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ON SPARSE RANDOM COMBINATORIAL MATRICES

ELAD AIGNER-HOREV AND YURY PERSON

Abstract. Let Qn,d denote the random combinatorial matrix whose rows are independent of one

another and such that each row is sampled uniformly at random from the subset of vectors in {0,1}n
having precisely d entries equal to 1. We present a short proof of the fact that P [det(Qn,d) = 0] =
O (n1/2 log3/2 n

d
) = o(1), whenever d = ω(n1/2 log3/2 n). In particular, our proof accommodates sparse

random combinatorial matrices in the sense that d = o(n) is allowed.

We also consider the singularity of deterministic integer matrices A randomly perturbed by a sparse

combinatorial matrix. In particular, we prove that P [det(A +Qn,d) = 0] = O (n1/2 log3/2 n

d
), again,

whenever d = ω(n1/2 log3/2 n) and A has the property that (1,−d) is not an eigenpair of A.

1. Introduction

For an integer 1 ≤ d ≤ n, we write Qn,d to denote a random n × n matrix over {0,1} whose rows are

sampled independently and uniformly at random from the set Sd ∶= {v ∈ {0,1}n ∶ ∑n
i=1 vi = d}. The

matrix Qn,d is often referred to as a combinatorial matrix. Such a matrix is said to be sparse if d = o(n).
The random matrix Qn ∶= Qn,n/2 (n even) has attracted much attention of late. Nguyen [10] first

considered its singularity probability by showing that P [det(Qn) = 0] = O(n−C) for any C > 0. Subse-

quently, Ferber, Jain, Luh and Samotij [3] improved the singularity probability to be exponential and

of the form 2−n
0.1

. Jain [5] extended the latter bound to the study of s(Qn); the least singular value of

Qn. Recently, Tran [14] established, the asymptotically optimal bound P [sn(Qn) ≤ ε√
n
] ≤ Cε + 2−cn for

all ε ≥ 0 and some absolute constants c, C > 0. In particular this implies P[det(Qn) = 0] ≤ 2−cn.
All of the aforementioned results extend to d = Ω(n). It is natural to ask for which further d, the

random matrix Qn,d remains nonsingular asymptotically almost surely (a.a.s. , hereafter).1 It is easy to

see that, for d ≤ (1 − ε) logn, the matrix Qn,d a.a.s. contains a zero column. We conjecture as follows.

Conjecture 1.1. For every ε > 0 and d ≥ (1 + ε) logn, we have

P [det(Qn,d) = 0] = o(1).
In this note, we provide a short proof of the following result which holds for a significantly wider range

of d from that seen in the aforementioned results. Let ω(t) denote any function f(t) for which f(t)/t
tends to infinity arbitrarily slowly as t →∞.

Theorem 1.2. For d = ω(n1/2 log3/2 n) we have

P[det(Qn,d) = 0] = O (n1/2 log3/2 n

d
) = o(1).

The probability bounds stated in Theorem 1.2 are probably far from optimal (in view of the afore-

mentioned works [3,5,14]). Our proof is inspired by the recent exceedingly short proof by Ferber [2] that

P [det(M sym
n ) = 0] = O ( logC n

n1/2 ), where matrix M sym
n denotes the random symmetric ±1-matrix; the latter

being one of the most studied models of random discrete matrices with dependencies among the entries.

Date: 2020/10/16, 12:32am.
YP is supported by the Carl Zeiss Foundation and by DFG grant PE 2299/3-1.
1That is, P [det(Qn,d) = 0]→ 0 as n→∞.
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Our proof is also influenced by the arguments of Ferber, Jain, Luh and Samotij [3]; in our account,

though, we avoid appealing to the so called counting theorem associated with the inverse Littlewood-

Offord problem established in [3]; this in turn renders our argument somewhat shorter and extendable

to d = ω(n1/2 log3/2 n).
We also address the nonsingularity of deterministic matrices with integer entries perturbed by a sparse

random combinatorial matrix.

Theorem 1.3. Let A be an n×n matrix with integer entries such that (1,−d) is not an eigenpair of A,

where 1 denotes the all-ones vector. Then d = ω(n1/2 log3/2 n) we have

P[det(A +Qn,d) = 0] = O (n1/2 log3/2 n

d
) = o(1).

Similar perturbations problems by other models of random matrices and for a wider class of deter-

ministic matrices were extensively studied in the literature as well. We refer the reader to the works of

Sankar, Spielman, and Teng [11], Tao and Vu [12,13], Jain [6], Livshyts, Tikhomirov, and Vershynin [9],

and Jain, Sah, and Sawhney [7]. For an excellent account regarding combinatorial random matrix theory

in general, see the recent survey by Vu [15].

1.1. Proof overview. The proof of Theorems 1.2 and 1.3 proceeds by reducing the problem to the

finite field setting and working over Zp. It then turns out to be sufficient to consider the following two

cases: almost constant vectors; i.e. those that have the same entries in all but d/(10 logn) positions (in
particular vectors with small support), and vectors which are not almost constant.

The former case can be dealt with rather straightforward union bound, while the latter case is studied

through a Halász-type argument [4] for the Littlewood-Offord problem. Then, a first moment argument

yields that with probability o(1) the kernel of the matrix Qn,d (over Zp) is less than p and hence the

matrix is nonsingular.

2. Invertibility with respect to a single vector

For n ∈ N and a prime p, write Z
n×n to denote the set of n × n-matrices over the integers; write Z

n×n
p

to denote those matrices whose entries are taken from Zp. Given A ∈ Zn×n, let Ap denote the matrix

obtained from A by reducing the elements of A modulo p. For a vector v ∈ Zn
p , write supp(v) ∶= {i∶vi /≡ 0

(mod p)} to denote the support of v. We start with the following simple observation allowing us to carry

out our arguments modulo a prime p.

Proposition 2.1. Let p be prime and let A ∈ Zn×n. Then,

P[det(A +Qn,d) = 0] ≤ P[det(Ap +Qn,d) ≡ 0 (mod p)].
Proof. If det(A + Qn,d) = 0 holds, then det(A + Qn,d) ≡ 0 (mod p), and hence det(Ap + Qn,d) ≡ 0

(mod p). �

Let V denote the set of vectors v ∈ Zn
p satisfying ∣{i∶vi = b}∣ ≤ n − d/(10 logn) for every b ∈ Zp, i.e. the

level sets of each entry are not too big. The following lemma, which is a counterpart of [2, Lemma 2.2],

asserts that for v ∈ V , the random vector Qn,dv is essentially uniformly distributed. It is in this lemma

that we incur a lower bound on d.

Lemma 2.2. Let d = ω(n1/2 log3/2 n) and let p = Θ ( d

n1/2 log3/2 n
) be a prime. Let v ∈ V and a ∈ Zn

p . Then,

P [Qn,dv = a] = 1 + o(1)
pn

.
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Proof. We write ep(x) ∶= exp( 2πixp
). Then,

P [Qn,dv = a] = E [δ0(Qn,dv − a)] = n

∏
j=1

E [δ0((Qn,dv − a)j)] ,
where here δ0(x) = 1 if x = 0 and zero otherwise. Writing Qn,d(j) to denote the j-th row of Qn,d, we

reach

P [Qn,dv = a] = n

∏
j=1

EQn,d(j) [δ0(Qn,d(j)⊺v − aj)]
=

n

∏
j=1

EQn,d(j) [Eξj∼Zp
[ep(ξj(Qn,d(j)⊺v − aj))]]

=
n

∏
j=1

EQn,d(j)

⎡⎢⎢⎢⎢⎣
1

p
∑

ξj∈Zp

ep(ξj(Qn,d(j)⊺v − aj))
⎤⎥⎥⎥⎥⎦

=
n

∏
j=1

⎛
⎝
1

p
+EQn,d(j)

⎡⎢⎢⎢⎢⎣
1

p
∑

ξj∈Zp∖{0}
ep(ξj(Qn,d(j)⊺v − aj))

⎤⎥⎥⎥⎥⎦
⎞
⎠

=
n

∏
j=1

⎛
⎝
1

p
+ 1

p
∑

ξj∈Zp∖{0}
EQn,d(j) [ep(ξj(Qn,d(j)⊺v − aj))]⎞⎠

= 1

pn
+ 1

pn
∑

ξ∈Zn
p∖{0}

⎛
⎝

n

∏
j=1

EQn,d(j) [ep(ξj(Qn,d(j)⊺v − aj))]⎞⎠ . (1)

We pursue an estimate for ∣∑ξ∈Zn
p∖{0} (∏n

j=1 EQn,d(j) [ep(ξj(Qn,d(j)⊺v − aj))])∣.
RRRRRRRRRRRRR
∑

ξ∈Zn
p∖{0}

⎛
⎝

n

∏
j=1

EQn,d(j) [ep(ξj(Qn,d(j)⊺v − aj))]⎞⎠
RRRRRRRRRRRRR
≤ ∑

ξ∈Zn
p∖{0}

n

∏
j=1
∣EQn,d(j) [ep(ξj(Qn,d(j)⊺v − aj))]∣

= ∑
ξ∈Zn

p∖{0}

n

∏
j=1
∣EQn,d(j) [ep(ξjQn,d(j)⊺v)]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣EQn,d(j) [ep(ξjQn,d(j)⊺v)]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)

RRRRRRRRRRRR
EQn,d(j)

⎡⎢⎢⎢⎢⎣
ep
⎛
⎝ξj ∑

ℓ∈supp(v)
Qn,d(j, ℓ)vℓ

⎞
⎠
⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR
.

(2)

The set Tj ∶= {ℓ∶Qn(j, ℓ) = 1} is a d-element set sampled uniformly from ([n]
d
) of [n]. An alternative

generation of Tj reads as follows. For any fixed γ ∈ {0,1}d and any permutation σ ∈ Sn of [n] sampled

uniformly at random from Sn, set

Tγ,σ ∶= ⋃
i∈[d]
({σ(i)∶γi = 1} ∪ {σ(i + d)∶γi = 0}).

Then, for every set T ∈ ([n]
d
), the equality P[Tγ,σ = T ] = d!(n−d)!

n!
= (n

d
)−1 holds. Indeed, the number of

ways to map the members of T to the set of positions ∪i∈[d] ({i∶γi = 1} ∪ {i + d∶γi = 0}) is d!. There are

(n − d)! ways to complete the mapping from [n] to the remaining set of positions. Any permutation of

[n] thus formed gives rise to T through Tγ,σ. It follows that for any fixed γ ∈ {0,1}d, the set Tγ,σ is

uniformly distributed in ([n]
d
); this remains so if γ ∼ {0,1}d itself is a sequence of uniformly distributed

Bernoulli variables. Such a coupling (for d = n/2) is used e.g. in the proof of [8, Proposition 4.10] and

also in [3].
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In what follows, we view each set Tj as being generated by a random permutation σ(j) and a uniformly

random sequence γ(j) ∈ {0,1}d. We continue with (2).

∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)

RRRRRRRRRRRR
EQn(j)

⎡⎢⎢⎢⎢⎣
ep
⎛
⎝ξj ∑

ℓ∈supp(v)
Qn(j, ℓ)vℓ

⎞
⎠
⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR
= ∑

ξ∈Zn
p∖{0}

∏
j∈supp(ξ)

RRRRRRRRRRRR
ETj

⎡⎢⎢⎢⎢⎣
ep
⎛
⎝ξj ∑

ℓ∈supp(v)∩Tj

vℓ

⎞
⎠
⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣Eσ(j),γ(j) [ep (ξj (

d

∑
ℓ=1

γ
(j)
ℓ

vσ(j)(ℓ) +
d

∑
s=1
(1 − γ(j)s )vσ(j)(s+d)))]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣Eσ(j) [Eγ(j) [ep (ξj (

d

∑
ℓ=1

γ
(j)
ℓ
(vσ(j)(ℓ) − vσ(j)(ℓ+d)) +

d

∑
s=1

vσ(j)(s+d)))]]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣Eσ(j) [ep (ξ

d

∑
s=1

vσ(j)(s+d))Eγ(j) [ep (ξj
d

∑
ℓ=1

γ
(j)
ℓ
(vσ(j)(ℓ) − vσ(j)(ℓ+d)))]]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣Eσ(j) [ep (ξj

d

∑
s=1

vσ(j)(s+d))
d

∏
ℓ=1

Eγ(j) [ep (ξjγ(j)ℓ
(vσ(j)(ℓ) − vσ(j)(ℓ+d)))]]∣

= ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
∣Eσ(j) [ep (ξj

d

∑
s=1

vσ(j)(s+d))
d

∏
ℓ=1
(1 + ep(ξj(vσ(j)(ℓ) − vσ(j)(ℓ+d)))

2
)]∣

≤ ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
Eσ(j) [

d

∏
ℓ=1
∣1 + ep(ξj(vσ(j)(ℓ) − vσ(j)(ℓ+d)))

2
∣] . (3)

Since

∣1 + ep(ξj(vσ(j)(ℓ) − vσ(j)(ℓ+d)))
2

∣ = ∣ cos (πξj(vσ(j)(ℓ) − vσ(j)(ℓ+d))/p) ∣,
then owing to the inequality ∣ cos(πm/p)∣ ≤ e−2/p

2

that holds whenever m ∈ Zp ∖ {0}, it follows that if

vσ(j)(ℓ) − vσ(j)(ℓ+d) ≠ 0, then we have the following estimate (as ξj ≠ 0),

∣ cos (πξj(vσ(j)(ℓ) − vσ(j)(ℓ+d))/p) ∣ ≤ e−2/p2

.

Returning to (3), we may now write

∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
Eσ(j) [

d

∏
ℓ=1
∣1 + ep(ξj(vσ(j)(ℓ) − vσ(j)(ℓ+d)))

2
∣]

≤ ∑
ξ∈Zn

p∖{0}
∏

j∈supp(ξ)
Eσ(j)

⎡⎢⎢⎢⎢⎢⎣
∏

ℓ∶v
σ(j)(ℓ)

≠v
σ(j)(ℓ+d)

e−2/p
2

⎤⎥⎥⎥⎥⎥⎦
. (4)

By assumption v ∈ V . Hence, the number of (ordered) pairs (s, t) such that vs − vt ≠ 0 is at least

d

10 logn
(n − d

10 logn
) > dn

11 logn
.

Let Xj denote the number of pairs (σ(j)(ℓ), σ(j)(ℓ + d)) satisfying vσ(j)(ℓ) − vσ(j)(ℓ+d) ≠ 0 for ℓ ∈
[d/(20 logn)]. Then, E [Xj] ≥ d2/(220n log2 n). We can view value ofXj evolving as pairs (σ(j)(ℓ), σ(j)(ℓ+
d)) are revealed and the probability that vσ(j)(ℓ) − vσ(j)(ℓ+d) ≠ 0 (conditioned on the first ℓ − 1 pairs)

for any ℓ ≤ d/(20 logn) is at least Ω(d/(n logn)). It follows by a standard submartingale inequality (see

e.g. [1, Lemma 2.2]) that

P [Xj < EXj/2] ≤ exp (−EXj/12) .
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Thus, with probability at most exp(− d2

12⋅220⋅n log2 n
) we have Xj ≤ EXj/2 so that

Eσ(j)

⎡⎢⎢⎢⎢⎢⎣
∏

ℓ∶v
σ(j)(ℓ)

≠v
σ(j)(ℓ+d)

e−2/p
2

⎤⎥⎥⎥⎥⎥⎦
= Eσ(j) [e−2Xj/p

2]

≤ exp(− d2

212 ⋅ n log2 n
) + exp(− d2

212 ⋅ p2 ⋅ n log2 n
)

≤ 2 exp (−C logn) , (5)

where here the third inequality is owing to d = ω(n1/2 log3/2 n) and p = Θ ( d

n1/2 log3/2 n
).

We conclude with the following estimation for P [Qn,d ⋅ v = a] appearing in (1) using (2), (3), (4)

and (5).

∣P [Qn,dv = a] − 1

pn
∣ (1)≤ 1

pn

RRRRRRRRRRRRR
∑

ξ∈Zn
p∖{0}

⎛
⎝

n

∏
j=1

EQn(j) [ep(ξj(Qn(j)⊺v − aj))]⎞⎠
RRRRRRRRRRRRR

(2)
≤ 1

pn
∑

ξ∈Zn
p∖{0}

∏
j∈supp(ξ)

RRRRRRRRRRRR
EQn(j)

⎡⎢⎢⎢⎢⎣
ep
⎛
⎝ξj ∑

ℓ∈supp(v)
Qn(j, ℓ)vℓ

⎞
⎠
⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR

(3)
≤ 1

pn
∑

ξ∈Zn
p∖{0}

∏
j∈supp(ξ)

Eσ(j) [
d

∏
ℓ=1
∣1 + ep(ξj(vσ(ℓ) − vσ(ℓ+d)))

2
∣]

(4)
≤ 1

pn
∑

ξ∈Zn
p∖{0}

∏
j∈supp(ξ)

Eσ(j)

⎡⎢⎢⎢⎢⎢⎣
∏

ℓ∶v
σ(j)(ℓ)

≠v
σ(j)(ℓ+d)

e−2/p
2

⎤⎥⎥⎥⎥⎥⎦
(5)
≤ 1

pn
∑

ξ∈Zn
p∖{0}

∏
j∈supp(ξ)

2 exp (−C logn)

= 1

pn
∑

ξ∈Zn
p∖{0}

2∣supp(ξ)∣ exp (−C ∣supp(ξ)∣ logn) . (6)

For the final sum appearing in (6) we observe that

1

pn
∑

ξ∈Zn
p∖{0}

2∣supp(ξ)∣ exp (−C ∣supp(ξ)∣ logn) = 1

pn

n

∑
s=1
(n
s
)ps2s exp (−Cs logn) = o(1)

pn
.

It follows that

∣P [Qn,d ⋅ v = a] − 1

pn
∣ ≤ o(1)

pn

concluding the proof. �

Let 1supp(v) ∈ Zn
p denote the vector attained from v by setting the ith entry to 1 for every i ∈ supp(v)

and zero otherwise. For a set S ⊆ [n], we write 1S to denote the characteristic vector of S. Finally, set

span(1) ∶= {α ⋅ 1 ∶ α ∈ Zp} and 1supp(v) ⋅ Zp ∶= {α ⋅ 1supp(v) ∶ α ∈ Zp}.
Proposition 2.3, stated next, is our counterpart of [2, Observation 2.1]; the lack of independence

between entries in our setting renders our argument somewhat more involved. We provide two proofs of

Proposition 2.3. The lengthier one that is more combinatorial in spirit, so to speak, we postpone until

the Appendix below.

Proposition 2.3. Let p be a prime. Let A ∈ Zn×n
p and v ∈ Zn

p ∖ span(1). Then, there exists a constant

c′ > 0 such that

P[(A +Qn,d)v = 0] ≤ e−c′d
holds for all d ∈ [1, n/2] ∩N.

5



Proof. Let q be a vector sampled uniformly at random from Sd. We show that for any b ∈ Zp,

P[q⊺v = b] ≤ 1 − c′ d
n

(7)

for some absolute constant c′ > 0. Assuming (7) and utilising the independence of the rows of Qn,d, we

may write

P[(A +Qn,d)v = 0] = P[Qn,dv = −Av] = n

∏
i=1

P[(Qn,dv)i = (−Av)i] (7)≤ (1 − c′ d
n
)n ≤ e−c′d;

establishing the claim. It remains to prove (7).

Employing a similar coupling to that seen just below (2), observe that a set T ∈ ([n]
d
), chosen uniformly

at random, can be generated using a pair consisting of a permutation of [n], namely σ, chosen uniformly

at random, and a sequence γ ∼ {±1}d of independent Rademacher random variables, by setting

Tγ,σ ∶= ⋃
i∈[d]
({σ(i)∶ (1 + γi)/2 = 1} ∪ {σ(i + d)∶ (1 − γi)/2 = 1}).

As before, the latter distributes uniformly over ([n]
d
).

We may now write

P [q⊺v = b] = Eq [δ0(q⊺v − b)]
= Eq [Eξ∼Zp

[ep(ξ(q⊺v − b))]]
= ET [Eξ∼Zp

[ep(ξ(∑
ℓ∈T

qℓvℓ − b))]]

= Eσ,γ [Eξ∼Zp
[ep (ξ ( d

∑
s=1

1 + γs
2

vσ(s) +
d

∑
ℓ=1

1 − γℓ
2

vσ(ℓ+d) − b))]] . (8)

Rearranging the terms in ep(⋅) in the last line of (8) yields

Eσ,γ[Eξ∼Zp
[ep (ξ ( d

∑
s=1

1 + γs
2

vσ(s) +
d

∑
ℓ=1

1 − γℓ
2

vσ(ℓ+d) − b))]]

= Eσ,γ [Eξ∼Zp
[ep (ξ ( d

∑
ℓ=1

γℓ

2
(vσ(ℓ) − vσ(ℓ+d)) + 2d

∑
s=1

vσ(s)

2
− b))]]

= Eσ,γ [Eξ∼Zp
[ep (ξ ( d

∑
ℓ=1

γℓ(vσ(ℓ) − vσ(ℓ+d)) + 2d

∑
s=1

vσ(s) − 2b))]]

= EσEγ [δ0 ( d

∑
ℓ=1

γℓ(vσ(ℓ) − vσ(ℓ+d)) + 2d

∑
s=1

vσ(s) − 2b)]

= Eσ [Pγ [ d

∑
ℓ=1

γℓ(vσ(ℓ) − vσ(ℓ+d)) = 2b − 2d

∑
s=1

vσ(s)]] . (9)

Now, since v /∈ span(1), observe that for a fixed permutation σ with at least one pair (vσ(ℓ), vσ(ℓ+d)) such
that vσ(ℓ) ≠ vσ(ℓ+d) for some ℓ ∈ [d], we have

Pγ [ d

∑
ℓ=1

γℓ(vσ(ℓ) − vσ(ℓ+d)) = 2b − 2d

∑
s=1

vσ(s)] ≤ 1/2,
whereas for other permutations σ we take the trivial upper bound

Pγ [ d

∑
ℓ=1

γℓ(vσ(ℓ) − vσ(ℓ+d)) = 2b − 2d

∑
s=1

vσ(s)] ≤ 1.
The probability that the random permutation σ satisfies vσ(ℓ) ≠ vσ(ℓ+d) for some ℓ ∈ [d] is at least cd

n
for

some absolute constant c > 0 (this can be proved using an argument similar to that seen in [3, Lemma 5.1]).
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Hence,

P [q⊺v = b] ≤ cd

n
⋅

1

2
+ (1 − cd

n
) = 1 − cd

2n
, (10)

holds which establishes (7) and thus completing the proof. �

Remark 2.4. The constant c′ in Proposition 2.3 can be taken to be 1/2. It is also possible to provide

an estimate P [q⊺v = b] ≤ 1 − d
2n

directly by checking various cases. This is more clearly seen in our

alternative proof of Proposition 2.3 presented in the Appendix.

Corollary 2.5. Let p be a prime and let d ∈ [1, n/2] be an integer such that p ∤ d. Let v ∈ Zn
p ∖ {0}.

Then,

P[Qn,dv = 0] ≤ e−d/2.
Proof. If v ∉ span(1), then the claim follows by Proposition 2.3. Suppose then that v ∈ span(1) and that

it lies in the kernel of Qn,d. Then, 1 lies in the kernel of Qn,d. Note, however, that Qn,d ⋅ 1 = d ⋅ 1 and,

since p ∤ d, it follows that Qn,d ⋅ 1 ≠ 0; a contradiction. �

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By Proposition 2.1, it suffices to prove the result over Zp for a prime p = Θ ( d

n1/2 log3/2 n
)

such that p ∤ d. Similarly to [2], define K ∶= ∣kerZp
(Qn,d)∣. Then,

EK = ∑
v∈V

P [Qn,d ⋅ v = 0]+∑
v/∈V

P [Qn,d ⋅ v = 0] ≤ 1 + o(1)
pn

pn+1+( n

d/(10 logn))pd/(10 logn)+1e−d/2 = 2+o(1),
where here we apply Corollary 2.5 to vectors v /∈ V ∪ {0} and Lemma 2.2 to vectors v ∈ V . As

P [det(Qn,d) = 0] ≤ P [K ≥ p] ≤ (2 + o(1))/p,
the statement follows. �

Proof of Theorem 1.3. Our proof of Theorem 1.3 is exactly as that seen for Theorem 1.2, with the

exception that Proposition 2.3 is used instead of Corollary 2.5. In this manner, we can conclude that,

with probability at most O (n1/2 log3/2 n

d
), the kernel kerZp

(Ap +Qn,d) contains 0 and possibly span(1).
However, due to our assumption on A, i.e., that A ⋅ 1 ≠ −d ⋅ 1, the vector 1 is not in kerR(A + Qn,d).
Hence, with probability O (n1/2 log3/2 n

d
), we have kerR(A +Qn,d) = {0} and the claim follows. �
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4. Appendix

Combinatorial proof of Proposition 2.3. Here we provide a combinatorial (i.e. case by case) proof of (7).

Case 1: ∣supp(v)∣ = 1. W.l.o.g. we assume that v1 ≠ 0. As, in this case, q⊺v = q1v1 ∈ {0,v1}, we have

that if b ∉ {0,v1}, then P[q⊺v = b] = 0 holds trivialy. If b = v1, then

P[q⊺v = b] = P[v1q1 = b] = P[q1 = 1] = (
n−1
d−1
)

(n
d
) =

d

n
≤ 1/2;

and if b = 0, then
P[q⊺v = b] = P[q1 = 0] = (

n−1
d
)

(n
d
) =

n − d

n
= 1 − d

n
.

Case 2a: ∣supp(v)∣ ≥ 2 and v ∉ 1supp(v) ⋅ Zp. W.l.o.g. we assume that v1,v2 ≠ 0; we further assume that

v1 ≠ v2. Then, for b ∈ Zp we have

P[q⊺v ≠ b] = P [q1v1 + q2v2 ≠ b −
n

∑
i=3

qivi]
= ∑

c∈Zp

P [q1v1 + q2v2 ≠ c ∣ b − n

∑
i=3

qivi = c]P [b − n

∑
i=3

qivi = c] . (11)

Let c be given. If c ∉ {0,v1,v2,v1 + v2}, then P [q1v1 + q2v2 ≠ c] = 1.
If c ∈ {0,v1,v2,v1 + v2}, then we observe the following.

● If c ∈ {0,v1 + v2}, then c = q1v1 + q2v2 for some q1 = q2 ∈ {0,1} which in turn implies that

c ≠ q1v1 + q2v2 whenever q1 ≠ q2 so that

P [q1v1 + q2v2 ≠ c ∣ b − n

∑
i=3

qivi = c] ≥ P [q1 ≠ q2 ∣ b −
n

∑
i=3

qivi = c]
in particular holds.

● In the remaining case that c ∈ {v1,v2}, we may write that

P [q1v1 + q2v2 ≠ v1 ∣ b − n

∑
i=3

qivi = v1] = P [(q1,q2) ≠ (1,0) ∣ b −
n

∑
i=3

qivi = v1]
and

P [q1v1 + q2v2 ≠ v2 ∣ b − n

∑
i=3

qivi = v2] = P [(q1,q2) ≠ (0,1) ∣ b −
n

∑
i=3

qivi = v2] .
The following lower bound on P[q⊺v ≠ b] now holds, owing to (11),

P[q⊺v ≠ b] ≥ ∑
c∈{0,v1+v2}

P [q1 ≠ q2 ∣ b −
n

∑
i=3

qivi = c]P [b − n

∑
i=3

qivi = c]

+ P [(q1,q2) ≠ (1,0) ∣ b −
n

∑
i=3

qivi = v1]P [b − n

∑
i=3

qivi = v1]
+ P [(q1,q2) ≠ (0,1) ∣ b −

n

∑
i=3

qivi = v2]P [b − n

∑
i=3

qivi = v2]
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+ ∑
c∉{0,v1,v2,v1+v2}

P [b − n

∑
i=3

qivi = c]
Observe that

P [(q1,q2) ≠ (1,0) ∣ b −
n

∑
i=3

qivi = v1] = P [(q1,q2) ≠ (0,1) ∣ b −
n

∑
i=3

qivi = v1] .
To see this, note that

P [(q1,q2) = (0,1) ∣ b −
n

∑
i=3

qivi = v1] = P [(q1,q2) = (1,0) ∣ b −
n

∑
i=3

qivi = v1]
as well as

P [(q1,q2) ≠ (1,0) ∣ b −
n

∑
i=3

qivi = v1] = P [(q1,q2) = (0,1) ∣ b −
n

∑
i=3

qivi = v1]+P [q1 = q2 ∣ b −
n

∑
i=3

qivi = v1]
and

P [(q1,q2) ≠ (0,1) ∣ b −
n

∑
i=3

qivi = v1] = P [(q1,q2) = (1,0) ∣ b −
n

∑
i=3

qivi = v1]+P [q1 = q2 ∣ b −
n

∑
i=3

qivi = v1] .
The following crude lower bound for P[q⊺v ≠ b] is then reached,

P[q⊺v ≠ b] ≥ ∑
c∈Zp

P [(q1,q2) = (1,0) ∣ b −
n

∑
i=3

qivi = c]P [b − n

∑
i=3

qivi = c]
= P [(q1,q2) = (1,0)]
= (n−2d−1

)
(n
d
) =

d(n − d)
n(n − 1) >

d

2n
.

Case 2b: ∣supp(v)∣ ≥ 2 and v ∈ 1supp(v) ⋅ Zp. W.l.o.g. we further assume that v1,v2 ≠ 0 and that v = 1S

for some set S ⊇ {1,2}. Let b ∈ Zp and set s ∶= ∣S∣. Then, P[q⊺v = b] = P [∑i∈S qi = b] so that the problem

reduces to counting the number of sets T ∈ ([n]
d
) satisfying ∣T ∩S∣ ≡ bmod p. Writing ∣T ∩S∣ = ip+ b, note

that the inequalities ip + b ≤ d and ip + b ≤ s arise as ∣T ∣ = d and ∣T ∩ S∣ ≤ s, respectively. Hence, we may

write

P[q⊺v = b] = P [∑
i∈S

qi = b] = ∑
ℓ
i=0 ( s

ip+b
)( n−s

d−ip−b
)

(n
d
) , (12)

where ℓ =min {⌊(s − b)/p⌋, ⌊(d − b)/p⌋} defines the upper bound that the parameter i in ip+ b can attain.

Surely,

P[q⊺v ≠ b] ≥ P[q⊺v = b − 1] + P[q⊺v = b + 1];
hence we attain

P[q⊺v ≠ b] ≥ ∑
ℓ
i=0 (( s

ip+b−1
)( n−s

d−ip−b+1
) + ( s

ip+b+1
)( n−s

d−ip−b−1
))

(n
d
) . (13)

Let

ai ∶= ( s

ip + b − 1
)( n − s

d − ip − b + 1
) + ( s

ip + b + 1
)( n − s

d − ip − b − 1
)

denote the numerator of (12); and let

ci ∶= ( s

ip + b
)( n − s

d − ip − b
)

denote the numerator of (13). In what follows we prove that ai ≥ d
n
ci for every i ∈ [ℓ]. This in turn yields

that P[q⊺v ≠ b] ≥ d
n
P[q⊺v = b]. The latter coupled with the triviality that P[q⊺v ≠ b] + P[q⊺v = b] = 1

implies that P[q⊺v ≠ b] ≥ d
n+d
≥ d

2n
so that (7) follows completing the proof in this case.
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It remains to prove that ai ≥ d
2n

ci for every i ∈ [ℓ]. We start by setting t ∶= ip + b and rewriting the

summand ai as

( s

t − 1
)( n − s

d − t + 1
)+( s

t + 1
)( n − s

d − t − 1
) = (s

t
)(n − s

d − t
)( t

s − t + 1
⋅

n − s − d + t

d − t + 1
+

s − t

t + 1
⋅

d − t

n − s − d + t + 1
) . (14)

Owing to the assumption appearing in the premise that v ∉ span(1), we have t ≤ s, t ≤ d and that s < n.
Dealing with the residual cases below, assume, first, that s > t ≥ 1, d > t and n − s > d − t (thus:

n − d > s − t). Then, subject to these assumptions we may write

t

s − t + 1
⋅

n − s − d + t

d − t + 1
+

s − t

t + 1
⋅

d − t

n − s − d + t + 1
≥ t

2(s − t) ⋅
(n − d) − (s − t)

2(d − t) +

s − t

2t
⋅

d − t

2((n − d) − (s − t))
≥ 1

4
( t

s − t
⋅

(n − d) − (s − t)
d − t

+

s − t

t
⋅

d − t

(n − d) − (s − t))
= 1

4
(x + 1

x
) ,

where x∶= t
s−t
⋅
(n−d)−(s−t)

d−t
> 0. As x + 1

x
≥ 2 always holds for x > 0, we attain the following lower bound

on (14),

( s

t − 1
)( n − s

d − t + 1
) + ( s

t + 1
)( n − s

d − t − 1
) ≥ 1

2
(s
t
)(n − s

d − t
) = ci

2
.

Next, we contend with the residual cases left to consider for our estimate of

t

s − t + 1
⋅

n − s − d + t

d − t + 1
+

s − t

t + 1
⋅

d − t

n − s − d + t + 1
,

appearing on the r.h.s. of (14), to be complete. As these ‘boundary’ cases are somewhat more docile, so

to speak, compared to our ‘primary’ case, these all fit nicely within the following short list.

● If n − s ≤ d − t − 1, then ai = ( s

t+1
)( n−s

d−t−1
), whereas ci = 0, thus ai ≥ ci holds.

● If n − s = d − t (so that n − d = s − t), t < d, and s > t (and recalling that d ≤ n/2), then ci = (st),
whereas

ai = ( s

t + 1
)(n − s) = (s

t
)(s − t)(n − s)

t + 1
= (s

t
)(n − d)(n − s)

t + 1
≥ (s

t
)(n − d)(n − s)

d
≥ (s

t
)(n − s) ≥ (s

t
).

● If t = s, then ci = (n−sd−s
) whereas

ai = s( n − s

d − s + 1
) = s n − d

d − s + 1
(n − s
d − s

) > s(n − s
d − s

) ≥ ci.
● If t = d, then

ci = (s
d
) = s − d + 1

d
( s

d − 1
) < n

d
( s

d − 1
)

whereas

ai = ( s

d − 1
)(n − s) ≥ ( s

d − 1
) ≥ d

n
ci.

● If t = 0 and s ≤ n − d, then ci = (n−sd ) whereas
ai = s(n − s

d − 1
) = s d

n − d − s + 1
(n − s

d
) > 2d

n
(n − s

d
) = 2d

n
ci

(since s ≥ 2).
● If t = 0 and s > n − d, then ci = (s0)(n−sd ) = 0, so that ai ≥ ci.

Observe that throughout the cases considered, P[q⊺v ≠ b] ≥ d
2n

is always maintained so that (7) holds

with c′ = 1/2. �
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