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Abstract

Let G be a cyclically 5-connected cubic graph with a 5-edge-cut
separating G into two cyclic components G1 and G2. We prove that
each component Gi can be completed to a cyclically 5-connected cubic
graph by adding three vertices, unless Gi is a cycle of length five. Our
work extends similar results by Andersen et al. for cyclic connectivity
4 from 1988.
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1 Introduciton
The study of cubic graphs offers a convenient approach to several widely-
open conjectures such as the Tutte’s 5-flow conjecture, the cycle double cover
conjecture, or the Berge-Fulkerson conjecture. It is known that minimal
counterexamples to aforementioned conjectures are cubic graphs. Moreover,
various other requirements that a minimal counterexample has to satisfy
have been studied. Perhaps the most notorious requirement is that any cubic
counterexample should not be 3-edge-colourable, or in other words, that it
is a snark.

In the study of minimal counterexamples, connectivity plays a crucial
role. Since the connectivity of a cubic graph cannot exceed three, it is ad-
vantageous to use a refined measure—the cyclic connectivity, that is, the
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minimum number of edges needed to separate two cycles in a given cubic
graph. It has been proven that the minimal counterexample to the 5-flow
conjecture is cyclically 6-connected [5], cyclically 4-connected for the cycle
double cover conjecture [9] and cyclically 5-connected for the Berge conjec-
ture [6]. On the other hand, Jaeger and Swart conjectured that there are no
cyclically 7-connected snarks [4].

Cubic graphs with small edge cuts enable us to use inductive arguments.
If G is a graph from some class C with a small cycle-separating cut, it is
useful, if possible, to decompose G along the cut into two smaller graphs
contained in C. Andersen et al. [1] established such results for the class
of cyclically 4-connected cubic graphs. They showed that each cyclic part,
that is, a component separated by a cycle-separating cut of minimal size,
of a cyclically 4-connected cubic graph can be extended to a cyclically 4-
connected cubic graph by adding a pair of adjacent vertices and restoring
3-regularity. Moreover, they characterised graphs where it is sufficient to
add only two additional edges. Using this result they proved a lower bound
on the number of removable edges in a cyclically 4-connected cubic graph
[1]. Later, Goedgebeur et al. constructed and classified all snarks with cyclic
connectivity 4 and oddness 4 up to order 44 [2, 3].

In this paper, we examine how a cyclic part H of a cubic graph with cyclic
connectivity 5 can be completed to a cyclically 5-connected cubic graph. We
show that, except for the case where H is a cycle of length 5, it is sufficient
to add to H three vertices on a path of length two and restore 3-regularity
to obtain a cyclically 5-connected cubic graph. In Section 2 we summarise
notions and a result concerning cyclic connectivity that we shall use. Then,
in Section 3, we establish a weaker result that we can complete H to a
cubic graph with girth at least 5. We prove our main result in Section 4 by
showing that if we complete H to a cubic graph with girth at lest 5 which
is not cyclically 5-connected, we can use the structure of H to find another
completion which yields a cyclically 5-connected cubic graph.

2 Preliminaries
We start with some basic definitions and notations. All considered graphs
are cubic and may contain loops and parallel edges, although their existence
will be often excluded by additional requirements. We denote the subgraph
of a graph G induced by a set of vertices X by G[X]. The set of edges of the
graph G that have one end in X and the other in V (G) −X is denoted by
δG(G[X]), or δG(X). We omit the subscript G whenever the graph is clear
from the context. Also, we will write only degX(v) instead of degG[X](v) to
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denote the degree of vertex v in the induced subgraph G[X].
An edge-cut of a connected graph G, or a cut for short, is any set S of

edges of G such that G− S is disconnected. An edge-cut is cycle-separating
if at least two components of G−S contain a cycle. We say that a connected
graph G is cyclically k-edge-connected if it contains no cycle-separating edge-
cut consisting of fewer than k edges. The cyclic edge-connectivity of G,
denoted by ζ(G), is the largest number k ≤ β(G), where β(G) = |E(G)| −
|V (G)|+ 1 is the cycle rank of G, for which G is cyclically k-edge-connected
(cf. [7], [8]).

The cyclic edge-connectivity is bounded by the cycle rank, because there
are graphs, where any two cycles share an edge. Such graphs are cyclically
k-connected for every positive integer k. Among the simple cubic graphs,
the only such examples are K4 and K3,3 for which we have ζ(K4) = 3 and
ζ(K3,3) = 4. The cyclic connectivity of every graph G is bounded from above
by the girth of the graph G, denoted by g(G), which is the length of a shortest
cycle in G [7, 8].

One can easily check that for a cubic graph G with ζ(G) ≤ 3, the value
ζ(G) is equal to the usual vertex-connectivity and edge-connectivity of G.
Furthermore, cyclic edge-connectivity and cyclic vertex-connectivity, which
is defined in a similar manner, of every cubic graph coincide. Therefore, we
shall only use terms cyclically k-connected and cyclic connectivity instead of
cyclically k-edge-connected and cyclic edge-connectivity.

Let us consider a cycle-separating edge-cut S of minimum size. One can
clearly see that S consists of independent edges. Moreover, G−S has exactly
two components called cyclic parts or fragments. The following proposition
[7, Proposition 4] of Nedela and Škoviera says that each cyclic part of a
cyclically 5-connected graph is 2-connected.

Proposition 1. Let G be a connected cubic graph. Then each cyclic part of
G is connected. Moreover, if ζ(G) > 3, then each cyclic part is 2-connected.

If H is a non-empty induced subgraph of a cyclically 5-connected cubic
graph G, then it is either cyclic, and thus |δG(H)| ≥ 5, or H is acyclic. In
the latter case the relation between the number |δG(H)| and the number of
vertices of H is determined by following lemma, which can be proven by
induction. Since H is non-empty, we get bound on |δG(H)|.

Lemma 2. LetM be a connected acyclic induced subgraph of a cubic graph
G. Then |δG(M)| = |V (M)|+ 2.

Corollary 3. If M is a non-empty induced subgraph of a cyclically 5-
connected cubic graph G, then |δG(M)| ≥ 3.
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In general, a cyclic induced subgraph H of a cyclically 5-connected cubic
graph with |δG(H)| = 6 need not be 2-connected, since H may contain a
bridge. However, as we show in the following lemma, H contains only one
bridge which is additionally in a special position.

Lemma 4. LetH be a connected induced subgraph of a cyclically 5-connected
cubic graphG such that |δG(H)| = 6. Then exactly one of the following holds:

(i) H is acyclic;

(ii) H contains exactly one bridge whose one end x is incident with two
edges from δG(H) and H − x is a 2-connected cyclic part of G;

(iii) all the edges from δG(H) are independent and H is 2-connected.

Proof. If H is acyclic then only (i) holds and if H is 2-connected then only
(iii) is true because if some of the edges from δG(H) were adjacent, there
would be a bridge in H. So it is sufficient to show that if H is cyclic and
contains a bridge, then (ii) holds true.

Suppose that H contains a bridge which separates H into components
C1 and C2. Since H is cyclic, at least one of the C1 and C2 has to contain
a cycle, say C1. Therefore |δG(C1)| ≥ 5, so |δG(C1) ∩ δG(H)| ≥ 4. By
Corollary 3 we have that |δG(C2)| ≥ 3, so |δG(C2) ∩ δG(H)| ≥ 2. Since
|δG(H)| = 6, we get that |δG(C1) ∩ δG(H)| = 4 and |δG(C2) ∩ δG(H)| = 2.
Thus C2 contains only one vertex and that vertex is incident with two edges
from δG(H). Moreover, since C1 is cyclic and has five outgoing edges, C1 is
a fragment and hence cyclically 2-connected due to Proposition 1. So (ii) is
satisfied, which concludes our proof.

Finally, we formalise the process of completing a cyclic part to a cubic
graph by adding three new vertices lying on a path of length two.

Definition 5. Let H be a cyclic part of a cubic graph G with ζ(G) = 5
and let a1, a2, a3, a4, and a5 be the vertices of H of degree 2. We add to H
three vertices x, y and z and edges xy, yz, xa1, xa2, ya3, za4, and za5. We
denote the graph obtained in this way by H(a1, a2, a3, a4, a5). Throughout
this paper, the three newly added vertices will be consistently denoted by x,
y and z.

3 Extensions without short cycles
In this section we show that each cyclic part H � C5 of a cubic graph with
ζ(G) = 5 can be extended to a cubic graph H̄ = H(a1, a2, a3, a4, a5) which
has girth at least 5.
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Lemma 6. Let H be a cyclic part of a cubic graph with ζ(G) = 5 which is
not a 5-cycle and let A be the set of vertices of H of degree 2. Then each
vertex from A has at most one neighbour in A.

Proof. Let a2 be a vertex from A with two neighbours a1 and a3 in A. Then
the induced subgraph G[V (H) − {a1, a2, a3}] has only four outgoing edges,
hence it is acyclic and contains only two vertices due to Lemma 2 which
means that H is a 5-cycle (see Figure 1); a contradiction.

a1

a2

a3

G[V (H)− {a1, a2, a3}]

Figure 1: The cyclic part H in the case a2a1, a2a3 ∈ E(H), the edges from
δG(H) are dotted

Lemma 7. Let H be a cyclic part of a cubic graph G with ζ(G) = 5 that is
not a 5-cycle. Then there exists a permutation a1a2a3a4a5 of vertices of H
of degree 2 such that H(a1, a2, a3, a4, a5) has girth at least five.

Proof. Let A = {a1, a2, a3, a4, a5} be the set of the five degree 2 vertices of
H. Furthermore, let D be the graph with vertex set A where aiaj ∈ E(D)
if distH(ai, aj) = 2 for each ai, aj ∈ A. Note that if aiaj ∈ E(D), then there
exist exactly one path aivaj in H. Observe that the graph H(a1, a2, a3, a4, a5)
has girth at least five if and only if

degA(a3) = 0 and a1a2, a4a5 /∈ E(D).

By Lemma 6, there are at most two edges between the vertices from A. We
divide the proof into three cases according to the number of edges in H[A].

Case (i) Assume that the induced subgraph H[A] contains two edges, say
a1a5 and a2a4. We show that all the vertices a1, a2, a4, and a5 have at
most one neighbour in D among the vertices {a1, a2, a4, a5}. Suppose to the
contrary that, say a1 has two neighbours in {a1, a2, a4, a5}. Since obviously
a1a5 /∈ E(D), we have a1a2 ∈ E(D) and a1a4 ∈ E(D), so there exist two
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paths a1v2a2 and a1v4a4 in H. However, since degH(a1) = 2 and a1 is al-
ready adjacent to a5, the vertices v2 and v4 coincide. It follows that the
subgraph H contains a 3-cycle a2v2a4—a contradiction. Therefore, there
exists a permutation b2b4 of {a2, a4} such that a1b2, a5b4 /∈ E(D) and thus
g(H(a1, b2, a3, b4, a5)) ≥ 5.

Case (ii) Let H[A] contain only one edge and denote it by a1a5 in such
a way that degD(a5) ≤ degD(a1). We show that degD(a1) ≤ 2. Suppose to
the contrary that degD(a1) ≥ 3. Then, there are three paths a1va2, a1va3
and a1va4 in H, each going through the same neighbour v of a1 because a1 is
already incident with a5. Therefore, degH(v) = 4, which is a contradiction.
Therefore, one of the vertices a2, a3 and a4 is not adjacent to a1 in D, say
a1a2 /∈ E(D). We show that a5a4 /∈ E(D) or a5a3 /∈ E(D). Suppose to
the contrary that both the edges a5a4 and a5a3 are in E(D). Since 2 =
degD(a5) ≤ degD(a1) ≤ 2, we have a1a3, a1a4 ∈ E(D). The latter means,
there are paths a1ua3, a1ua4, a5va4, and a5va3 in H. However, then a3ua4v
is a 4-cycle in H which is a contradiction. Thus, one of the edges a5a4 and
a5a3, say it is a5a4, is not in E(D) and then the graph H(a1, a2, a3, a4, a5)
has girth at least five.

Case (iii) Finally, assume that H[A] contains no edges. We show that one
can choose four distinct vertices b1, b2, b4, b5 ∈ V (D) such that b1b2, b4b5 /∈
E(D). It is a simple matter to verify that if this is not possible, then the
graph D contains K4 as a subgraph or it contains two vertices of degree 4.

At first, suppose that D contains a K4-subgraph consisting of the vertices
a1, a2, a3, and a4. Then, there are paths a1v2a2, a1v3a3 and a1v4a4 in H.
However, since degH(a1) = 2 some of the vertices v2, v3, v4 have to coincide,
say v2 ≡ v3. Analogously, there are also paths a4u2a2 and a4u3v3 in D
and some of the vertices u2, u3, v4 have to coincide. However, then one of
(u2 = u3, a3, v3 = v2, a2), (u3 = v4, a4, v3, a3) or (v4 = u2, a2, v2, a1) is a
4-cycle in H and this is a contradiction.

Now suppose that D contains two vertices of degree 4, say a1 and a5.
Then, we have paths a1v2a2, a1v3a3, a1v4a4, and a1v5a5 inH. Since degH(a1) =
2, we have |{v2, v3, v4, v5}| = 4, so say v2 = v3 and v4 = v5. Analogously,
there are paths a5v5a1, a5v5a4, a5uv3, and a5uv2 in H. However a2v2a3u is a
4-cycle in H and that is a contradiction. Therefore g(H(b1, b2, b3, b4, b5)) ≥ 5,
where b3 ∈ A− {b1, b2, b4, b5}.

Lemma 8. Let H be a cyclic part of a cubic graph G with ζ(G) = 5 and
let a1, a2, a3, a4, and a5 be the vertices of degree 2 in H. Suppose that the
graph H̄ = H(a1, a2, a3, a4, a5) has girth 5 and that H̄ contains a minimum
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cycle-separating cut S of size smaller than 5. Then |S| = 4 and the cut S
separates {a1, a2, x} from {a4, a5, z}.

Proof. We start by showing that the vertices x and z are in different com-
ponents C1 and C2 of H̄ − S. Suppose to the contrary that x, z ∈ C1. Then
the common neighbour y of x and z is also in C1, otherwise the minimal cut
S would contain adjacent edges xy and yz. However, the cut S with |S| < 5
separates the cyclic component C2 in a cyclically 5-connected graph G, which
is a contradiction.

Thus the vertices x and z are in different components, say x ∈ C1 and
z ∈ C2. Additionally, we assume that y ∈ C2; in the case y ∈ C1 we can
proceed analogously. The two neighbours a1 and a2 of x are also in C1

because otherwise we would have two adjacent edges in the minimal cut S.
Also, the neighbour a3 of y is in the component C2 for the same reason.

We show that a4 ∈ C2. Suppose to the contrary that a4 ∈ C1. The vertex
a5 is in C2 since the adjacent edges za4 and za5 cannot be both in S. The
subgraph G[C2 − {y, z}] is separated in G by at most four edges: one edge
incident with a3, another one incident with a5 and at most two edges from
S−{xy, za4}. Hence G[C2−{y, z}] has to be acyclic, and since it contains at
least two vertices a3 and a5, due to Lemma 2, it contains no more vertices and
only one edge a3a5, and also |S| = 4. However, this yields a 4-cycle a3a5zy in
H̄, which is a contradiction. Therefore, x, a1, a2 ∈ C1 and y, z, a3, a4, a5 ∈ C2

as desired. Finally, if we had |S| < 4, then the subgraph C1 − x would be
separated in G by at most four edges: two edges coming from a1 and a2, and
at most two edges from S−{xy}. However, distH(a1, a2) ≥ 3, so C1−x has to
be cyclic and this is in contradiction with ζ(G) = 5. Therefore |S| = 4.

4 Main result
Theorem 9. Let H be a cyclic part of a cubic graph G with ζ(G) = 5. If H
is not a cycle of length 5, then H can be extended to a cyclically 5-connected
cubic graph by adding three new vertices on a path of length two and by
restoring regularity.

Proof. From Lemma 7 we know that the graph H1 = H(a1, a2, a3, a4, a5) has
girth 5 for some permutation a1a2a3a4a5 of the degree 2 vertices of H. If
ζ(H1) ≥ 5, we are done, so we assume that H1 contains a cycle-separating
cut S1 whose removal leaves components C ′

1 and C ′
2. According to Lemma 8,

|S1| = 4 and without loss of generality a1, a2 ∈ C ′
1 and a3, a4, a5 ∈ C ′

2. Put
C1 = C ′

1 − {x, y, z} and C2 = C ′
2 − {x, y, z}. Denote the three edges of S
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contained in H by b1c1, b2c2 and b3c3 in such a way that bi ∈ V (C1) and
ci ∈ V (C2) for each i ∈ {1, 2, 3} (see Figure 2).

a1

a2

a3

a4
a5

b1 b2 b3

c1 c2 c3

C1

C2

Figure 2: The cyclic part H when ζ(H1) < 5, the edges from δG(H) are
dotted

Since the graph H1 has girth at least 5, we have distH(a1, a2) ≥ 3,
distH(a4, a5) ≥ 3, and distH(a3, ai) ≥ 2 for each i ∈ {1, 2, 4, 5}. From this we
can conclude that C1 contains at least 4 vertices and C2 contains at least 5
vertices. Therefore, both C1 and C2 contain a cycle and, moreover, C1 is a
fragment and hence, due to Proposition 1, it is 2-connected.

Suppose that C2 is 2-connected. According to Lemma 6, there is at most
one edge between the vertices a3, a4, and a5. Therefore, there is a per-
mutation ijk of {3, 4, 5} such that ajai, ajak /∈ E(H) (and obviously also
aja1, aja2 /∈ E(H)). Moreover, every a1-ai-path and every a2-ak-path con-
tains at least two vertices bi and ci for some i ∈ {1, 2, 3}. Thus the graph
H2 = H(a1, ai, aj, a2, ak) (see Figure 3a) has girth at least 5. Now we show
that ζ(H2) ≥ 5. Suppose, to the contrary, that H2 contains a small cycle-
separating cut S2. By Lemma 8, |S2| = 4 and the cut S2 separates {x, a1, ai}
from {z, a2, ak}. However, since both C1 and C2 are 2-connected, the cut
S2 has to contain at least two edges from C1, at least two edges from C2

and the edge xy or yz. Therefore S2 contains at least five edges in total; a
contradiction.

If the cyclic component C2 is not 2-connected, then by Lemma 4 it con-
tains exactly one bridge such that two edges from δG(C2) are incident with
one end of the bridge and the other end of the bridge lies in a component D2

which is a fragment. Since a3, a4 and a5 are distinct vertices and the same
goes also for c1, c2 and c3, we can say that c1 ≡ ai for some i ∈ {3, 4, 5}.
We put {3, 4, 5} − {i} = {j, k} and H2 = H(a1, aj, ai, ak, a2) (see Figure
3b). At first, we show that g(H2) ≥ 5. Since ai is adjacent to b1 and c1,
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a1

a2

ai
aj
ak

b1 b2 b3

c1 c2 c3

x

y

z

C1

C2

(a) C2 is 2-connected

a1

a2

aj

ak

b1 b2 b3

c2 c3

x

y

z

c1≡ai

C1

D2

C2

(b) C2 contains a bridge

Figure 3: Completions of the cyclic part H to a cyclically 5-connected cubic
graph

its distance from each of the vertices a1, a2, aj, and ak is at least 2. More-
over, we have distH(a1, aj) ≥ 3, because every a1-aj-path contains one of the
edges b1ai, b2c2 or b3c3. For the same reason we have also distH(a2, ak) ≥ 3.
Hence g(H2) = 5. Suppose, to the contrary, that ζ(H2) < 5. According
to Lemma 8, there is a cycle-separating 4-cut S2 which separates {x, a1, aj}
from {z, a2, ak}. However, since C1 and D2 are 2-connected, the cut S2 has
to contain at least two edges from C1, at least two edges from D2 and one
of the edges xy and yz, so in total at least five edges, which contradicts the
fact that |S2| = 4. Therefore ζ(H2) = 5.

5 Concluding remarks
There is only one way how a cyclic part H of a cubic graph with cyclic
connectivity 5 can be completed to a cubic graph by adding fewer than three
vertices. Namely, we can add one new vertex and connect it with three
2-valent vertices of H, and add one new edge between the remaining two
2-valent vertices. Assume that H contains three vertices a1, a2 and a3 of
degree 2 such that all of them have some common neighbour v, or there is a
6-cycle a1v1a2v2a3v3 in H (cf. [1, Lemma 9]). Then, in every case, two of the
vertices a1, a2 and a3 are connected by an edge or are connected to the newly
added vertex v, which yields a 3-cycle or a 4-cycle, respectively. Thus, the
cyclic part H cannot be completed to a cyclically 5-connected cubic graph
by adding only one vertex. Clearly, there are infinitely many cyclic parts
satisfying one of the two aforementioned conditions. This stands in contrast
to the only exception (the 5-cycle) for completing H by adding a path of
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length two.
The following problem remains open.

Problem. Determine a complete set of conditions under which a cyclic part
of a cubic graph with cyclic connectivity 5 can be completed to a cyclically
5-connected cubic graph by adding only one additional vertex and restoring
3-regularity.

One may wonder if the subgraph H from Theorem 9 can be completed
to a cyclically 5-connected cubic graph H ′ by adding a path of length two in
such a way that H ′ is a minor of G. As we illustrate in the following example,
this is not always true.

The graph G from Figure 4 is cyclically 5-connected and the edge cut
S separates G into the component H and a 5-cycle v1v2v3v4v5. Let D be
the graph from Lemma 7, which contains edges between vertices ai and aj
if distH(ai, aj) = 2. In this case, D is the complete graph K5 without the
edges a1a4 and a2a5. Therefore, H ′ = H(a1, a5, a3, a2, a4) is the only graph
of girth 5 that can be obtained by adding a path of length two to H. The
graph H ′ is not a minor of G because the vertices v1 and v4 that should be
contracted to x and the vertices v2 and v4 that should be contracted to z lie
on the 5-cycle in an alternating order.

a1

a2

a3

a4

a5

v1

v2

v3

v4

v5
S

Figure 4: A graph G whose component cannot be completed to a minor of G
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