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Abstract

Let G be a graph. We say that G is perfectly divisible if for each induced subgraph
H of G, V(H) can be partitioned into A and B such that H|[A] is perfect and w(H[B]) <
w(H). We use P; and C; to denote a path and a cycle on ¢ vertices, respectively. For two
disjoint graphs Fy and Fy, we use Fy U F, to denote the graph with vertex set V(Fy)U
V(F3) and edge set E(F1)UE(Fy), and use F} + F5 to denote the graph with vertex set
V(F) UV(F3) and edge set E(Fy)UE(Fy)U{ay |z € V(F) and y € V(F»)}. In this
paper, we prove that (i) (Ps, Cs, K2 3)-free graphs are perfectly divisible, (i) x(G) <
2w*(G) —w(G) =3 if G is (P5, K2,3)-free with w(G) > 2, (iii) x(G) < 3(w*(G) —w(Q))
if Gis (P, K1 +2Ks)-free, and (iv) x(G) < 3w(G)+11if G is (Ps, K1+ (K1 UK3))-free.

Key words and phrases: Ps-free; chromatic number; induced subgraph; perfect
divisibility
AMS 2000 Subject Classifications: 05C15, 05C78

1 Introduction

All graphs considered in this paper are finite, simple, and connected. Let G be a graph.
The cliqgue number w(G) of G is the maximum size of the cliques of G, and the independent
number a(G) of G is the maximum size of the independent sets of G. We use Py, and Cj,
to denote a path and a cycle on k vertices respectively. The complete bipartite graph with
partite sets of size p and ¢ is denoted by K, ,, and the complete graph with [ vertices is
denoted by Kj.

Let G and H be two vertex disjoint graphs. The union G U H is the graph with
V(GUH) =V (G)UV(H) and E(GUH) = E(G)UE(H). Similarly, the join G+ H is the
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graph with V(G+H) = V(G)UV (H) and E(G+H) = E(G)UE(H)U{zy|for each pair x €
V(G) and y € V(H)}. For positive integer k, kG denotes the union of k copies of G.

We say that G induces H if G has an induced subgraph isomorphic to H, and say that
G is H-free if G does not induce H. Let H be a family of graphs. We say that G is H-free
if G induces no member of H. For a subset X C V(G), let G[X] denote the subgraph of G
induced by X. A hole of GG is an induced cycle of length at least 4, and a k-hole is a hole
of length k. A k-hole is said to be an odd (even) hole if k is odd (even). An antihole is the
complement of some hole. An odd (resp. even) antihole is defined analogously.

A coloring of G is an assignment of colors to the vertices of G such that no two adjacent
vertices receive the same color. The minimum number of colors required to color G is said
to be the chromatic number of G, denoted by x(G). Obviously we have that x(G) >
w(G). However, determining the upper bound of the chromatic number of some family of
graphs G, especially, giving a function of w(G) to bound x(G) is generally very difficult.
Throughout the literature, plenty of work has been taken to investigate this problem. A
family G of graphs is said to be x-bounded if there is a function f such that x(G) < f(w(G))
for every G € G, and if such a function f does exist to G, then f is said to be a binding
function of G [14]. A graph G is said to be perfect if x(H) = w(H) for each induced
subgraph H. Thus the binding function for perfect graphs is f(x) = z. The famous Strong
Perfect Graph Theorem [0] states that a graph is perfect if and only if it induces neither
an odd hole nor an odd antihole. Erdés [11] showed that for any positive integers k and
l, there exists a graph G with x(G) > k and no cycles of length less than . This result
motivates the study of the chromatic number of H-free graphs for some H. Gyarfas [14115],
and Sumner [25] independently, proposed the following conjecture.

Conjecture 1.1 [I5L25] For every tree T, T-free graphs are x-bounded.

Gyarfas [I5] proved that y(G) < (k — 1)@~ for k > 4 if G is Py-free and w(G) > 2.
Gyarfas also suggested that there might exist y-binding function for these classes of graphs
with a better magnitude.

Since Pj-free graphs are perfect, determining an optimal binding function of Ps-free
graphs attracts much attention. Sumner [25] showed that all (Ps, K3)-free graphs are 3-
colorable, and there exist many (Ps, K3)-free graphs with chromatic number 3. Up to now,
the best known upper bound for Ps-free graphs is due to Esperet et al [12], who showed
that if G is Ps-free and w(G) > 3 then x(G) < 5-3%(9)=3 and the bound is sharp for
w(G) = 3. A natural question is whether the exponential bound can be improved.

Problem 1.1 [20] Are there polynomial functions fp, for k > 5 such that x(G) <
fp,(w(@Q)) for every Py-free graph G?

Conjecture 1.2 [9] There exists a constant ¢ such that for every Ps-free graph G, x(G) <
2
aw?(G).



We say that a graph G admits a perfect division (A, B) if V(G) can be partitioned into
A and B such that G[A] is perfect and w(G[B]) < w(G). A graph G is said to be perfectly
divisible if each of its induced subgraphs admits a perfect division [16]. Obviously, if G is
perfectly divisible, then x(G) < w(G) + (w(G) = 1)+ +24+1= (“’(G;)H).

Plenty of articles around the above topics have been published in the decades. Here
we list some results related to (Ps, H)-free graphs for some small graph H, and refer the
readers to [19/22124] for more information on Conjecture [[.J] and related problems.

A bull is a graph consisting of a triangle with two disjoint pendant edges, a cricket is
a graph consisting of a triangle with two adjacent pendant edges, a diamond is the graph
Ky + P3, a cochair is the graph obtained from a diamond by adding a pendent edge to a
vertex of degree 2, a dart is the graph K; + (K7 U P3), a hammer is the graph obtained by
identifying one vertex of a K3 and one end vertex of a Ps, a house is just the complement
of Ps, a gem is the graph Kj + Py, a gem™ is the graph K; + (K1 U Py), and a paraglider is
the graph obtained from a diamond by adding a vertex joining to its two vertices of degree

2 (see Figure [I]).
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Figure 1: Illustration of some forbidden configurations

Fouquet et al [I3] proved that (Ps, house)-free graphs are perfectly divisible. Schier-
meyer [20] proved that x(G) < w?(G) for (Ps, H)-free graphs G, where H is a graph in
{cricket, dart, diamond, gem, gem™, K 3}. Brause et al [3] proved that x(G) < (W(G)H) if
G is (Ps, hammer)-free, Chudnovsky and Sivaraman [7] showed that (Ps, bull)-free graphs
and (odd hole, bull)-free graphs are both perfectly divisible, and Hodng [16] showed that
every (odd holes, banner)-free graph is perfectly divisible. Dong and Xu [I0] proved that
(Ps, F)-free graphs are perfectly divisible, where F' is either a cochair or a cricket. Chud-
novsky et al [8] proved that x(G) < [‘%(G 1 if G is (Ps, gem)-free, which improves the
results of [4] and [9]. Char and Karthick [5] showed that if G is (P, Ky + Cy)-free, then
X(G) < 3w(G). Huang and Karthick [I8] showed that if G is (Ps, paraglider)-free, then

30(Q)
X(G) < [=5~=1.

Chudnovsky and Sivaraman [7] showed that x(G) < 2¢(@)=1if G is (Ps, C5)-free, Brause
et al [1] proved that x(G) < d-w?(G) for some constant d if G is (Ps, K2 3)-free, and
Schiermeyer [21] proved that x(G) < ¢ w3(G) for some constant c if G is (Ps, K1 + 2K>)-



free. In this paper, we study a subclasses of Ps-free graphs, and prove the following
theorems, which improve some results of [1211,26].

Theorem 1.1 Every (Ps,Cs, K3 3)-free graph is perfectly divisible.

Theorem 1.2 If G is (P5, K2 3)-free then x(G) < 2w?(G) — w(G) — 3.

Theorem 1.3 If G is (Ps, K1 + 2K,)-free with w(G) > 2 then x(G) < 3(w*(G) — w(G)).
Theorem 1.4 If G is (P5, K1 + (K1 U K3))-free then x(G) < 3w(G) + 11.

Theorem [[2improves a result of Brause et al [I] and the upper bound 2w?(G) —w(G)—3
is sharp in the sense that all (Ps, K3)-free graphs are 3-colorable and there are (P5, K3)-
free graphs with chromatic number 3, Theorem [[3] improves a result of Schiermeyer [21],
and Theorem [ improves a result of [26] which states that y(G) < 3(w?(G) + w(G)) for
{2Ky, K1 + (K1 U K3)}-free graphs.

It is known (see Theorem 14 of [3]) that the class of 2K5 U 3K;-free graphs does not
admit a linear binding function, and so one can not expect a linear binding function for
(Ps, K 3)-free graphs or for (Ps, K1 + 2K5)-free graphs.

In Section 2, we introduce a few more notations, and list several useful lemmas. Section
3 is devoted to the proof of Theorem [[LTl Theorems[T.2] [.3] and [[.4] are proved in Sections
4, 5, and 6 respectively.

2 Preliminary and Notations

Let G be a graph, and let A be an antihole of G with V(A) = {vy,ve, -+ ,vp}. We
always enumerate the vertices of A cyclically such that v;v;41 ¢ E(G), and simply write
A = vivy - - -vp. In this paper, the summations of subindex are taken modulo h for some
h, and we always set h +1 = 1.

Observation 2.1 The vertices of an odd antihole cannot be the union of two cliques.

For two vertices x and y of GG, an zy-path is an induced path with ends =z and y.
Throughout this paper, all paths considered are induced paths. The distance d(z,y) between
x and y is the length of the shortest xy-path of G.

Let P be a path, and let v and v be two vertices of P. We use P* to denote the set of
internal vertices of P (i.e., those vertices of degree 2 in P), and use P[u,v] to denote the
segment of P between u and wv.

Let v € V(G), and let X be a subset of V(G). We use Nx(v) to denote the set of
neighbors of v in X. We say that v is complete to X if Nx(v) = X, and say that v is
anticomplete to X if Nx(v) = . For two subsets X and Y of V(G), we say that X is
complete to Y if each vertex of X is complete to Y, and say that X is anticomplete to Y
if each vertex of X is anticomplete to Y. If 2 < |X| < |V(G)| — 1 and every vertex in
V(G)\X is either complete to X or anticomplete to X, then X is said to be a homogeneous
set.



Lemma 2.1 [7] A minimal nonperfectly divisible graph admits no homogeneous sets.

Let d(v, X) = mingex d(v, x), and call d(v, X) the distance of a vertex v to a subset X.
Let i be a positive integer, and N5 (X) = {y € V(G)\X|d(y, X) = i}. We call N5(X) the
i-neighborhood of X, and simply write N} (X) as Ng(X). If no confusion may occur, we
write N*(X) instead of N5 (X), and N*({v}) is denoted by N’(v) for short.

Suppose that C' = vjvouzvgvsvy is a 5-hole of G. For a subset T' C {1,2,3,4,5}, let

Np(C)={z |z € N(C), and v;x € E(G) if and only if i € T'}.

It is easy to check that for k € {1,2,3,4,5} and | =k + 2, Ny}, 542 (C) = Ny 45, (C) and
Nikprok+33(C) = Nyiga,43)(C).

The next lemma is devoted to the structure of Ps-free graphs. It holds trivially by the
Ps-freeness of G, and so we omit its proof.

Lemma 2.2 Suppose that G is a Ps-free graph and C' = vivougvavsvy s a 5-hole of G.
Then,

(a) fori€{1,2,3,4,5}, Niip(C) = Nyjipy (C) = 0, and Ny; 42y (C) U Nyj 1,42y (C) is
anticomplete to N*(C),

(b) if x € N(C) and N*(x) N N3(C) # 0 then x € Ny 9545(C), and

(c) for each vertex x € N*(C) and each component B of G[N3(C)], z is either complete
or anticomplete to B.

We end this section by the following two lemmas which are also very useful in the proofs
of the main results. A clique cut set is a cut set and is a clique.

Lemma 2.3 A minimal nonperfectly divisible graph has no clique cut sets.

Proof. If it is not the case, let G be a minimal nonperfectly divisible graph, and let S
be a clique cut set of G. Let C; be a component of G — S, let G; = G[V(C1) U S], and
let Go = G — V(C1). Then, both G; and Gy are perfectly divisible. For i € {1,2}, let
(A;, B;) be a perfect division of G; with G[A;] perfect and w(G[B;]) < w(G;). Since S is
a clique, we see that both A1 N Ay and By N By are cliques as they are subsets of .S, and
thus G[A; U Ag] is perfect and w(B; U By) < w(G), a contradiction. 1

Let G be a graph with a(G) = 2, and let v be a vertex of G. Notice that V(G) \
(N(v) U{v}) is a clique, which implies that G — N(v) is perfect. Thus the next lemma
follows directly.

Lemma 2.4 Graphs of independent number at most 2 are perfectly divisible.



3 Perfect divisibility of (P;, C5, Ky 3)-free graphs

This section is aim to prove Theorem [[.Il A cut set S is said to be a minimal cut set if
any proper subset of S is not a cut set of G. We first prove a lemma on the structure of
(Ps,Cs, Ky 3)-free graphs.

Lemma 3.1 Suppose that G is a (Ps,Cs, K2 3)-free graph without clique cut sets, and S
is @ minimal cut set of G. Then

(a) G—S has ezxactly two components, and for each pair of non-adjacent vertices s1, Sy €
S, each s1s2-path with interior in exactly one component has length 2,

(b) each vertex of S is complete to at least one component of G — S, and

(¢) a(G[S]) = 2.

Proof. Let Cy,Cs,...,Ct be the components of G — S. It is certain that ¢ > 2. Since S is

a minimal cut set, we see that for each i € {1,2,...,t},
Ny (c;y(z) # 0 for each vertex x € S. (1)

Let V1 = V(Cy) and Gy = G[SU V4], let Gy = G — Vp, and let Vo =V (Ga) \ S.

Since GG has no clique cut set, we arbitrarily choose s; and sy to be two non-adjacent
vertices in S. Suppose that G — S has at least 3 components, then G5 — S is not connected
as G1 — S = (4. Let Cy and C5 be two components of Go — S. For i € {1,2,3}, let P, be
an s1sg-path with interior in C; (recall that all paths considered are induced paths).

If one of P, P, and P has length at least 3, then a C5 or a Ps appears. Otherwise, a
K, 3 appears. Hence, G — S has two components G[V;] and G[V3]. This also implies that
each siso-path with interior in V; or V5 has length 2.

Let s € S. It follows from () that s has neighbors in both V; and Va. Since both G[V;]
and G[Vs] are connected and G is Ps-free, we have that each vertex of S is complete to
either V; or V5.

Now it is left to show that a(G[S]) = 2. Suppose to its contrary that sz is a vertex
in S\ {s1,s2} anticomplete to {s1,s2}. Thus we have that, for each pair of 7,5 € {1, 2},
each s;s3-path with interior in Vj has length 2. Since G induces no K3, we have that
Ny, (s1) N Ny, (s2) N Ny, (s3) = 0 for some i € {1,2}, and so we may assume that Ny, (s1)N
Ny, (s2) N Ny, (s3) = 0. Let w; € V4 be a common neighbor of s; and sg, let we € V4
be a common neighbor of sy and s3, and let x € V5 be a common neighbor of s; and ss.
If wywe ¢ E(G), then G[{s1, w1, S2,wa, s3}] = Ps; otherwise, G[{s1, s3, w1, ws,z}] = Cs.
This contradiction implies that a(G[S]) = 2, which completes the proof of Lemma 31l 1

Proof of Theorem [Tl Let G be a (Ps5,Cs5, Ky 3)-free graph. Suppose that G is not
perfectly divisible but every proper induced subgraph of G is perfectly divisible. It is
certain that G is connected and not perfect. Let S be a minimal cut set of G. By
Lemma 23] S is not a clique. It follows from Lemma Bl that a(G[S]) = 2, G — S has



exactly two components, say Cy and Cy, and each vertex of S is either complete to V(C1)
or V(Cy). For i € {1,2}, let V; = V(C;), and let G; = G[V; U S].
Let Sy C S be the set of vertices complete to V3 U Va. For ¢ € {1,2}, let S; C S\ Sy be
the set of vertices only complete to V;. Clearly S = Sy U .S7 U Ss.
We claim that
at least one of V; and V3 is a clique. (2)

Suppose to its contrary that both V4 and V5 are not cliques. Since S is not a clique, we
may choose s; and s to be two non-adjacent vertices of S. Suppose that {s1,s2} NSy # 0.
If {s1,52} N S; # 0 for some i € {1,2}, then V; is a clique, otherwise an induced Kp3 is
obtained. Similarly, if {s1,s2} C Sp, then both V; and V5 must be cliques. Thus we may
assume that {s1,s2} NSy = 0. Note that Ny,(z) # () for each vertex x € S as S is a
minimal cut set. If {s1,s2} C Si, then G induces a Ks 3 whenever Ny, (s1) N Ny, (s2) # 0,
and G induces a Ps or a C5 whenever Ny,(s1) N Ny,(s2) = 0, both are contradictions.
Similar contradiction happens if {s;,s2} C S3. Therefore, we may suppose that s; € Sy
and sy € So, that is, both Sy U S7 and Sy U Sy are cliques. Now by Observation 211 we
have that G[S] is perfect. Since w(G — S) < w(G), it contradicts the minimal nonperfect
divisibility of G, and which proves (2).

Next we claim that
exact one of V; and V5 is a clique. (3)

To prove (@), we will show that if V; and V5, are both cliques then «(G) = 2, and
hence deduce a contradiction to Lemma [24] claiming that all graphs G with a(G) < 2 are
perfectly divisible.

Suppose to its contrary that V; and V; are both cliques but a(G) > 2. Let T =
{t1,t2,t3} be an independent set of G. It follows from Lemma Bl that |77N S;| = 2 and
T N Vs_;| =1 for some ¢ € {1,2}. Without loss of generality, we assume that ¢;,ty € Sy
and t3 € Vs.

Note that V4 and V5 are both cliques, and V; is complete to SgU Sy. If So = (), then
(V1UVa, SpU.Sy) is a perfect division of G, contradicting the minimal nonperfect divisibility
of G. Hence Sy # ().

Let = be a vertex in S,. Since no vertex of S5 is complete to Vi, we may choose a
vertex, say vy, in Vi with zv; ¢ E(G). Since a(G[S]) = 2, we have that z cannot be
anticomplete to {t1,t2}. Suppose zt; € E(G). To avoid a P5 = tyvitiats, we have that x
must be adjacent to ty as well. Hence we have that {¢1,t2} is complete to Ss.

If S is not a clique, let z and 2’ be two non-adjacent vertices of Sy, then G[{T'U{z, 2'}]
is a K3 3. This implies that S» must be a clique.

Since both V; and Sy U Vs are cliques and V; is complete to Sy U S7, we have that
G[V1 UV, U S is perfect by Observation 2], and w(G[Sy U S1]) < w(G). Thus (V3 UV U
Sz, Sp U S1) is a perfect division of G, which leads to a contradiction and proves (3]).

Now we may assume that V7 is a clique and V5 is not.



Since V3 is not a clique, we must have that SoU.S3 is a clique, otherwise an induced K 3
appears. Thus V; U Sy is also a clique. Since G is (P, Cs, K3 3)-free, by Observation 2.1]
we have that

G[V1 U Sp U Ss] is perfect. (4)

Suppose that Sp U Sy # 0, and let v € Sy U Sy, If w(G[Va U S1]) < w(G), then
(V1 U SpU Sa, Vo U Sy) is a perfect division of G by ({l). Thus we may further assume that
w(G[Va U S1]) = w(@). Let Ki,..., K, be all the cliques of G[V2 U S1] of size w(G), and
let L; = K; NSy for each i € {1,2,...,r}. Since |K;| = w(G) and w(G[WV2]) < w(G), we
have that L; # (), and v is not complete to L;. Let M; C L; be the set of vertices which
are non-adjacent to v for i € {1,2,...,r}, and let M = 0 M;. Since a(GIS]) = 2, we

have that M is a clique, and so V3 U M is a clique. Noticez_tilat So U .Sy is a clique. Thus
G[V1 U Sp U Sy U M] induces no odd antihole by Observation 2] and so it is perfect. Now
we have that G is perfectly divisible as w(G[(VoUS1) \ M]) < w(G[VoUS1]) = w(G), which
contradicts the minimal nonperfect divisibility of G.

Hence we may suppose that, for each minimal cut set S of G, Sy U Sy = (). Conse-

quently, we must have that V3| = 1 (as otherwise V} is a homogeneous set, contradicting
Lemma 2.7]), that is,

every minimal cut set of G equal N(z) for some vertex x of G. (5)
Let v be a vertex of G. It is certain that N(v) is a cut set. Next we show that
N (v) is a minimal cut set, (6)

which implies that the converse of ({) holds as well.

Suppose to its contrary that w is a vertex such that N(w) is not a minimal cut set. Let
Ty, Ty, ..., T, be all the subsets of N(w) where each one is a minimal cut set. It follows
from (B)) that there are some vertices, say wi,ws,...,w,, such that T; = N(w;) for each
ie{1,2,...,r}. We claim that

{w, w1, wa,...,w.} =V(G)\ N(w). (7)

If it is not the case, then let C' be a component of G — N (w) — {w, w1, ws,...,w,}, and
let X C N(w) be the set of vertices where each one has a neighbor in C. It is certain that
X is a cut set. Thus there must be some i such that T; C X. Without loss of generality,
we suppose that 77 € X. Since GG has no clique cut set by Lemma 2.3] we have that T}
is not a clique, and so has two non-adjacent vertices, say ¢; and t}. Let P be a shortest
t1t}-path with interior in C. If P has length 2, then tywt},t;wit] and P form an induced
K3 in G. If P has length 3, then tywt] and P form a C5 in G. Otherwise, we have that
P has length greater than 3, and then we can find a P5 in GG. These contradictions proves

@.



Since {w, wy, wa, ..., w,} is independent, it follows from (7)) that ({w, w1, ws, ..., w,}, N(w))
forms a perfect division of GG, and so (@) holds. Thus by Lemma Bl we have that

a(G[N(z)]) = 2 for each vertex = of G. (8)

We choose v; € V(G) and let S; = N(v1). Then, a(G[Si1]) = 2, and S; is a minimal
cut set by (6). Let s; and sy be two non-adjacent vertices in Sy. Let V4 = {v1}, and let
Vo =V(G)\ {S1U{v1}). We have that G[V3] is connected by Lemma BI|a).

Let M = Ny,(s1) N Ny,(s2), and let M; = Ny,(s;) \ M for i € {1,2}. Since G
induces no K33, we have that M must be a clique. If both M; and My are not empty,
let m; € M; for i € {1,2}, then G[{m1,m2, s1,$2,v1}] = C5 whenever mimy € E(G),
and G[{m1, ma, s1, s2,v1}| = P5 whenever mimo ¢ E(G). Without loss of generality, we
assume that My = (. Now we claim that

Vo = M U Mj. 9)

Suppose that ([@) does not hold. Since G[V3] is connected, we may choose a vertex, say
z,in V4 \ (M U M) that is adjacent to some vertex of M U M. If zz; € E(G) for some
z1 € M, then {si,s9,z} is an independent set contained in N(z1), contradicting (&). If
zz9 € E(G) for some vertex zo € My, then G[{s1, s2,v1, 2, 22}] = P5. This proves ({@).

Note that S; = N(v1). By (), we have that no vertex of N(v1)\{s1,s2} is anticomplete
to {s1,s2}. Let T = Ng,(s1) N Ng,(s2), let Ty = Ng,(s1) \ T, and let To = Ng, (s2) \ T.
If T; is not a clique for some ¢ € {1,2}, let ¢;; and ¢;2 be two non-adjacent vertices of
T;, then {s3_;,t;1,t;2} is an independent set in S7, which leads to a contradiction to (8.
Thus both 77 and T5 are cliques.

Let A =Ty U {s1,s2}, and let B = V(G) \ A. It is certain that G[A] is perfect. Since
s1 is complete to B by (@), we see that w(G[B]) < w(G), which implies that (A, B) is a
perfect division of G. This contradicts the minimal nonperfect divisibility of G and proves
Theorem [Tl |

4 (Ps, Ky3)-free graphs

In this section, we prove Theorem [[.21

Since perfectly divisible graphs G has chromatic number at most (“(G;)H), it follows
from Theorem [[T] that we only need to consider the (Ps, K3 3)-free graphs with a 5-hole.
Let G be a (Ps5, Ky3)-free graph, and let C' = wvjvavsvsvsv; be a 5-hole of G. Recall
that for T C {1,2,3,4,5}, Np(C) consists of the vertices not on C' but each has exactly
{v; | i € T} as its neighbors on C, and for integer i > 1, N*(C) consists of the vertices
of distance i apart from C. Let u and v be two non-adjacent vertices in N(C). We say
that {u,v} is a bad pair if there is an i € {1,2,3,4,5} such that u € Ny; ;41,43 (C) and

v € Nijiv1iv2,ita)(C)-



Lemma 4.1 Suppose that G is a (Ps, K2 3)-free graph with a 5-hole C = v1v203040501,
and u,v are two vertices in N(C). Then all the followings hold.

(a) If there exist three consecutive vertices of C', named v;,viy1, and vits, such that
{vi,vir2} € N(u) N N(v) and viy1 ¢ N(u) U N(v), then uv € E(G).

(0) Niiiroy(O), Niiin1,i431(C), and Nyjiq1i42,i431(C) are all cliques for 1 <i <'5.

(C) a(G[N{1,2,3,4,5}(C)]) < 27 and fO’I” each i € {17273747 5}7 a(G[N{i,i+1,i+2}(C)]) < 2}
and Ny iq1,i42y(C) is complete to Ny iy0i431(C).

(d) If w & E(G) and {u,v} is not a bad pair, then N(u) N N(v) N N2(C) = 0.
(e) N(C)O\(Ng123451(C) U Nyiit1,i423(C)) can be partitioned into five cliques S1, Sa, 53, Sa
1<i<5

and S5 such that |S;| < w(G) — 1 and v; is anticomplete to S; for each i.

Proof. If {v;,vi+2} € N(u) N N(v) and v;11 ¢ N(u)U N(v) for some ¢, then uv € E(G) to
avoid a Ka 3 on {u,v,v;,vi+1,vit2}. Hence (a) holds, and (b) follows directly from (a).

Now we come to prove (c). If either G[Ny; j11,i421(C)] or G[Ny123.4,5(C)] has an inde-
pendent set of size 3, say {u,v,w}, then {u, v, w,v;,viy2} induces a Kz 3. If Ng; i11,493(C)
is not complete to Ny i1 49,43} (C) for some i, we may choose x € Ny;;41,i191(C) and
Y € N{ig1,i42i+31(C) with 2y ¢ E(G), then a Ps = xv;11yvi13vi14 appears. Hence (c)
holds.

Next we prove (d). Suppose that uv ¢ E(G) and {u,v} is not a bad pair, and suppose
that N(u) N N(v) N N%(C) has a vertex w. If one of u and v is in Ni12,3.4,5(C), then
there exists some i € {1,2,3,4,5} such that G[{u,v,v;,vi12,w}] = Ka3, which leads
to a contradiction. Thus {u,v} € W = U (Nyis1,i431(C) U Nyjiv1ig2,i431(C)) by

<i<
Lemma Z2)(a). =

Now we first suppose that u € Ny, ;11 ,433(C) for some k, and by symmetry we may
assume that k = 1. Since {u,v} is not a bad pair, we see that v € W'\ Ny 93 5,(C). It fol-
lows from (a) that, v & N1 943 (C)UN{1 343 (C)UN{[2,451(C)UN{1 2343 (C)UN 51,23 (C).
But G[{u,v, w,ve,vs5}] = Ps if v € Ny 35,(C), G[{u,v,w,v1,v3}] = Py if v € Nyz35,(C)U
Ni234.53(C), and G[{u, v, w,v1,v4}] = Ps if v € N3 4513(C). Hence we have, by symme-
try, that

{u,0} 0 (| (Nggis,i43)(C)) =0,

1<i<5

that is, {u,v} © U Nit1i42i431(C). Without loss of generality, we may assume
1<i<5
that u € Ny 934(C). Thus v ¢ J Ngigi,42i431(C) by (a) of this lemma. This
1<i<5
contradiction proves (d).
Finally, we prove (6) Let S; = N2,5(C) U N{27375}(C) U N{27475}(0) U N{2737475}(0),
S = N1 33(C)UN{ 343 UN[1 35 UN(134,5), 53 = Nyoay UN{12.45)(C), Sa = Nz5(C)U

N{172’375}(0), and 55 = N{174}(0) @] N{17274}(C) U N{1’27374}(0). It is certain that (%3 is
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anticomplete to S; for each i, and one can check easily from (a) that each S; is a clique of
size at most w(G) — 1. |

Lemma 4.2 Let G be a (Ps, K23)-free graph and C = vivavsvavsvy be a 5-hole of G. If
G contains no clique cut sets, then N3(C) = (), and for each component B of N?(C),
a(B) <2 and N(B)NN(C) € Ny 2345 (C) whenever w(B) = w(G).

Proof. Suppose that G has no clique cut sets. Let S’ C N(C) be the set of vertices having
no neighbors in N2(C), and let S = N(C)\S’. By Lemma EZ(a), if a vertex x of N(C)
has neighbors in N2(C), then |[N¢(z)| > 3. Hence for any two vertices u and v of S we
have that

No(v) N Ne(u) #0. (10)

Next we prove this lemma by considering the connectedness of G[N?(C)].

Case 1. Suppose that G[N?(C)] is connected. Since G contains no clique cut sets, there
must exist two non-adjacent vertices, say u and v, in S. By (I0)), we may choose z to be a
common neighbor of v and v on C.

Let Ty, = N(u) N N(v) N N2(C), and let T, = (N(u) N N*(C)) \ Ty and T, =
(N(v) " N*(C)) \ Tow-

First suppose that Ty, = (). Since G is (P, K2 3)-free, we have
T, is complete to T, and max{a(G[T,]), a(G[Ty]) < 2, (11)

otherwise for any pair of non-adjacent vertices t,, € T, and t, € T, t,uzvt, is a P5, and
G[T, UT, U {w}] induces a K33 whenever a(G[T,]) > 3 for any w € {u,v}. This leads to
a contradiction.

We further claim that

N*(C)=T,UT,, and N3(C) = 0. (12)

If N?(C) # T, UT,, since GIN?(C)] is connected, we may suppose by symmetry that
N2(C)\(T, UT,) has a vertex, say w, which has a neighbor ¢, in T}, and so vzut,w is a
P5. Thus N%(C) = T, UT,. If N3(C) # (), then let w be a vertex of N3(C), and suppose
by symmetry that ¢, is a neighbor of w in T, again we have a P; = vzut,w. This proves
@.

From () and (), we see that o(G[N?(C)]) < 2. If w(G[N?(C)]) = w(G), then
T, # 0 and T, # (. To avoid a P5, we see that all neighbors of N?(C) in N(C) must
be contained in Nij 9345 (C). So the lemma holds whenever G[N?(C)] is connected and
Tuw = 0.

Next we may assume that Ty, # (), and let t,, be a vertex in T,,. By Lemma EI|(d),
we have that {u,v} is a bad pair. Suppose by symmetry that u € Ny 94(C) and v €
Ni1,2,353(C). Since u and v have a common neighbor z on C', and since G' is K3 3-free, we
have that

Ty is a clique. (13)
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Suppose that T, # 0. Let t, be a vertex of T,. If t, has a neighbor ¢, in T, then a
Ps = vsvyut!,, t, appears, and if ¢, is anticomplete to Ty, then a Ps = vqut,,vt, appears.
This implies that T;, = (). Similarly we have that T, = (.

Note that G[N?(C)] is connected. Thus N2(C) = T, otherwise we may choose a
vertex w in N2(C)\ Ty, where w has a neighbor t,, € T, which implies a Py = v5viutw.
If N3(C) # 0, let w be a vertex in N3(C) and w’ be a neighbor of w in N?(C), then a
Ps = ww'uvvs appears. Thus N3(C) = (), and by ([3) we have that this lemma holds
when G[N?(C)] is connected and Ty, # (). Hence Lemma holds when G[N?(C)] is
connected.

Case 2. Suppose that G[N?(C)] is not connected. Let T1,T,..., Ty be the components
of GIN?(C)]. Recall that S consists of the vertices in N(C) that have neighbors in N2(C).
For each i € {1,2,...,k}, let S; = Ng(T}), and let Z; be the subgraph of G[N3(C)] that is
not anticomplete to 7;. If there exists some ig € {1,2,...,k} such that S;, is not a clique,
by applying the same arguments to G[V (C) U S;, U T;, U Z;,] as that used in Case 1, we
can show that Z;, = 0 and a(Tj,) < 2, and N(T;,) N N(C) € Ny 2345)(C) whenever
w(T;,) = w(G). Hence the lemma holds if S; is not a clique for all 1 <17 <k.

Thus by symmetry suppose that S; is a clique. Since S; is not a clique cut set, we have
that S; # S. Without loss of generality, let T7,75,--- ,71; be the components such that
Ng(T;) € Sy for each i € {1,2,...,1}. It is obvious that 1 <[ < k — 1, otherwise S; is a
clique cut set. Now we have that T; has neighbors in S\S; for each i € {{ +1,...,k}.

Since S is not a clique cut set, we have that N3(C) # (), and T} must have some
neighbors in N3(C). Let R be a component of G[N3(C)] such that T} is not anticomplete
to R. Since S7 is not a clique cut set, we have that R cannot be anticomplete to Uf:l i
Without loss of generality, suppose that R is not anticomplete to Tj. Choose t; € 17,
ty € Tk, and 71,7 € R such that t1r1 € E(G) and tyr, € E(G). By Lemma22c), {t1,tx}
is complete to R.

We can choose two adjacent vertices s, € S\S; and t) € Tj. Let P’ be a shortest
tyty-path in 7). Let r € R and z be a neighbor of s; on C. Thus a path P = t,rt; Pt} sz
of length at least 5 appears. This contradiction proves Lemma |

Now, we can prove Theorem

Proof of Theorem Let G be a {Ps, K3 3}-free graph. We may assume that G is
connected and contains no clique cut set. If G is (P5, Cs, Ko 3)-free, then G is perfectly
divisible by Theorem [[T}, which implies that y(G) < $(w?(G) + w(G)). Thus we suppose
that G is (Ps, K2 3)-free and contains a 5-hole C'. By Lemma [2.2(a), we have that

N(C) = Np12345(C) U (Ni,i2) (C) U N 11,6423 (C)
1<i<5

U Ngiigr1,i43) (C) U Nigig1ig2,i433 ().
Note that w(G[N{12345(C)]) < w(G) = 2, w(G[Ni1233(C) U Nz 3 3(C)] < w(G) =2,
W(G[N3,45 (C)UN{ 451 (C)] < w(G) =2, and w(G[Ny 2,53 (C)] < w(G)—2. By Lemmal.4]
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and Lemma [£.T]c)(e),

X(GIN(C)]) £ x(G[Ny1,231(C) U Nyg 343 (C)]) + x(G[Ny3,45,(C) U Ny a5 (C)])
+X(G[N1,2,5(O)]) + (G[N{1,273,475}(0)]) +5(w(G) 1)

JEGELRTIES e

= 203(G) —w(G) - 3. (14)

IN
,p

By Lemma [1J(e), we can color the vertices of C' with the colors used on the vertices
of N(C)\(N{1,2,3.4,5(C) 1<U<5 Niit1,i+23(C)) (which is counted 5(w(G) — 1) in [14)).

Let B be a component of G[N*(C)]. By Lemma B2 we see that N?(C) = G —
N(C) = V(C), a(B) < 2 and N(B)N N(C) € Nyi2345(C) if w(B) = w(G). So, we

have, by Lemmas 2.4] that y(B) < (W(G)_l)?w(c)_ Z(G) —2(@) it w(B) < w(G), and
X(B) < M

otherwise.

Note that N?(C) is anticomplete to | N{, i+1,i+2}(C) by Lemma 2.2(a), and B is
1<i<

anticomplete to N(C)\Nyj 2345, (C) by Lemma if w(B) = w(G). If w(B) < w(G),

we can color the vertices in B with the colors used on the vertices of [ N{Z i1 Z+2}(C)
1<i<

(which is counted no less than M in (I4))). If w(B) = w(G), we can color the
vertices in B with the colors used on the vertices of N(C)\Ny; 2345, (C) (which is counted
W2 (@) +w(Q) -
no less than % in (I4)).
Therefore, x(G) < 2w?(G) — w(G) — 3 as desired. 1

5 (Ps, K1+ 2K,)-free graphs

For two subsets X and Y of V(G), we say that X dominates Y if each vertex of Y has a
neighbor in X. The next two lemmas are very useful in the proof of Theorem

Lemma 5.1 [2] Every connected Ps-free graph has a dominating clique or a dominating
Ps.

Lemma 5.2 [26] Let G be a 2Ks-free graph. Then x(G) < 3(w?(G) + w(QG)).

Proof of Theorem Let G be a connected (Ps, K1 + 2K5)-free graph with at least
two vertices. By Lemma [5.J] G has a dominating clique or a dominating P3. If G has a
dominating Ps, say vivgvus, then N(v;) induces a 2Ks-free graph for each i, otherwise v;
and the 2Ky in G[N(v;)] induce a K; + 2K3. Thus by Lemma we have that x(G) <
VGIN@D]) + X(GIN (02)]) + X(GIN () < 3(@(G) ~ 1) +w(G) ~ 1) = $(w(G) —w(G)).
Thus we may assume that G has a dominating clique, say K}, on vertices {vy,ve,vs, -+ , vk }.
Let S = N(v1) U N(ve) and T = V(G)\S, that is, T consists of exactly those vertices
anticomplete to {vi,v2}. Since G is (K + 2K3)-free, we have that N(v;) induces a 2Ko-
free subgraph for ¢ = 1,2. For each i € {3,...,k}, since the vertices of N(v;) N T are
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anticomplete to {v1, v}, we have that N (v;)NT is an independent set. Hence by Lemmal5.2]
X(G) < x(G[N(01)]) + x(G[N (v2)]) +w(G) — 2 < w?(G) — 2. Note that 3(w*(G) ~w(G)) >

w?(G) — 2. Hence if G is (Ps, K1 + 2ks)-free, then x(G) < 2(w?(G) — w(G)) as desired. I

6 (Ps, Ki+ (K;UKj3))-free graphs

Sumner [25] (see also [12]) proved that a connected (Ps, K3)-free graph is either bipartite
or can be obtained from a 5-hole by replacing each vertex with an independent set and
then replacing each edge by a complete bipartite graph.

Lemma 6.1 [25] If G is (Ps, K3)-free then x(G) < 3.

If G is (P, K1 U K3)-free, then G — N(v) — v is (Ps, K3)-free for each vertex v of G,
and so by a simple induction one can show the following lemma.

Lemma 6.2 x(G) < 3w(G) — 3 for every (Ps, K1 U K3)-free graph G with at least one
edge.

Before proving Theorem [[L4] we first prove a few lemmas on the structure of (Ps, K7 +
(K1 U K3))-free graphs. From now on, we always suppose that G is a (P5, K1 + (K1 U K3))-
free graph.

Lemma 6.3 Suppose that G has a 5-hole C' = vivav3v4v5v1 and has no clique cut set, and
let T be a component of GIN%(C)]. Then the followings hold.

(a) For eachi € {1,2,3,4,5}, G[N(v;)] is K1 U K3-free, G[Ny; i1 (C)] is K3-free, and
Niiig1,i423(C) U Ngjin1,i431(C) U Ny ig1,i42,i+33 (C) is independent.

(b) If no vertex in N(C) dominates T, then there exist two non-adjacent vertices u and
v in N(C) such that both Nyp(u) and Nr(v) are not empty.

Proof. Statement (a) follows directly from the Kj + (K7 U K3)-freeness of G.
To prove (b), let S = N(T') N N(C), and suppose that no vertex in S dominates 7'

By Lemma 2.2(a), S C Ny12345(C) U (1<U<5 Niig2,i433(C) U N iy1i42,i43,(C)). If

G[S] is not connected, we are done. Thus suppose that G[S] is connected. We choose
an arbitrary vertex v € S and let T, = Nr(u). Since u does not dominate 7', by the
connectedness of T', we may choose a vertex w € T'\T,, such that w is not anticomplete to
Ty. Let v be a neighbor of w in S. Since G is Ps-free, we have that u € Ny 2345 (C),
and so {vit2,vi13} € N(u) N N(v). Since uwv € E(G) implies a K; + (K7 U K3) on
{w, u,v,vi12,v;13}, we have that uv ¢ E(G) as desired. 1

Lemma 6.4 Suppose that G has a 5-hole C = v1vovgvavsv1 and no clique cut set. Then

G[N3(C)] is K3-free, and N*(C) can be partition into two parts A and B such that both
G[A] and G[B] are Ks3-free.
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Proof. Let B be a component of G[N3(C)] and u € N2(C) be a vertex that has a neighbor
in B. By Lemma [ZZ(c), we see that v must be complete to B, and so G[N3(C)] must be
Ks-free to avoid a Ky + (K7 U K3).

Let T = N?(C). Without loss of generality, we suppose that G[T] is connected, and let

S = {v|v € N(C) such that Np(v) # 0}.

If there exists some vertex in S that dominates T, then we are done as G[T] is obviously
Kjs-free to avoid a Ky + (K7 U K3). Thus suppose that no vertex of S dominates 7.

By Lemma [6.3(b), there exist two non-adjacent vertices, say u and v, in S such that
both v and v have neighbors 7. It follows from Lemma[2Z2fa) that v and v have a common
neighbor, say z, on C.

It is certain that both G[Np(u)] and G[Np(v)] are Ks-free. If T'= N(u) U N(v), then
(N7 (u), Nr(v)\ Nr(u)) is a partition of T" as desired. Thus suppose that 7' # N (u)UN (v).
Let R =T\(N(u) UN(v)) and Ry, Rg,--- , R, be the components of G[R].

Note that G[T] is connected. For each i € {1,2,...,r}, R; has a neighbor, say ¢;, in
N(u)U N (v). If t; is not complete to R;, we may choose two adjacent vertices x and y in
R; with t;x € E(G) and t;y ¢ E(G), then either zut;xy or zvt;xy is a Ps of G. Therefore,
t; must be complete to R;, and so G[R] is K3-free to avoid a Ky + (K; U K3).

Let T, = Np(v) \ Np(u). If R is not anticomplete to Ty, let » € R and t, € T, be
a pair of adjacent vertices, then rt,vzu is a P5 in G. Thus R is anticomplete to 7T, and
consequently, (Np(u), RUT,) is a partition of T" as desired. This proves Lemma [6.4] [ |

Lemma 6.5 Suppose that G is Cs-free and contains an odd antihole A with at least seven
vertices. Let S be the set of vertices which are complete to A, and let T = N(A)\S.
Then G[S] is K1 U Ks-free, T' can be partition into at most 2k + 1 independent sets, and
NZ2(A) = 0.

Proof. Suppose that V(A) = {vy,va,..., 09511}, where k > 3 and v;v;41 € E(G) for each
ie{l,2...,2k+1}. Since G is K; + (K; U K3)-free, it is certain that G[S] is K1 U K3-free.

Note that the vertex of 1" is neither complete nor anticomplete to A. For each vertex u
of T, there must be an 4, € {1,2,...,2k + 1} such that wv;, € E(G) and uv;,+1 € E(G),
and so uv;,+3 € F(G) to avoid either a C5 or a P; depending on whether uv;, 19 € E(G)
or not. For each i € {1,2,...,2k + 1}, let

T; = {v|v € T,vv; ¢ E(G) but vv;4; € E(G) and vvi13 € E(G)} .

Thus T' = Uj<j<ok+17;. Since G is K + (K U K3)-free, each T; is independent, otherwise
G{vi,viy1,virs,x, 2"} = K1 + (K1 U K3) for any two adjacent vertices x and 2’ of T;.
Hence T can be partition into at most 2k + 1 independent sets.

Suppose that N2(A) # (). Let v be a vertex in N(A) that has a neighbor, say z, in
N2(A). Tt is obvious that v ¢ S, otherwise a K + (K; U K3) appears in G. Without
loss of generality, we suppose that v € Tj. Thus either a Ky + (K; U K3) appears on
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{v,v9,v4, Vo, x} whenever vvg, € E(G), or a P5 = xvvgugrvy appears whenever vvgy, &
E(G). Therefore, N2(A) = ). This proves Lemma .51 1

We are ready to prove Theorem [[.4]
Proof of Theorem [I.4l Let G be a {P5, K; + (K1 U K3}-free graph. We may suppose
that G is connected, contains no clique cut set, and is not perfect. Thus G contains a
5-hole or an odd antihole with at least 7 vertices.

First suppose that G contains a 5-hole C' = vivovgvgv5v1. Since G is Ps-free, we have
that V(G) = V(C) U N(C)U N?(C) U N3(C). By Lemma Z2(a), we have that

N(C) = Ng12345(C) U (Niiit2y (C) U Ny ig1,i423 (O)

1<i<5

U Ngiig1,i43) (C) U Nigig1,i12,i4+33(C))-

By Lemmas 6.11 6.2, and 6.3(a), we have that x(G[Ny1,234,5(0)]) < 3(w(G) — 3),

X(G[1<U<5 Nyiiv2y (C)]) <15, and X(G[1<U<5(N{i,i+1,i+2}(C)UN{i,i+1,i+3}(O)UN{i,i+1,i+2,i+3}(C))]) <

5. Therefore, x(G[N(C)]) < 3w(G) +11.

By LemmasBIand 6.4 x(G[N?(C)]) < 6 and x(G[N3(C)]) < 3. Since | Nyiivay (O)
1<i<5

is anticomplete to N2(C') U N3(C) by Lemma [63|(a), we can color the vertices of V(C) U

N?(C)U N?*(C) with the 15 colors used on  |J Ny;;401(C). Thus x(G) < 3w(G) + 11.
1<i<5

Now we suppose that G is {P5, C5, K1 + (K7 U K3}-free and contains an odd antihole A
with |A| =2k+1> 7. Let S C N(A) be the set of all vertices that are complete to A, and
let T'= N(A)\S. By Lemmal[6.5, we have that V(G) = AUN(A), G[5] is K1 U K3s-free, and
T is the union of 2k+1 independent sets. Hence x(G[S]) < 3(w(S)—1) < 3(w(G)—k—1) by
Lemma[62] and so x(G) < x(A)+x(G[S])+x(G[T]) < (k+1)+3(w(G)—k—1)+(2k+1) <
3w(G). This proves Theorem [[L4 |
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