(G))

for every G ∈ G, and if such a function f does exist to G, then f is said to be a binding

function of G [14]. A graph G is said to be perfect if χ(H) = ω(H) for each induced

subgraph H. Thus the binding function for perfect graphs is f(x) = x. The famous Strong

Perfect Graph Theorem [6] states that a graph is perfect if and only if it induces neither

an odd hole nor an odd antihole. Erdős [11] showed that for any positive integers k and

l, there exists a graph G with χ(G) ≥ k and no cycles of length less than l. This result

motivates the study of the chromatic number of H-free graphs for some H. Gyárfás [14,15],

and Sumner [25] independently, proposed the following conjecture.

Conjecture 1.1 [15, 25] For every tree T , T -free graphs are χ-bounded.

Gyárfás [15] proved that χ(G) ≤ (k − 1)ω(G)−1 for k ≥ 4 if G is Pk-free and ω(G) ≥ 2.

Gyárfás also suggested that there might exist χ-binding function for these classes of graphs

with a better magnitude.

Since P4-free graphs are perfect, determining an optimal binding function of P5-free

graphs attracts much attention. Sumner [25] showed that all (P5,K3)-free graphs are 3-

colorable, and there exist many (P5,K3)-free graphs with chromatic number 3. Up to now,

the best known upper bound for P5-free graphs is due to Esperet et al [12], who showed

that if G is P5-free and ω(G) ≥ 3 then χ(G) ≤ 5 · 3ω(G)−3, and the bound is sharp for

ω(G) = 3. A natural question is whether the exponential bound can be improved.

Problem 1.1 [20] Are there polynomial functions fPk
for k ≥ 5 such that χ(G) ≤

fPk
(ω(G)) for every Pk-free graph G?

Conjecture 1.2 [9] There exists a constant c such that for every P5-free graph G, χ(G) ≤

cω2(G).
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We say that a graph G admits a perfect division (A,B) if V (G) can be partitioned into

A and B such that G[A] is perfect and ω(G[B]) < ω(G). A graph G is said to be perfectly

divisible if each of its induced subgraphs admits a perfect division [16]. Obviously, if G is

perfectly divisible, then χ(G) ≤ ω(G) + (ω(G) − 1) + · · ·+ 2 + 1 =
(

ω(G)+1
2

)

.

Plenty of articles around the above topics have been published in the decades. Here

we list some results related to (P5,H)-free graphs for some small graph H, and refer the

readers to [19,22,24] for more information on Conjecture 1.1 and related problems.

A bull is a graph consisting of a triangle with two disjoint pendant edges, a cricket is

a graph consisting of a triangle with two adjacent pendant edges, a diamond is the graph

K1 + P3, a cochair is the graph obtained from a diamond by adding a pendent edge to a

vertex of degree 2, a dart is the graph K1 + (K1 ∪P3), a hammer is the graph obtained by

identifying one vertex of a K3 and one end vertex of a P3, a house is just the complement

of P5, a gem is the graph K1 +P4, a gem+ is the graph K1 +(K1 ∪P4), and a paraglider is

the graph obtained from a diamond by adding a vertex joining to its two vertices of degree

2 (see Figure 1).

bull diamond gem paraglider cricket

cochair househammerdart gem+

Figure 1: Illustration of some forbidden configurations

Fouquet et al [13] proved that (P5, house)-free graphs are perfectly divisible. Schier-

meyer [20] proved that χ(G) ≤ ω2(G) for (P5, H)-free graphs G, where H is a graph in

{cricket, dart, diamond, gem, gem+, K1,3}. Brause et al [3] proved that χ(G) ≤
(

ω(G)+1
2

)

if

G is (P5, hammer)-free, Chudnovsky and Sivaraman [7] showed that (P5, bull)-free graphs

and (odd hole, bull)-free graphs are both perfectly divisible, and Hoáng [16] showed that

every (odd holes, banner)-free graph is perfectly divisible. Dong and Xu [10] proved that

(P5, F )-free graphs are perfectly divisible, where F is either a cochair or a cricket. Chud-

novsky et al [8] proved that χ(G) ≤ ⌈5ω(G)
4 ⌉ if G is (P5, gem)-free, which improves the

results of [4] and [9]. Char and Karthick [5] showed that if G is (P5, K1 + C4)-free, then

χ(G) ≤ 3ω(G)
2 . Huang and Karthick [18] showed that if G is (P5, paraglider)-free, then

χ(G) ≤ ⌈3ω(G)
2 ⌉.

Chudnovsky and Sivaraman [7] showed that χ(G) ≤ 2ω(G)−1 if G is (P5, C5)-free, Brause

et al [1] proved that χ(G) ≤ d · ω3(G) for some constant d if G is (P5,K2,3)-free, and

Schiermeyer [21] proved that χ(G) ≤ c · ω3(G) for some constant c if G is (P5,K1 + 2K2)-
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free. In this paper, we study a subclasses of P5-free graphs, and prove the following

theorems, which improve some results of [1, 21,26].

Theorem 1.1 Every (P5, C5,K2,3)-free graph is perfectly divisible.

Theorem 1.2 If G is (P5,K2,3)-free then χ(G) ≤ 2ω2(G)− ω(G)− 3.

Theorem 1.3 If G is (P5,K1 + 2K2)-free with ω(G) ≥ 2 then χ(G) ≤ 3
2(ω

2(G)− ω(G)).

Theorem 1.4 If G is (P5,K1 + (K1 ∪K3))-free then χ(G) ≤ 3ω(G) + 11.

Theorem 1.2 improves a result of Brause et al [1] and the upper bound 2ω2(G)−ω(G)−3

is sharp in the sense that all (P5,K3)-free graphs are 3-colorable and there are (P5,K3)-

free graphs with chromatic number 3, Theorem 1.3 improves a result of Schiermeyer [21],

and Theorem 1.4 improves a result of [26] which states that χ(G) ≤ 1
2(ω

2(G) + ω(G)) for

{2K2,K1 + (K1 ∪K3)}-free graphs.

It is known (see Theorem 14 of [3]) that the class of 2K2 ∪ 3K1-free graphs does not

admit a linear binding function, and so one can not expect a linear binding function for

(P5,K2,3)-free graphs or for (P5,K1 + 2K2)-free graphs.

In Section 2, we introduce a few more notations, and list several useful lemmas. Section

3 is devoted to the proof of Theorem 1.1. Theorems 1.2, 1.3, and 1.4 are proved in Sections

4, 5, and 6 respectively.

2 Preliminary and Notations

Let G be a graph, and let A be an antihole of G with V (A) = {v1, v2, · · · , vh}. We

always enumerate the vertices of A cyclically such that vivi+1 /∈ E(G), and simply write

A = v1v2 · · · vh. In this paper, the summations of subindex are taken modulo h for some

h, and we always set h+ 1 ≡ 1.

Observation 2.1 The vertices of an odd antihole cannot be the union of two cliques.

For two vertices x and y of G, an xy-path is an induced path with ends x and y.

Throughout this paper, all paths considered are induced paths. The distance d(x, y) between

x and y is the length of the shortest xy-path of G.

Let P be a path, and let u and v be two vertices of P . We use P ∗ to denote the set of

internal vertices of P (i.e., those vertices of degree 2 in P ), and use P [u, v] to denote the

segment of P between u and v.

Let v ∈ V (G), and let X be a subset of V (G). We use NX(v) to denote the set of

neighbors of v in X. We say that v is complete to X if NX(v) = X, and say that v is

anticomplete to X if NX(v) = ∅. For two subsets X and Y of V (G), we say that X is

complete to Y if each vertex of X is complete to Y , and say that X is anticomplete to Y

if each vertex of X is anticomplete to Y . If 2 ≤ |X| ≤ |V (G)| − 1 and every vertex in

V (G)\X is either complete to X or anticomplete to X, then X is said to be a homogeneous

set.
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Lemma 2.1 [7] A minimal nonperfectly divisible graph admits no homogeneous sets.

Let d(v,X) = minx∈X d(v, x), and call d(v,X) the distance of a vertex v to a subset X.

Let i be a positive integer, and N i
G(X) = {y ∈ V (G)\X|d(y,X) = i}. We call N i

G(X) the

i-neighborhood of X, and simply write N1
G(X) as NG(X). If no confusion may occur, we

write N i(X) instead of N i
G(X), and N i({v}) is denoted by N i(v) for short.

Suppose that C = v1v2v3v4v5v1 is a 5-hole of G. For a subset T ⊆ {1, 2, 3, 4, 5}, let

NT (C) = {x | x ∈ N(C), and vix ∈ E(G) if and only if i ∈ T}.

It is easy to check that for k ∈ {1, 2, 3, 4, 5} and l = k + 2, N{k,k+2}(C) = N{l,l+3}(C) and

N{k,k+2,k+3}(C) = N{l,l+1,l+3}(C).

The next lemma is devoted to the structure of P5-free graphs. It holds trivially by the

P5-freeness of G, and so we omit its proof.

Lemma 2.2 Suppose that G is a P5-free graph and C = v1v2v3v4v5v1 is a 5-hole of G.
Then,

(a) for i ∈ {1, 2, 3, 4, 5}, N{i}(C) = N{i,i+1}(C) = ∅, and N{i,i+2}(C) ∪N{i,i+1,i+2}(C) is
anticomplete to N2(C),

(b) if x ∈ N(C) and N2(x) ∩N3(C) 6= ∅ then x ∈ N{1,2,3,4,5}(C), and

(c) for each vertex x ∈ N2(C) and each component B of G[N3(C)], x is either complete
or anticomplete to B.

We end this section by the following two lemmas which are also very useful in the proofs

of the main results. A clique cut set is a cut set and is a clique.

Lemma 2.3 A minimal nonperfectly divisible graph has no clique cut sets.

Proof. If it is not the case, let G be a minimal nonperfectly divisible graph, and let S

be a clique cut set of G. Let C1 be a component of G − S, let G1 = G[V (C1) ∪ S], and

let G2 = G − V (C1). Then, both G1 and G2 are perfectly divisible. For i ∈ {1, 2}, let

(Ai, Bi) be a perfect division of Gi with G[Ai] perfect and ω(G[Bi]) < ω(Gi). Since S is

a clique, we see that both A1 ∩ A2 and B1 ∩ B2 are cliques as they are subsets of S, and

thus G[A1 ∪A2] is perfect and ω(B1 ∪B2) < ω(G), a contradiction.

Let G be a graph with α(G) = 2, and let v be a vertex of G. Notice that V (G) \

(N(v) ∪ {v}) is a clique, which implies that G − N(v) is perfect. Thus the next lemma

follows directly.

Lemma 2.4 Graphs of independent number at most 2 are perfectly divisible.
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3 Perfect divisibility of (P5, C5, K2,3)-free graphs

This section is aim to prove Theorem 1.1. A cut set S is said to be a minimal cut set if

any proper subset of S is not a cut set of G. We first prove a lemma on the structure of

(P5, C5,K2,3)-free graphs.

Lemma 3.1 Suppose that G is a (P5, C5,K2,3)-free graph without clique cut sets, and S
is a minimal cut set of G. Then

(a) G−S has exactly two components, and for each pair of non-adjacent vertices s1, s2 ∈
S, each s1s2-path with interior in exactly one component has length 2,

(b) each vertex of S is complete to at least one component of G− S, and

(c) α(G[S]) = 2.

Proof. Let C1, C2, . . . , Ct be the components of G− S. It is certain that t ≥ 2. Since S is

a minimal cut set, we see that for each i ∈ {1, 2, . . . , t},

NV (Ci)(x) 6= ∅ for each vertex x ∈ S. (1)

Let V1 = V (C1) and G1 = G[S ∪ V1], let G2 = G− V1, and let V2 = V (G2) \ S.

Since G has no clique cut set, we arbitrarily choose s1 and s2 to be two non-adjacent

vertices in S. Suppose that G−S has at least 3 components, then G2−S is not connected

as G1 − S = C1. Let C2 and C3 be two components of G2 − S. For i ∈ {1, 2, 3}, let Pi be

an s1s2-path with interior in Ci (recall that all paths considered are induced paths).

If one of P1, P2 and P3 has length at least 3, then a C5 or a P5 appears. Otherwise, a

K2,3 appears. Hence, G − S has two components G[V1] and G[V2]. This also implies that

each s1s2-path with interior in V1 or V2 has length 2.

Let s ∈ S. It follows from (1) that s has neighbors in both V1 and V2. Since both G[V1]

and G[V2] are connected and G is P5-free, we have that each vertex of S is complete to

either V1 or V2.

Now it is left to show that α(G[S]) = 2. Suppose to its contrary that s3 is a vertex

in S \ {s1, s2} anticomplete to {s1, s2}. Thus we have that, for each pair of i, j ∈ {1, 2},

each sis3-path with interior in Vj has length 2. Since G induces no K2,3, we have that

NVi
(s1)∩NVi

(s2)∩NVi
(s3) = ∅ for some i ∈ {1, 2}, and so we may assume that NV1

(s1)∩

NV1
(s2) ∩ NV1

(s3) = ∅. Let w1 ∈ V1 be a common neighbor of s1 and s2, let w2 ∈ V1

be a common neighbor of s2 and s3, and let x ∈ V2 be a common neighbor of s1 and s3.

If w1w2 6∈ E(G), then G[{s1, w1, s2, w2, s3}] = P5; otherwise, G[{s1, s3, w1, w2, x}] = C5.

This contradiction implies that α(G[S]) = 2, which completes the proof of Lemma 3.1.

Proof of Theorem 1.1. Let G be a (P5, C5,K2,3)-free graph. Suppose that G is not

perfectly divisible but every proper induced subgraph of G is perfectly divisible. It is

certain that G is connected and not perfect. Let S be a minimal cut set of G. By

Lemma 2.3, S is not a clique. It follows from Lemma 3.1 that α(G[S]) = 2, G − S has
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exactly two components, say C1 and C2, and each vertex of S is either complete to V (C1)

or V (C2). For i ∈ {1, 2}, let Vi = V (Ci), and let Gi = G[Vi ∪ S].

Let S0 ⊆ S be the set of vertices complete to V1 ∪ V2. For i ∈ {1, 2}, let Si ⊆ S \ S0 be

the set of vertices only complete to Vi. Clearly S = S0 ∪ S1 ∪ S2.

We claim that

at least one of V1 and V2 is a clique. (2)

Suppose to its contrary that both V1 and V2 are not cliques. Since S is not a clique, we

may choose s1 and s2 to be two non-adjacent vertices of S. Suppose that {s1, s2}∩S0 6= ∅.

If {s1, s2} ∩ Si 6= ∅ for some i ∈ {1, 2}, then Vi is a clique, otherwise an induced K2,3 is

obtained. Similarly, if {s1, s2} ⊆ S0, then both V1 and V2 must be cliques. Thus we may

assume that {s1, s2} ∩ S0 = ∅. Note that NVi
(x) 6= ∅ for each vertex x ∈ S as S is a

minimal cut set. If {s1, s2} ⊂ S1, then G induces a K2,3 whenever NV2
(s1) ∩NV2

(s2) 6= ∅,

and G induces a P5 or a C5 whenever NV2
(s1) ∩ NV2

(s2) = ∅, both are contradictions.

Similar contradiction happens if {s1, s2} ⊂ S2. Therefore, we may suppose that s1 ∈ S1

and s2 ∈ S2, that is, both S0 ∪ S1 and S0 ∪ S2 are cliques. Now by Observation 2.1, we

have that G[S] is perfect. Since ω(G − S) < ω(G), it contradicts the minimal nonperfect

divisibility of G, and which proves (2).

Next we claim that

exact one of V1 and V2 is a clique. (3)

To prove (3), we will show that if V1 and V2 are both cliques then α(G) = 2, and

hence deduce a contradiction to Lemma 2.4 claiming that all graphs G with α(G) ≤ 2 are

perfectly divisible.

Suppose to its contrary that V1 and V2 are both cliques but α(G) > 2. Let T =

{t1, t2, t3} be an independent set of G. It follows from Lemma 3.1 that |T ∩ Si| = 2 and

|T ∩ V3−i| = 1 for some i ∈ {1, 2}. Without loss of generality, we assume that t1, t2 ∈ S1

and t3 ∈ V2.

Note that V1 and V2 are both cliques, and V1 is complete to S0 ∪ S1. If S2 = ∅, then

(V1∪V2, S0∪S1) is a perfect division of G, contradicting the minimal nonperfect divisibility

of G. Hence S2 6= ∅.

Let x be a vertex in S2. Since no vertex of S2 is complete to V1, we may choose a

vertex, say v1, in V1 with xv1 6∈ E(G). Since α(G[S]) = 2, we have that x cannot be

anticomplete to {t1, t2}. Suppose xt1 ∈ E(G). To avoid a P5 = t2v1t1xt3, we have that x

must be adjacent to t2 as well. Hence we have that {t1, t2} is complete to S2.

If S2 is not a clique, let x and x′ be two non-adjacent vertices of S2, then G[{T ∪{x, x′}]

is a K2,3. This implies that S2 must be a clique.

Since both V1 and S2 ∪ V2 are cliques and V1 is complete to S0 ∪ S1, we have that

G[V1 ∪ V2 ∪ S2] is perfect by Observation 2.1, and ω(G[S0 ∪ S1]) < ω(G). Thus (V1 ∪ V2 ∪

S2, S0 ∪ S1) is a perfect division of G, which leads to a contradiction and proves (3).

Now we may assume that V1 is a clique and V2 is not.

7



Since V2 is not a clique, we must have that S0∪S2 is a clique, otherwise an induced K2,3

appears. Thus V1 ∪ S0 is also a clique. Since G is (P5, C5,K2,3)-free, by Observation 2.1

we have that

G[V1 ∪ S0 ∪ S2] is perfect. (4)

Suppose that S0 ∪ S2 6= ∅, and let v ∈ S0 ∪ S2. If ω(G[V2 ∪ S1]) < ω(G), then

(V1 ∪ S0 ∪ S2, V2 ∪ S1) is a perfect division of G by (4). Thus we may further assume that

ω(G[V2 ∪ S1]) = ω(G). Let K1, . . . ,Kr be all the cliques of G[V2 ∪ S1] of size ω(G), and

let Li = Ki ∩ S1 for each i ∈ {1, 2, . . . , r}. Since |Ki| = ω(G) and ω(G[V2]) < ω(G), we

have that Li 6= ∅, and v is not complete to Li. Let Mi ⊆ Li be the set of vertices which

are non-adjacent to v for i ∈ {1, 2, . . . , r}, and let M =
r
⋃

i=1
Mi. Since α(G[S]) = 2, we

have that M is a clique, and so V1 ∪M is a clique. Notice that S0 ∪ S2 is a clique. Thus

G[V1 ∪ S0 ∪ S2 ∪M ] induces no odd antihole by Observation 2.1, and so it is perfect. Now

we have that G is perfectly divisible as ω(G[(V2 ∪S1)\M ]) < ω(G[V2 ∪S1]) = ω(G), which

contradicts the minimal nonperfect divisibility of G.

Hence we may suppose that, for each minimal cut set S of G, S0 ∪ S2 = ∅. Conse-

quently, we must have that |V1| = 1 (as otherwise V1 is a homogeneous set, contradicting

Lemma 2.1), that is,

every minimal cut set of G equal N(x) for some vertex x of G. (5)

Let v be a vertex of G. It is certain that N(v) is a cut set. Next we show that

N(v) is a minimal cut set, (6)

which implies that the converse of (5) holds as well.

Suppose to its contrary that w is a vertex such that N(w) is not a minimal cut set. Let

T1, T2, . . . , Tr be all the subsets of N(w) where each one is a minimal cut set. It follows

from (5) that there are some vertices, say w1, w2, . . . , wr, such that Ti = N(wi) for each

i ∈ {1, 2, . . . , r}. We claim that

{w,w1, w2, . . . , wr} = V (G) \N(w). (7)

If it is not the case, then let C be a component of G−N(w)−{w,w1, w2, . . . , wr}, and

let X ⊆ N(w) be the set of vertices where each one has a neighbor in C. It is certain that

X is a cut set. Thus there must be some i such that Ti ⊆ X. Without loss of generality,

we suppose that T1 ⊆ X. Since G has no clique cut set by Lemma 2.3, we have that T1

is not a clique, and so has two non-adjacent vertices, say t1 and t′1. Let P be a shortest

t1t
′
1-path with interior in C. If P has length 2, then t1wt

′
1, t1w1t

′
1 and P form an induced

K2,3 in G. If P has length 3, then t1wt
′
1 and P form a C5 in G. Otherwise, we have that

P has length greater than 3, and then we can find a P5 in G. These contradictions proves

(7).
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Since {w,w1, w2, . . . , wr} is independent, it follows from (7) that ({w,w1, w2, . . . , wr}, N(w))

forms a perfect division of G, and so (6) holds. Thus by Lemma 3.1, we have that

α(G[N(x)]) = 2 for each vertex x of G. (8)

We choose v1 ∈ V (G) and let S1 = N(v1). Then, α(G[S1]) = 2, and S1 is a minimal

cut set by (6). Let s1 and s2 be two non-adjacent vertices in S1. Let V1 = {v1}, and let

V2 = V (G) \ {S1 ∪ {v1}). We have that G[V2] is connected by Lemma 3.1(a).

Let M = NV2
(s1) ∩ NV2

(s2), and let Mi = NV2
(si) \ M for i ∈ {1, 2}. Since G

induces no K2,3, we have that M must be a clique. If both M1 and M2 are not empty,

let mi ∈ Mi for i ∈ {1, 2}, then G[{m1,m2, s1, s2, v1}] = C5 whenever m1m2 ∈ E(G),

and G[{m1,m2, s1, s2, v1}] = P5 whenever m1m2 6∈ E(G). Without loss of generality, we

assume that M2 = ∅. Now we claim that

V2 = M ∪M1. (9)

Suppose that (9) does not hold. Since G[V2] is connected, we may choose a vertex, say

z, in V2 \ (M ∪M1) that is adjacent to some vertex of M ∪M1. If zz1 ∈ E(G) for some

z1 ∈ M , then {s1, s2, z} is an independent set contained in N(z1), contradicting (8). If

zz2 ∈ E(G) for some vertex z2 ∈ M1, then G[{s1, s2, v1, z, z2}] = P5. This proves (9).

Note that S1 = N(v1). By (8), we have that no vertex of N(v1)\{s1, s2} is anticomplete

to {s1, s2}. Let T = NS1
(s1) ∩ NS1

(s2), let T1 = NS1
(s1) \ T , and let T2 = NS1

(s2) \ T .

If Ti is not a clique for some i ∈ {1, 2}, let ti,1 and ti,2 be two non-adjacent vertices of

Ti, then {s3−i, ti,1, ti,2} is an independent set in S1, which leads to a contradiction to (8).

Thus both T1 and T2 are cliques.

Let A = T2 ∪ {s1, s2}, and let B = V (G) \ A. It is certain that G[A] is perfect. Since

s1 is complete to B by (9), we see that ω(G[B]) < ω(G), which implies that (A,B) is a

perfect division of G. This contradicts the minimal nonperfect divisibility of G and proves

Theorem 1.1.

4 (P5, K2,3)-free graphs

In this section, we prove Theorem 1.2.

Since perfectly divisible graphs G has chromatic number at most
(

ω(G)+1
2

)

, it follows

from Theorem 1.1 that we only need to consider the (P5,K2,3)-free graphs with a 5-hole.

Let G be a (P5,K2,3)-free graph, and let C = v1v2v3v4v5v1 be a 5-hole of G. Recall

that for T ⊆ {1, 2, 3, 4, 5}, NT (C) consists of the vertices not on C but each has exactly

{vi | i ∈ T} as its neighbors on C, and for integer i ≥ 1, N i(C) consists of the vertices

of distance i apart from C. Let u and v be two non-adjacent vertices in N(C). We say

that {u, v} is a bad pair if there is an i ∈ {1, 2, 3, 4, 5} such that u ∈ N{i,i+1,i+3}(C) and

v ∈ N{i,i+1,i+2,i+4}(C).
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Lemma 4.1 Suppose that G is a (P5,K2,3)-free graph with a 5-hole C = v1v2v3v4v5v1,
and u, v are two vertices in N(C). Then all the followings hold.

(a) If there exist three consecutive vertices of C, named vi, vi+1, and vi+2, such that
{vi, vi+2} ⊆ N(u) ∩N(v) and vi+1 /∈ N(u) ∪N(v), then uv ∈ E(G).

(b) N{i,i+2}(C), N{i,i+1,i+3}(C), and N{i,i+1,i+2,i+3}(C) are all cliques for 1 ≤ i ≤ 5.

(c) α(G[N{1,2,3,4,5}(C)]) ≤ 2, and for each i ∈ {1, 2, 3, 4, 5}, α(G[N{i,i+1,i+2}(C)]) ≤ 2,
and N{i,i+1,i+2}(C) is complete to N{i+1,i+2,i+3}(C).

(d) If uv 6∈ E(G) and {u, v} is not a bad pair, then N(u) ∩N(v) ∩N2(C) = ∅.

(e) N(C)\(N{1,2,3,4,5}(C)
⋃

1≤i≤5
N{i,i+1,i+2}(C)) can be partitioned into five cliques S1, S2, S3, S4

and S5 such that |Si| ≤ ω(G) − 1 and vi is anticomplete to Si for each i.

Proof. If {vi, vi+2} ⊆ N(u) ∩N(v) and vi+1 /∈ N(u) ∪N(v) for some i, then uv ∈ E(G) to

avoid a K2,3 on {u, v, vi, vi+1, vi+2}. Hence (a) holds, and (b) follows directly from (a).

Now we come to prove (c). If either G[N{i,i+1,i+2}(C)] or G[N{1,2,3,4,5}(C)] has an inde-

pendent set of size 3, say {u, v, w}, then {u, v, w, vi, vi+2} induces a K2,3. If N{i,i+1,i+2}(C)

is not complete to N{i+1,i+2,i+3}(C) for some i, we may choose x ∈ N{i,i+1,i+2}(C) and

y ∈ N{i+1,i+2,i+3}(C) with xy 6∈ E(G), then a P5 = xvi+1yvi+3vi+4 appears. Hence (c)

holds.

Next we prove (d). Suppose that uv 6∈ E(G) and {u, v} is not a bad pair, and suppose

that N(u) ∩ N(v) ∩ N2(C) has a vertex w. If one of u and v is in N{1,2,3,4,5}(C), then

there exists some i ∈ {1, 2, 3, 4, 5} such that G[{u, v, vi, vi+2, w}] = K2,3, which leads

to a contradiction. Thus {u, v} ⊆ W =
⋃

1≤i≤5
(N{i,i+1,i+3}(C) ∪ N{i,i+1,i+2,i+3}(C)) by

Lemma 2.2(a).

Now we first suppose that u ∈ N{k,k+1,k+3}(C) for some k, and by symmetry we may

assume that k = 1. Since {u, v} is not a bad pair, we see that v ∈ W \N{1,2,3,5}(C). It fol-

lows from (a) that, v /∈ N{1,2,4}(C)∪N{1,3,4}(C)∪N{2,4,5}(C)∪N{1,2,3,4}(C)∪N{4,5,1,2}(C).

But G[{u, v, w, v2 , v5}] = P5 if v ∈ N{1,3,5}(C), G[{u, v, w, v1 , v3}] = P5 if v ∈ N{2,3,5}(C)∪

N{2,3,4,5}(C), and G[{u, v, w, v1, v4}] = P5 if v ∈ N{3,4,5,1}(C). Hence we have, by symme-

try, that

{u, v} ∩ (
⋃

1≤i≤5

(N{i,i+1,i+3}(C)) = ∅,

that is, {u, v} ⊆
⋃

1≤i≤5
N{i,i+1,i+2,i+3}(C). Without loss of generality, we may assume

that u ∈ N{1,2,3,4}(C). Thus v /∈
⋃

1≤i≤5
N{i,i+1,i+2,i+3}(C) by (a) of this lemma. This

contradiction proves (d).

Finally, we prove (e). Let S1 = N2,5(C) ∪ N{2,3,5}(C) ∪ N{2,4,5}(C) ∪ N{2,3,4,5}(C),

S2 = N{1,3}(C)∪N{1,3,4}∪N{1,3,5}∪N{1,3,4,5}, S3 = N{2,4}∪N{1,2,4,5}(C), S4 = N{3,5}(C)∪

N{1,2,3,5}(C), and S5 = N{1,4}(C) ∪ N{1,2,4}(C) ∪ N{1,2,3,4}(C). It is certain that vi is
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anticomplete to Si for each i, and one can check easily from (a) that each Si is a clique of

size at most ω(G)− 1.

Lemma 4.2 Let G be a (P5,K2,3)-free graph and C = v1v2v3v4v5v1 be a 5-hole of G. If
G contains no clique cut sets, then N3(C) = ∅, and for each component B of N2(C),
α(B) ≤ 2 and N(B) ∩N(C) ⊆ N{1,2,3,4,5}(C) whenever ω(B) = ω(G).

Proof. Suppose that G has no clique cut sets. Let S′ ⊆ N(C) be the set of vertices having

no neighbors in N2(C), and let S = N(C)\S′. By Lemma 2.2(a), if a vertex x of N(C)

has neighbors in N2(C), then |NC(x)| ≥ 3. Hence for any two vertices u and v of S we

have that

NC(v) ∩NC(u) 6= ∅. (10)

Next we prove this lemma by considering the connectedness of G[N2(C)].

Case 1. Suppose that G[N2(C)] is connected. Since G contains no clique cut sets, there

must exist two non-adjacent vertices, say u and v, in S. By (10), we may choose z to be a

common neighbor of u and v on C.

Let Tuv = N(u) ∩ N(v) ∩ N2(C), and let Tu = (N(u) ∩ N2(C)) \ Tuv and Tv =

(N(v) ∩N2(C)) \ Tuv.

First suppose that Tuv = ∅. Since G is (P5,K2,3)-free, we have

Tu is complete to Tv, and max{α(G[Tu]), α(G[Tv ]) ≤ 2, (11)

otherwise for any pair of non-adjacent vertices tu ∈ Tu and tv ∈ Tv, tuuzvtv is a P5, and

G[Tu ∪ Tv ∪ {w}] induces a K2,3 whenever α(G[Tw]) ≥ 3 for any w ∈ {u, v}. This leads to

a contradiction.

We further claim that

N2(C) = Tu ∪ Tv, and N3(C) = ∅. (12)

If N2(C) 6= Tu ∪ Tv, since G[N2(C)] is connected, we may suppose by symmetry that

N2(C)\(Tu ∪ Tv) has a vertex, say w, which has a neighbor tu in Tu, and so vzutuw is a

P5. Thus N2(C) = Tu ∪ Tv. If N3(C) 6= ∅, then let w be a vertex of N3(C), and suppose

by symmetry that t′u is a neighbor of w in Tu, again we have a P5 = vzut′uw. This proves

(12).

From (11) and (12), we see that α(G[N2(C)]) ≤ 2. If ω(G[N2(C)]) = ω(G), then

Tu 6= ∅ and Tv 6= ∅. To avoid a P5, we see that all neighbors of N2(C) in N(C) must

be contained in N{1,2,3,4,5}(C). So the lemma holds whenever G[N2(C)] is connected and

Tuv = ∅.

Next we may assume that Tuv 6= ∅, and let tuv be a vertex in Tuv. By Lemma 4.1(d),

we have that {u, v} is a bad pair. Suppose by symmetry that u ∈ N{1,2,4}(C) and v ∈

N{1,2,3,5}(C). Since u and v have a common neighbor z on C, and since G is K2,3-free, we

have that

Tuv is a clique. (13)
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Suppose that Tv 6= ∅. Let tv be a vertex of Tv. If tv has a neighbor t′uv in Tuv, then a

P5 = v5v1ut
′
uvtv appears, and if tv is anticomplete to Tuv, then a P5 = v4utuvvtv appears.

This implies that Tv = ∅. Similarly we have that Tu = ∅.

Note that G[N2(C)] is connected. Thus N2(C) = Tuv, otherwise we may choose a

vertex w in N2(C)\Tuv where w has a neighbor tuv ∈ Tuv which implies a P5 = v5v1utuvw.

If N3(C) 6= ∅, let w be a vertex in N3(C) and w′ be a neighbor of w in N2(C), then a

P5 = ww′uv1v5 appears. Thus N3(C) = ∅, and by (13) we have that this lemma holds

when G[N2(C)] is connected and Tuv 6= ∅. Hence Lemma 4.2 holds when G[N2(C)] is

connected.

Case 2. Suppose that G[N2(C)] is not connected. Let T1, T2, . . . , Tk be the components

of G[N2(C)]. Recall that S consists of the vertices in N(C) that have neighbors in N2(C).

For each i ∈ {1, 2, . . . , k}, let Si = NS(Ti), and let Zi be the subgraph of G[N3(C)] that is

not anticomplete to Ti. If there exists some i0 ∈ {1, 2, . . . , k} such that Si0 is not a clique,

by applying the same arguments to G[V (C) ∪ Si0 ∪ Ti0 ∪ Zi0 ] as that used in Case 1, we

can show that Zi0 = ∅ and α(Ti0) ≤ 2, and N(Ti0) ∩ N(C) ⊆ N{1,2,3,4,5}(C) whenever

ω(Ti0) = ω(G). Hence the lemma holds if Si is not a clique for all 1 ≤ i ≤ k.

Thus by symmetry suppose that S1 is a clique. Since S1 is not a clique cut set, we have

that S1 6= S. Without loss of generality, let T1, T2, · · · , Tl be the components such that

NS(Ti) ⊆ S1 for each i ∈ {1, 2, . . . , l}. It is obvious that 1 ≤ l ≤ k − 1, otherwise S1 is a

clique cut set. Now we have that Ti has neighbors in S\S1 for each i ∈ {l + 1, . . . , k}.

Since S1 is not a clique cut set, we have that N3(C) 6= ∅, and T1 must have some

neighbors in N3(C). Let R be a component of G[N3(C)] such that T1 is not anticomplete

to R. Since S1 is not a clique cut set, we have that R cannot be anticomplete to ∪k
i=l+1Ti.

Without loss of generality, suppose that R is not anticomplete to Tk. Choose t1 ∈ T1,

tk ∈ Tk, and r1, rk ∈ R such that t1r1 ∈ E(G) and tkrk ∈ E(G). By Lemma 2.2(c), {t1, tk}

is complete to R.

We can choose two adjacent vertices sk ∈ S\S1 and t′k ∈ Tk. Let P ′ be a shortest

tkt
′
k-path in Tk. Let r ∈ R and z be a neighbor of sk on C. Thus a path P = t1rtkP

′t′kskz

of length at least 5 appears. This contradiction proves Lemma 4.2.

Now, we can prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a {P5,K2,3}-free graph. We may assume that G is

connected and contains no clique cut set. If G is (P5, C5,K2,3)-free, then G is perfectly

divisible by Theorem 1.1, which implies that χ(G) ≤ 1
2(ω

2(G) + ω(G)). Thus we suppose

that G is (P5,K2,3)-free and contains a 5-hole C. By Lemma 2.2(a), we have that

N(C) = N{1,2,3,4,5}(C)
⋃

1≤i≤5

(N{i,i+2}(C) ∪N{i,i+1,i+2}(C)

∪N{i,i+1,i+3}(C) ∪N{i,i+1,i+2,i+3}(C)).

Note that ω(G[N{1,2,3,4,5}(C)]) ≤ ω(G) − 2, ω(G[N{1,2,3}(C) ∪ N{2,3,4}(C)] ≤ ω(G) − 2,

ω(G[N{3,4,5}(C)∪N{1,4,5}(C)] ≤ ω(G)−2, and ω(G[N{1,2,5}(C)] ≤ ω(G)−2. By Lemma 2.4
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and Lemma 4.1(c)(e),

χ(G[N(C)]) ≤ χ(G[N{1,2,3}(C) ∪N{2,3,4}(C)]) + χ(G[N{3,4,5}(C) ∪N{1,4,5}(C)])

+χ(G[N{1,2,5}(C)]) + χ(G[N{1,2,3,4,5}(C)]) + 5(ω(G) − 1)

≤ 4 ·
(ω(G) − 2)2 + ω(G)− 2

2
+ 5(ω(G) − 1)

= 2ω2(G)− ω(G)− 3. (14)

By Lemma 4.1(e), we can color the vertices of C with the colors used on the vertices

of N(C)\(N{1,2,3,4,5}(C)
⋃

1≤i≤5
N{i,i+1,i+2}(C)) (which is counted 5(ω(G) − 1) in (14)).

Let B be a component of G[N2(C)]. By Lemma 4.2, we see that N2(C) = G −

N(C) − V (C), α(B) ≤ 2 and N(B) ∩ N(C) ⊆ N{1,2,3,4,5}(C) if ω(B) = ω(G). So, we

have, by Lemmas 2.4, that χ(B) ≤ (ω(G)−1)2+ω(G)−1
2 = ω2(G)−ω(G)

2 if ω(B) < ω(G), and

χ(B) ≤ ω2(G)+ω(G)
2 otherwise.

Note that N2(C) is anticomplete to
⋃

1≤i≤5
N{i,i+1,i+2}(C) by Lemma 2.2(a), and B is

anticomplete to N(C)\N{1,2,3,4,5}(C) by Lemma 4.2 if ω(B) = ω(G). If ω(B) < ω(G),

we can color the vertices in B with the colors used on the vertices of
⋃

1≤i≤5
N{i,i+1,i+2}(C)

(which is counted no less than ω2(G)−ω(G)
2 in (14)). If ω(B) = ω(G), we can color the

vertices in B with the colors used on the vertices of N(C)\N{1,2,3,4,5}(C) (which is counted

no less than ω2(G)+ω(G)
2 in (14)).

Therefore, χ(G) ≤ 2ω2(G) − ω(G) − 3 as desired.

5 (P5, K1 + 2K2)-free graphs

For two subsets X and Y of V (G), we say that X dominates Y if each vertex of Y has a

neighbor in X. The next two lemmas are very useful in the proof of Theorem 1.3.

Lemma 5.1 [2] Every connected P5-free graph has a dominating clique or a dominating
P3.

Lemma 5.2 [26] Let G be a 2K2-free graph. Then χ(G) ≤ 1
2(ω

2(G) + ω(G)).

Proof of Theorem 1.3. Let G be a connected (P5,K1 + 2K2)-free graph with at least

two vertices. By Lemma 5.1, G has a dominating clique or a dominating P3. If G has a

dominating P3, say v1v2v3, then N(vi) induces a 2K2-free graph for each i, otherwise vi

and the 2K2 in G[N(vi)] induce a K1 + 2K2. Thus by Lemma 5.2 we have that χ(G) ≤

χ(G[N(v1)])+χ(G[N(v2)])+χ(G[N(v3)]) ≤
3
2((ω(G)−1)2+ω(G)−1) = 3

2(ω
2(G)−ω(G)).

Thus we may assume that G has a dominating clique, sayKk on vertices {v1, v2, v3, · · · , vk}.

Let S = N(v1) ∪ N(v2) and T = V (G)\S, that is, T consists of exactly those vertices

anticomplete to {v1, v2}. Since G is (K1 + 2K2)-free, we have that N(vi) induces a 2K2-

free subgraph for i = 1, 2. For each i ∈ {3, . . . , k}, since the vertices of N(vi) ∩ T are
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anticomplete to {v1, v2}, we have thatN(vi)∩T is an independent set. Hence by Lemma 5.2,

χ(G) ≤ χ(G[N(v1)])+χ(G[N(v2)])+ω(G)−2 ≤ ω2(G)−2. Note that 3
2(ω

2(G)−ω(G)) ≥

ω2(G)− 2. Hence if G is (P5,K1 + 2k2)-free, then χ(G) ≤ 3
2 (ω

2(G) − ω(G)) as desired.

6 (P5, K1 + (K1 ∪K3))-free graphs

Sumner [25] (see also [12]) proved that a connected (P5,K3)-free graph is either bipartite

or can be obtained from a 5-hole by replacing each vertex with an independent set and

then replacing each edge by a complete bipartite graph.

Lemma 6.1 [25] If G is (P5,K3)-free then χ(G) ≤ 3.

If G is (P5,K1 ∪ K3)-free, then G − N(v) − v is (P5,K3)-free for each vertex v of G,

and so by a simple induction one can show the following lemma.

Lemma 6.2 χ(G) ≤ 3ω(G) − 3 for every (P5,K1 ∪ K3)-free graph G with at least one

edge.

Before proving Theorem 1.4, we first prove a few lemmas on the structure of (P5,K1 +

(K1∪K3))-free graphs. From now on, we always suppose that G is a (P5,K1+(K1∪K3))-

free graph.

Lemma 6.3 Suppose that G has a 5-hole C = v1v2v3v4v5v1 and has no clique cut set, and
let T be a component of G[N2(C)]. Then the followings hold.

(a) For each i ∈ {1, 2, 3, 4, 5}, G[N(vi)] is K1 ∪K3-free, G[N{i,i+2}(C)] is K3-free, and
N{i,i+1,i+2}(C) ∪N{i,i+1,i+3}(C) ∪N{i,i+1,i+2,i+3}(C) is independent.

(b) If no vertex in N(C) dominates T , then there exist two non-adjacent vertices u and
v in N(C) such that both NT (u) and NT (v) are not empty.

Proof. Statement (a) follows directly from the K1 + (K1 ∪K3)-freeness of G.

To prove (b), let S = N(T ) ∩ N(C), and suppose that no vertex in S dominates T .

By Lemma 2.2(a), S ⊆ N{1,2,3,4,5}(C) ∪ (
⋃

1≤i≤5
N{i,i+2,i+3}(C) ∪ N{i,i+1,i+2,i+3}(C)). If

G[S] is not connected, we are done. Thus suppose that G[S] is connected. We choose

an arbitrary vertex u ∈ S and let Tu = NT (u). Since u does not dominate T , by the

connectedness of T , we may choose a vertex w ∈ T\Tu such that w is not anticomplete to

Tu. Let v be a neighbor of w in S. Since G is P5-free, we have that u ∈ N{1,2,3,4,5}(C),

and so {vi+2, vi+3} ⊆ N(u) ∩ N(v). Since uv ∈ E(G) implies a K1 + (K1 ∪ K3) on

{w, u, v, vi+2, vi+3}, we have that uv /∈ E(G) as desired.

Lemma 6.4 Suppose that G has a 5-hole C = v1v2v3v4v5v1 and no clique cut set. Then
G[N3(C)] is K3-free, and N2(C) can be partition into two parts A and B such that both
G[A] and G[B] are K3-free.
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Proof. Let B be a component of G[N3(C)] and u ∈ N2(C) be a vertex that has a neighbor

in B. By Lemma 2.2(c), we see that u must be complete to B, and so G[N3(C)] must be

K3-free to avoid a K1 + (K1 ∪K3).

Let T = N2(C). Without loss of generality, we suppose that G[T ] is connected, and let

S = {v|v ∈ N(C) such that NT (v) 6= ∅}.

If there exists some vertex in S that dominates T , then we are done as G[T ] is obviously

K3-free to avoid a K1 + (K1 ∪K3). Thus suppose that no vertex of S dominates T .

By Lemma 6.3(b), there exist two non-adjacent vertices, say u and v, in S such that

both u and v have neighbors T . It follows from Lemma 2.2(a) that u and v have a common

neighbor, say z, on C.

It is certain that both G[NT (u)] and G[NT (v)] are K3-free. If T = N(u) ∪N(v), then

(NT (u), NT (v)\NT (u)) is a partition of T as desired. Thus suppose that T 6= N(u)∪N(v).

Let R = T\(N(u) ∪N(v)) and R1, R2, · · · , Rr be the components of G[R].

Note that G[T ] is connected. For each i ∈ {1, 2, . . . , r}, Ri has a neighbor, say ti, in

N(u) ∪N(v). If ti is not complete to Ri, we may choose two adjacent vertices x and y in

Ri with tix ∈ E(G) and tiy /∈ E(G), then either zutixy or zvtixy is a P5 of G. Therefore,

ti must be complete to Ri, and so G[R] is K3-free to avoid a K1 + (K1 ∪K3).

Let Tv = NT (v) \ NT (u). If R is not anticomplete to Tv, let r ∈ R and tv ∈ Tv be

a pair of adjacent vertices, then rtvvzu is a P5 in G. Thus R is anticomplete to Tv, and

consequently, (NT (u), R ∪ Tv) is a partition of T as desired. This proves Lemma 6.4.

Lemma 6.5 Suppose that G is C5-free and contains an odd antihole A with at least seven
vertices. Let S be the set of vertices which are complete to A, and let T = N(A)\S.
Then G[S] is K1 ∪K3-free, T can be partition into at most 2k + 1 independent sets, and
N2(A) = ∅.

Proof. Suppose that V (A) = {v1, v2, . . . , v2k+1}, where k ≥ 3 and vivi+1 6∈ E(G) for each

i ∈ {1, 2 . . . , 2k+1}. Since G is K1+(K1∪K3)-free, it is certain that G[S] is K1∪K3-free.

Note that the vertex of T is neither complete nor anticomplete to A. For each vertex u

of T , there must be an iu ∈ {1, 2, . . . , 2k + 1} such that uviu 6∈ E(G) and uviu+1 ∈ E(G),

and so uviu+3 ∈ E(G) to avoid either a C5 or a P5 depending on whether uviu+2 ∈ E(G)

or not. For each i ∈ {1, 2, . . . , 2k + 1}, let

Ti = {v|v ∈ T, vvi /∈ E(G) but vvi+1 ∈ E(G) and vvi+3 ∈ E(G)} .

Thus T = ∪1≤i≤2k+1Ti. Since G is K1 + (K1 ∪K3)-free, each Ti is independent, otherwise

G[{vi, vi+1, vi+3, x, x
′}] = K1 + (K1 ∪ K3) for any two adjacent vertices x and x′ of Ti.

Hence T can be partition into at most 2k + 1 independent sets.

Suppose that N2(A) 6= ∅. Let v be a vertex in N(A) that has a neighbor, say x, in

N2(A). It is obvious that v /∈ S, otherwise a K1 + (K1 ∪ K3) appears in G. Without

loss of generality, we suppose that v ∈ T1. Thus either a K1 + (K1 ∪ K3) appears on
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{v, v2, v4, v2k, x} whenever vv2k ∈ E(G), or a P5 = xvv2v2kv1 appears whenever vv2k 6∈

E(G). Therefore, N2(A) = ∅. This proves Lemma 6.5.

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let G be a {P5,K1 + (K1 ∪K3}-free graph. We may suppose

that G is connected, contains no clique cut set, and is not perfect. Thus G contains a

5-hole or an odd antihole with at least 7 vertices.

First suppose that G contains a 5-hole C = v1v2v3v4v5v1. Since G is P5-free, we have

that V (G) = V (C) ∪N(C) ∪N2(C) ∪N3(C). By Lemma 2.2(a), we have that

N(C) = N{1,2,3,4,5}(C)
⋃

1≤i≤5

(N{i,i+2}(C) ∪N{i,i+1,i+2}(C)

∪N{i,i+1,i+3}(C) ∪N{i,i+1,i+2,i+3}(C)).

By Lemmas 6.1, 6.2, and 6.3(a), we have that χ(G[N{1,2,3,4,5}(C)]) ≤ 3(ω(G) − 3),

χ(G[
⋃

1≤i≤5
N{i,i+2}(C)]) ≤ 15, and χ(G[

⋃

1≤i≤5
(N{i,i+1,i+2}(C)∪N{i,i+1,i+3}(C)∪N{i,i+1,i+2,i+3}(C))]) ≤

5. Therefore, χ(G[N(C)]) ≤ 3ω(G) + 11.

By Lemmas 6.1 and 6.4, χ(G[N2(C)]) ≤ 6 and χ(G[N3(C)]) ≤ 3. Since
⋃

1≤i≤5
N{i,i+2}(C)

is anticomplete to N2(C) ∪N3(C) by Lemma 6.3(a), we can color the vertices of V (C) ∪

N2(C) ∪N3(C) with the 15 colors used on
⋃

1≤i≤5
N{i,i+2}(C). Thus χ(G) ≤ 3ω(G) + 11.

Now we suppose that G is {P5, C5,K1+(K1∪K3}-free and contains an odd antihole A

with |A| = 2k+1 ≥ 7. Let S ⊆ N(A) be the set of all vertices that are complete to A, and

let T = N(A)\S. By Lemma 6.5, we have that V (G) = A∪N(A), G[S] is K1∪K3-free, and

T is the union of 2k+1 independent sets. Hence χ(G[S]) ≤ 3(ω(S)−1) ≤ 3(ω(G)−k−1) by

Lemma 6.2, and so χ(G) ≤ χ(A)+χ(G[S])+χ(G[T ]) ≤ (k+1)+3(ω(G)−k−1)+(2k+1) <

3ω(G). This proves Theorem 1.4.
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