On the chromatic number of some P_{5}-free graphs*

Wei Dong ${ }^{1, \dagger}$ Baogang $\mathrm{Xu}^{2, \ddagger}$ and Yian $\mathrm{Xu}^{3, \S}$
${ }^{1}$ School of Information and Engineering
Nanjing Xiaozhuang University, Nanjing, 211171, China
${ }^{2}$ Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University, Nanjing, 210023, China
${ }^{3}$ School of Mathematics, Southeast University, 2 SEU Road, Nanjing, 211189, China

Abstract

Let G be a graph. We say that G is perfectly divisible if for each induced subgraph H of $G, V(H)$ can be partitioned into A and B such that $H[A]$ is perfect and $\omega(H[B])<$ $\omega(H)$. We use P_{t} and C_{t} to denote a path and a cycle on t vertices, respectively. For two disjoint graphs F_{1} and F_{2}, we use $F_{1} \cup F_{2}$ to denote the graph with vertex set $V\left(F_{1}\right) \cup$ $V\left(F_{2}\right)$ and edge set $E\left(F_{1}\right) \cup E\left(F_{2}\right)$, and use $F_{1}+F_{2}$ to denote the graph with vertex set $V\left(F_{1}\right) \cup V\left(F_{2}\right)$ and edge set $E\left(F_{1}\right) \cup E\left(F_{2}\right) \cup\left\{x y \mid x \in V\left(F_{1}\right)\right.$ and $\left.y \in V\left(F_{2}\right)\right\}$. In this paper, we prove that (i) $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graphs are perfectly divisible, (ii) $\chi(G) \leq$ $2 \omega^{2}(G)-\omega(G)-3$ if G is $\left(P_{5}, K_{2,3}\right)$-free with $\omega(G) \geq 2$, (iii) $\chi(G) \leq \frac{3}{2}\left(\omega^{2}(G)-\omega(G)\right)$ if G is $\left(P_{5}, K_{1}+2 K_{2}\right)$-free, and (iv) $\chi(G) \leq 3 \omega(G)+11$ if G is $\left(P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right)\right)$-free.

Key words and phrases: P_{5}-free; chromatic number; induced subgraph; perfect divisibility
AMS 2000 Subject Classifications: 05C15, 05C78

1 Introduction

All graphs considered in this paper are finite, simple, and connected. Let G be a graph. The clique number $\omega(G)$ of G is the maximum size of the cliques of G, and the independent number $\alpha(G)$ of G is the maximum size of the independent sets of G. We use P_{k} and C_{k} to denote a path and a cycle on k vertices respectively. The complete bipartite graph with partite sets of size p and q is denoted by $K_{p, q}$, and the complete graph with l vertices is denoted by K_{l}.

Let G and H be two vertex disjoint graphs. The union $G \cup H$ is the graph with $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. Similarly, the join $G+H$ is the

[^0]graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{x y \mid$ for each pair $x \in$ $V(G)$ and $y \in V(H)\}$. For positive integer $k, k G$ denotes the union of k copies of G.

We say that G induces H if G has an induced subgraph isomorphic to H, and say that G is H-free if G does not induce H. Let \mathcal{H} be a family of graphs. We say that G is \mathcal{H}-free if G induces no member of \mathcal{H}. For a subset $X \subseteq V(G)$, let $G[X]$ denote the subgraph of G induced by X. A hole of G is an induced cycle of length at least 4 , and a k-hole is a hole of length k. A k-hole is said to be an odd (even) hole if k is odd (even). An antihole is the complement of some hole. An odd (resp. even) antihole is defined analogously.

A coloring of G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color. The minimum number of colors required to color G is said to be the chromatic number of G, denoted by $\chi(G)$. Obviously we have that $\chi(G) \geq$ $\omega(G)$. However, determining the upper bound of the chromatic number of some family of graphs G, especially, giving a function of $\omega(G)$ to bound $\chi(G)$ is generally very difficult. Throughout the literature, plenty of work has been taken to investigate this problem. A family \mathcal{G} of graphs is said to be χ-bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every $G \in \mathcal{G}$, and if such a function f does exist to \mathcal{G}, then f is said to be a binding function of \mathcal{G} [14]. A graph G is said to be perfect if $\chi(H)=\omega(H)$ for each induced subgraph H. Thus the binding function for perfect graphs is $f(x)=x$. The famous Strong Perfect Graph Theorem [6] states that a graph is perfect if and only if it induces neither an odd hole nor an odd antihole. Erdős [11] showed that for any positive integers k and l, there exists a graph G with $\chi(G) \geq k$ and no cycles of length less than l. This result motivates the study of the chromatic number of \mathcal{H}-free graphs for some \mathcal{H}. Gyárfás [14,15], and Sumner [25] independently, proposed the following conjecture.

Conjecture 1.1 [15,25] For every tree T, T-free graphs are χ-bounded.
Gyárfás [15] proved that $\chi(G) \leq(k-1)^{\omega(G)-1}$ for $k \geq 4$ if G is P_{k}-free and $\omega(G) \geq 2$. Gyárfás also suggested that there might exist χ-binding function for these classes of graphs with a better magnitude.

Since P_{4}-free graphs are perfect, determining an optimal binding function of P_{5}-free graphs attracts much attention. Sumner [25] showed that all (P_{5}, K_{3})-free graphs are 3colorable, and there exist many $\left(P_{5}, K_{3}\right)$-free graphs with chromatic number 3. Up to now, the best known upper bound for P_{5}-free graphs is due to Esperet et al [12], who showed that if G is P_{5}-free and $\omega(G) \geq 3$ then $\chi(G) \leq 5 \cdot 3^{\omega(G)-3}$, and the bound is sharp for $\omega(G)=3$. A natural question is whether the exponential bound can be improved.

Problem 1.1 [20] Are there polynomial functions $f_{P_{k}}$ for $k \geq 5$ such that $\chi(G) \leq$ $f_{P_{k}}(\omega(G))$ for every P_{k}-free graph G ?

Conjecture 1.2 [9] There exists a constant c such that for every P_{5}-free graph $G, \chi(G) \leq$ $c \omega^{2}(G)$.

We say that a graph G admits a perfect division (A, B) if $V(G)$ can be partitioned into A and B such that $G[A]$ is perfect and $\omega(G[B])<\omega(G)$. A graph G is said to be perfectly divisible if each of its induced subgraphs admits a perfect division [16. Obviously, if G is perfectly divisible, then $\chi(G) \leq \omega(G)+(\omega(G)-1)+\cdots+2+1=\binom{\omega(G)+1}{2}$.

Plenty of articles around the above topics have been published in the decades. Here we list some results related to $\left(P_{5}, H\right)$-free graphs for some small graph H, and refer the readers to [19, 22, 24] for more information on Conjecture 1.1 and related problems.

A bull is a graph consisting of a triangle with two disjoint pendant edges, a cricket is a graph consisting of a triangle with two adjacent pendant edges, a diamond is the graph $K_{1}+P_{3}$, a cochair is the graph obtained from a diamond by adding a pendent edge to a vertex of degree 2 , a dart is the graph $K_{1}+\left(K_{1} \cup P_{3}\right)$, a hammer is the graph obtained by identifying one vertex of a K_{3} and one end vertex of a P_{3}, a house is just the complement of P_{5}, a gem is the graph $K_{1}+P_{4}$, a gem ${ }^{+}$is the graph $K_{1}+\left(K_{1} \cup P_{4}\right)$, and a paraglider is the graph obtained from a diamond by adding a vertex joining to its two vertices of degree 2 (see Figure (1).

Figure 1: Illustration of some forbidden configurations
Fouquet et al 13 proved that (P_{5}, house)-free graphs are perfectly divisible. Schiermeyer [20] proved that $\chi(G) \leq \omega^{2}(G)$ for $\left(P_{5}, H\right)$-free graphs G, where H is a graph in \{cricket, dart, diamond, gem, gem $\left.{ }^{+}, K_{1,3}\right\}$. Brause et al [3] proved that $\left.\chi(G) \leq \underset{2}{(\omega(G)+1}\right)$ if G is (P_{5}, hammer)-free, Chudnovsky and Sivaraman [7] showed that (P_{5}, bull)-free graphs and (odd hole, bull)-free graphs are both perfectly divisible, and Hoáng [16] showed that every (odd holes, banner)-free graph is perfectly divisible. Dong and Xu [10] proved that $\left(P_{5}, F\right)$-free graphs are perfectly divisible, where F is either a cochair or a cricket. Chudnovsky et al [8] proved that $\chi(G) \leq\left\lceil\frac{5 \omega(G)}{4}\right\rceil$ if G is (P_{5}, gem)-free, which improves the results of [4] and [9. Char and Karthick [5] showed that if G is $\left(P_{5}, K_{1}+C_{4}\right)$-free, then $\chi(G) \leq \frac{3 \omega(G)}{2}$. Huang and Karthick [18] showed that if G is (P_{5}, paraglider)-free, then $\chi(G) \leq\left\lceil\frac{3 \omega^{2}(G)}{2}\right\rceil$.

Chudnovsky and Sivaraman [7] showed that $\chi(G) \leq 2^{\omega(G)-1}$ if G is $\left(P_{5}, C_{5}\right)$-free, Brause et al [1] proved that $\chi(G) \leq d \cdot \omega^{3}(G)$ for some constant d if G is $\left(P_{5}, K_{2,3}\right)$-free, and Schiermeyer [21] proved that $\chi(G) \leq c \cdot \omega^{3}(G)$ for some constant c if G is $\left(P_{5}, K_{1}+2 K_{2}\right)$ -
free. In this paper, we study a subclasses of P_{5}-free graphs, and prove the following theorems, which improve some results of [1, 21,26].

Theorem 1.1 Every $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graph is perfectly divisible.
Theorem 1.2 If G is $\left(P_{5}, K_{2,3}\right)$-free then $\chi(G) \leq 2 \omega^{2}(G)-\omega(G)-3$.
Theorem 1.3 If G is $\left(P_{5}, K_{1}+2 K_{2}\right)$-free with $\omega(G) \geq 2$ then $\chi(G) \leq \frac{3}{2}\left(\omega^{2}(G)-\omega(G)\right)$.
Theorem 1.4 If G is $\left(P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right)\right)$-free then $\chi(G) \leq 3 \omega(G)+11$.
Theorem 1.2 improves a result of Brause et al [1] and the upper bound $2 \omega^{2}(G)-\omega(G)-3$ is sharp in the sense that all $\left(P_{5}, K_{3}\right)$-free graphs are 3 -colorable and there are $\left(P_{5}, K_{3}\right)$ free graphs with chromatic number 3, Theorem 1.3 improves a result of Schiermeyer [21], and Theorem 1.4 improves a result of [26] which states that $\chi(G) \leq \frac{1}{2}\left(\omega^{2}(G)+\omega(G)\right)$ for $\left\{2 K_{2}, K_{1}+\left(K_{1} \cup K_{3}\right)\right\}$-free graphs.

It is known (see Theorem 14 of [3]) that the class of $2 K_{2} \cup 3 K_{1}$-free graphs does not admit a linear binding function, and so one can not expect a linear binding function for $\left(P_{5}, K_{2,3}\right)$-free graphs or for $\left(P_{5}, K_{1}+2 K_{2}\right)$-free graphs.

In Section 2, we introduce a few more notations, and list several useful lemmas. Section 3 is devoted to the proof of Theorem 1.1. Theorems $1.2,1.3$, and 1.4 are proved in Sections 4,5 , and 6 respectively.

2 Preliminary and Notations

Let G be a graph, and let A be an antihole of G with $V(A)=\left\{v_{1}, v_{2}, \cdots, v_{h}\right\}$. We always enumerate the vertices of A cyclically such that $v_{i} v_{i+1} \notin E(G)$, and simply write $A=v_{1} v_{2} \cdots v_{h}$. In this paper, the summations of subindex are taken modulo h for some h, and we always set $h+1 \equiv 1$.

Observation 2.1 The vertices of an odd antihole cannot be the union of two cliques.
For two vertices x and y of G, an $x y$-path is an induced path with ends x and y. Throughout this paper, all paths considered are induced paths. The distance $d(x, y)$ between x and y is the length of the shortest $x y$-path of G.

Let P be a path, and let u and v be two vertices of P. We use P^{*} to denote the set of internal vertices of P (i.e., those vertices of degree 2 in P), and use $P[u, v]$ to denote the segment of P between u and v.

Let $v \in V(G)$, and let X be a subset of $V(G)$. We use $N_{X}(v)$ to denote the set of neighbors of v in X. We say that v is complete to X if $N_{X}(v)=X$, and say that v is anticomplete to X if $N_{X}(v)=\emptyset$. For two subsets X and Y of $V(G)$, we say that X is complete to Y if each vertex of X is complete to Y, and say that X is anticomplete to Y if each vertex of X is anticomplete to Y. If $2 \leq|X| \leq|V(G)|-1$ and every vertex in $V(G) \backslash X$ is either complete to X or anticomplete to X, then X is said to be a homogeneous set.

Lemma 2.1 [7] A minimal nonperfectly divisible graph admits no homogeneous sets.
Let $d(v, X)=\min _{x \in X} d(v, x)$, and call $d(v, X)$ the distance of a vertex v to a subset X. Let i be a positive integer, and $N_{G}^{i}(X)=\{y \in V(G) \backslash X \mid d(y, X)=i\}$. We call $N_{G}^{i}(X)$ the i-neighborhood of X, and simply write $N_{G}^{1}(X)$ as $N_{G}(X)$. If no confusion may occur, we write $N^{i}(X)$ instead of $N_{G}^{i}(X)$, and $N^{i}(\{v\})$ is denoted by $N^{i}(v)$ for short.

Suppose that $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ is a 5 -hole of G. For a subset $T \subseteq\{1,2,3,4,5\}$, let

$$
N_{T}(C)=\left\{x \mid x \in N(C), \text { and } v_{i} x \in E(G) \text { if and only if } i \in T\right\} .
$$

It is easy to check that for $k \in\{1,2,3,4,5\}$ and $l=k+2, N_{\{k, k+2\}}(C)=N_{\{l, l+3\}}(C)$ and $N_{\{k, k+2, k+3\}}(C)=N_{\{l, l+1, l+3\}}(C)$.

The next lemma is devoted to the structure of P_{5}-free graphs. It holds trivially by the P_{5}-freeness of G, and so we omit its proof.

Lemma 2.2 Suppose that G is a P_{5}-free graph and $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ is a 5 -hole of G. Then,
(a) for $i \in\{1,2,3,4,5\}, N_{\{i\}}(C)=N_{\{i, i+1\}}(C)=\emptyset$, and $N_{\{i, i+2\}}(C) \cup N_{\{i, i+1, i+2\}}(C)$ is anticomplete to $N^{2}(C)$,
(b) if $x \in N(C)$ and $N^{2}(x) \cap N^{3}(C) \neq \emptyset$ then $x \in N_{\{1,2,3,4,5\}}(C)$, and
(c) for each vertex $x \in N^{2}(C)$ and each component B of $G\left[N^{3}(C)\right]$, x is either complete or anticomplete to B.

We end this section by the following two lemmas which are also very useful in the proofs of the main results. A clique cut set is a cut set and is a clique.

Lemma 2.3 A minimal nonperfectly divisible graph has no clique cut sets.
Proof. If it is not the case, let G be a minimal nonperfectly divisible graph, and let S be a clique cut set of G. Let C_{1} be a component of $G-S$, let $G_{1}=G\left[V\left(C_{1}\right) \cup S\right]$, and let $G_{2}=G-V\left(C_{1}\right)$. Then, both G_{1} and G_{2} are perfectly divisible. For $i \in\{1,2\}$, let $\left(A_{i}, B_{i}\right)$ be a perfect division of G_{i} with $G\left[A_{i}\right]$ perfect and $\omega\left(G\left[B_{i}\right]\right)<\omega\left(G_{i}\right)$. Since S is a clique, we see that both $A_{1} \cap A_{2}$ and $B_{1} \cap B_{2}$ are cliques as they are subsets of S, and thus $G\left[A_{1} \cup A_{2}\right]$ is perfect and $\omega\left(B_{1} \cup B_{2}\right)<\omega(G)$, a contradiction.

Let G be a graph with $\alpha(G)=2$, and let v be a vertex of G. Notice that $V(G) \backslash$ $(N(v) \cup\{v\})$ is a clique, which implies that $G-N(v)$ is perfect. Thus the next lemma follows directly.

Lemma 2.4 Graphs of independent number at most 2 are perfectly divisible.

3 Perfect divisibility of $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graphs

This section is aim to prove Theorem [1.1, A cut set S is said to be a minimal cut set if any proper subset of S is not a cut set of G. We first prove a lemma on the structure of $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graphs.

Lemma 3.1 Suppose that G is a $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graph without clique cut sets, and S is a minimal cut set of G. Then
(a) $G-S$ has exactly two components, and for each pair of non-adjacent vertices $s_{1}, s_{2} \in$ S, each $s_{1} s_{2}$-path with interior in exactly one component has length 2,
(b) each vertex of S is complete to at least one component of $G-S$, and
(c) $\alpha(G[S])=2$.

Proof. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. It is certain that $t \geq 2$. Since S is a minimal cut set, we see that for each $i \in\{1,2, \ldots, t\}$,

$$
\begin{equation*}
N_{V\left(C_{i}\right)}(x) \neq \emptyset \text { for each vertex } x \in S \tag{1}
\end{equation*}
$$

Let $V_{1}=V\left(C_{1}\right)$ and $G_{1}=G\left[S \cup V_{1}\right]$, let $G_{2}=G-V_{1}$, and let $V_{2}=V\left(G_{2}\right) \backslash S$.
Since G has no clique cut set, we arbitrarily choose s_{1} and s_{2} to be two non-adjacent vertices in S. Suppose that $G-S$ has at least 3 components, then $G_{2}-S$ is not connected as $G_{1}-S=C_{1}$. Let C_{2} and C_{3} be two components of $G_{2}-S$. For $i \in\{1,2,3\}$, let P_{i} be an $s_{1} s_{2}$-path with interior in C_{i} (recall that all paths considered are induced paths).

If one of P_{1}, P_{2} and P_{3} has length at least 3, then a C_{5} or a P_{5} appears. Otherwise, a $K_{2,3}$ appears. Hence, $G-S$ has two components $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$. This also implies that each $s_{1} s_{2}$-path with interior in V_{1} or V_{2} has length 2.

Let $s \in S$. It follows from (11) that s has neighbors in both V_{1} and V_{2}. Since both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are connected and G is P_{5}-free, we have that each vertex of S is complete to either V_{1} or V_{2}.

Now it is left to show that $\alpha(G[S])=2$. Suppose to its contrary that s_{3} is a vertex in $S \backslash\left\{s_{1}, s_{2}\right\}$ anticomplete to $\left\{s_{1}, s_{2}\right\}$. Thus we have that, for each pair of $i, j \in\{1,2\}$, each $s_{i} s_{3}$-path with interior in V_{j} has length 2 . Since G induces no $K_{2,3}$, we have that $N_{V_{i}}\left(s_{1}\right) \cap N_{V_{i}}\left(s_{2}\right) \cap N_{V_{i}}\left(s_{3}\right)=\emptyset$ for some $i \in\{1,2\}$, and so we may assume that $N_{V_{1}}\left(s_{1}\right) \cap$ $N_{V_{1}}\left(s_{2}\right) \cap N_{V_{1}}\left(s_{3}\right)=\emptyset$. Let $w_{1} \in V_{1}$ be a common neighbor of s_{1} and s_{2}, let $w_{2} \in V_{1}$ be a common neighbor of s_{2} and s_{3}, and let $x \in V_{2}$ be a common neighbor of s_{1} and s_{3}. If $w_{1} w_{2} \notin E(G)$, then $G\left[\left\{s_{1}, w_{1}, s_{2}, w_{2}, s_{3}\right\}\right]=P_{5}$; otherwise, $G\left[\left\{s_{1}, s_{3}, w_{1}, w_{2}, x\right\}\right]=C_{5}$. This contradiction implies that $\alpha(G[S])=2$, which completes the proof of Lemma 3.1,

Proof of Theorem 1.1. Let G be a $\left(P_{5}, C_{5}, K_{2,3}\right)$-free graph. Suppose that G is not perfectly divisible but every proper induced subgraph of G is perfectly divisible. It is certain that G is connected and not perfect. Let S be a minimal cut set of G. By Lemma 2.3, S is not a clique. It follows from Lemma 3.1 that $\alpha(G[S])=2, G-S$ has
exactly two components, say C_{1} and C_{2}, and each vertex of S is either complete to $V\left(C_{1}\right)$ or $V\left(C_{2}\right)$. For $i \in\{1,2\}$, let $V_{i}=V\left(C_{i}\right)$, and let $G_{i}=G\left[V_{i} \cup S\right]$.

Let $S_{0} \subseteq S$ be the set of vertices complete to $V_{1} \cup V_{2}$. For $i \in\{1,2\}$, let $S_{i} \subseteq S \backslash S_{0}$ be the set of vertices only complete to V_{i}. Clearly $S=S_{0} \cup S_{1} \cup S_{2}$.

We claim that

$$
\begin{equation*}
\text { at least one of } V_{1} \text { and } V_{2} \text { is a clique. } \tag{2}
\end{equation*}
$$

Suppose to its contrary that both V_{1} and V_{2} are not cliques. Since S is not a clique, we may choose s_{1} and s_{2} to be two non-adjacent vertices of S. Suppose that $\left\{s_{1}, s_{2}\right\} \cap S_{0} \neq \emptyset$. If $\left\{s_{1}, s_{2}\right\} \cap S_{i} \neq \emptyset$ for some $i \in\{1,2\}$, then V_{i} is a clique, otherwise an induced $K_{2,3}$ is obtained. Similarly, if $\left\{s_{1}, s_{2}\right\} \subseteq S_{0}$, then both V_{1} and V_{2} must be cliques. Thus we may assume that $\left\{s_{1}, s_{2}\right\} \cap S_{0}=\emptyset$. Note that $N_{V_{i}}(x) \neq \emptyset$ for each vertex $x \in S$ as S is a minimal cut set. If $\left\{s_{1}, s_{2}\right\} \subset S_{1}$, then G induces a $K_{2,3}$ whenever $N_{V_{2}}\left(s_{1}\right) \cap N_{V_{2}}\left(s_{2}\right) \neq \emptyset$, and G induces a P_{5} or a C_{5} whenever $N_{V_{2}}\left(s_{1}\right) \cap N_{V_{2}}\left(s_{2}\right)=\emptyset$, both are contradictions. Similar contradiction happens if $\left\{s_{1}, s_{2}\right\} \subset S_{2}$. Therefore, we may suppose that $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$, that is, both $S_{0} \cup S_{1}$ and $S_{0} \cup S_{2}$ are cliques. Now by Observation 2.1, we have that $G[S]$ is perfect. Since $\omega(G-S)<\omega(G)$, it contradicts the minimal nonperfect divisibility of G, and which proves (22).

Next we claim that

$$
\begin{equation*}
\text { exact one of } V_{1} \text { and } V_{2} \text { is a clique. } \tag{3}
\end{equation*}
$$

To prove (3), we will show that if V_{1} and V_{2} are both cliques then $\alpha(G)=2$, and hence deduce a contradiction to Lemma 2.4 claiming that all graphs G with $\alpha(G) \leq 2$ are perfectly divisible.

Suppose to its contrary that V_{1} and V_{2} are both cliques but $\alpha(G)>2$. Let $T=$ $\left\{t_{1}, t_{2}, t_{3}\right\}$ be an independent set of G. It follows from Lemma 3.1 that $\left|T \cap S_{i}\right|=2$ and $\left|T \cap V_{3-i}\right|=1$ for some $i \in\{1,2\}$. Without loss of generality, we assume that $t_{1}, t_{2} \in S_{1}$ and $t_{3} \in V_{2}$.

Note that V_{1} and V_{2} are both cliques, and V_{1} is complete to $S_{0} \cup S_{1}$. If $S_{2}=\emptyset$, then ($V_{1} \cup V_{2}, S_{0} \cup S_{1}$) is a perfect division of G, contradicting the minimal nonperfect divisibility of G. Hence $S_{2} \neq \emptyset$.

Let x be a vertex in S_{2}. Since no vertex of S_{2} is complete to V_{1}, we may choose a vertex, say v_{1}, in V_{1} with $x v_{1} \notin E(G)$. Since $\alpha(G[S])=2$, we have that x cannot be anticomplete to $\left\{t_{1}, t_{2}\right\}$. Suppose $x t_{1} \in E(G)$. To avoid a $P_{5}=t_{2} v_{1} t_{1} x t_{3}$, we have that x must be adjacent to t_{2} as well. Hence we have that $\left\{t_{1}, t_{2}\right\}$ is complete to S_{2}.

If S_{2} is not a clique, let x and x^{\prime} be two non-adjacent vertices of S_{2}, then $G\left[\left\{T \cup\left\{x, x^{\prime}\right\}\right]\right.$ is a $K_{2,3}$. This implies that S_{2} must be a clique.

Since both V_{1} and $S_{2} \cup V_{2}$ are cliques and V_{1} is complete to $S_{0} \cup S_{1}$, we have that $G\left[V_{1} \cup V_{2} \cup S_{2}\right]$ is perfect by Observation [2.1, and $\omega\left(G\left[S_{0} \cup S_{1}\right]\right)<\omega(G)$. Thus $\left(V_{1} \cup V_{2} \cup\right.$ $S_{2}, S_{0} \cup S_{1}$) is a perfect division of G, which leads to a contradiction and proves (3).

Now we may assume that V_{1} is a clique and V_{2} is not.

Since V_{2} is not a clique, we must have that $S_{0} \cup S_{2}$ is a clique, otherwise an induced $K_{2,3}$ appears. Thus $V_{1} \cup S_{0}$ is also a clique. Since G is $\left(P_{5}, C_{5}, K_{2,3}\right)$-free, by Observation 2.1 we have that

$$
\begin{equation*}
G\left[V_{1} \cup S_{0} \cup S_{2}\right] \text { is perfect. } \tag{4}
\end{equation*}
$$

Suppose that $S_{0} \cup S_{2} \neq \emptyset$, and let $v \in S_{0} \cup S_{2}$. If $\omega\left(G\left[V_{2} \cup S_{1}\right]\right)<\omega(G)$, then $\left(V_{1} \cup S_{0} \cup S_{2}, V_{2} \cup S_{1}\right)$ is a perfect division of G by (4). Thus we may further assume that $\omega\left(G\left[V_{2} \cup S_{1}\right]\right)=\omega(G)$. Let K_{1}, \ldots, K_{r} be all the cliques of $G\left[V_{2} \cup S_{1}\right]$ of size $\omega(G)$, and let $L_{i}=K_{i} \cap S_{1}$ for each $i \in\{1,2, \ldots, r\}$. Since $\left|K_{i}\right|=\omega(G)$ and $\omega\left(G\left[V_{2}\right]\right)<\omega(G)$, we have that $L_{i} \neq \emptyset$, and v is not complete to L_{i}. Let $M_{i} \subseteq L_{i}$ be the set of vertices which are non-adjacent to v for $i \in\{1,2, \ldots, r\}$, and let $M=\bigcup_{i=1}^{r} M_{i}$. Since $\alpha(G[S])=2$, we have that M is a clique, and so $V_{1} \cup M$ is a clique. Notice that $S_{0} \cup S_{2}$ is a clique. Thus $G\left[V_{1} \cup S_{0} \cup S_{2} \cup M\right]$ induces no odd antihole by Observation [2.1, and so it is perfect. Now we have that G is perfectly divisible as $\omega\left(G\left[\left(V_{2} \cup S_{1}\right) \backslash M\right]\right)<\omega\left(G\left[V_{2} \cup S_{1}\right]\right)=\omega(G)$, which contradicts the minimal nonperfect divisibility of G.

Hence we may suppose that, for each minimal cut set S of $G, S_{0} \cup S_{2}=\emptyset$. Consequently, we must have that $\left|V_{1}\right|=1$ (as otherwise V_{1} is a homogeneous set, contradicting Lemma 2.1), that is,
every minimal cut set of G equal $N(x)$ for some vertex x of G.
Let v be a vertex of G. It is certain that $N(v)$ is a cut set. Next we show that

$$
\begin{equation*}
N(v) \text { is a minimal cut set, } \tag{6}
\end{equation*}
$$

which implies that the converse of (5) holds as well.
Suppose to its contrary that w is a vertex such that $N(w)$ is not a minimal cut set. Let $T_{1}, T_{2}, \ldots, T_{r}$ be all the subsets of $N(w)$ where each one is a minimal cut set. It follows from (5) that there are some vertices, say $w_{1}, w_{2}, \ldots, w_{r}$, such that $T_{i}=N\left(w_{i}\right)$ for each $i \in\{1,2, \ldots, r\}$. We claim that

$$
\begin{equation*}
\left\{w, w_{1}, w_{2}, \ldots, w_{r}\right\}=V(G) \backslash N(w) \tag{7}
\end{equation*}
$$

If it is not the case, then let C be a component of $G-N(w)-\left\{w, w_{1}, w_{2}, \ldots, w_{r}\right\}$, and let $X \subseteq N(w)$ be the set of vertices where each one has a neighbor in C. It is certain that X is a cut set. Thus there must be some i such that $T_{i} \subseteq X$. Without loss of generality, we suppose that $T_{1} \subseteq X$. Since G has no clique cut set by Lemma 2.3, we have that T_{1} is not a clique, and so has two non-adjacent vertices, say t_{1} and t_{1}^{\prime}. Let P be a shortest $t_{1} t_{1}^{\prime}$-path with interior in C. If P has length 2 , then $t_{1} w t_{1}^{\prime}, t_{1} w_{1} t_{1}^{\prime}$ and P form an induced $K_{2,3}$ in G. If P has length 3 , then $t_{1} w t_{1}^{\prime}$ and P form a C_{5} in G. Otherwise, we have that P has length greater than 3 , and then we can find a P_{5} in G. These contradictions proves (7).

Since $\left\{w, w_{1}, w_{2}, \ldots, w_{r}\right\}$ is independent, it follows from (7) that $\left(\left\{w, w_{1}, w_{2}, \ldots, w_{r}\right\}, N(w)\right)$ forms a perfect division of G, and so (6) holds. Thus by Lemma 3.1, we have that

$$
\begin{equation*}
\alpha(G[N(x)])=2 \text { for each vertex } x \text { of } G \text {. } \tag{8}
\end{equation*}
$$

We choose $v_{1} \in V(G)$ and let $S_{1}=N\left(v_{1}\right)$. Then, $\alpha\left(G\left[S_{1}\right]\right)=2$, and S_{1} is a minimal cut set by (6). Let s_{1} and s_{2} be two non-adjacent vertices in S_{1}. Let $V_{1}=\left\{v_{1}\right\}$, and let $V_{2}=V(G) \backslash\left\{S_{1} \cup\left\{v_{1}\right\}\right)$. We have that $G\left[V_{2}\right]$ is connected by Lemma 3.1 (a).

Let $M=N_{V_{2}}\left(s_{1}\right) \cap N_{V_{2}}\left(s_{2}\right)$, and let $M_{i}=N_{V_{2}}\left(s_{i}\right) \backslash M$ for $i \in\{1,2\}$. Since G induces no $K_{2,3}$, we have that M must be a clique. If both M_{1} and M_{2} are not empty, let $m_{i} \in M_{i}$ for $i \in\{1,2\}$, then $G\left[\left\{m_{1}, m_{2}, s_{1}, s_{2}, v_{1}\right\}\right]=C_{5}$ whenever $m_{1} m_{2} \in E(G)$, and $G\left[\left\{m_{1}, m_{2}, s_{1}, s_{2}, v_{1}\right\}\right]=P_{5}$ whenever $m_{1} m_{2} \notin E(G)$. Without loss of generality, we assume that $M_{2}=\emptyset$. Now we claim that

$$
\begin{equation*}
V_{2}=M \cup M_{1} . \tag{9}
\end{equation*}
$$

Suppose that (9) does not hold. Since $G\left[V_{2}\right]$ is connected, we may choose a vertex, say z, in $V_{2} \backslash\left(M \cup M_{1}\right)$ that is adjacent to some vertex of $M \cup M_{1}$. If $z z_{1} \in E(G)$ for some $z_{1} \in M$, then $\left\{s_{1}, s_{2}, z\right\}$ is an independent set contained in $N\left(z_{1}\right)$, contradicting (8). If $z z_{2} \in E(G)$ for some vertex $z_{2} \in M_{1}$, then $G\left[\left\{s_{1}, s_{2}, v_{1}, z, z_{2}\right\}\right]=P_{5}$. This proves (9).

Note that $S_{1}=N\left(v_{1}\right)$. By (8), we have that no vertex of $N\left(v_{1}\right) \backslash\left\{s_{1}, s_{2}\right\}$ is anticomplete to $\left\{s_{1}, s_{2}\right\}$. Let $T=N_{S_{1}}\left(s_{1}\right) \cap N_{S_{1}}\left(s_{2}\right)$, let $T_{1}=N_{S_{1}}\left(s_{1}\right) \backslash T$, and let $T_{2}=N_{S_{1}}\left(s_{2}\right) \backslash T$. If T_{i} is not a clique for some $i \in\{1,2\}$, let $t_{i, 1}$ and $t_{i, 2}$ be two non-adjacent vertices of T_{i}, then $\left\{s_{3-i}, t_{i, 1}, t_{i, 2}\right\}$ is an independent set in S_{1}, which leads to a contradiction to (8). Thus both T_{1} and T_{2} are cliques.

Let $A=T_{2} \cup\left\{s_{1}, s_{2}\right\}$, and let $B=V(G) \backslash A$. It is certain that $G[A]$ is perfect. Since s_{1} is complete to B by (9), we see that $\omega(G[B])<\omega(G)$, which implies that (A, B) is a perfect division of G. This contradicts the minimal nonperfect divisibility of G and proves Theorem 1.1 .

$4\left(P_{5}, K_{2,3}\right)$-free graphs

In this section, we prove Theorem 1.2.
Since perfectly divisible graphs G has chromatic number at most $\binom{\omega(G)+1}{2}$, it follows from Theorem 1.1 that we only need to consider the ($P_{5}, K_{2,3}$)-free graphs with a 5 -hole. Let G be a $\left(P_{5}, K_{2,3}\right)$-free graph, and let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be a 5 -hole of G. Recall that for $T \subseteq\{1,2,3,4,5\}, N_{T}(C)$ consists of the vertices not on C but each has exactly $\left\{v_{i} \mid i \in T\right\}$ as its neighbors on C, and for integer $i \geq 1, N^{i}(C)$ consists of the vertices of distance i apart from C. Let u and v be two non-adjacent vertices in $N(C)$. We say that $\{u, v\}$ is a bad pair if there is an $i \in\{1,2,3,4,5\}$ such that $u \in N_{\{i, i+1, i+3\}}(C)$ and $v \in N_{\{i, i+1, i+2, i+4\}}(C)$.

Lemma 4.1 Suppose that G is a $\left(P_{5}, K_{2,3}\right)$-free graph with a 5 -hole $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, and u, v are two vertices in $N(C)$. Then all the followings hold.
(a) If there exist three consecutive vertices of C, named v_{i}, v_{i+1}, and v_{i+2}, such that $\left\{v_{i}, v_{i+2}\right\} \subseteq N(u) \cap N(v)$ and $v_{i+1} \notin N(u) \cup N(v)$, then $u v \in E(G)$.
(b) $N_{\{i, i+2\}}(C), N_{\{i, i+1, i+3\}}(C)$, and $N_{\{i, i+1, i+2, i+3\}}(C)$ are all cliques for $1 \leq i \leq 5$.
(c) $\alpha\left(G\left[N_{\{1,2,3,4,5\}}(C)\right]\right) \leq 2$, and for each $i \in\{1,2,3,4,5\}, \alpha\left(G\left[N_{\{i, i+1, i+2\}}(C)\right]\right) \leq 2$, and $N_{\{i, i+1, i+2\}}(C)$ is complete to $N_{\{i+1, i+2, i+3\}}(C)$.
(d) If $u v \notin E(G)$ and $\{u, v\}$ is not a bad pair, then $N(u) \cap N(v) \cap N^{2}(C)=\emptyset$.
(e) $N(C) \backslash\left(N_{\{1,2,3,4,5\}}(C) \underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+1, i+2\}}(C)\right)$ can be partitioned into five cliques $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} such that $\left|S_{i}\right| \leq \bar{\omega}(G)-1$ and v_{i} is anticomplete to S_{i} for each i.

Proof. If $\left\{v_{i}, v_{i+2}\right\} \subseteq N(u) \cap N(v)$ and $v_{i+1} \notin N(u) \cup N(v)$ for some i, then $u v \in E(G)$ to avoid a $K_{2,3}$ on $\left\{u, v, v_{i}, v_{i+1}, v_{i+2}\right\}$. Hence (a) holds, and (b) follows directly from (a).

Now we come to prove (c). If either $G\left[N_{\{i, i+1, i+2\}}(C)\right]$ or $G\left[N_{\{1,2,3,4,5\}}(C)\right]$ has an independent set of size 3 , say $\{u, v, w\}$, then $\left\{u, v, w, v_{i}, v_{i+2}\right\}$ induces a $K_{2,3}$. If $N_{\{i, i+1, i+2\}}(C)$ is not complete to $N_{\{i+1, i+2, i+3\}}(C)$ for some i, we may choose $x \in N_{\{i, i+1, i+2\}}(C)$ and $y \in N_{\{i+1, i+2, i+3\}}(C)$ with $x y \notin E(G)$, then a $P_{5}=x v_{i+1} y v_{i+3} v_{i+4}$ appears. Hence (c) holds.

Next we prove (d). Suppose that $u v \notin E(G)$ and $\{u, v\}$ is not a bad pair, and suppose that $N(u) \cap N(v) \cap N^{2}(C)$ has a vertex w. If one of u and v is in $N_{\{1,2,3,4,5\}}(C)$, then there exists some $i \in\{1,2,3,4,5\}$ such that $G\left[\left\{u, v, v_{i}, v_{i+2}, w\right\}\right]=K_{2,3}$, which leads to a contradiction. Thus $\{u, v\} \subseteq W=\underset{1 \leq i \leq 5}{\bigcup}\left(N_{\{i, i+1, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)\right)$ by Lemma 2.2(a).

Now we first suppose that $u \in N_{\{k, k+1, k+3\}}(C)$ for some k, and by symmetry we may assume that $k=1$. Since $\{u, v\}$ is not a bad pair, we see that $v \in W \backslash N_{\{1,2,3,5\}}(C)$. It follows from (a) that, $v \notin N_{\{1,2,4\}}(C) \cup N_{\{1,3,4\}}(C) \cup N_{\{2,4,5\}}(C) \cup N_{\{1,2,3,4\}}(C) \cup N_{\{4,5,1,2\}}(C)$. But $G\left[\left\{u, v, w, v_{2}, v_{5}\right\}\right]=P_{5}$ if $v \in N_{\{1,3,5\}}(C), G\left[\left\{u, v, w, v_{1}, v_{3}\right\}\right]=P_{5}$ if $v \in N_{\{2,3,5\}}(C) \cup$ $N_{\{2,3,4,5\}}(C)$, and $G\left[\left\{u, v, w, v_{1}, v_{4}\right\}\right]=P_{5}$ if $v \in N_{\{3,4,5,1\}}(C)$. Hence we have, by symmetry, that

$$
\{u, v\} \cap\left(\bigcup_{1 \leq i \leq 5}\left(N_{\{i, i+1, i+3\}}(C)\right)=\emptyset\right.
$$

that is, $\{u, v\} \subseteq \underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+1, i+2, i+3\}}(C)$. Without loss of generality, we may assume that $u \in N_{\{1,2,3,4\}}(C)$. Thus $v \notin \underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+1, i+2, i+3\}}(C)$ by (a) of this lemma. This contradiction proves (d).

Finally, we prove (e). Let $S_{1}=N_{2,5}(C) \cup N_{\{2,3,5\}}(C) \cup N_{\{2,4,5\}}(C) \cup N_{\{2,3,4,5\}}(C)$, $S_{2}=N_{\{1,3\}}(C) \cup N_{\{1,3,4\}} \cup N_{\{1,3,5\}} \cup N_{\{1,3,4,5\}}, S_{3}=N_{\{2,4\}} \cup N_{\{1,2,4,5\}}(C), S_{4}=N_{\{3,5\}}(C) \cup$ $N_{\{1,2,3,5\}}(C)$, and $S_{5}=N_{\{1,4\}}(C) \cup N_{\{1,2,4\}}(C) \cup N_{\{1,2,3,4\}}(C)$. It is certain that v_{i} is
anticomplete to S_{i} for each i, and one can check easily from (a) that each S_{i} is a clique of size at most $\omega(G)-1$.

Lemma 4.2 Let G be a $\left(P_{5}, K_{2,3}\right)$-free graph and $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be a 5 -hole of G. If G contains no clique cut sets, then $N^{3}(C)=\emptyset$, and for each component B of $N^{2}(C)$, $\alpha(B) \leq 2$ and $N(B) \cap N(C) \subseteq N_{\{1,2,3,4,5\}}(C)$ whenever $\omega(B)=\omega(G)$.

Proof. Suppose that G has no clique cut sets. Let $S^{\prime} \subseteq N(C)$ be the set of vertices having no neighbors in $N^{2}(C)$, and let $S=N(C) \backslash S^{\prime}$. By Lemma 2.2(a), if a vertex x of $N(C)$ has neighbors in $N^{2}(C)$, then $\left|N_{C}(x)\right| \geq 3$. Hence for any two vertices u and v of S we have that

$$
\begin{equation*}
N_{C}(v) \cap N_{C}(u) \neq \emptyset . \tag{10}
\end{equation*}
$$

Next we prove this lemma by considering the connectedness of $G\left[N^{2}(C)\right]$.
Case 1. Suppose that $G\left[N^{2}(C)\right]$ is connected. Since G contains no clique cut sets, there must exist two non-adjacent vertices, say u and v, in S. By (10), we may choose z to be a common neighbor of u and v on C.

Let $T_{u v}=N(u) \cap N(v) \cap N^{2}(C)$, and let $T_{u}=\left(N(u) \cap N^{2}(C)\right) \backslash T_{u v}$ and $T_{v}=$ $\left(N(v) \cap N^{2}(C)\right) \backslash T_{u v}$.

First suppose that $T_{u v}=\emptyset$. Since G is $\left(P_{5}, K_{2,3}\right)$-free, we have

$$
\begin{equation*}
T_{u} \text { is complete to } T_{v} \text {, and } \max \left\{\alpha\left(G\left[T_{u}\right]\right), \alpha\left(G\left[T_{v}\right]\right) \leq 2,\right. \tag{11}
\end{equation*}
$$

otherwise for any pair of non-adjacent vertices $t_{u} \in T_{u}$ and $t_{v} \in T_{v}, t_{u} u z v t_{v}$ is a P_{5}, and $G\left[T_{u} \cup T_{v} \cup\{w\}\right]$ induces a $K_{2,3}$ whenever $\alpha\left(G\left[T_{w}\right]\right) \geq 3$ for any $w \in\{u, v\}$. This leads to a contradiction.

We further claim that

$$
\begin{equation*}
N^{2}(C)=T_{u} \cup T_{v}, \text { and } N^{3}(C)=\emptyset \tag{12}
\end{equation*}
$$

If $N^{2}(C) \neq T_{u} \cup T_{v}$, since $G\left[N^{2}(C)\right]$ is connected, we may suppose by symmetry that $N^{2}(C) \backslash\left(T_{u} \cup T_{v}\right)$ has a vertex, say w, which has a neighbor t_{u} in T_{u}, and so $v z u t_{u} w$ is a P_{5}. Thus $N^{2}(C)=T_{u} \cup T_{v}$. If $N^{3}(C) \neq \emptyset$, then let w be a vertex of $N^{3}(C)$, and suppose by symmetry that t_{u}^{\prime} is a neighbor of w in T_{u}, again we have a $P_{5}=v z u t_{u}^{\prime} w$. This proves (12).

From (11) and (12), we see that $\alpha\left(G\left[N^{2}(C)\right]\right) \leq 2$. If $\omega\left(G\left[N^{2}(C)\right]\right)=\omega(G)$, then $T_{u} \neq \emptyset$ and $T_{v} \neq \emptyset$. To avoid a P_{5}, we see that all neighbors of $N^{2}(C)$ in $N(C)$ must be contained in $N_{\{1,2,3,4,5\}}(C)$. So the lemma holds whenever $G\left[N^{2}(C)\right]$ is connected and $T_{u v}=\emptyset$.

Next we may assume that $T_{u v} \neq \emptyset$, and let $t_{u v}$ be a vertex in $T_{u v}$. By Lemma 4.1(d), we have that $\{u, v\}$ is a bad pair. Suppose by symmetry that $u \in N_{\{1,2,4\}}(C)$ and $v \in$ $N_{\{1,2,3,5\}}(C)$. Since u and v have a common neighbor z on C, and since G is $K_{2,3}$-free, we have that

$$
\begin{equation*}
T_{u v} \text { is a clique. } \tag{13}
\end{equation*}
$$

Suppose that $T_{v} \neq \emptyset$. Let t_{v} be a vertex of T_{v}. If t_{v} has a neighbor $t_{u v}^{\prime}$ in $T_{u v}$, then a $P_{5}=v_{5} v_{1} u t_{u v}^{\prime} t_{v}$ appears, and if t_{v} is anticomplete to $T_{u v}$, then a $P_{5}=v_{4} u t_{u v} v t_{v}$ appears. This implies that $T_{v}=\emptyset$. Similarly we have that $T_{u}=\emptyset$.

Note that $G\left[N^{2}(C)\right]$ is connected. Thus $N^{2}(C)=T_{u v}$, otherwise we may choose a vertex w in $N^{2}(C) \backslash T_{u v}$ where w has a neighbor $t_{u v} \in T_{u v}$ which implies a $P_{5}=v_{5} v_{1} u t_{u v} w$. If $N^{3}(C) \neq \emptyset$, let w be a vertex in $N^{3}(C)$ and w^{\prime} be a neighbor of w in $N^{2}(C)$, then a $P_{5}=w w^{\prime} u v_{1} v_{5}$ appears. Thus $N^{3}(C)=\emptyset$, and by (13) we have that this lemma holds when $G\left[N^{2}(C)\right]$ is connected and $T_{u v} \neq \emptyset$. Hence Lemma 4.2 holds when $G\left[N^{2}(C)\right]$ is connected.

Case 2. Suppose that $G\left[N^{2}(C)\right]$ is not connected. Let $T_{1}, T_{2}, \ldots, T_{k}$ be the components of $G\left[N^{2}(C)\right]$. Recall that S consists of the vertices in $N(C)$ that have neighbors in $N^{2}(C)$. For each $i \in\{1,2, \ldots, k\}$, let $S_{i}=N_{S}\left(T_{i}\right)$, and let Z_{i} be the subgraph of $G\left[N^{3}(C)\right]$ that is not anticomplete to T_{i}. If there exists some $i_{0} \in\{1,2, \ldots, k\}$ such that $S_{i_{0}}$ is not a clique, by applying the same arguments to $G\left[V(C) \cup S_{i_{0}} \cup T_{i_{0}} \cup Z_{i_{0}}\right]$ as that used in Case 1, we can show that $Z_{i_{0}}=\emptyset$ and $\alpha\left(T_{i_{0}}\right) \leq 2$, and $N\left(T_{i_{0}}\right) \cap N(C) \subseteq N_{\{1,2,3,4,5\}}(C)$ whenever $\omega\left(T_{i_{0}}\right)=\omega(G)$. Hence the lemma holds if S_{i} is not a clique for all $1 \leq i \leq k$.

Thus by symmetry suppose that S_{1} is a clique. Since S_{1} is not a clique cut set, we have that $S_{1} \neq S$. Without loss of generality, let $T_{1}, T_{2}, \cdots, T_{l}$ be the components such that $N_{S}\left(T_{i}\right) \subseteq S_{1}$ for each $i \in\{1,2, \ldots, l\}$. It is obvious that $1 \leq l \leq k-1$, otherwise S_{1} is a clique cut set. Now we have that T_{i} has neighbors in $S \backslash S_{1}$ for each $i \in\{l+1, \ldots, k\}$.

Since S_{1} is not a clique cut set, we have that $N^{3}(C) \neq \emptyset$, and T_{1} must have some neighbors in $N^{3}(C)$. Let R be a component of $G\left[N^{3}(C)\right]$ such that T_{1} is not anticomplete to R. Since S_{1} is not a clique cut set, we have that R cannot be anticomplete to $\cup_{i=l+1}^{k} T_{i}$. Without loss of generality, suppose that R is not anticomplete to T_{k}. Choose $t_{1} \in T_{1}$, $t_{k} \in T_{k}$, and $r_{1}, r_{k} \in R$ such that $t_{1} r_{1} \in E(G)$ and $t_{k} r_{k} \in E(G)$. By Lemma 2.2($(c),\left\{t_{1}, t_{k}\right\}$ is complete to R.

We can choose two adjacent vertices $s_{k} \in S \backslash S_{1}$ and $t_{k}^{\prime} \in T_{k}$. Let P^{\prime} be a shortest $t_{k} t_{k}^{\prime}$-path in T_{k}. Let $r \in R$ and z be a neighbor of s_{k} on C. Thus a path $P=t_{1} r t_{k} P^{\prime} t_{k}^{\prime} s_{k} z$ of length at least 5 appears. This contradiction proves Lemma 4.2 ,

Now, we can prove Theorem 1.2,
Proof of Theorem 1.2, Let G be a $\left\{P_{5}, K_{2,3}\right\}$-free graph. We may assume that G is connected and contains no clique cut set. If G is ($P_{5}, C_{5}, K_{2,3}$)-free, then G is perfectly divisible by Theorem 1.1, which implies that $\chi(G) \leq \frac{1}{2}\left(\omega^{2}(G)+\omega(G)\right)$. Thus we suppose that G is $\left(P_{5}, K_{2,3}\right)$-free and contains a 5 -hole C. By Lemma $2.2(a)$, we have that

$$
\begin{aligned}
N(C)= & N_{\{1,2,3,4,5\}}(C) \bigcup_{1 \leq i \leq 5}\left(N_{\{i, i+2\}}(C) \cup N_{\{i, i+1, i+2\}}(C)\right. \\
& \left.\cup N_{\{i, i+1, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)\right) .
\end{aligned}
$$

Note that $\omega\left(G\left[N_{\{1,2,3,4,5\}}(C)\right]\right) \leq \omega(G)-2, \omega\left(G\left[N_{\{1,2,3\}}(C) \cup N_{\{2,3,4\}}(C)\right] \leq \omega(G)-2\right.$, $\omega\left(G\left[N_{\{3,4,5\}}(C) \cup N_{\{1,4,5\}}(C)\right] \leq \omega(G)-2\right.$, and $\omega\left(G\left[N_{\{1,2,5\}}(C)\right] \leq \omega(G)-2\right.$. By Lemma 2.4
and Lemma 4.1 (c) (e),

$$
\begin{align*}
\chi(G[N(C)]) \leq & \chi\left(G\left[N_{\{1,2,3\}}(C) \cup N_{\{2,3,4\}}(C)\right]\right)+\chi\left(G\left[N_{\{3,4,5\}}(C) \cup N_{\{1,4,5\}}(C)\right]\right) \\
& +\chi\left(G\left[N_{\{1,2,5\}}(C)\right]\right)+\chi\left(G\left[N_{\{1,2,3,4,5\}}(C)\right]\right)+5(\omega(G)-1) \\
\leq & 4 \cdot \frac{(\omega(G)-2)^{2}+\omega(G)-2}{2}+5(\omega(G)-1) \\
= & 2 \omega^{2}(G)-\omega(G)-3 . \tag{14}
\end{align*}
$$

By Lemma 4.1(e), we can color the vertices of C with the colors used on the vertices of $N(C) \backslash\left(N_{\{1,2,3,4,5\}}(C) \underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+1, i+2\}}(C)\right)$ (which is counted $5(\omega(G)-1)$ in (14)).

Let B be a component of $G\left[N^{2}(C)\right]$. By Lemma 4.2, we see that $N^{2}(C)=G-$ $N(C)-V(C), \alpha(B) \leq 2$ and $N(B) \cap N(C) \subseteq N_{\{1,2,3,4,5\}}(C)$ if $\omega(B)=\omega(G)$. So, we have, by Lemmas 2.4, that $\chi(B) \leq \frac{(\omega(G)-1)^{2}+\omega(G)-1}{2}=\frac{\omega^{2}(G)-\omega(G)}{2}$ if $\omega(B)<\omega(G)$, and $\chi(B) \leq \frac{\omega^{2}(G)+\omega(G)}{2}$ otherwise.

Note that $N^{2}(C)$ is anticomplete to $\underset{1 \leq i \leq 5}{ } N_{\{i, i+1, i+2\}}(C)$ by Lemma 2.2(a), and B is anticomplete to $N(C) \backslash N_{\{1,2,3,4,5\}}(C)$ by Lemma 4.2 if $\omega(B)=\omega(G)$. If $\omega(B)<\omega(G)$, we can color the vertices in B with the colors used on the vertices of $\underset{1 \leq i \leq 5}{ } N_{\{i, i+1, i+2\}}(C)$ (which is counted no less than $\frac{\omega^{2}(G)-\omega(G)}{2}$ in (14)). If $\omega(B)=\omega(G)$, we can color the vertices in B with the colors used on the vertices of $N(C) \backslash N_{\{1,2,3,4,5\}}(C)$ (which is counted no less than $\frac{\omega^{2}(G)+\omega(G)}{2}$ in (14)).

Therefore, $\chi(G) \leq 2 \omega^{2}(G)-\omega(G)-3$ as desired.

$5\left(P_{5}, K_{1}+2 K_{2}\right)$-free graphs

For two subsets X and Y of $V(G)$, we say that X dominates Y if each vertex of Y has a neighbor in X. The next two lemmas are very useful in the proof of Theorem [1.3,

Lemma 5.1 [2] Every connected P_{5}-free graph has a dominating clique or a dominating P_{3}.

Lemma 5.2 [26] Let G be a $2 K_{2}$-free graph. Then $\chi(G) \leq \frac{1}{2}\left(\omega^{2}(G)+\omega(G)\right)$.
Proof of Theorem 1.3. Let G be a connected ($P_{5}, K_{1}+2 K_{2}$)-free graph with at least two vertices. By Lemma 5.1, G has a dominating clique or a dominating P_{3}. If G has a dominating P_{3}, say $v_{1} v_{2} v_{3}$, then $N\left(v_{i}\right)$ induces a $2 K_{2}$-free graph for each i, otherwise v_{i} and the $2 K_{2}$ in $G\left[N\left(v_{i}\right)\right]$ induce a $K_{1}+2 K_{2}$. Thus by Lemma 5.2 we have that $\chi(G) \leq$ $\chi\left(G\left[N\left(v_{1}\right)\right]\right)+\chi\left(G\left[N\left(v_{2}\right)\right]\right)+\chi\left(G\left[N\left(v_{3}\right)\right]\right) \leq \frac{3}{2}\left((\omega(G)-1)^{2}+\omega(G)-1\right)=\frac{3}{2}\left(\omega^{2}(G)-\omega(G)\right)$. Thus we may assume that G has a dominating clique, say K_{k} on vertices $\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{k}\right\}$. Let $S=N\left(v_{1}\right) \cup N\left(v_{2}\right)$ and $T=V(G) \backslash S$, that is, T consists of exactly those vertices anticomplete to $\left\{v_{1}, v_{2}\right\}$. Since G is $\left(K_{1}+2 K_{2}\right)$-free, we have that $N\left(v_{i}\right)$ induces a $2 K_{2^{-}}$ free subgraph for $i=1,2$. For each $i \in\{3, \ldots, k\}$, since the vertices of $N\left(v_{i}\right) \cap T$ are
anticomplete to $\left\{v_{1}, v_{2}\right\}$, we have that $N\left(v_{i}\right) \cap T$ is an independent set. Hence by Lemma.5.2, $\chi(G) \leq \chi\left(G\left[N\left(v_{1}\right)\right]\right)+\chi\left(G\left[N\left(v_{2}\right)\right]\right)+\omega(G)-2 \leq \omega^{2}(G)-2$. Note that $\frac{3}{2}\left(\omega^{2}(G)-\omega(G)\right) \geq$ $\omega^{2}(G)-2$. Hence if G is $\left(P_{5}, K_{1}+2 k_{2}\right)$-free, then $\chi(G) \leq \frac{3}{2}\left(\omega^{2}(G)-\omega(G)\right)$ as desired.

$6 \quad\left(P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right)\right)$-free graphs

Sumner [25] (see also [12]) proved that a connected (P_{5}, K_{3})-free graph is either bipartite or can be obtained from a 5 -hole by replacing each vertex with an independent set and then replacing each edge by a complete bipartite graph.

Lemma 6.1 [25] If G is $\left(P_{5}, K_{3}\right)$-free then $\chi(G) \leq 3$.
If G is $\left(P_{5}, K_{1} \cup K_{3}\right)$-free, then $G-N(v)-v$ is $\left(P_{5}, K_{3}\right)$-free for each vertex v of G, and so by a simple induction one can show the following lemma.

Lemma $6.2 \chi(G) \leq 3 \omega(G)-3$ for every $\left(P_{5}, K_{1} \cup K_{3}\right)$-free graph G with at least one edge.

Before proving Theorem 1.4, we first prove a few lemmas on the structure of ($P_{5}, K_{1}+$ $\left(K_{1} \cup K_{3}\right)$)-free graphs. From now on, we always suppose that G is a $\left(P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right)\right)$ free graph.

Lemma 6.3 Suppose that G has a 5-hole $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ and has no clique cut set, and let T be a component of $G\left[N^{2}(C)\right]$. Then the followings hold.
(a) For each $i \in\{1,2,3,4,5\}, G\left[N\left(v_{i}\right)\right]$ is $K_{1} \cup K_{3}$-free, $G\left[N_{\{i, i+2\}}(C)\right]$ is K_{3}-free, and $N_{\{i, i+1, i+2\}}(C) \cup N_{\{i, i+1, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)$ is independent.
(b) If no vertex in $N(C)$ dominates T, then there exist two non-adjacent vertices u and v in $N(C)$ such that both $N_{T}(u)$ and $N_{T}(v)$ are not empty.

Proof. Statement (a) follows directly from the $K_{1}+\left(K_{1} \cup K_{3}\right)$-freeness of G.
To prove (b), let $S=N(T) \cap N(C)$, and suppose that no vertex in S dominates T. By Lemma $2.2(a), S \subseteq N_{\{1,2,3,4,5\}}(C) \cup\left(\underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+2, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)\right)$. If $G[S]$ is not connected, we are done. Thus suppose that $G[S]$ is connected. We choose an arbitrary vertex $u \in S$ and let $T_{u}=N_{T}(u)$. Since u does not dominate T, by the connectedness of T, we may choose a vertex $w \in T \backslash T_{u}$ such that w is not anticomplete to T_{u}. Let v be a neighbor of w in S. Since G is P_{5}-free, we have that $u \in N_{\{1,2,3,4,5\}}(C)$, and so $\left\{v_{i+2}, v_{i+3}\right\} \subseteq N(u) \cap N(v)$. Since $u v \in E(G)$ implies a $K_{1}+\left(K_{1} \cup K_{3}\right)$ on $\left\{w, u, v, v_{i+2}, v_{i+3}\right\}$, we have that $u v \notin E(G)$ as desired.

Lemma 6.4 Suppose that G has a 5 -hole $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ and no clique cut set. Then $G\left[N^{3}(C)\right]$ is K_{3}-free, and $N^{2}(C)$ can be partition into two parts A and B such that both $G[A]$ and $G[B]$ are K_{3}-free.

Proof. Let B be a component of $G\left[N^{3}(C)\right]$ and $u \in N^{2}(C)$ be a vertex that has a neighbor in B. By Lemma [2.2 (c), we see that u must be complete to B, and so $G\left[N^{3}(C)\right]$ must be K_{3}-free to avoid a $K_{1}+\left(K_{1} \cup K_{3}\right)$.

Let $T=N^{2}(C)$. Without loss of generality, we suppose that $G[T]$ is connected, and let

$$
S=\left\{v \mid v \in N(C) \text { such that } N_{T}(v) \neq \emptyset\right\} .
$$

If there exists some vertex in S that dominates T, then we are done as $G[T]$ is obviously K_{3}-free to avoid a $K_{1}+\left(K_{1} \cup K_{3}\right)$. Thus suppose that no vertex of S dominates T.

By Lemma 6.3(b), there exist two non-adjacent vertices, say u and v, in S such that both u and v have neighbors T. It follows from Lemma $2.2(a)$ that u and v have a common neighbor, say z, on C.

It is certain that both $G\left[N_{T}(u)\right]$ and $G\left[N_{T}(v)\right]$ are K_{3}-free. If $T=N(u) \cup N(v)$, then $\left(N_{T}(u), N_{T}(v) \backslash N_{T}(u)\right)$ is a partition of T as desired. Thus suppose that $T \neq N(u) \cup N(v)$. Let $R=T \backslash(N(u) \cup N(v))$ and $R_{1}, R_{2}, \cdots, R_{r}$ be the components of $G[R]$.

Note that $G[T]$ is connected. For each $i \in\{1,2, \ldots, r\}, R_{i}$ has a neighbor, say t_{i}, in $N(u) \cup N(v)$. If t_{i} is not complete to R_{i}, we may choose two adjacent vertices x and y in R_{i} with $t_{i} x \in E(G)$ and $t_{i} y \notin E(G)$, then either $z u t_{i} x y$ or $z v t_{i} x y$ is a P_{5} of G. Therefore, t_{i} must be complete to R_{i}, and so $G[R]$ is K_{3}-free to avoid a $K_{1}+\left(K_{1} \cup K_{3}\right)$.

Let $T_{v}=N_{T}(v) \backslash N_{T}(u)$. If R is not anticomplete to T_{v}, let $r \in R$ and $t_{v} \in T_{v}$ be a pair of adjacent vertices, then $r t_{v} v z u$ is a P_{5} in G. Thus R is anticomplete to T_{v}, and consequently, $\left(N_{T}(u), R \cup T_{v}\right)$ is a partition of T as desired. This proves Lemma 6.4,

Lemma 6.5 Suppose that G is C_{5}-free and contains an odd antihole A with at least seven vertices. Let S be the set of vertices which are complete to A, and let $T=N(A) \backslash S$. Then $G[S]$ is $K_{1} \cup K_{3}$-free, T can be partition into at most $2 k+1$ independent sets, and $N^{2}(A)=\emptyset$.

Proof. Suppose that $V(A)=\left\{v_{1}, v_{2}, \ldots, v_{2 k+1}\right\}$, where $k \geq 3$ and $v_{i} v_{i+1} \notin E(G)$ for each $i \in\{1,2 \ldots, 2 k+1\}$. Since G is $K_{1}+\left(K_{1} \cup K_{3}\right)$-free, it is certain that $G[S]$ is $K_{1} \cup K_{3}$-free.

Note that the vertex of T is neither complete nor anticomplete to A. For each vertex u of T, there must be an $i_{u} \in\{1,2, \ldots, 2 k+1\}$ such that $u v_{i_{u}} \notin E(G)$ and $u v_{i_{u}+1} \in E(G)$, and so $u v_{i_{u}+3} \in E(G)$ to avoid either a C_{5} or a P_{5} depending on whether $u v_{i_{u}+2} \in E(G)$ or not. For each $i \in\{1,2, \ldots, 2 k+1\}$, let

$$
T_{i}=\left\{v \mid v \in T, v v_{i} \notin E(G) \text { but } v v_{i+1} \in E(G) \text { and } v v_{i+3} \in E(G)\right\} .
$$

Thus $T=\cup_{1 \leq i \leq 2 k+1} T_{i}$. Since G is $K_{1}+\left(K_{1} \cup K_{3}\right)$-free, each T_{i} is independent, otherwise $G\left[\left\{v_{i}, v_{i+1}, v_{i+3}, x, x^{\prime}\right\}\right]=K_{1}+\left(K_{1} \cup K_{3}\right)$ for any two adjacent vertices x and x^{\prime} of T_{i}. Hence T can be partition into at most $2 k+1$ independent sets.

Suppose that $N^{2}(A) \neq \emptyset$. Let v be a vertex in $N(A)$ that has a neighbor, say x, in $N^{2}(A)$. It is obvious that $v \notin S$, otherwise a $K_{1}+\left(K_{1} \cup K_{3}\right)$ appears in G. Without loss of generality, we suppose that $v \in T_{1}$. Thus either a $K_{1}+\left(K_{1} \cup K_{3}\right)$ appears on
$\left\{v, v_{2}, v_{4}, v_{2 k}, x\right\}$ whenever $v v_{2 k} \in E(G)$, or a $P_{5}=x v v_{2} v_{2 k} v_{1}$ appears whenever $v v_{2 k} \notin$ $E(G)$. Therefore, $N^{2}(A)=\emptyset$. This proves Lemma 6.5.

We are ready to prove Theorem 1.4.
Proof of Theorem 1.4, Let G be a $\left\{P_{5}, K_{1}+\left(K_{1} \cup K_{3}\right\}\right.$-free graph. We may suppose that G is connected, contains no clique cut set, and is not perfect. Thus G contains a 5 -hole or an odd antihole with at least 7 vertices.

First suppose that G contains a 5 -hole $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Since G is P_{5}-free, we have that $V(G)=V(C) \cup N(C) \cup N^{2}(C) \cup N^{3}(C)$. By Lemma 2.2(a), we have that

$$
\begin{aligned}
N(C)= & N_{\{1,2,3,4,5\}}(C) \bigcup_{1 \leq i \leq 5}\left(N_{\{i, i+2\}}(C) \cup N_{\{i, i+1, i+2\}}(C)\right. \\
& \left.\cup N_{\{i, i+1, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)\right) .
\end{aligned}
$$

By Lemmas 6.1, 6.2, and 6.3(a), we have that $\chi\left(G\left[N_{\{1,2,3,4,5\}}(C)\right]\right) \leq 3(\omega(G)-3)$,
$\chi\left(G\left[\bigcup_{1 \leq i \leq 5} N_{\{i, i+2\}}(C)\right]\right) \leq 15$, and $\chi\left(G\left[\bigcup_{1 \leq i \leq 5}\left(N_{\{i, i+1, i+2\}}(C) \cup N_{\{i, i+1, i+3\}}(C) \cup N_{\{i, i+1, i+2, i+3\}}(C)\right)\right]\right) \leq$
5. Therefore, $\chi(G[N(C)]) \leq 3 \omega(G)+11$.

By Lemmas 6.1]and 6.4, $\chi\left(G\left[N^{2}(C)\right]\right) \leq 6$ and $\chi\left(G\left[N^{3}(C)\right]\right) \leq 3$. Since $\bigcup_{1 \leq i \leq 5} N_{\{i, i+2\}}(C)$ is anticomplete to $N^{2}(C) \cup N^{3}(C)$ by Lemma 6.3(a), we can color the vertices of $V(C) \cup$ $N^{2}(C) \cup N^{3}(C)$ with the 15 colors used on $\underset{1 \leq i \leq 5}{\bigcup} N_{\{i, i+2\}}(C)$. Thus $\chi(G) \leq 3 \omega(G)+11$.

Now we suppose that G is $\left\{P_{5}, C_{5}, K_{1}+\left(K_{1} \cup K_{3}\right\}\right.$-free and contains an odd antihole A with $|A|=2 k+1 \geq 7$. Let $S \subseteq N(A)$ be the set of all vertices that are complete to A, and let $T=N(A) \backslash S$. By Lemma 6.5, we have that $V(G)=A \cup N(A), G[S]$ is $K_{1} \cup K_{3}$-free, and T is the union of $2 k+1$ independent sets. Hence $\chi(G[S]) \leq 3(\omega(S)-1) \leq 3(\omega(G)-k-1)$ by Lemma 6.2, and so $\chi(G) \leq \chi(A)+\chi(G[S])+\chi(G[T]) \leq(k+1)+3(\omega(G)-k-1)+(2 k+1)<$ $3 \omega(G)$. This proves Theorem 1.4.

References

[1] C. Brause, T. Doan, and I. Schiermeyer, On the chromatic number of $\left(P_{5}, K_{2, t}\right)$-free graphs, Electron. Notes Discrete Math. 55 (2016) 127-130.
[2] G. Bacsó and Zs. Tuza, Dominating cliques in P_{5}-free graphs, Period. Math. Hungar. 21 (1990) 303-308.
[3] C. Brause, B. Randerath, I. Schiermeyer, and E. Vumar, On the chromatic number of $2 K_{2}$-free graphs, Disc. Appl. Math. 253 (2019) 14-24.
[4] K. Cameron, S. Huang, and O. Merkel, A bound for the chromatic number of (P_{5}, gem)-free graphs, Bull. Austr. Math. Soc. 100 (2019) 182-188.
[5] A. Char and T. Karthick, Wheel-free graphs with no induced five-vertex path, arXiv:2004.01375v1[math.CO] (2020). https://arxiv.org
[6] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Annal. Math. 164 (2006) 51-229.
[7] M. Chudnovsky and V. Sivaraman, Perfect divisibility and 2-divisibility, J. Graph Theory 90 (2019) 54-60.
[8] M. Chudnovsky, T. Karthick, P. Maceli, and F. Maffray, Coloring graphs with no induced five-vertex path or gem, J. Graph Theory 95 (2020) 527-542.
[9] S. Choudum, T. Karthick, and M. Shalu, Perfect coloring and linearly χ-bound P_{6}-free graphs, J. Graph Theory 54 (2007) 293-306.
[10] W. Dong and B. Xu, Perfect divisibility of some P_{5}-free graphs, submitted.
[11] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38.
[12] L. Esperet, L. Lemoine, F. Maffray, and G. Morel, The chromatic number of $\left\{P_{5}, K_{4}\right\}$ free graphs, Disc. Math. 313 (2013) 743-754.
[13] J. Fouquet, V. Giakoumakis, F. Maire, and H. Thuillier, On graphs without P_{5} and \bar{P}_{5}, Disc. Math. 146 (1995) 33-44.
[14] A. Gyárfás, On Ramsey covering-numbers. Colloquia Mathematic Societatis János Bolyai 10, Infinite and Finite Sets. North-Holland/American Elsevier, New York (1975), 801-816.
[15] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastos. Mat. Appl. Math. 19 (1987) 413-441.
[16] C. T. Hoáng, On the structure of (banner, odd hole)-free graphs, J. Graph Theory 89 (2018) 395-412.
[17] C. T. Hoáng and C. McDiarmid, On the divisibility of graphs, Disc. Math. 242 (2002) 145-156.
[18] S. Huang and T. Karthick, On graphs with no induced five-vertex path or paraglider, J. Graph Theory https://doi.org/10.1002/jgt.22656
[19] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs: a survey, Graphs Combin. 20:1 (2004) 1-40.
[20] I. Schiermeyer, Chromatic number of P_{5}-free graphs: Reed's conjecture, Disc. Math. 339 (7) (2016) 1940-1943.
[21] I. Schiermeyer, On the chromatic number of (P_{5}, windmill)-free graphs, Opuscula Math. 7 (2017) 609-615.
[22] I. Schiermeyer and B. Randerath, Polynomial χ-binding functions and forbidden induced subgraphs: a survey, Graphs and Combinatorics 35 (2019) 1-35.
[23] A. D. Scott and P. Seymour, Induced subgraphs of graphs with large chromatic number. I. Odd holes, J. Combin. Theory Ser. B 121 (2016) 68-84.
[24] A. D. Scott and P. Seymour, A survey of χ-boundedness, J. Graph Theory 95 (2020) 473-504.
[25] D. P. Sumner, Subtrees of a graph and chromatic number, in The Theory and Applications of Graphs, John Wiley \& Sons, New York (1981) 557-576.
[26] S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combin. Theory B 29 (1980) 345-346.

[^0]: *Supported by NSFC No. 11931106,
 ${ }^{\dagger}$ Email: weidong@njxzc.edu.cn
 ${ }^{\ddagger}$ Email: baogxu@njnu.edu.cn, or baogxu@hotmail.com.
 ${ }^{\S}$ Email: yian_xu@seu.edu.cn

