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On the eccentricity matrices of trees: Inertia and
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Abstract

The eccentricity matrix E(G) of a connected graph G is obtained from the distance
matrix of G by keeping the largest non-zero entries in each row and each column, and
leaving zeros in the remaining ones. The eigenvalues of E(G) are the E-eigenvalues of
G. In this article, we find the inertia of the eccentricity matrices of trees. Interestingly,
any tree on more than 4 vertices with odd diameter has two positive and two negative
E-eigenvalues (irrespective of the structure of the tree). A tree with even diameter has
the same number of positive and negative E-eigenvalues, which is equal to the number
of ’diametrically distinguished’ vertices (see Definition 3.1). Besides we prove that the
spectrum of the eccentricity matrix of a tree is symmetric with respect to the origin
if and only if the tree has odd diameter. As an application, we characterize the trees
with three distinct E-eigenvalues.

AMS Subject Classification (2010): 05C12, 05C50.
Keywords. Tree, Eccentricity matrix, E-eigenvalue, Inertia, Haynsworth inertia addi-

tivity formula, Schur complement.

1 Introduction

Throughout this paper, we consider simple, undirected and connected graphs. Let G =
(V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =
{e1, . . . , em}. The adjacency matrix of a graph G on n vertices, denoted by A(G), is an
n × n matrix whose rows and columns are indexed by the vertices of G and the entries are
defined as follows: A(G) = (auv), where auv = 1 if the vertices u and v are adjacent, and
auv = 0 otherwise. We fix an ordering for the vertex set, whenever we associate matrices
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with the given graph. The distance between the vertices u, v ∈ V (G), denoted by d(u, v), is
the minimum length of the paths between the vertices u and v in G, and define d(u, u) = 0
for all u ∈ V (G). The distance matrix of G, denoted by D(G), is an n × n matrix whose
rows and columns are indexed by the vertices of G and the entries are defined as follows:
D(G) = (duv), where duv = d(u, v). The diameter of G, denoted by diam(G), is the greatest
distance between any pair of vertices in G. A diametrical path is a path whose length equals
to the diameter of G.

The eccentricity e(u) of a vertex u is defined as e(u) = max{d(u, v) : v ∈ V (G)}. The
eccentricity matrix E(G) of a connected graph G on n vertices is an n× n matrix with the
rows and columns are indexed by the vertices of G, and the entries are defined as follows:

E(G)uv =

{

d(u, v) if d(u, v) = min{e(u), e(v)},
0 otherwise.

In [11, 12], Randić introduced the notion of eccentricity matrix of a graph, then known as
DMAX-matrix. It was renamed as eccentricity matrix by Wang et al. in [14]. The eigenvalues
of E(G) are the E-eigenvalues of G. Since E(G) is symmetric, all of its eigenvalues are real.
Let ξ1 > ξ2 > . . . > ξk be all the distinct E-eigenvalues of G. Then the E-spectrum of G is
denoted by SpecE(G), and is defined as

SpecE(G) =

{

ξ1 ξ2 . . . ξk
m1 m2 . . . mk

}

,

where mi is the multiplicity of ξi for i = 1, 2, . . . , k. As E(G) is entrywise nonnegative, by
the Perron-Frobenius theorem, the spectral radius of E(G) is the largest eigenvalue of E(G).
The spectral radius of E(G) is called the E-spectral radius of G, and is denoted by ρ(E(G)).

Recently, the eccentricity matrices inspired much interest and attracted the attention
of researchers. Wang et al. [15] studied some spectral properties of graphs based on the
eccentricity matrix. Mahato et al. [6] studied the spectra of eccentricity matrices of graphs.
Recently, Wei et al. [16] characterized the trees which have the minimum E-spectral radius
with the given diameter. As a consequence, they determined the trees on n vertices with
minimum E-spectral radius, which solved a conjecture posted in [14]. The eccentricity en-
ergy change of complete multipartite graphs due to an edge deletion is studied by Mahato
and Kannan [8]. Wei and Li [17] established a relationship between the majorization and
E-spectral radii of complete multipartite graphs. For more details about the eccentricity
matrices of graphs,we refer to [2, 4, 5, 10, 11, 12, 13, 14, 18].

From the spectral graph theory perspective, the eccentricity matrix is substantially dif-
ferent from the adjacency matrix and the distance matrix. The adjacency matrix and the
distance matrix of a connected graph are always irreducible, while the eccentricity matrix
of a connected graph need not be irreducible [14]. For example, the eccentricity matrix of
a complete bipartite graph of order n and maximum degree less than n− 1 is reducible. In
contrast, the eccentricity matrix of a tree with at least two vertices is irreducible [14]. The
distance matrix of a tree is always invertible. However, the eccentricity matrix of a tree need
not be invertible [7].
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The inertia In(M) of a symmetric matrixM is the triple
(

n+(M), n−(M), n0(M)
)

, where
n+(M), n−(M) and n0(M) denote the number of positive, negative and zero eigenvalues of
M , respectively. There are only a few graphs for which the inertias of eccentricity matrices
are known. In [6], Mahato et al. computed the inertia of eccentricity matrices of the path
and the lollipop graphs. Recently, Patel et al. [9] studied the inertia of coalescence of
graphs. One of the main objectives of this article is to compute the inertia of eccentricity
matrices of trees. The inertia of any tree on more than 4 vertices with an odd diameter
is (2, 2, n − 4) irrespective of the structure of the tree. The inertia of any tree with even
diameter is (l, l, n− 2l), where l is the number of ’diametrically distinguished’ vertices (See
Definition 3.1). This is done in Section 3.

For the adjacency matrix A(G) of a graph G, it is known that the eigenvalues of A(G) are
symmetric about the origin if and only if G is a bipartite graph. In Section 4, we consider
this problem for the eccentricity matrices of trees and prove that the E-eigenvalues of a tree
T is symmetric with respect to the origin if and only if T is a tree with odd diameter.

2 Preliminaries

In this section, we introduce some of the needed notations and results. Let Rn×n denote the
set of all n× n matrices with real entries. For A ∈ R

n×n, let A′, det(A), det(λI −A) denote
the transpose, determinant and characteristic polynomial of A, respectively. Let J and 0
denote the all one matrix and all zero matrix of appropriate sizes, respectively. For a real
number x, ⌊x⌋ denotes the greatest integer less than or equal to x, and ⌈x⌉ denotes the least
integer greater than or equal to x.

Let A be an n×n matrix partitioned as A =

(

A11 A12

A21 A22

)

, where A11 and A22 are square

matrices. If A11 is nonsingular, then the Schur complement of A11 in A, denoted by A/A11,
is defined as A22 −A21A

−1
11 A12. For Schur complement, we have detA = (detA11) det(A22 −

A21A
−1
11 A12). Similarly, if A22 is nonsingular, then the Schur complement of A22 in A, denoted

by A/A22, is A11 −A12A
−1
22 A21, and we have detA = (detA22) det(A11 −A12A

−1
22 A21). In the

following theorem, we state the well known Haynsworth inertia additivity formula.

Theorem 2.1 ([1, Theorem 1]). Let H be an n× n Hermitian matrix partitioned as

H =

(

H11 H12

H21 H22

)

.

If H11 is nonsingular, then In(H) = In(H11) + In(H/H11), where H/H11 is the Schur

complement of H11.

A principal submatrix of a square matrix A is the matrix obtained by deleting any k
rows and the corresponding k columns from A. The determinant of the principal submatrix
is called the principal minor of A.
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Theorem 2.2 ([3, Page 53]). Let A be an n× n real matrix and let Ek(A) denote the sum

of its principal minors of size k. Then, the characteristic polynomial of A is given by

φ(λ) = λn −E1(A)λ
n−1 + . . .+ (−1)n−1En−1(A)λ+ (−1)nEn(A).

We will need the following result about the interlacing of eigenvalues.

Theorem 2.3 ([3, Theorem 4.3.28]). Let M be a real symmetric matrix of order m, and let

N be its principal submatrix of order n < m. If λ1 ≥ λ2 ≥ . . . ≥ λm are the eigenvalues of

M and µ1 ≥ µ2 ≥ . . . ≥ µn are the eigenvalues of N , then λm−n+i ≤ µi ≤ λi for 1 ≤ i ≤ n.

Let Pn and K1,n−1 denote the path and the star graphs on n vertices, respectively. The
E-spectrum of K1,n−1 is given in the following lemma.

Theorem 2.4 ([6, Theorem 2.1]). Let K1,n−1 be the star on n vertices. Then, the E-spectrum
of K1,n−1 is given by

SpecE(K1,n−1) =

{

n− 2 +
√
n2 − 3n+ 3 n− 2−

√
n2 − 3n + 3 −2

1 1 n− 2

}

,

An n× n nonnegative matrix A is reducible if there exists an n× n permutation matrix

Q such that QAQT =

(

A11 A12

0 A22

)

, where A11 is a r × r sub matrix with 1 ≤ r < n. If no

such permutation matrix Q exists, then A is irreducible.

Theorem 2.5 ([14, Theorem 2.1]). The eccentricity matrix E(T ) of a tree with at least two

vertices is irreducible.

For d ≥ 3 and d is odd, let T a,b
n,d be the tree obtained from Pd+1 = v0v1v2 . . . vd by

attaching a pendant vertices to v d−1

2

and b pendent vertices to v d+1

2

, where a+ b = n− d− 1

and b ≥ a ≥ 0. The following theorem gives the characterization of trees with minimum
E-spectral radius.
Theorem 2.6 ([16, Theorem 2.13]). Let T be a tree on n vertices.

1. If 4 ≤ n ≤ 15, then

ξ1(T ) ≥

√

13n− 35 +
√

(13n− 35)2 − 64(n− 3)

2

with equality if and only if T ∼= T 0,n−4
n,3 .

2. If n ≥ 16, then

ξ1(T ) ≥











√

16n−21+
√
800n−1419
2

, if n is odd;
√

16n−21+5
√
32n−67

2
, if n is even.

Each of the equalities holds if and only if T ∼= T
⌊n−6

2
⌋,⌈n−6

2
⌉

n,5 .
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3 Inertia of eccentricity matrices of trees

It is well known that the distance matrix D(T ) of a tree T on n vertices has exactly one
positive eigenvalue and n− 1 negative eigenvalues. Therefore, rank(D(T )) = n for any tree
T on n vertices. In [7], the authors proved that the star K1,n−1 is the only tree of order n
for which the eccentricity matrix is invertible, that is, rank(E(K1,n−1)) = n. Moreover, the
inertia of E(K1,n−1) is (1, n − 1, 0), as D(K1,n−1) = E(K1,n−1). In this section, we find the
inertia of eccentricity matrices of all trees on n vertices. First, let us start with computing
the inertia of a block matrix.

Lemma 3.1. Let B be a 2n× 2n symmetric matrix partitioned as

B =

(

2d(J − I) (2d− 1)(J − I)
(2d− 1)(J − I) 0

)

.

Then, the inertia of B is (n, n, 0).

Proof. Let B1 = 2d(J − I) and B2 = (2d − 1)(J − I). Then B =

(

B1 B2

B2 0

)

. Since B

is a symmetric matrix and B1 is invertible, by the Haynsworth inertia additivity formula,
we have In(B) = In(B1) + In(0 − B2B1

−1B2). It is easy to see that the inertia of B1 is

(1, n− 1, 0). We have In(0−B2B1
−1B2) = (n− 1, 1, 0), because B2B1

−1B2 =
(2d−1)2

2d
(J − I).

Thus In(B) = (1, n− 1, 0) + (n− 1, 1, 0) = (n, n, 0).

In the next theorem, we show that the rank and the inertia of the eccentricity matrices
of trees with odd diameter do not depend on the structure of trees. For U ⊆ V (T ), let R[U ]
denote the submatrix of E(T ) with the rows are indexed by the elements of U .

Theorem 3.1. Let T be a tree on n ≥ 4 vertices with diam(T ) = 2d+ 1, d ∈ N. Then, the

rank of E(T ) is 4. Moreover, E(T ) has exactly two positive and two negative eigenvalues,

that is, the inertia of E(T ) is (2, 2, n− 4).

Proof. Let T be a tree on n ≥ 4 vertices with diam(T ) = 2d+1, d ∈ N. Since the diameter of
T is odd, T has two centers, say, u0 and v0. Let T1 and T2 be the components of T −{u0, v0}
containing u0 and v0, respectively. Define

V1 = {u ∈ T1 : d(u, u0) = d},
V2 = {v ∈ T2 : d(v, v0) = d},
V3 = {u ∈ T1 : 0 ≤ d(u, u0) < d}, and
V4 = {v ∈ T2 : 0 ≤ d(v, v0) < d}.

Then V (T ) = V1∪V2∪V3∪V4, and {V1, V2, V3, V4} is a partition of V (T ). It is easy to check
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the following

E(T )uv = 2d+ 1, for all u ∈ V1, v ∈ V2,

E(T )uv = e(u), for all u ∈ V4, v ∈ V1,

E(T )uv = e(v), for all u ∈ V2, v ∈ V3,

E(T )uv = 0, for all u, v ∈ Vi, i = 1, 2, 3, 4,

E(T )uv = 0, for all u ∈ V3, v ∈ V1, and

E(T )uv = 0, for all u ∈ V2, v ∈ V4.

So corresponding to the above partition of V (T ), the eccentricity matrix E(T ) of T can
be written as

E(T ) =

V1 V2 V3 V4












V1 0 (2d+ 1)J 0 P
V2 (2d+ 1)J 0 Q 0
V3 0 Q′ 0 0
V4 P ′ 0 0 0

,

for some matrices P and Q of appropriate order. Note that, all the rows of P are identical,
and all the rows of Q are identical.

For i = 1, 2, the rows corresponding to every vertex in Vi are identical in E(T ), so
rank(R[V1]) = rank(R[V2]) = 1. Let v ∈ V3. Then for every vertex u ∈ V3, there is a scalar
c ∈ R such that R[v] = cR[u]. Thus rank(R[V3]) = 1. By the same argument, we get
rank(R[V4]) = 1. Thus, the rank of E(T ) is at most 4.

Let vi ∈ Vi for i = 1, 2, 3, 4. Then, the principal submatrix of E(T ) indexed by {v1, v2, v3, v4}
is

A =











0 2d+ 1 0 2d
2d+ 1 0 2d 0

0 2d 0 0
2d 0 0 0











Since the rank of A is 4, rank(E(T )) ≥ 4. Thus rank(E(T )) = 4.

The eigenvalues of A are
2d+1+

√
(2d+1)2+16d2

2
,

√
(2d+1)2+16d2−(2d+1)

2
, −

√
(2d+1)2+16d2−(2d+1)

2
,

and −2d+1+
√

(2d+1)2+16d2

2
. That is, A has two positive and two negative eigenvalues. There-

fore, by Theorem 2.3, E(T ) has at least two positive and two negative eigenvalues. But the
rank of E(T ) is 4, hence E(T ) has exactly two positive and two negative eigenvalues. Thus,
the inertia of E(T ) is (2, 2, n− 4).

Definition 3.1. Let T be a tree with even diameter, and u0 be the center of T . A vertex v
adjacent to u0 in T is diametrically distinguished if there is a diametrical path contains the
vertex v.

In the following theorem, we show that the rank of E(T ) is twice the number of diamet-
rically distinguished vertices in T .
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Theorem 3.2. Let T be a tree on n vertices with diam(T ) = 2d, d ≥ 2, d ∈ N, and let u0 be

the center of T . Let u1, u2, . . . , ul (l ≥ 2) be the neighbours of u0 such that eTi
(ui) = d − 1,

where Ti are the components of T −∪l
i=1{u0, ui} containing ui, for i = 1, 2, . . . , l. Then, the

inertia of E(T ) is (l, l, n− 2l).

Proof. Let Tl+1 be the component of T − ∪l
i=1{u0, ui} containing u0. Let V (T ) = V1 ∪ V2 ∪

. . . ∪ V2l ∪ V2l+1 be a partition of the vertex set of T , where

Vi = {u ∈ Ti : d(u, u0) = d},
Vl+i = {v ∈ Ti : 0 < d(u, u0) < d}, and

V2l+1 = V (Tl+1).

For each i, j = 1, 2, . . . , l, it is easy to check that

E(T )uv = 2d, for all u ∈ Vi, v ∈ Vj , i 6= j,

E(T )uv = e(u), for all u ∈ Vl+i, v ∈ Vj , i 6= j,

E(T )uv = e(v), for all u ∈ Vi, v ∈ V2l+1,

E(T )uv = 0, for all u ∈ Vi, v ∈ Vl+i,

E(T )uv = 0, for all u ∈ Vl+i, v ∈ V2l+1,

E(T )uv = 0, for all u, v ∈ Vi,

E(T )uv = 0, for all u, v ∈ Vl+i, and

E(T )uv = 0, for all u, v ∈ V2l+1.

Now, corresponding to the above partition of V (T ), the eccentricity matrix of T can be
written as

E(T ) =

V1 V2 . . . Vl Vl+1 Vl+2 . . . V2l V2l+1




























































V1 0 (2d)J . . . (2d)J 0 P1,l+2 . . . P1,2l P1,2l+1

V2 (2d)J 0 . . . (2d)J P2,l+1 0 . . . P2,2l P2,2l+1
...

...
...

. . .
...

...
...

. . .
...

...
Vl (2d)J (2d)J . . . 0 Pl,l+1 Pl,l+2 . . . 0 Pl,2l+1

Vl+1 0 P ′
2,l+1 . . . P ′

l,l+1 0 0 . . . 0 0
Vl+2 P ′

1,l+2 0 . . . P ′
l,l+2 0 0 . . . 0 0

...
...

...
. . .

...
...

...
. . .

...
...

V2l P ′
1,2l P ′

2,2l . . . 0 0 0 . . . 0 0
V2l+1 P ′

1,2l+1 P ′
2,2l+1 . . . P ′

l,2l+1 0 0 . . . 0 0

,

where the rows of each matrix Pi,l+j are identical with i 6= j and i = 1, 2, . . . , l; j =
1, 2, . . . , l, l + 1. Note that, for a fixed j, the columns of the matrices Pi,l+j are multiples of
the vector e = (1, . . . , 1)T (of appropriate sizes). Moreover, for 1 ≤ j ≤ l + 1 and v ∈ Vl+j,
all the non-zero entries of the column corresponds to the vertex v are the same.
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For i = 1, 2, . . . , l, the rows corresponding to all the vertices of Vi are the same in E(T ), so
the rank of R[Vi] is one. Let u be a vertex in Vl+i. Then for any vertex v ∈ Vl+i, R[v] = cR[u],
where c ∈ R. Thus rank(R[Vl+i]) = 1 for i = 1, 2, . . . , l.

If v ∈ V2l+1, then R[v] = c1R[v1] + c2R[v2] + . . . + clR[vl] for some vi ∈ Vl+i, ci ∈ R and
i = 1, 2, . . . , l. Thus, the rows corresponding to V2l+1 are linear combination of the rows
corresponding to Vl+1, Vl+2, . . . , V2l in E(T ). Since R[V1], R[V2], . . . , R[V2l] are of rank one in
E(T ), therefore the rank of E(T ) is at most 2l.

For i = 1, 2, . . . , l, let vi ∈ Vi and vl+i be its adjacent vertex in Vl+i. Then the principal
submatrix of E(T ) indexed by the vertices v1, v2, . . . , vl, vl+1, . . . , v2l is given by

B =

v1 v2 . . . vl vl+1 vl+2 . . . v2l




















































v1 0 2d . . . 2d 0 2d− 1 . . . 2d− 1
v2 2d 0 . . . 2d 2d− 1 0 . . . 2d− 1
...

...
...

. . .
...

...
...

. . .
...

vl 2d 2d . . . 0 2d− 1 2d− 1 . . . 0
vl+1 0 2d− 1 . . . 2d− 1 0 0 . . . 0
vl+2 2d− 1 0 . . . 2d− 1 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

v2l 2d− 1 2d− 1 . . . 0 0 0 . . . 0

Now, B can be partitioned as B =

(

2d(J − I) (2d− 1)(J − I)
(2d− 1)(J − I) 0

)

. It is easy to see

that the rank of B is 2l, and hence rank(E(T )) ≥ 2l. Thus the rank of E(T ) is 2l.
By Lemma 3.1, we have In(B) = (l, l, 0). Therefore, by Theorem 2.3, it follows that

E(T ) has at least l positive eigenvalues and l negative eigenvalues. Since rank(E(T )) = 2l,
E(T ) has exactly l positive eigenvalues and l negative eigenvalues. Thus the inertia of E(T )
is (l, l, 2n− l).

4 Symmetry of E-eigenvalues of trees

If G is a simple graph, then the spectrum of the adjacency matrix of G is symmetric with
respect to the origin if and only if G is bipartite. In this section, we study the symmetry of
the E-spectrum of trees. We characterize the trees for which the E-eigenvalues are symmetric
with respect to the origin. Precisely, we show that if T is a tree, then the spectrum of E(T )
is symmetric with respect to the origin if and only if diam(T ) is odd.

In the following theorem, to start with, we show that the E-eigenvalues of a tree T with
odd diameter are symmetric with respect to the origin.

Theorem 4.1. If T is a tree with odd diameter, then the eigenvalues of E(T ) are symmetric

about origin, that is, if λ is an eigenvalue of E(T ) with multiplicity k, then −λ is also an

eigenvalue of E(T ) with multiplicity k.

8



Proof. Let T be a tree with diameter 2d+ 1, d ≥ 1. Let u0 and v0 be the centers of T , and
T1 and T2 be the components of T − {u0, v0} containing u0 and v0, respectively. Define

V1 = {u ∈ T1 : d(u, u0) = d},
V2 = {u ∈ T1 : 0 ≤ d(u, u0) < d},
V3 = {v ∈ T2 : d(v, v0) = d}, and

V4 = {v ∈ T2 : 0 ≤ d(v, v0) < d}.
Then V (T ) = V1 ∪ V2 ∪ V3 ∪ V4 is a partition of V (T ). Partitioning the eccentricity matrix
of T with respect to the vertices of V1 ∪ V2 and V3 ∪ V4 gives us

E(T ) =
(

0 A
A′ 0

)

,

for some matrix A. The remainder of the proof is routine.

As a consequence, we get the following result.

Corollary 4.1. If T is a tree n ≥ 5 vertices with odd diameter, then T has exactly five

distinct E-eigenvalues.
Proof. If T is a tree with odd diameter, then, by Theorem 3.1, it follows that E(T ) has two
positive and two negative eigenvalues. If ξ1 ≥ ξ2 are two positive eigenvalues of E(T ), then,
by Theorem 4.1, −ξ1 and −ξ2 are also the eigenvalues of E(T ). Since E(T ) is a nonnegative
irreducible matrix, by Perron-Frobenius theorem, ξ1 is simple. Therefore, ξ1 6= ξ2 and hence
−ξ1 6= −ξ2. Thus, all four non-zero eigenvalues of E(T ) are distinct. This completes the
proof.

Let ξn(T ) denote the least E-eigenvalue of a tree T . In [6], Mahato et al. proved that
ξn(T ) ≤ −2 if and only if T is a star. In the following theorem, we establish an upper bound
for the least E-eigenvalue of a tree T with odd diameter.

Theorem 4.2. Let T be a tree on n ≥ 4 vertices with odd diameter.

1. If 4 ≤ n ≤ 15, then

ξn(T ) ≤ −

√

13n− 35 +
√

(13n− 35)2 − 64(n− 3)

2
.

Further, equality holds if and only if T ∼= T 0,n−4
n,3 .

2. If n ≥ 16, then

ξn(T ) ≤











−
√

16n−21+
√
800n−1419
2

, if n is odd;

−
√

16n−21+5
√
32n−67

2
, if n is even.

Each of the equality holds if and only if T ∼= T
⌊n−6

2
⌋,⌈n−6

2
⌉

n,5 .
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Proof. The proof follows from Theorem 2.6 and Theorem 4.1.

For an n× n matrix A, let Ek(A) denote the sum of its principal minors of size k. The
following crucial result will be used in the proof of Theorem 4.3.

Lemma 4.1. For l ≥ 2, let A be a (2l + 1)× (2l + 1) matrix defined by

A =

v1 v2 . . . vl u1 u2 . . . ul u0




























































v1 0 2d . . . 2d 0 d+ 1 . . . d+ 1 d
v2 2d 0 . . . 2d d+ 1 0 . . . d+ 1 d
...

...
...

. . .
...

...
...

. . .
... d

vl 2d 2d . . . 0 d+ 1 d+ 1 . . . 0 d
u1 0 d+ 1 . . . d+ 1 0 0 . . . 0 0
u2 d+ 1 0 . . . d+ 1 0 0 . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...

ul d+ 1 d+ 1 . . . 0 0 0 . . . 0 0
u0 d d . . . d 0 0 . . . 0 0

.

Then the sum of all (2l−1)×(2l−1) principal minors of A is non-zero, that is, E2l−1(A) 6= 0.

Proof. Let Mij denote the (2l− 1)× (2l− 1) principal submatrix of A obtained by deleting
the vi-th and vj-th rows and vi-th and vj-th columns. Now, we have the following two cases.

Case 1. If l = 2, then

A =















0 2d 0 d+ 1 d
2d 0 d+ 1 0 d
0 d+ 1 0 0 0

d+ 1 0 0 0 0
d d 0 0 0















.

It is easy to check that det(M34) = 4d3 is the only non-zero 3 × 3 principal minor of A.
Hence, E3(A) = 4d3 6= 0.

Case 2. Let l ≥ 3. Note that the row corresponding to the vertex u0 in the matrix A is
a linear combination of the rows corresponding to the vertices {u1, . . . , ul}. Thus, if both i
and j are in vk with i 6= j and i, j = 1, 2, . . . , l, then it is easy to see that det(Mij) = 0. Let
i ∈ {v1, . . . , vl} and j = u0. Then, in the matrix Mij , the row corresponding to the vertex ui

is a linear combination of the rows corresponding to the vertices {u1, . . . , ui−1, ui+1, . . . , ul},
and hence det(Mij) = 0 for i = 1, 2, . . . , l. Let i ∈ {v1, . . . , vl} and j ∈ {u1, . . . , ul}. If
i = vk and j = uk for some (same) k, then the row corresponding to the vertex u0 is a linear
combination of the rows corresponding to the vertices {u1, . . . , uk−1, uk+1, . . . , ul}. Suppose
i = uk1 and j = vk2 with k1 6= k2, then the columns corresponding to the vertices uk2 and u0

are linearly dependent, and hence det(Mij) = 0 for all i, j = 1, 2, . . . , l.
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Claim: If i ∈ {u1, . . . , ul} and j = u0, then

det(Mij) = (−1)l−22d(l− 1)(l − 2)(d+ 1)2(l−1) for i = 1, 2, . . . , l.

First let us consider the case i = u1 and j = u0. Then

M1j =





























0 2d 2d . . . 2d d+ 1 d+ 1 . . . d+ 1
2d 0 2d . . . 2d 0 d+ 1 . . . d+ 1
...

...
...

. . .
...

...
...

. . .
...

2d 2d 2d . . . 0 d+ 1 d+ 1 . . . 0
d+ 1 0 d+ 1 . . . d+ 1 0 0 . . . 0
d+ 1 d+ 1 0 . . . d+ 1 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

d+ 1 d+ 1 d+ 1 . . . 0 0 0 . . . 0





























=

(

2d(J − I) BT

B 0

)

,

where B =











d+ 1 0 d+ 1 . . . d+ 1
d+ 1 d+ 1 0 . . . d+ 1
...

...
...

. . .
...

d+ 1 d+ 1 d+ 1 . . . 0











.

Since 2d(J − I) is a non-singular square matrix, by the Schur complement formula we
have

det(M1j) = det(2d(J − I)) det(0−B(2d(J − I))−1BT )

= (−1)l−22d(l − 1)(l − 2)(d+ 1)2(l−1)

It is easy to see that det(Mij) are equal for every i ∈ {u1, . . . , ul} and j = u0, as they are all
permutationally similar.

By a similar argument, if both i and j are {u1, . . . , ul}, then det(Mij) = (−1)l−24d3(d+
1)2(l−2) for i 6= j and i, j = 1, 2, . . . , l.

Since, the signs of all (2l− 1)× (2l− 1) principal minors of A are the same, therefore the
sum of all (2l − 1)× (2l − 1) principal minors of A is non-zero. This completes the proof.

Next, we recall a well known condition for a matrix to have nonsymmetric spectrum with
respect to the origin.

Lemma 4.2. Let p(λ) = λn + c1λ
n−1 + . . . + cn−1λ + cn be a polynomial such that all of

its roots are non-zero and real numbers. If ci and ci+1 are different from zero for some

i ∈ {1, . . . , n − 1}, then the roots of p(λ) are not symmetric about the origin, that is, there

exists a real number λ1 such that p(λ1) = 0 and p(−λ1) 6= 0.
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In the next theorem, we show that the coefficients of (at least) two consecutive terms
in the characteristic polynomial of the eccentricity matrix of a tree with even diameter are
non-zero. This implies that the spectrum is not symmetric with respect to the origin.

Theorem 4.3. If T is a tree with even diameter, then the eigenvalues of E(T ) cannot be

symmetric about the origin.

Proof. The star K1,n−1 is the only tree on n vertices with diameter 2, and the eigenvalues of
E(K1,n−1) are not symmetric with respect to the origin.

Let T be a tree on n vertices with diam(T ) = 2d with d ≥ 2, and let u0 be the center
of T . Let u1, u2, . . . , ul (l ≥ 2) be the neighbours of u0 such that eTi

(ui) = d − 1, where Ti

are the components of T − ∪l
i=1{u0, ui} containing ui, for i = 1, 2, . . . , l. Let Tl+1 be the

component of T − ∪l
i=1{u0, ui} containing u0. Now, corresponding to the partition of V (T )

mentioned in Theorem 3.2, the eccentricity matrix of T can be written as

E(T ) =

V1 V2 . . . Vl Vl+1 Vl+2 . . . V2l V2l+1




























































V1 0 (2d)J . . . (2d)J 0 P1,l+2 . . . P1,2l P1,2l+1

V2 (2d)J 0 . . . (2d)J P2,l+1 0 . . . P2,2l P2,2l+1
...

...
...

. . .
...

...
...

. . .
...

...
Vl (2d)J (2d)J . . . 0 Pl,l+1 Pl,l+2 . . . 0 Pl,2l+1

Vl+1 0 P ′
2,l+1 . . . P ′

l,l+1 0 0 . . . 0 0
Vl+2 P ′

1,l+2 0 . . . P ′
l,l+2 0 0 . . . 0 0

...
...

...
. . .

...
...

...
. . .

...
...

V2l P ′
1,2l P ′

2,2l . . . 0 0 0 . . . 0 0
V2l+1 P ′

1,2l+1 P ′
2,2l+1 . . . P ′

l,2l+1 0 0 . . . 0 0

,

where the rows of each matrix Pi,l+j are identical with i 6= j and i = 1, 2, . . . , l; j =
1, 2, . . . , l, l + 1. By Theorem 3.2, rank(E(T )) = 2l and hence the characteristic polynomial
of E(T ) can be written as

φE(λ) = λn−2l(λ2l + c1λ
2l−1 + . . .+ cn−2l+1λ+ cn−2l). (1)

To prove that the eigenvalues of E(T ) are not symmetric with respect to origin, by Lemma 4.2
it suffices to show that cn−2l 6= 0 and cn−2l+1 6= 0. Note that cn−2l 6= 0, as rank(E(T )) = 2l.
By Lemma 2.2, we have cn−2l+1 = E2l−1, where E2l−1 is the sum of all (2l − 1) × (2l −
1) principal minors of E(T ). Let A[α] denote the (2l − 1) × (2l − 1) principal subma-
trix of E(T ) whose rows and columns are indexed by α := {α1, α2, . . . , α2l−1}. Since
R[V1], R[V2], . . . , R[V2l], R[V2l+1] are all of rank one in E(T ), therefore if αi, αj ∈ Vk for
k = 1, 2, . . . , 2l + 1, then det(A[α]) = 0. Thus, to get a non-zero principal minor of order
(2l − 1) × (2l − 1), we have to choose at most one row and one column from each Vk for
k = 1, 2, . . . , 2l + 1. Therefore, if det(A[α]) 6= 0, then A[α] is a (2l − 1)× (2l − 1) principal
submatrix of A, where
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A =

v1 v2 . . . vl u1 u2 . . . ul u0




























































v1 0 2d . . . 2d 0 d+ 1 . . . d+ 1 d
v2 2d 0 . . . 2d d+ 1 0 . . . d+ 1 d
...

...
...

. . .
...

...
...

. . .
... d

vl 2d 2d . . . 0 d+ 1 d+ 1 . . . 0 d
u1 0 d+ 1 . . . d+ 1 0 0 . . . 0 0
u2 d+ 1 0 . . . d+ 1 0 0 . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...
ul d+ 1 d+ 1 . . . 0 0 0 . . . 0 0
u0 d d . . . d 0 0 . . . 0 0

.

Now, by Lemma 4.1, it follows that the sum of all (2l − 1)× (2l − 1) principal minors of A
is non-zero. That is, the sum of all (2l − 1) × (2l − 1) principal minor of E(T ) is non-zero
and hence cn−2l+1 6= 0. This completes the proof.

By combining Theorem 4.1 and Theorem 4.3, we obtain the following result.

Theorem 4.4. Let T be a tree of order n. Then the eigenvalues of E(T ) are symmetric

about origin if and only if T is a tree with odd diameter.

In [15], the authors posed the following problem.

Problem 4.1 ([15]). Characterize the graphs with small number of distinct E-eigenvalues.
Motivated by this, in the following theorem we characterize the trees with three distinct

E-eigenvalues.
Theorem 4.5. Let T be a tree on n ≥ 4 vertices. Then, T has exactly three distinct E-
eigenvalues if and only if it is a star.

Proof. If T ∼= K1,n−1, then by Lemma 2.4, we have

SpecE(K1,n−1) =

{

n− 2 +
√
n2 − 3n+ 3 n− 2−

√
n2 − 3n + 3 −2

1 1 n− 2

}

.

Therefore, the star K1,n−1 has three distinct E-eigenvalues.
For n = 4, P4 and K1,3 are the only trees on 4 vertices. It is easy to see that P4 has four

distinct E-eigenvalues. So, let us assume that n ≥ 5. From Corollary 4.1, it follows that if T
is a tree on n ≥ 5 vertices with odd diameter, then it has exactly five distinct E-eigenvalues.

Let T be a tree with even diameter other than star. From Theorem 3.2, it follows that
T has at least two positive and two negative E-eigenvalues. Since E(T ) is a nonnegative
irreducible matrix, by the Perron-Frobenius theorem, ξ1 is simple and hence E(T ) has at
least two distinct positive eigenvalues. Again, by Theorem 3.2, zero is always an eigenvalue
of E(T ). Since trace of E(T ) is zero, it has at least one distinct negative eigenvalue. Thus,
T has at least four distinct E-eigenvalues. This completes the proof.
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We conclude this article with an observation and a problem to investigate in the future.
In Theorem 4.4, we have proved that the E-eigenvalues of a tree T are symmetric about origin
if and only if T is a tree with odd diameter. A graph G is a diametrical graph if every vertex
v ∈ V (G) has a unique vertex v̄ ∈ V (G) such that dG(v, v̄) = diam(G). For a diametrical

graph G with diameter d, the eccentricity matrix of G can be written as

(

0 dIk
dIk 0

)

,

and the E-spectrum of G is

{

d −d
k k

}

. Thus, the E-eigenvalues of a diametrical graph G

with diameter d are symmetric with respect to the origin. So, it is natural to propose the
following problem for future study.

Problem 4.2. Characterize the graphs for which the E-eigenvalues are symmetric with re-

spect to the origin.
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