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Choice number of Kneser graphs

Vera Bulankina∗ and Andrey Kupavskii†

Abstract

In this short note, we show that for any ǫ > 0 and k < n0.5−ǫ the choice
number of the Kneser Graph KGn,k is Θ(n log n).

1 Introduction

Let [n] = {1, . . . , n} be the standard n-element set and, for a set X , let
(

X
k

)

stand
for all k-element subsets of X (k-sets for short). For integers n ≥ 2k > 0, the
Kneser graph KGn,k is a graph with the vertex set

(

[n]
k

)

and the edge set that
consists of all pairs of disjoint k-sets.

Recall that, for a graph G, the quantity χ(G) is the smallest number s of
colors such that there is a vertex coloring in s colors in which the endpoints of
each edge receive different colors (a proper coloring). The choice number ch(G) is
the smallest s such that for any assignment of lists S(v) of size s to each vertex
v ∈ G there is a proper coloring of the vertices of G that uses the color from S(v)
for each v.

It is by now one of the classical results in combinatorics that χ(KGn,k) =
n − 2k + 2. It was shown by Lovász [12], answering the question by Kneser. In
fact, the upper bound is easy: for each 1 ≤ i ≤ n− 2k+1, color in i the sets with
minimum element i. The remaining k-sets are subsets of {n− 2k + 2, . . . , n} and
do not induce an edge in KGn,k. Thus, they can be colored in one color.

Lovász’ paper initiated the use of topological method in combinatorics. By
now, different proofs [3, 13] of Lovász’s result are known; however, all of them
rely on topological arguments. Rather quickly after Bárány’s proof, Schrijver
[15] constructed vertex-critical subgraphs of Kneser graphs, that is, subgraphs
with the same chromatic number such that the deletion of any vertex decreases
the chromatic number. These subgraphs are induced subgraphs of KGn,k on the
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vertices that correspond to k-sets that do not contain two cyclically consecutive
elements. Very recently, Kaiser and Stehĺık [5] constructed edge-critical subgraphs
of Schrijver graphs. There, deletion of any edge decreases chromatic number.
After a series of papers [10, 1, 11], the second author and Kiselev [7] essentially
determined the chromatic number of a random subgraph of KGn,k, obtained by
including each edge with probability 1/2. There are extensions of Lovász’ and
Schrijver’s results to hypergraphs [2].

In this note, we study the choice number of Kneser graphs. In what follows,
log x stands for the natural logarithm of x.

Theorem 1. For any n ≥ 2k > 0 we have ch(KGn,k) ≤ n log n
k
+ n.

It should be clear that ch(KGn,k) ≥ χ(KGn,k) = n−2k+2, and thus Theorem 1
implies that ch(KGn,k) = Θ(n) for C1n ≤ k ≤ C2n, where 0 < C1 ≤ C2 <

1
2
. The

following result improves on this lower bound for relatively small k.

Theorem 2. Fix s ≥ 3. If n is sufficiently large and 3 ≤ k ≤ n
1
2
− 1

s then

ch(KGn,k) ≥ 1
2s2

n log n. For k = 2 we have ch(KGn,k) ≥ 1
32
n log n for sufficiently

large n.

For k = 2 we can improve the bound to ch(KGn,k) ≥ 1
4
n logn, but it requires

a different proof which we decided to omit. These two results leave open the
following intriguing question.

Problem 1. Determine the asymptotics of ch(KGn,k) for Ω(
√
n) = k = o(n).

2 Proofs

Proof of Theorem 1. We shall employ the probabilistic method. Let S(v) be the
list of m colors assigned to vertex v. Denote by L the set of all colors assigned to
at least 1 vertex. In what follows, we slightly abuse notation and identify vertices
of KGn,k and the corresponding k-sets.

Let us take a random map f : L → [n]. Such a correspondence induces a
coloring of KGn,k as follows. We color a k-set v in color γ, γ ∈ S(v), if there is an
element i ∈ [n] such that, first, i ∈ v and, second, f(γ) = i. (If there are several
such γ, then we use any of them.) It should be clear that such coloring, if it exists,
is proper and respects the color lists. Indeed, if two sets share the same color γ,
then they must share a common element f(γ).

The last part of the proof is to show that the probability that such a coloring
exists is non-zero. The probability that a vertex v is not colored is at most (1 −
k
n
)m < e−m k

n . Then, the probability that there is at least one vertex that is not

colored is at most
(

n
k

)

· e−m k
n . If this probability is strictly smaller than 1, then
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with positive probability the opposite holds, and we have a proper coloring. Let
us bound this last expression.

(

n

k

)

· e−m k
n <

(ne

k

)k

· e−m k
n = ek(log(

ne
k
)−m

n
) < 1,

if m > n log n
k
+ n.

2.1 Proof of Theorem 2

We shall need the following structural result concerning intersecting families. Re-
call that a family F ⊂ 2[n] is intersecting if F1 ∩ F2 6= ∅ for any F1, F2 ∈ F . For a
family F and a set S, let us use the following notation:

F(S) := {F ∈ F : S ⊂ F}.

Theorem 3. Consider an intersecting family F ⊂
(

[n]
k

)

and fix an integer s ≥ 2.

Then either there exists a family G ⊂
(

[n]
s

)

, |G| ≤ ks, such that

F ⊂
⋃

S∈G

F(S),

or a set I ⊂ [n] of size at most s− 1 such that

F ⊂
⋃

i∈I

F({i}).

Proof. Recall that a cover of the family F is a set C with F ∩ C 6= ∅ for any
F ∈ F . The covering number τ(F) is the minimum size of a cover of F .

If τ(F) ≤ s− 1 then simply take I to be the smallest cover of F .
If τ(F) ≥ s then we shall construct G using the following simple inductive

argument for an intersecting F , which is inspired by the paper of Erdős and Lovász
[4] (cf. also [8]).

Take an arbitrary set F ∈ F . Define G1 ⊂
(

[n]
1

)

as follows: G1 := {{i} : i ∈ F}.
Then F ⊂ ∪i∈FF(i) since F is intersecting.

For each 1 ≤ ℓ < s, let us show how to construct Gℓ+1 from Gℓ. Assume that
we have a family Gℓ ⊂

(

[n]
ℓ

)

of at most kℓ sets such that F ⊂ ∪G∈Gℓ
F(G). For each

set G ∈ Gℓ, consider a set FG ∈ F that is disjoint with G. Such a set must exist
since |G| < τ(F). Put Gℓ+1 := {G ∪ {i} : G ∈ Gℓ, i ∈ FG}. It should be clear that
|Gℓ+1| ≤ kℓ+1 and that

F ⊂
⋃

G′∈Gℓ+1

F(G′).

Finally, we put G := Gs.
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We shall also need the Turán-type result for hypergraphs due to Katona,
Nemeth and Simonovits [6]. Recall that, for a hypergraph H, its independence

number α(H) is the size of the largest subset of vertices that does not contain any
edge of H.

Theorem 4 ([6]). If H ⊂
(

X
s

)

is a hypergraph with α(H) = q then

|H| ≥
(|X|

s

)

/

(

q

s

)

≥
( |X|

q

)s

.

Proof of Theorem 2. We again employ the probabilistic method. For shorthand,
put u := 1

s2
n logn.1 Take a set of u colors and correspond to each vertex of KGn,k

a random subset of colors of size u/2.
Take an arbitrary independent set in KGn,k (i.e., an intersecting family in

(

[n]
k

)

)
and fix an integer s ≥ 2. Using Theorem 3, we get that each such independent set
is contained in one of the families from C, where C consists of all families K of the
following two forms:2

type A: all k-sets that intersect a fixed set I(K), |I| = s− 1;

type B: all k-sets that contain one of the s-sets from a family G(K) ⊂
(

[n]
s

)

, |G(K)| =
ks.

Note that |C| ≤ ns−1 +
(

n
s

)ks
. We say that a coloring X = X1 ⊔ . . . ⊔Xm of a set

X lies in a cover X = X ′
1 ∪ . . . ∪X ′

m of the same set if Xi ⊂ X ′
i for each i. Using

this terminology, any possible partition of
(

[n]
k

)

into u independent sets lies in one
of the

(1) |C|u ≤
(

(

n

s

)ks

+ ns−1
)u

≤ nsksu

covers, formed by a u-tuple of families from C.
For a given cover K = K1 ∪ . . . ∪ Ku from C, let us bound from above the

probability of the event AK that KGn,k can be colored in one of the colorings

of
(

[n]
k

)

that lie in K and that respects the lists assigned to the k-sets. For each
ℓ ∈ [n], define dℓ = |{j ∈ [u] : Kj is of type A and ℓ ∈ I(Kj)}. Then, clearly,
∑

i∈[n] di ≤ (s − 1)u, and, thus, we get that for any 0 < ǫ < 1 there is a set

W ⊂ [n] of ǫn elements such that

(2) di ≤ (1− ǫ)−1(s− 1)u/n for any i ∈ W.

1We tacitly assume that u is an integer.
2Note that C is a family of families.
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(Otherwise,
∑

i∈[n]\W di > (n − |W |)(1 − ǫ)−1(s − 1)u/n > (s − 1)u.) Next,
define an s-uniform hypergraph

H :=
{

H ⊂ W : Kj is of type B and H ∈ G(Kj) for some j
}

.

Note that |H| ≤ ksu. Applying Theorem 4, we get that

α(H) ≥ |W |
|H|1/s ≥ ǫn

ku1/s
=: t.

Thus, there exists a set Y ⊂ W of size t that is independent in H.
Take any X ∈

(

Y
k

)

and denote by BX,K the event that X cannot be colored via
a coloring that lies in K. As a vertex of KGn,k, X cannot be colored in color j
if Kj is of type B, because X is independent in H. Next, it may be colored in j
with Kj of type A only if j belongs to the randomly chosen subset of u/2 colors
that was assigned to X . Recall that (2) holds. Denote z := (1 − ǫ)−1k(s− 1)u/n
and note that z = o(

√
n). Then the probability p that X cannot be colored using

this coloring is at least the probability that the colors for X were chosen from the
complement of the set ∪ℓ∈X{j ∈ [u] : Kj is of type A and ℓ ∈ I(Kj)}. This set has
size

∑

ℓ∈X di ≤ z, and so we get that

p ≥
(u−

∑
i∈X di

u/2

)

(

u
u/2

) ≥
(

u−z
u/2

)

(

u
u/2

) =
z−1
∏

j=0

u
2
− j

u− j
≥ 2−z

(

1−
z−1
∑

j=0

j

u− j

)

= (1 + o(1))2−z.

Expanding the expressions for z and u, we get that

p = (1 + o(1))2−z = (1 + o(1))n−(1−ǫ)−1k s−1
s2 ≥ n− k

s+1 ,

provided ǫ > 0 is sufficiently small.
Thus, AK ⊂ ⋂

X∈(Yk)
B̄X,K and so

Pr[AK] ≤ (1− p)(
|Y |
k ) ≤ e−p(|Y |

k ) = e−p(tk) ≤ e−p(t/k)k .

If 3 ≤ k ≤ 3s4 then we can assume that s = 3 in the condition in the Theorem
(the statement is the strongest for s = 3, provided the bound on k is valid, which
is the case here). There are sufficiently large constants C ′, C ′′, C depending on k, ǫ
such that we have

p(t/k)k ≥ C ′n− k
s+1 tk ≥ C ′′n− k

4

( n

u1/3

)k

= Cn− k
4

n
2k
3

logk/3 n
≥ n0.4k ≥ n1.2,

and so
P[AK] ≤ e−n1.2

.
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Slightly modifying the calculations above, we see that for sufficiently small ǫ
and s = 4 we can get p(t/k)k ≥ n1.05 for k = 2.

Recall that s, ǫ are constants. If 3s4 < k ≤ n
1
2
− 1

s then we have

p(t/k)k ≥ n− k
s+1

( ǫn

k2u1/s

)k

= n− k
s+1n

k
s

( ǫs2

log n

)k

≥

2
k

s(s+1)
logn−k log 1

ǫ
−k log logn = 2(1−o(1)) k

s(s+1)
logn ≥ nk/s3,

provided n is sufficiently large (recall that s ≥ 3). and so

P[AK] ≤ e−nk/s3

.

We are now ready to conclude the proof. Denote by U the event that there
exists a proper coloring of KGn,k that respects the lists chosen as described in the
beginning of the proof.

P[U ] ≤
∑

K∈Cu

P[AK] ≤ nsksu ·











e−n1.05
, k = 2

e−n1.2
, 3 ≤ k ≤ 3s4

e−nk/s3

, k > 3s4
< 1,

provided n is sufficiently large. Let us explain why does the inequality is valid
in the third case. It is equivalent to showing that sksu logn < nk/s3. Note that
su logn = o(n2), and thus it is enough to show that ks < nk/s3−2, or, equivalently,
s log k <

(

k
s3

− 2
)

log n. Note that in the assumption k > 3s3 we have s < k
s3

− 2.
Since we have log k < log n, the aforementioned inequality (and thus the displayed
inequality) is valid. Thus, there exists a choice of lists of size u/2 each so that
no proper coloring with such list is possible. This completes the proof of the
theorem.
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