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PROOF OF A CONJECTURE ON HANKEL DETERMINANTS
FOR DYCK PATHS WITH RESTRICTED PEAK HEIGHTS

GUOCE XIN!* AND ZIHAO ZHANG?

ABSTRACT. For any integer m > 2 and r € {1,...,m}, let fi™" denote the number of n-Dyck
paths whose peak’s heights are im + r for some integer <. We find the generating function of
fT satisfies a simple algebraic functional equation of degree 2. The r = m case is particularly
nice and we give a combinatorial proof. By using the Sulanke and Xin’s continued fraction
method, we calculate the Hankel determinants for f;". The special case r = m of our result
solves a conjecture proposed by Chien, Eu and Fu. We also enriched the class of eventually
periodic Hankel determinant sequences.

Mathematic subject classification: Primary 05A15; Secondary 05A15, 11B&3.
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1. INTRODUCTION

1.1. Dyck Paths with Restricted Peak Heights. An n-Dyck path is a lattice path from
(0,0) to (2n,0), with unit steps either an up step U = (1,1) or a down step D = (1,—1),
staying weakly above the z-axis. The number of n-Dyck paths is counted by the celebrated
nth Catalan number C,, = #1(2:), which has more than 200 combinatorial interpretations
[10]. Its generating function c(z) := ) ., Cra™ is uniquely determined by the quadratic

functional equation c(x) = 1 + zc(x)?.

In a Dyck path D, an up-step followed by a down-step is called a peak; a down-step
followed by an up-step is called a walley; the height of a peak (or valley) is the y-coordinate
of the intersection point of its two steps. Given a set S C Z of heights, denote by D¥ = U, D?
with D2 being the set of all n-Dyck paths whose peak heights are not in S. A Dyck path
D € D# is also called with peaks avoiding heights in S. Clearly D¥ = D" where and in what
follows, P always denotes the set of positive integers.

Denote by d¥ = |D3| the cardinality of D7. The generating function of d? is
D¥ = D%(z) = dix".
n>0
For example, if S = (), then elements in D2 are just ordinary n-Dyck paths counted by the

Catalan numbers C,,.

For given S C Z and k € Z, we use the notation S —k = {s—k : s € S}. The “first return
decomposition” applies to nonempty Dyck paths 7 € D%: 7 = UuDv, i.e., 7 is decomposed as
an up-step U followed by a Dyck path pu, followed by a down step D, followed by a Dyck path
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2 GUOCE XIN"* AND ZIHAO ZHANG?
v. It is clear that u € D! and v € D¥; moreover, u has to be non-empty if 1 € S. In terms
of generating functions, we have
D% =1+ 2(D°' —x(1€8))D?,
where we have used the notation y(true) = 1 and x(false) = 0. Equivalently, we have
1
T = 1+x(1 €8z —xD5 1 (11)

The case S = S 4+ m for some positive integer m is particularly interesting. The smallest
such m is called the period of S and in this case S = V 4+ mZ for some set V', which can be
chosen to be a proper subset of [m] := {1,2,...,m}. This model has been studied by Chien et
al. [1]. They used (m, V) to denote V + mZ. Then by iteratively applying (L.1), one obtains

. 1
DY) — = . (12)

I1+x(1eV)r—

T

1 —leV)r—
+x(m €V 1+ x(m e V)x — DY)

It is easy to see that D(™VY) is algebraic of degree 2, which is a crucial fact in our evaluation
of the Hankel determinants. For instance, i) if S = 27 + 1 is the set of odd integers, then
S —2 =95 and we have

:>D22+1_x+1—\/—3x2—2x+1.
1+I_1$—DS 20 (1+x) ’
—x

ii) if S = 2Z is the set of even integers, then we have

195 :D222x+1—\/—3x2—2x+1‘
1 — = 2z
1+2—aDs
It is known [3] that: D?*2*! and D?% are counted by Riordan numbers and shifted Motzkin
numbers, respectively. They contains all n-Dyck paths with all peaks at even height and odd
height, respectively.

D =

DS =

1.2. Hankel Determinants for Generating Functions. Given a generating function A(z) =
> ns0 @n", its k-shifted Hankel determinants is defined by

Hyi(A()) = det(aisjir)ocijen-1,  Hy(Alx)) = 1.

Hankel determinants evaluation has a long history. It usually refers to finding nice formula
of H,(A(x)) := HY(A(z)) for general n > 0. Many methods have been developed, such as
Gauss’s continued fraction, the method of orthogonal polynomials. See [2, [5 8 [T1].

This paper is along the line of using generating functions to deal with Hankel determinants.
Classical method of continued fractions, either by J-fractions (Krattenthaler [8] or Wall [12]),
or by S-fractions (Jones and Thron [7, Theorem 7.2]), requires H,,(A(x)) # 0 for all n. Gessel-
Xin’s [5] continued fraction method allows H,(A(z)) = 0 for some values of n. Their method
is based on three rules that act on two variable generating functions and transform one set of
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determinants to another set of determinants of the same values. See Section 2.1 We remark
that Han’s continued fractions also allows H,,(A(z)) = 0. See [0].

Recently in [I], Chien-Eu-Fu studied the generating function D™V. They found plenty of
cases such that the sequence of Hankel determinants H,,(D{™"}) is periodic. They establish a
reduction rule in recurrence form by using Gessel-Xin’s product rule. On this basis, they give
an explicit description of the sequence of Hankel determinants for any set V' of even elements
of an even modulo m, and they present a sufficient condition for the set (m, V') such that the
sequence of Hankel determinants is periodic. However, there are still many instances with
periodicity that are not covered by this sufficient condition. They conjectured that if m > 3
and V' = [m—1], then the sequence of Hankel determinants is periodic, as restated in Corollary

We prove the following Theorem [I} which includes their conjecture as a special case. We
need some notations. A periodic sequence is written in contracted form using the notation with
a star sign. Sometimes it is convenient to describe the structure of periodicity by using the
form of an eventual periodic sequence. For instance, the sequence (1, (0, —1,1)*) represents (1,
0,—1,1,0,—1,1,0,—1,1,...) = (1,0, —1)*. Denote by H*. | (F) := (H}(F(z)), HY(F(x)),...)
the k-shifted Hankel sequence of F(z). Then the Catalan generating function has nice Hankel
sequences: H,>1(c(z)) = Hlo (c(z)) = (1)*.

It is convenient to define F™" := D™V) =3~ fmrgn where V = [m] \ {r}.

Theorem 1. For any integer m > 2, the sequence of Hankel determinants of the series F™"
is periodic of the form:
when r =1,

(1,0,...,0,1)* m=0,1 (mod4)
1 —1
Hnza(F™) = (10,70, -1,-1,0,...0.1" m=23 (mod4), (1.3)
-1 -1

and when r > 2, by using the short notation a =4 b for a = b (mod 4), we have:

( (1,0,...,0,1,0,...,0,1)* r=41,2and (m—1r)=40,3
—— ——
r—2 m—r
(1,0,...,0,—1,0,...,0,1)* r=40,3and (m—r)=41,2
N—— ——
m,ry _—_ r—2 m—r
Hypor (F™7) = (1,0,...,0,1,0,...,0,—1,-1,0,...,0,—1,0,...,0,1)* r=41,2and (m—7r)=41,2
N—— —— —— ——
r—2 m—r r—2 m—r
(1,0,...,0,-1,0,...,0,—1,-1,0,...,0,1,0,...,0,1)* r=40,3 and (m —1r) =40, 3.
N—— —— —— ——
\ r—2 m—r r—2 m—r
(1.4)

In particular, when r = m, we have

Corollary 2 ([I, Conjecture 7.1]). For any integer m > 2, the sequence of Hankel determinants
of the series F™™ is periodic of the form :

(1,0,...,0,1,1)* m=1,2 (mod 4)
—2
Hoza(F™™) =900, 70,21, -1,-1,0,...,0,1,1)* m=0,3 (mod 4)
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Note that the period of Hxy(F™") is either (m + 1) or 2(m + 1) for any m > 2.

We will prove their conjecture by using Sulanke-Xin’s method. The method was system-
atically used by Sulanke-Xin [9] for evaluating Hankel determinants of quadratic generating
functions, such as known results for Catalan numbers, Motzkin numbers, Shroder numbers, etc.

By using Gessel-Xin’s constant rule and product rule, they derived a quadratic transformation
7 such that H(F(z)) and H(7(F(x))) have simple connections. See section [2.2]

The paper is organized as follows. Section 2 includes all the preparation work. In Sec-

tion 2.1, we introduce Gessel-Xin’s continued fraction method and use it to obtain a special

1
transformation for Hankel determinants of . Then we obtain a slight exten-
1 —azx — bxG(x)

sion of the S-fraction result, and enrich the class of eventually periodic Hankel determinant
sequences when apply our transformation to D°. Section 2.2 reviews the Sulanke-Xin’s contin-
ued fraction method. We deduce the functional equation for F™"(x) in Section 2.3, and give a
combinatorial proof of the functional equation of F™(z) in Section 2.4. Finally in Section 3,
we prove Theorem (1| by evaluating the Hankel determinants H,,(F"") by using Sulanke-Xin’s
continued fraction method.

2. PRELIMINARY

2.1. Gessel-Xin’s continued fraction method. For an arbitrary two variable generat-

ing function D(z,y) = > 27 di;a'y’, let [D(z,y)], be the determinant of the n x n ma-

trix (d;;)o<ij<n—1. There are three simple rules to transform the sequence of determinants
([D(%,y)]n) >0 to another sequence of determinants.

Constant Rules. Let ¢ be a non-zero constant. Then

n

Dyl = " [D(x.y)l,  and  [D(er.y), = &) D(a.y)}, = [D(z, ey
Product Rules. If u(x) is any formal power series with «(0) = 1, then

[w(x)D(z,y)]n = [D(7,y)]n = [u(y)D(z,y)]n-

Composition Rules. If v(zx) is any formal power series with v(0) = 0 and v/(0) = 1, then
[D(v(x), y)ln = [D(x,y)]n = [D(; 0(y))]n-

The constant rules are clear. The product and composition rules hold because the trans-
formed determinants are obtained from the original one by a sequence of elementary row or
column operations. The composition rules are hard to use. Only several examples are given
in [5].

Gessel-Xin’s continued fraction method basically starts with the following observation on
ordinary and shifted Hankel determinants:

Hy(A) = | ) - [ HE=20)

Then by applying the constant rules and product rules we will be able to obtain a recursion

for evaluating H(A(x)) and H'(A(x)).
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Lemma 3. Suppose two generating functions F(x) and G(x) are related by

1
-1 —ar — baG(x)’

Then H,(F(x)) = ()" *H)(G(z)) and H:(F(x)) = H,(a + bG(z)).

F(x)

a,beC, b#£0.

Proof. For ordinary Hankel determinants, we have

x _ Yy
Hn(F<ZL‘)) _ [ 1—aac—b1’G(:tl)' — ;—ay—byG(y) ]

By the product rule, we can multiply by the series (1 —ax —bxG(z))(1 —ay — byG(y)) without
changing the determinant, we obtain

H,(F(z)) = [fﬁ(l —ay - byG(y); - 3;(1 — az — bxG(x))]
Gl) — Gy
=y

- [1 + bay } = " UHY(G(x)),

where in the last equality, we used the fact that [14+zyD(z, y)], is a block diagonal determinant.

For shifted Hankel determinants, we have

1 . 1
e

Similarly, we can multiply by the series (1 — az — bxG(z))(1 — ay — byG(y)) to abtain

HY(F () = {(1 —ay — byG(y)g)U: ;1 —axr — bxG(:c))]

[m(a + bG(x)) —y(a + bG(y))
r—y

L = Hy(a+bG(x)).

By iteratively apply Lemma [3, we can extend the classical S-fraction result as follows.

Proposition 4. Suppose we have the following continued fraction:
1

F(z) =

bll'
bzl’

1—aixz—
1—asx —
1—asx — —

i) If a; = 0 for all even indices i, then H,(F(z)) = (bibg)" ' (b3bs)" 2+ (bay_3ban_2).
ii) If a; = 0 for all odd indices i, then H!(F(x)) = b7 (byb3)" ' - (bop_obon_1).

In particular, if a; = 0 for all i, then we have the S-fraction result [7].
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Note that both parts of the proposition can be explained by the Gessel-Viennot—Lindstrom
nonintersecting lattice model [4].

Another consequence is the following.

Corollary 5. For any S € P, we have
H,(D'VS+)y = g (D) = H,_(D%), and H:(D°*')= H,_,(D%).

Proof. By Equation (1.1)), if S € P then we have

1 1 1
{1TUs+2) S+2 _ S+1 _
b 14— aDSH b 1 —aDStV and D 1—axD5 (2.1)
By Lemma 3, we have
Hn(D{l}U(SJrQ)) — Hn(DS+2> _ Hrlhl(DSJrl), H71L<DS+1> — Hn(DS)
The Corollary then follows. O

Repeated application of Corollary [5] gives the following result, enriching the class of even-
tually periodic Hankel determinant sequences.

Theorem 6. For any S € P, positive integer p € P, and T C [2p] N (2Z + 1). If H,(D*(z))
1s eventual periodic, then

i) the Hankel sequence H,>(DTUS+2) (1)) is eventually periodic.
ii) the shifted Hankel sequence Hys, (DT TUST2) (1)) is eventually periodic.

Example 7.
i) For S = (5,{1,2,4}), we have

{1} | (5+2)=(5,{1,3,4}) and 1+ ({1} | (S+2)) = (5,{2,4,5}).
Then,
Hn(D{5’{1’2’4}}) - Hn+1(D{5’{1’3’4}}) and Hn(D{5’{1’3’4}}) — Hi(D{5,{27475}}).
This agrees with direction computation or Table 1 in [1 |/ that
Hyq (D24 = (1,0, -1, -1, -1,-1,0,1,1,1.)%,
H, 5 (DEAL3A = (1,1,0,—1,—1,—1,—1,0,1,1)*,
H;ZI(DW“E’}} (1,1,0,—-1,—1,—1,—1,0,1,1)".

2.2. Sulanke-Xin’s continued fraction. We include Sulanke-Xin’s continued fraction method
here as our basic tool. Suppose the generating function F'(z) is the unique solution of a qua-
dratic functional equation which can be written as

.CEd

u(z) + xhv(x)F(x)’
where u(x) and v(z) are rational power series with nonzero constants, d is a nonnegative
integer, and k is a positive integer. We need the unique decomposition of u(z) with respect to
d: u(r) = ug(z) + 27 2uy (z) where uy(x) is a polynomial of degree at most d + 1 and uy(z)
is a power series. Then Propositions 4.1 and 4.2 of [9] can be summarized as follows.

F(z) = (2.2)
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Proposition 8. Let F(z) be determined by (2.2)). Then the quadratic transformation 7(F') of
F defined as follows gives close connections between H(F') and H(7(F)).

i) If u(0) # 1, then 7(F') =

and Hy,(1(F)) = u(0)
i) Ifu(0)=1and k=1, t

0)F is determined by G(z) = u(O)*1u(x)+x£j(0)*2v(m)G(aE)’

= u(
( (),
en 7(F) = 271 (G(z) — G(0)), where G(x) is determined by

—v(z) — zug(z)uy(x)
ur(z) — 29 2uy (x) — 24H1G(x)’

G(z) =

and we have
d+1

Homaa(7(F)) = (=)D, (F (@)
ii) If w(0) =1 and k > 2, then 7(F') = G, where G(x) is determined by

)
=" () —ug(@)ug(a)
G(z) = ur(z) — 24 2up (z) — 22G(z)’

and we have
d+1)

Ho aa(r(F)) = (~1)E) H, (F(x)).

2.3. The Functional Equation for ™" (z) for 2 <m < m, 1 <r. To give the functional

equation for F™"(x), we use the notation: » | _ja" := 1“‘”— for r € Z. For Example,

St =14a4a? Y i =0, = — a2
Theorem 9. Letm > 2 and 1 <r < m, then
e _ 1- (ZZ;TJrl 551)(2: 031. )
(.73) - m—r+1 . r—3 i m—r+1 _; r—=2 m—r+1 ;—~r—3 m,r ’
T+o— (30 o)y rh) — Oty o)X img o) + Ooims iy iyt — 1)z F™r(x)

Especially, when r = m we have

1
Fm(x ; 2.3
O s e - (o, e () (23)

when r =1, we have

m g
F ! (x) = m—1 : 1 :
ST — e (a)

We will give a combinatorial proof of equation (2.3)) in section .

Proof. Firstly, let ¢, 11(G(x)) be the (n + 1) layers continued fraction:

1
ony1(G(2)) = T
1+x— T
14+x—

T
‘ 1 —2G(2)
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1

S0, n1(G(7)) = 142 — 2¢,(G(z))

. It is easy to prove by induction that

(i) )G(x) — 1
i (G(z)) = =izt © 2.4
Pl = (T ) Ga) 1 24
From (|1.2), we have F"™" () = ¢r11(@m—rt1(F™" () — 1)). Using (2.4]), we obtain:
r=1 iy (S e (ET () -1) -1
(S o) (Bae it
F(m,r)<x) _ Qi =) (Fmr(z)—1)—1 -0 (25)

r (2;’;lei><me(x>—1>—1> o
(Zi:l Z ) ( (Z;’;‘lrmi)(}?‘m,'r(w)_l)_l 1

Simplifying (2.5) and then take the numerator, we obtain:

Fm,’r(l,) _ 1- (Z?IQTH zl)(Z:;g xz) )
Lo — (0 ) (5 o) — (01 ) (s o) + (0 af iy @ — e P (x)

4

2.4. A Combinatorial Proof of Equation (2.3)). A Dyck path 7 is said to be m-peaks if
the height of each peak is a multiple of m. Equivalently, 7 is m-peaks if and only if it avoids
all peak hights in (m, [m — 1]), i.e., 7 € D=1,

We need the following bijection.

Lemma 10. For 1 <k <m —1 and m < n. the number of (n — k)-Dyck paths M such that
M is m-peaks is equal to the number of n-Dyck paths N satisfying the following conditions:

(i) N is m-peaks.
(i) N does not return to the x-azis before the last step.
(111) The height of the rightmost valley under level m is exactly m — k.

Proof. Let 1 <k <m—1, M € D,,_, and M is m-peaks. Decompose M as:
M = M'M,

where M’ first return to the z-axis. So M’ is also m-peaks and must end with m Ds. Therefore,
write M’ as MDD ...D. Now, M is divided into three parts

M = M;DD...D M.
~—
Define N to be:
N=M,DD...DUU...UM;DD...D.
HI:_/HI:_/ ~—
It easy to check that N is an n-Dyck paths satisfying conditions (), (i7) and (iz7).
The inverse of M — N: Find the right most valley as in condition(éii), and decompose N
as
N=N,DD...D UU...UN’,
k k
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where the height of terminal step of Ny is m. Clearly, N’ has no valley under level m and ends
with mDs, Therefore we can decomposition N’ into Ny DD ...D, where Ny is m-peaks. Now,

m
N is decomposed as

N=N,DD...D UU...UN,DD...D.

k k m

Then we set the corresponding (n — k)-Dyck path M to be
M = N,;DD...DNs.
—

m

Finally, for the above transformation, we always need m < n. O

An example is shown in Figure [I] where m = 3 and k = 1.

6
3 > A ‘
4 2
? M2 M, 3 , [
2N1 ¥
0 12345678 91011121314 ' i
M 0 12345678 910111213141516

N

FIGURE 1. M and N are 3-peaks. M is a Dyck path with 7 up steps, N is a
Dyck path with 8 up steps.

Observe that the height of the lowest valley of N is h € [m —1] is equivalent to saying that
the height of the rightmost valley of N under level m is equal to m — k for some k € [m — 1].
Thus by taking all 1 <k < m — 1 in Lemma [I0| we will get the following result.

Corollary 11. For all positive integer m with 2 < m < n, we have

m—1

# L—lj {m € D, | ™ is m-peaks}.

k=1

= #{m € D, | m is m-peaks and the height of the lowest valley of m must be in [m — 1]}.

Combinatorial proof of Eq.(2.3). For any nonempty m-peaks Dyck path M, the first return
decomposition gives

M = M, M,.

Denote by h the height of lowest valley of M;. Then A > 0 since M; only return to the z-axis
at the end. Therefore we have the following two cases.

Case 1: m < h. Clearly, such M; has generating function ™ F"™(x);

Case 2: 1 < h <m — 1. By Corollary [11] and Lemma [10] the generating function of such
My is S @ (From(a) — 1),



10 GUOCE XIN™* AND ZIHAO ZHANG?

In summary, the generating function F™™(x) of M satisfies the equation:

F™m(z) =1+ F™™(z) (:cmme + Z (F™™(z) — 1))

This can be rewrite as
1

1 +> ol — (>0 xl)me(@

3. PROOF OF THEOREM [1I

We divide the proof of Theorem [I] into two parts: one is for » = 1, and the other is for
r > 2. This is simply due to the different periods in their formulas.

3.1. Evaluation of H,(F™!). For r = 1, we have the functional equation

m—1
Fm’l(l') — Zz o ¥ )
Yty @l = aFm ()
Let Fy(z) = F™(z). Apply Proposition [§| to obtain F} = 7(Fp). Firstly, d =0,k = 1,u = 1,
Thus up(z) =1, and uy =0, v = —Z% then by u(0)™! = 1, we obtain:
i=0 &

l.m—l

(S0 ah)(1 = 22 — 22 Fy ()
Apply Proposition |8 to get Fy = 7(F}). This time d = m — 1, k = 2 and u(x) is a polynomial:

H,(Fy) = Hy 1 (F1), Fi(x) =

m—1
u(e) = (p_«")(1—22),
i=0
and it then follows that uy(z) = u(z) and ugy(z) = 0. Then by u(0) = 1, we obtain

Hn—1<F1) - (_1)<?)Hn m(FZ)a

m—1
T
FQ([E) — —— Zz 0 )
1—=>"7" ot — 22m — am Ly (x)
Apply Proposition [§ to get F3 = Fy = 7(F). This time d =0, k =m + 1, u(z) = 1 — 2z and
it then follows that uy(x) = 1 — 2z and uy(x) = 0. Then by u(0) = 1, we obtain

H(
(FQ) Hn—m—l(F3)a

xm—l

(7 2)(1 = 22 — a2Fy(x))
By combining the above formulas we obtain

Hot(Fr) = (1)) Hy o o(F).
Let n — 1 =k(m+ 1) + j, where 0 < j < m. we deduce that
Hoo(Fy) = (1) G B ().
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The value of (’;) can be divided into two cases:
i) When m = 0,1 (mod 4), () is even. In this case, Hy(ns1)+;(F1) = H;(F) and the initial
values are
HO(F1> — 1,H1(F1) — HQ(Fl) i m—l(Fl) — O,Hm(Fl) — 1
ii) When m = 2,3 (mod 4), () is odd. In this case, Hym1)+;(F1) = (=1)*H;(F}) and the

2
initial values are

Ho(Fy) =1,H(F\) = Hy(F\)="---=H,1(F) =0,H,(F) = —1.
This completes the proof of Eq. (1.3 of Theorem .

3.2. Evaluation of H,(F™"), 2 <r <m. Let Fo(x) = F™"(x). Apply Proposition [§ to get
Fy = 7(Fy). Firstly, d = 0,k = 1, and we need to decompose u(z) with respect to d. We
expand u(z) as a power series and focus on the terms with small exponents (< d+1=1)

o) = LEE = T S - S e e
I SR i £

. . _ r—2 r—1 m—r—+1 m—r

uU—ury, x —x +x -z —1
Thus uL(x) =1+ 2z is simple and uyg = “z¢ = =2 —T——— Then by u(0)~t =1,
we obtain

H,(Fy(z)) = Fy1(Fi(2)),

$T_2

Fi(x) = e — — p .
RO SrirD ve RS SiE v re
Apply Proposition [§] to get F» = 7(F}). This time d = r — 2 and u(z) is a polynomial:

and it then follows that uz(z) = — 31—} 2 + 1 and ug(z) = Y27 ", Then by u(0) = 1,
we obtain
r—1

Ho o (F) = (—1)) H, L (Fy),

m—-r

x
1= —arFy(a)
Apply Proposition 8 to get F3 = 7(F,). This time d = m —r, k = r > 2 and u(z) is a
polynomial:

Fy(x)

and it then follows that uy, = 1 — 377" 2% and uy = 3_ 2’. Then by u(0) = 1, we obtain

m—r+1

oo (Fo) = (—1)(" 2 H, i (Fy),

— 1 . _3 .
Fy(z) = L= ety
D SR e SRy Y Py
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Apply Proposition [§] to get Fy = F; = 7(F3), This time d = 0, k£ > 2 and u(x), We need to
decompose u(z) with respect to d. We expand u(z) as a power series and focus on the terms
with small exponents (< d+1=1):

1
U(.’L’) 1_Zm i Z+Zz m— T‘+2'/L‘
IEDVIFRAN DY

x1+r_zr_xm—7‘+3+zm r+2 - . .
a5, - Lhen by u(0) = 1, we obtain :

anmfl(F?)) = anm72<F1)7

By combining the above formulas we obtain

It then follows that u;, =1 — 2, uy =

m—r+1

Hy(F™) = Hy o (F) = ()OS, ()
Let n — 1 =k(m+1) + j, where 0 < j < m. We deduce that

Ho(F™") = Hya(F) = (-0 H ()

The value of (1;1) + (mfg H) can be divided into four cases:

i) When r =4 1,2 and (m —r) =4 0,3, (",') + ("5 *") is even. In this case, H,_(F}) =
H;(F) and the initial values are
(Ho(Fy)) o =1(1,0,...,0,1,0,...,0,1).
r—2 m—r
ii) When r =4 0,3 and (m —r) =4 1,2, (’;1) + (m_;“l) is even. In this case, H, 1(F}) =
H;(Fy) and the initial values are
H,(F))™ . =(1,0,...,0,—1,0,...,0,1).
(Hn(F1)) =0 = ( : )
iii) When r =4 1,2 and (m —r) =4 1,2, (";') + ("2*") is odd. In this case, H,_1(F}) =
(—1)*H;(F}) and the initial values are
H,(F)™, =(1,0,...,0,1,0,...,0,—1).
(Hn(F1))p—o = ( : )
iv) When r =4 0,3 and (m —r) =, 0,3, (",') + ("5*") is odd. In this case, H,_{(F}) =
(—=1)*H;(F}) and the initial values are
Hy(F)™ . =(1,0,...,0,—1,0,...,0,—1).
(Hn(F1))5zg = ( )

This completes the proof of Eq. (1.4) in Theorem .
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