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Abstract

A graph G is k-crossing-critical if cr(G) ≥ k, but cr(G \ e) < k for each
edge e ∈ E(G), where cr(G) is the crossing number of G. It is known that for
any k-crossing-critical graph G, cr(G) ≤ 2.5k + 16 holds, and in particular,
if δ(G) ≥ 4, then cr(G) ≤ 2k + 35 holds, where δ(G) is the minimum degree
of G. In this paper, we improve these upper bounds to 2.5k + 2.5 and 2k + 8
respectively. In particular, for any k-crossing-critical graph G with n vertices,
if δ(G) ≥ 5, then cr(G) ≤ 2k −

√
k/2n + 35/6 holds.
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1 Introduction

All graphs considered here are simple, connected, finite and undirected unless oth-

erwise specified. For any graph G, let V (G), E(G) and δ(G) denote its vertex set,

edge set and minimum degree. A drawing of a graph G is a mapping D that assigns

to each vertex in V (G) a distinct point in the plane, and to each edge uv in G a

continuous arc connecting D(u) and D(v), not passing through the image of any

other vertex. For any drawing D of G, let cr(D) denote the number of crossings in

D, and the crossing number of G, denoted by cr(G), is the minimum value of cr(D)’s

among all possible drawings D of G. For more on crossing numbers of graphs, we

refer to [6] and the references therein.

A graph G is k-crossing-critical if cr(G) ≥ k, but cr(G \ e) < k for every edge

e ∈ E(G) (e.g. see [2]). A graph is crossing-critical if it is k-crossing-critical for

some k.

Crossing-critical graphs give insight into structural properties of the crossing number

invariant and have thus generated considerable interest. Let Mk denote the set of

k-crossing-critical graphs. Richter and Thomassen [4] showed that cr(G) ≤ 2.5k+16

holds for each G ∈ Mk. Salazar [5] improved this result to cr(G) ≤ 2k + 35 for the

case that δ(G) ≥ 4. Lomeĺı and Salazar [3] showed that, for each integer k > 0,

there is an integer nk such that for any G ∈ Mk with at least nk vertices of degree

greater than two, cr(G) ≤ 2k + 23 holds.

In this paper, we further improve Richter and Thomassen’s result in [4] and Salazar’s

result in [5] to cr(G) ≤ 2.5k + 2.5 and cr(G) ≤ 2k + 8 respectively. Furthermore,

we show that, for any G ∈ Mk with n vertices, if δ(G) ≥ 5, then cr(G) ≤ 2k −√
k/2n+ 35/6 holds.

2 Choose a suitable cycle in a graph

For any positive integers l and ∆, a cycle C in a graph G is called (l,∆)-nearly-light

if the length of C is at most l and at most one vertex of C has degree greater than

∆ (see [3]).

For any cycle C in a graph G, define

µ(C) = min
v∈V (C)

∑

u∈V (C)\{v}
(dG(u)− 2).

Clearly, if C is an (l,∆)-nearly-light cycle in G, then µ(C) ≤ (l − 1)(∆ − 2). In
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[3], Lomeĺı and Salazar showed that if a k-crossing-critical graph G contains a cycle

C with µ(C) ≤ s, then cr(G) ≤ 2(k − 1) + s/2, and therefore, if G contains an

(l,∆)-nearly-light cycle, then cr(G) ≤ 2(k − 1) + (l − 1)(∆− 2)/2 holds.

The skewness of a graph G, denoted by sk(G), is the minimum integer t such that

G \ E0 is planar for a subset E0 of E(G) with |E0| = t. In this section, we show

that for any graph G with δ(G) ≥ 3, G contains a cycle C with µ(C) ≤ sk(G) + 10.

In Section 4, we apply this fact to find an upper bound for cr(G) in terms of sk(G)

and δ(G), where G is crossing-critical.

The next elementary result will be applied later.

Lemma 1 Let d1, d2, · · · , d5 be integers with 3 ≤ d1 ≤ d2 ≤ · · · ≤ d5. Then, the

following statements hold:

(1). if
∑3

i=1
1
di

> 1
2
, then

∑2
i=1(di − 2) ≤ 10;

(2). if
∑4

i=1
1
di

> 1, then
∑3

i=1(di − 2) ≤ 5; and

(3). if
∑5

i=1
1
di

> 3
2
, then

∑4
i=1(di − 2) ≤ 4. ✷

Proof. (1) Note that the conclusion holds for (d1, d2, d3) = (3, 11, 11).

Suppose that
∑2

i=1(di − 2) ≥ 11. Then, d2 ≥ 8. Let d1 = 3 + α1 and d2 = 8 + α2,

where α1, α2 ≥ 0. As
∑2

i=1(di − 2) ≥ 11, α1 + α2 ≥ 4. As d3 ≥ d2, we have

1

2
<

3
∑

i=1

1

di
≤ 2

8 + α2
+

1

3 + α1
,

which implies that 4α1 + α2 + α1α2 < 4, a contradiction with α1 + α2 ≥ 4.

(2) and (3) can be proved similarly. ✷

Proposition 1 For any planar graph G with δ(G) ≥ 3, there exists a cycle C in G

with µ(C) ≤ 10.

Proof. For any face f of a drawing of G, the weight of f , denoted by ω(f), is

defined as follows:

ω(f) =
∑

v∼f

1

dG(v)
,
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where v ∼ f means that v is a vertex on the boundary of f . We have ω(f) ≤
ℓ(f)/3, where ℓ(f) denotes the length of the boundary of f . Obviously, |V (G)| =
∑

f∈F (G) ω(f) and 2|E(G)| = ∑

f∈F (G) ℓ(f).

By Euler’s polyhedron formula,

∑

f∈F (G)

(ω(f)− ℓ(f)/2 + 1) = 2,

implying that ω(f0)− ℓ(f0)/2 + 1 > 0 holds for some face f0. As ω(f0) ≤ ℓ(f0)/3,

0 < ω(f0)− ℓ(f0)/2 + 1 ≤ ℓ(f0)/3− ℓ(f0)/2 + 1 = 1− ℓ(f0)/6,

implying that ℓ(f0) ≤ 5. Let C denote the boundary of face f0. Since δ(G) ≥ 3, C

must be a cycle of G.

First consider the case that ℓ(f0) = 3. The inequality ω(f0) − ℓ(f0)/2 + 1 > 0

implies that ω(f0) > 1/2, i.e., 1/d1 + 1/d2 + 1/d3 > 1/2, where d1, d2, d3 denote

the degrees of the three vertices on cycle C with d1 ≤ d2 ≤ d3. By Lemma 1 (1),

µ(C) = d1 − 2 + d2 − 2 ≤ 10.

In the case ℓ(f0) ∈ {4, 5}, ω(f0)− ℓ(f0)/2 + 1 > 0 implies that ω(f) > ℓ(f0)/2− 1.

By Lemma 1, there exists v ∈ V (C) such that
∑

u∈V (C)\{v}(dG(u) − 2) ≤ 5. Thus

µ(C) ≤ 5. ✷

Proposition 2 For any graph G with δ(G) ≥ 3, G contains a cycle C with µ(C) ≤
sk(G) + 10.

Proof. Let t = sk(G) and E0 be a subset of E(G) with |E0| = t such that G \ E0

is planar. The proof is by induction on t. If t = 0, then G is planar, and the result

follows from Proposition 1.

We now assume that t ≥ 1. Let e = v1v2 ∈ E0 and G′ = G \ e. Then sk(G′) = t−1.

For i = 1, 2, if dG(vi) = 3, then dG′(vi) = 2 and there exists an edge ei in G′ incident

with vi and some vertex ui. Note that u1 and u2 may be not distinct.

Let E1 be the subset of {e1, e2} such that ei ∈ E1 if and only if dG(vi) = 3. Clearly,

|E1| = 2 if and only if dG(v1) = dG(v2) = 3, and E1 = ∅ if and only if dG(v1) > 3 and

dG(v2) > 3. Let H = G′/E1, i.e., H is the graph obtained from G′ by contracting

all edges in E1. Thus, if E1 = ∅, then H is G′ itself; if E1 = {e1, e2}, then H is as

shown in Figure 1 (c).
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v1 v2

u1 u2

e2 e1
v1 v2

u1 u2

e2
v1 v2

u1

f1

u1

f2

u1 u2

...
...

...
... ...

...

(a) G (b) G′ = G \ v1v2 (c) H = G′/{e1, e2}

Figure 1: Graphs G,G′ and H when dG(v1) = dG(v2) = 3

As H = G′/E1 and each edge ei in E1 is incident with a vertex of degree 2 in G′,

we have sk(H) = sk(G′) = t− 1. By the constriction of H ,

δ(H) = min{dG′(u) : u ∈ V (G′), dG′(u) > 2} ≥ 3.

By the inductive assumption, H contains a cycle C1 with µH(C1) ≤ t−1+10 = t+9.

Assume that v is a vertex in C1 such that

µH(C1) =
∑

u∈V (C1)\{v}
(dH(u)− 2).

As v must be a vertex in C1 with the maximum degree in H , we have dH(v) ≥ 3.

Let C be the cycle of G′ obtained from C1 by replacing edge fi by path Pi whenever

fi is an edge in C1 for i = 1, 2, where Pi is the path in G′ of length 2 which has vi

as its center vertex in the case dG′(vi) = 2.

Note that C is also a cycle in G. Recall that G′ = G\e and e joins v1 and v2. There

are two cases to consider.

Case 1: {v1, v2} 6⊆ V (C).

In this case,

µG(C) ≤ 1 + µH(C1) ≤ t+ 10.

Case 2: {v1, v2} ⊆ V (C).

Note that C ∪ e is a subgraph in G, as shown in Figure 2. Let C1 and C2 be the two

cycles in C ∪ e with e ∈ E(Ci) for i = 1, 2 and v ∈ V (C1).
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Observe that

µG(C1) ≤
∑

u∈V (C1)\{v}
(dG(u)− 2)

≤
∑

u∈V (C)\{v}
(dG(u)− 2)− 1− (|V (C2)| − 2)(δ(G)− 2)

= µG′(C) + 2− 1− (|V (C2)| − 2)(δ(G)− 2)

≤ µH(C1) + 2− 1− 1

= t + 9. (2.1)

Thus, the result holds. ✷

e

v1

v2

C:

Figure 2: Edge e is a chord of cycle C

3 Upper bound for cr(G) in terms of sk(G)

It is readily checked that sk(G) ≤ cr(G). In this section, we shall establish a new

relationship between the crossing number and skewness of a graph.

Lemma 2 Let G be a graph with n ≥ 4 vertices, and e be an edge in G such that

G\e is planar. For any planar drawing D1 of G\e, D1 can be extended to a drawing

D of G with cr(D) ≤ 2n−7
3

.

Proof. It suffices to prove this result for the case that G \ e is a maximal planar

graph.

Let G1 denote G \ e and D1 be a planar drawing of G1. As G1 is a maximal planar

graph, G1 is 3-connected. Let D
∗
1 denote the dual of D1. Thus, D

∗
1 is 3-connected [1,

Exercise 10.2.7].

Assume that e is an edge of G joining vertices v1 and v2 in G. As G1 is 3-connected,

δ(G1) ≥ 3. Thus, each vertex vi is incident with at least three faces of D1. Assume
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that f1, f2, f3 are faces of D1 which are incident with v1 and f ′
1, f

′
2, f

′
3 are faces of

D1 which are incident with v2.

If {f1, f2, f3} ∩ {f ′
1, f

′
2, f

′
3} 6= ∅, say f1 = f ′

1, then D1 can be extended to a planar

drawing D of G by adding an edge within face f1 joining v1 and v2 in D1. Thus

cr(D) = 0 ≤ (2n− 7)/3 holds.

Now assume that {f1, f2, f3} ∩ {f ′
1, f

′
2, f

′
3} = ∅. As D∗

1 is 3-connected, there exist

3 vertex-disjoint paths P1, P2 and P3 in D∗
1 connecting vertices in {f1, f2, f3} to

vertices in {f ′
1, f

′
2, f

′
3}. Observe that

3
∑

i=1

|E(Pi)| =
3

∑

i=1

(|V (Pi)| − 1) ≤ |V (D∗
1)| − 3 = 2n− 4− 3 = 2n− 7, (3.1)

where |V (D∗
1)| = 2n−4 follows from the fact that D1 is a maximal plane graph and

|V (D∗
1)| is equal to the number of faces of D1.

Assume that |E(P1)| ≤ |E(Pi)| for i = 2, 3. By (3.1), |E(P1)| ≤ (2n−7)/3. Assume

that P1 is a path in D∗
1 joining vertices f1 and f ′

1. As f1 is a face of D1 incident

with v1 and f ′
1 is a face of D1 incident with v2, P1 actually generates a curve on the

plane connecting v1 and v2 which crosses with exactly |E(P1)| edges in D1. This

curve represents a way of drawing edge e in D1. Thus, we get a drawing D of G

with cr(D) = |E(P1)| ≤ (2n− 7)/3. ✷

According to the Lemma 2, we now reveal the relationship between cr(G) and sk(G).

Theorem 1 Let G be a graph with n vertices. Then,

cr(G) ≤ 3sk(G)2 + (4n− 17)sk(G)

6
.

Moreover, the upper bound is tight.

Proof. If sk(G) = 0, then G is planar and cr(G) = 0.

Now assume that sk(G) = t > 0. By definition, there exists a set E0 of edges in G

with |E0| = t such that G \ E0 is planar.

Let G1 denote the subgraph G \ E0 and D1 be a planar drawing of G1. Applying

Lemma 2 to each edge in E0, we get a drawing D of G such that

cr(D) ≤ t
2n− 7

3
+

(

t

2

)

.

As t = sk(G) and cr(G) ≤ cr(D), the claim follows. It can be verified easily that

the upper bound is tight for the complete graph K5. ✷
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4 Main results on crossing-critial graphs

Recall that Mk denotes the set of k-crossing-critical graphs.

Theorem 2 Let G be a graph in Mk with minimum degree δ. If G contains a cycle

C with µ(C) = s, then,

cr(G) ≤











2k +
s− 5

2
, if δ = 3;

2k − sk(G) +
δ(s− δ + 2)

2(δ − 2)
, if δ ≥ 4.

Proof. As µ(C) = s, there exists some vertex v in C such that

|E(P )| = |V (C)| − 1 ≤ 1

δ − 2

∑

u∈V (C)\{v}
(dG(u)− 2) =

s

δ − 2
.

Let e be an edge of C with ends v and w and P denote the path of C \ e. As G

is k-crossing-critical, cr(G \ e) ≤ k − 1. Let D be a drawing of G \ e with at most

k − 1 crossings. Note that edges in P may cross each other in the drawing D. We

regard the drawing of P as a planar graph H with vertices of degrees 2 and 4. Let

P ′ be a shortest path in H joining v and w. There are two ways of reconnecting v

and w close to P ′, one for each side of P ′.

Let rD(P ) denotes the number of crossings of edges of P in D. It is not hard to

verify that the total number of crossings in these two drawings of e is at most

λ =
∑

u∈V (C)\{v,w}
(dG(u)− 2) + 2rD(P )

≤ s− (δ − 2) + 2rD(P )

Therefore, one of the two drawings for e crosses at most λ/2 edges of D. Note that

rD(P ) ≤ k − 1, implying that

cr(G) ≤ λ

2
+ k − 1 ≤ s− δ + 2

2
+ 2k − 2 =

s− δ

2
+ 2k − 1. (4.1)

If δ = 3, then it follows that cr(G) ≤ 2k + (s− 5)/2.

Now we consider the case that δ ≥ 4. Removing fromD the edges (at most s/(δ−2))

of P leaves a drawing with at most k − 1 − rD(P ) crossings. Therefore, there is a

set of at most 1 + s/(δ − 2) + k − 1 − rD(P ) edges whose removal from G leaves a

planar graph. Thus,sk(G) ≤ 1 + s/(δ − 2) + k − 1− rD(P ), implying that

rD(P ) ≤ s

δ − 2
+ k − sk(G).
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As λ ≤ s− (δ − 2) + 2rD(P ), by (4.1),

cr(G) ≤ λ

2
+ k − 1

≤ s− δ + 2

2
+ rD(P ) + k − 1

≤ s− δ + 2

2
+ k − 1 +

s

δ − 2
+ k − sk(G). (4.2)

The result holds. ✷

Theorem 3 Let G ∈ Mk with n vertices and minimum degree δ. Then,

cr(G) ≤







2.5(k + 1), if δ = 3;
2(k + 4), if δ = 4;

2k −
√
k/2n+ 35/6, if δ ≥ 5.

Proof. Let t = sk(G). By Proposition 2, G contains a cycle C with µ(C) ≤ t+10.

If δ = 3, by Theorem 2, cr(G) ≤ 2k+ (t+ 10− 5)/2 = 2k + 2.5 + 0.5t ≤ 2.5k + 2.5,

as t ≤ k.

If δ = 4, by Theorem 2, cr(G) ≤ 2k − t+ (t+ 10− 4 + 2) = 2k + 8.

Now consider the case that δ ≥ 5. by Theorem 2,

cr(G) ≤ 2k − t+
δ(t+ 10− δ + 2)

2(δ − 2)
≤ 2k − t+

5(t+ 7)

6
= 2k +

35− t

6
. (4.3)

By (4.3), if t ≥ 3
√
k

n
, the result holds. In the following, assume that t < 3

√
k

n
.

By Theorem 1,

cr(G) ≤ 3t2 + (4n− 17)t

6
<

3(9k/n2) + (4n− 17)3
√
k

n

6
=

9k + (4n− 17)n
√
k

2n2
.

(4.4)

If k = 1, then, by (4.4),

cr(G) ≤ 9 + (4n− 17)n

2n2
< 2, (4.5)

and the result holds.
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If k ≥ 2, then, by (4.4),

cr(G)−
(

2k + 35/6− 1

2n

√
k

)

≤ 9k + (4n− 17)n
√
k

2n2
−

(

2k + 35/6− 1

2n

√
k

)

<
9k + (4n− 0)n

√
k

2n2
−

(

2k + 0− 1

2n

√
k

)

=
(4.5− 2n2)k + (2n+ 0.5)n

√
k

n2

< 0, (4.6)

where the last inequality follows from the facts that the solution of the inequality

(4.5 − 2n2)k + (2n + 0.5)n
√
k < 0 is k > n2(4n + 1)2/(4n2 − 9)2 and that 2 >

n2(4n+ 1)2/(4n2 − 9)2 holds for all n ≥ 5. Thus, we complete the proof. ✷
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