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Abstract

The power domination problem focuses on finding the optimal placement of phase mea-
surement units (PMUs) to monitor an electrical power network. In the context of graphs,
the power domination number of a graph G, denoted γP (G), is the minimum number of ver-
tices needed to observe every vertex in the graph according to a specific set of observation
rules. In [16], Zhao et al. proved that if G is a connected claw-free cubic graph of order
n, then γP (G) ≤ n/4. In this paper, we show that if G is a claw-free diamond-free cubic
graph of order n, then γP (G) ≤ n/6, and this bound is sharp. We also provide new bounds
on γP (G�H) where G�H is the Cartesian product of graphs G and H . In the specific case
that G and H are trees whose power domination number and domination number are equal,
we show the Vizing-like inequality holds and γP (G�H) ≥ γP (G)γP (H).

Keywords: Power domination, cubic graphs, multigraphs, Cartesian products

AMS subject classification: 05C69, 05C70

1 Introduction

Power domination is a graph searching process that arose from the problem of monitoring an
electrical power network. Phase measurement units (PMUs) are placed along the power network
to observe the information using a two step process. Due to the cost, the goal is to use as few
PMUs as possible while still being able to monitor the entire power network. This problem has
been studied in various contexts, and it was first investigated using graphs by Haynes et al. in
[7].

Haynes et al. modeled an electrical power network using a graph where the vertices represent
the electric nodes and the edges represent transmission lines between two electrical nodes. Let
G = (V (G), E(G)) be the simple graph representing this electrical power network, and let S ⊆
V (G) be a subset of vertices that represents where the PMUs are placed. We label all vertices
in S as well as all the edges incident to a vertex in S as observed. We then label other vertices
and edges in the graph as observed using the following rules.

• Any vertex that is incident to an observed edge is observed.

• Any edge joining two observed vertices is observed.

• If a vertex is incident to a total of k > 1 edges and if k − 1 of these edges are observed,
then all k of these edges are observed.
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If S eventually observes all of the vertices and edges in the graph, then we say S is a power
dominating set of G. Since our goal is to use the smallest number of PMUs while observing the
entire graph, we want to find the smallest set S that power dominates the graph. The cardinality
of the the smallest power dominating set of a graph G is called the power domination number,
which is denoted by γP (G).

Over the years, this original definition of power domination has been reshaped. In [5], it
was noted that one only needs to consider when all the vertices are observed. Since then, the
definition of power domination has simplified so that only the vertices of the graph are observed.
We present this new definition as well for ease of reference. Let G = (V (G), E(G)) be a simple
graph. Due to the physical nature of this problem, we will assume G has finite order in this
paper. Let S ⊆ V (G). We label the vertices in the graph as observed using the following rules.

• Initialization Step (Domination Step): All vertices in S as well as all neighbors of
vertices in S are observed.

• Propagation Step (Zero Forcing Step): Every vertex which is the only unobserved
neighbor of some observed vertex becomes observed.

Note that while the initialization step can only occur once, the propagation step can occur
as many times as needed. As before, S is a power dominating set if all the vertices of the graph
are eventually observed. Recall that a set D ⊆ V (G) is referred to as a dominating set of G if
V (G) = N [D]. Therefore, the above initialization step is referred to as the domination step since
we say S dominates ∪s∈SN [s] in domination theory. Furthermore, the cardinality of the smallest
dominating set of a graph G is called the domination number and is denoted by γ(G). If D is a
dominating set of cardinality γ(G), we refer to D as a γ(G)-set. The propagation step is called
the zero forcing step since this process without the domination step is known as zero forcing.
Zero forcing has been extensively studied, and it is notable for its connection to the minimum
rank problem [1]. A set that observes the entire graph using just the zero forcing process (or the
propagation step) is known as a zero forcing set. The cardinality of the smallest zero forcing set of
a graph G is called the zero forcing number, which is denoted by Z(G). Since any dominating set
or zero forcing set of a graph G is also a power dominating set of G, γP (G) ≤ min{γ(G), Z(G)}.

The power domination number of various graphs has been studied (see [2, 5, 10]). We will
focus our attention on cubic graphs as well as the Cartesian product of graphs.

First, we consider the power domination number of specific cubic graphs. In [16], Zhao et al.
proved that if G is a connected claw-free cubic graph of order n, then γP (G) ≤ n/4. Dorbec et
al. extended this result in [4] and showed the following.

Theorem 1. [4] Let G be a connected cubic graph on n vertices. If G is not the complete
bipartite graph K3,3, then γP (G) ≤ n/4.

Recall that we define a diamond to be the graph K4 − e for any edge e in K4. We improve
the upper bound given above as follows.

Theorem 2. If G is a claw-free diamond-free cubic graph of order n, then γP (G) ≤ n/6 and
this bound is sharp.

Next, we investigate the relationship between the power domination number, the domination
number, and the zero forcing number in the Cartesian product of two graphs. For graphs G
and H , the Cartesian product G�H has vertex set V (G�H) = {(g, h) : g ∈ V (G), h ∈ V (H)}.
Two vertices (g1, h1) and (g2, h2) are adjacent in G�H if either g1 = g2 and h1h2 ∈ E(H) or
h1 = h2 and g1g2 ∈ E(G). We provide new lower and upper bounds on γP (G�H) for two
connected graphs G and H . In [8], Koh and Soh claim that for any graph G and any tree T
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γP (G�T ) ≥ γP (G)γP (T ). However, we provide an example that illustrates a flaw in their proof
technique. It may however be the case that the statement is true, and in fact, we show the
following.

Theorem 3. If T1 and T2 are trees with γP (T1) = γ(T1) and γP (T2) = γ(T2), then γP (T1�T2) ≥
γP (T1)γP (T2).

The remainder of this paper is organized as follows. In Section 2, we provide new upper
bounds on the power domination number of claw-free diamond-free cubic graphs. In Section 3,
we consider the power domination number of the Cartesian product of two graphs. We conclude
this paper with Section 4 and provide some future directions and open problems.

2 Cubic graphs

In [16], Zhao et al. provided an upper bound for the power domination of a claw-free cubic graph
and classified all such graphs that achieve the upper bound as follows. We refer to a diamond as
the graph D obtained from the complete graph K4 by deleting an edge. In [16], they defined Dk

for each positive integer k to be the connected claw-free cubic graph formed from k disjoint copies
of D by joining pairwise 2k vertices of degree two. Furthermore, they let A = {Dk | k ≥ 1}.

Theorem 4. [16] If G is a connected claw-free cubic graph of order n, then γP (G) ≤ n/4 with
equality if and only if G ∈ A.

From the above, one can see that if G is a connected claw-free cubic graph, the presence of
diamonds in G increases the power domination number of G. The goal of this section is to show
that if G is a connected claw-free diamond-free cubic graph of order n, then γP (G) ≤ n/6. To
do so, we will use the following result.

Theorem 5. [11] A graph G is 2-edge-connected claw-free cubic if and only if either

(i) G ∼= K4,

(ii) G is a ring of diamonds, or

(iii) G can be built from a 2-edge-connected cubic multigraph H by replacing some edges of H
with strings of diamonds and replacing each vertex of H with a triangle.

Note that since we focus on claw-free and diamond-free cubic graphs, we will use the following
corollary.

Corollary 1. [11] A graph G is 2-edged-connected claw-free diamond-free cubic if and only if G
can be built from a 2-edged-connected cubic multigraph H by replacing each vertex with a triangle.

When considering a 2-edge-connected claw-free diamond-free cubic graph G, we will often
talk about the corresponding cubic multigraph H from which G can be built by replacing each
vertex of H with a triangle. Note that Petersen [13] showed that H indeed contains a 2-factor
in the following result. Furthermore, we can build a 2-factor for G by taking any 2-factor from
the corresponding cubic multigraph H by replacing each vertex with a triangle.

Theorem 6. [13] Every bridgeless cubic multigraph contains a 2-factor.

In addition to the above, we will need to use modified versions of some well-known results
regarding 2-edge-connected cubic graphs. In [14], Plesńık points out that Schönberger proved
the following in 1934.
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Theorem 7. [9] Every bridgeless cubic graph has a 1-factor not containing two arbitrarily chosen
edges.

Plesńık generalized the above result as follows.

Theorem 8. [14] Let G be an (r− 1)-edge-connected regular graph of degree r > 0 where |V (G)|
is even and let H be an arbitrary set of r − 1 edges. The graph G′ = G−H has a 1-factor.

The above result holds in the specific case where G is a 2-edge-connected cubic multigraph.
We restate a variation of the above result in the specific case where G is a 2-edge-connected cubic
multigraph here as we will use it repeatedly throughout this section. We leave it to the reader
to verify that the proof of Theorem 8 can be extended as follows.

Theorem 9. [14] Let G be a 2-edge-connected cubic multigraph where |V (G)| is even. For any
arbitrary edge e ∈ E(G), G contains a 2-factor containing e.

As one can surmise, we will need to consider power dominating sets in 2-edge-connected cubic
multigraphs. Suppose we start with a set S ⊂ V (G) where G is a multigraph and v is an observed
vertex with only one unobserved neighbor w. If there are multiple edges between v and w, then
technically, w would not be observed by v according to the original observation rules where we
require all edges and vertices to be observed. Therefore, when considering multigraphs, special
care must be used in the propagation step in that we cannot merely assume that because w is the
only unobserved neighbor of v that w will in fact be observed. Ultimately, this will require that
we are able to carefully choose 2-factors in a 2-edge-connected cubic multigraph to avoid issues in
the propagation step. We are now ready to consider the power domination number of a claw-free
diamond-free cubic graph. We first focus on the special case when G is also 2-edge-connected.

Theorem 10. If G is a 2-edge-connected claw-free diamond-free cubic graph of order n, then
γP (G) ≤ n

6 and this bound is sharp.

Proof. By Corollary 1, we may assume G can be obtained from a 2-edge-connected cubic multi-
graph H by replacing each vertex of H with a triangle. By Theorem 6, H contains a 2-factor
C′ = C′

1 ∪ · · · ∪ C′
k. We let C = C1 ∪ · · · ∪ Ck be the 2-factor in G obtained from C′ where Ci

is obtained from C′
i by replacing each vertex with a triangle. We may enumerate the vertices of

Ci as Ci = xi
1 . . . x

i
ni

such that 3 | ni and G[{xi
j , x

i
j+1, x

i
j−1}] = K3 for all j ≡ 1 (mod 3). Note

that by construction, |V (Ci)| ≥ 6 for all 1 ≤ i ≤ k.
Moreover, there exists a perfect matching between the vertices of

⋃

i∈[k]

{xi
1, x

i
4, x

i
7, . . . , x

i
ni−2}.

Let M = {w1v1, . . . , wtvt} be such a perfect matching. We claim that there exists a way
to choose one vertex from each edge in M , call the resulting set D, such that D ∩ V (Ci) 6= ∅
for all i ∈ [k]. Indeed, let J be the graph where V (J) = {u1, . . . , uk} and uiuj ∈ E(J) if
and only if there exists an edge xy ∈ E(G) such that x is on Ci and y is on Cj , i 6= j. Let
Ar = {v ∈ V (J) | dJ(u1, v) = r}. Note that each edge in J corresponds to some edge in M . Let
M ′ = {wα1

vα1
, . . . , wαs

vαs
} be a subset of M where s = |E(J)| and wαj

vαj
∈ M ′ if and only if

wαj
is on Cℓ, vαj

is on Cℓ′ and uℓuℓ′ ∈ E(J). Moreover, we can interchange wαj
and vαj

so that
dJ (u1, uℓ) ≤ dJ (u1, uℓ′). We shall assume d = maxv{dist(u1, v)}. Choose a path P = y1 . . . yd
where u1 = y1 and yd ∈ Ad. Thus, yj ∈ Aj for j ∈ {2, . . . , d}. Note that we may reindex the
vertices of J so that ui = yi for 1 ≤ i ≤ d. Furthermore, we may reindex C1, . . . , Ck so that ui in
J represents Ci in G. Reordering if necessary, we shall assume {wα1

vα1
, . . . , wαd−1

vαd−1
} ⊆ M ′
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where wαi
is on Ci, vαi

is on Ci+1 for 1 ≤ i ≤ d− 1, and wαi
vαi

∈ M ′ because yiyi+1 is an edge
in P . Consider the set

D = {wα1
, . . . , wαd−1

, vαd
, . . . , vαs

} ∪ {wj | wjvj 6∈ M ′}.

If D∩V (Ci) 6= ∅ for all i ∈ [k], then we are done. Therefore, we assume there exists some j′ ∈ [k]
such that D ∩ V (Cj′ ) = ∅. By construction, D contains a vertex from each cycle C1, . . . , Cd−1.
Now consider Cj for j ∈ {d, . . . , k}. This cycle corresponds to the vertex uj ∈ V (J). Assume
dist(u1, uj) = ℓ. Therefore, we can find a path P ′ = a1 . . . aℓ+1 where a1 = u1 and aℓ+1 = uj.
aℓaℓ+1 corresponds to an edge wαr

vαr
in M ′ where vαr

is on Cj since aℓ+1 = uj . Therefore,
as long as j 6∈ [d], then vαr

∈ D. Finally, we must show that D contains a vertex from Cd. If
Cd contains two vertices in {xd

1, x
d
4, . . . , x

d
nd−2} that are adjacent, then D contains a vertex from

Cd. So we shall assume that every vertex in {xd
1, x

d
4 , . . . , x

d
nd−2} is adjacent to some vertex not

on Cd. There exists an edge in J between ud and some vertex us where us is not on P . So there
exists a corresponding edge wαp

vαp
∈ M ′. If us ∈ Ad−1, then vαp

∈ D and vαp
is on Cd. So we

shall assume that us ∈ Ad. If vαp
is on Cd, then we are done. If not, then wαp

is on Cd and we
simply select D′ = D − {vαp

} ∪ {wαp
} and now D′ is such that D′ ∩ V (Ci) 6= ∅ for each i ∈ [k].

Let D be any set of vertices that contains exactly one vertex from each edge in M such that
D ∩ V (Ci) 6= ∅ for i ∈ [k]. We claim that D is a power dominating set of G. Note that each
vertex of the form xi

j for i ∈ [k] and j ≡ 1 (mod 3) is dominated by D. Fix i ∈ [k] and reindex

the vertices of Ci if need be so that xi
1 ∈ D. Thus, xi

2 and xi
ni

are dominated. It follows that xi
3

is observed. Furthermore, xi
4 is dominated by D from which it follows that xi

5 will be observed.
Continuing this argument, we see that all vertices of Ci will be observed and D is in fact a power
dominating set of G. Furthermore, we can partition the vertices of G as V (G) = X1 ∪ · · · ∪Xt

where the following is true. For each i ∈ [t], wi and vi are in Xi. Moreover, if we assume wi = xa
j

and vi = xb
ℓ, then xa

j+1, x
a
j−1, x

b
ℓ−1, x

b
ℓ+1 are also in Xi. Note that |D ∩Xi| = 1 for all i ∈ [t] and

it follows that |D| = n
6 .

Finally, to see that the bound is sharp, consider the graph G depicted in Figure 1. One can
easily verify that γP (G) > 1 and {u, v} is a power dominating set of G.

u

v

Figure 1: An example where γP (G) = |V (G)|
6

Corollary 2. If G is a 2-edge-connected claw-free diamond-free cubic multigraph of order n
containing exactly one pair of vertices {u, v} where there are two edges between u and v, then
γP (G) ≤ (n− 2)/6.

Proof. Suppose G contains vertices u and v where there are two edges between u and v. Let
w be the neighbor of u different from v and let z be the neighbor of v different from u. Note
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that w 6= z for otherwise G is not 2-edge-connected. Let G′ be the graph obtained from G by
removing u and v and adding an edge between w and z. Since G is claw-free, w is on a triangle in
G, say wrs. If z = r, then s is a cut-vertex of G which is a contradiction. Therefore, z 6∈ {r, s}.
On the other hand, z is on a triangle in G, say zab. If a = r, then s = b and wrsz induces
a diamond in G, another contradiction. Therefore, {a, b} ∩ {r, s} = ∅. We may conclude that
G′ is a 2-edge-connected claw-free diamond-free cubic graph. By Corollary 1, we may assume
G′ can be obtained from a 2-edge-connected cubic multigraph H by replacing each vertex of
H with a triangle. Note that wz is an edge in H as it is not on a triangle in G′. Since H is
a cubic multigraph, H has an even number of vertices. By Theorem 9, H contains a 2-factor
C′ = C′

1 ∪ · · · ∪ C′
k containing wz. Reindexing if necessary, we may assume wz is on C′

1. We
let C = C1 ∪ · · · ∪ Ck be the 2-factor in G′ obtained from C′ where Ci is obtained from C′

i by
replacing each vertex with a triangle. We may enumerate the vertices of Ci as Ci = xi

1 . . . x
i
ni

such that 3 | ni and G[{xi
j , x

i
j+1, x

i
j−1}] = K3 for all j ≡ 1 (mod 3). Note that there exists a

perfect matching between the vertices of
⋃

i∈[k]

{xi
1, x

i
4, x

i
7, . . . , x

i
ni−2}.

Let M = {w1v1, . . . , wtvt} be such a perfect matching. As in the proof of Theorem 10, we
can find a set D of vertices that contains exactly one vertex from each edge in M such that
D ∩ V (Ci) 6= ∅ for i ∈ [k]. We claim that D is also a power dominating set of G. Note that
since wrs is a triangle in G′ and zab is a triangle in G′ where {a, b}∩ {r, s} = ∅, we may assume
z = x1

n1−1 and w = x1
n1
. Therefore, C′′ = C′′

1 ∪ · · · ∪ C′′
k where C′′

i = Ci for 2 ≤ i ≤ k and
C′′

1 = x1
1x

1
2 . . . x

1
n1−1vux

1
n1

is a 2-factor of G where D ∩ V (C′′
i ) 6= ∅ for all i ∈ [k]. One can easily

verify that all vertices of G are observed. It is important to note that D ∩{u, v, w, z} = ∅ and w
will eventually observe u and z will eventually observe v in G. Thus, D is a power dominating
set of G of cardinality |V (G′)|/6 = (n− 2)/6.

In order to generalize the above result to all cubic graphs, we use the following terminology
found in [6]. Let G be a 2-edge-connected graph with 2 ≤ δ(G) < ∆(G) = 3 and vertex v of
degree 2. Then the graph that results by smoothing v, denoted sG(v), is the multigraph that is
produced by replacing v and its two incident edges with an edge between the neighbors of v. We
note that sG(v) is a 2-edge-connected cubic multigraph.

Let G be a graph with non-empty bridge set B(G). For each edge e in B(G), there exist
distinct components Hi and Hj of G−B(G) such that e is incident to some vertex in V (Hi) and
some vertex in V (Hj). In such a case, we will say that e is incident to Hi and Hj .

Let G be a connected graph with |B(G)| = b ≥ 0, and let H0, H1, ..., Hb be the components
of G−B(G). Then TG shall denote the simple graph with vertex set V (TG) = {h0, h1, h2, ..., hb}
and edge set E(TG) = {hihj | some edge e ∈ B(G) is incident to Hi and Hj}. We observe that
TG is a tree, and that G has no bridges if and only if TG is isomorphic to K1. Furthermore,
G−B(G) is a graph with b+1 components H0, H1, H2, ..., Hb such that each component is either

Type I: isomorphic to K1, or

Type II: isomorphic to the m-cycle Cm for some m ≥ 2, or

Type III: isomorphic to some 2-edge-connected graph H with ∆(H) = 3.

We note that if Hi is of Type I or Type II, then b > 0 and hi is an interior vertex of TG.
Otherwise, if Hi is of Type III, then hi is a leaf of TG if and only if either b = 0 or Hi has
precisely one vertex of degree 2. To illustrate, we observe that for graph G0 of Figure 2, TG0

is isomorphic to K1,3 and G0 − B(G0) has one component of Type II and three components of
Type III.
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Figure 2: The graph G0

Theorem 2 If G is a claw-free diamond-free cubic graph of order n, then γP (G) ≤ n/6 and this
bound is sharp.

Proof. We may assume that G is connected since the power domination number of a disconnected
graph is the sum of the power domination numbers of each component. We let B(G) represent
the set of bridges in G and let H0, H1, . . . , Hb be the components of G−B(G). Note that since
G is claw-free, no Hi is of Type I. Moreover, if Hi is of Type II, then Hi = K3. We consider
the tree TG with V (TG) = {h0, h1, . . . , hb} where hihj ∈ E(TG) if and only if some e ∈ B(G) is
incident to Hi and Hj . Choose a path P of length d = diam(TG) and let u0 be a leaf of P . We
root TG at u0 and define Ai = {v ∈ V (TG) | dTG

(u0, v) = i} where A0 = {u0}. Note that for
each a ∈ Ai, there exists exactly one neighbor of a in Ai−1. We also know that every vertex of
Ad is a leaf in TG. We construct a power dominating set as follows.

Let ui ∈ V (TG) be a leaf. Note that Hi is of Type III and there exists only one vertex of
degree 2, call it v. It follows that sHi

(v) is a claw-free diamond-free cubic multigraph with only
one pair of vertices, namely {w, t} where NHi

(v) = {w, t}, that have two edges between them.
Therefore, by Corollary 2, we can choose a power dominating set S′

i for sHi
(v) of cardinality

at most (n(Hi) − 2)/6. Furthermore, as noted at the end of the proof of Corollary 2, w will
eventually be observed by its only neighbor in sHi

(v) other than t and t will eventually be
observed by its only neighbor in sHi

(v) other than w. Thus, w will observe v in Hi and S′
i is

a power dominating set of Hi. Note that we have chosen a set of vertices from each Hi where
ui ∈ Ad.

Next, suppose ui ∈ At for 1 ≤ t ≤ d− 1 and assume Hi is of Type III. Let X = {x1, . . . , xr}
be all vertices of Hi of degree 2 such that x1 is the only vertex that has a neighbor in Hj where
uj ∈ At−1. Note that r ≥ 2.

Case 1 Assume first that r is even. Let Hi be the graph obtained from Hi by adding the edges
xjxj+1 for 1 ≤ j ≤ r where j is odd. Note that Hi is a cubic graph. We claim that Hi is
claw-free and diamond-free. Suppose to the contrary that Hi contains a claw. In particular,
assume {u, v, w, x} induces a claw where u, v, and w are the leaves of the claw. Since G is
claw-free, it must be that some edge of this claw was added to form Hi. Therefore, assume
that xu 6∈ E(G). Thus, x has a neighbor in Hℓ for some ℓ 6= i, call it t. But now {v, w, t, x}
induces a claw in G which cannot be. Thus, Hi is claw-free.

Now we show that Hi is diamond-free. Suppose to the contrary that {x, v, w, t} induces
a diamond in Hi, call it X . We shall assume xt 6∈ E(X) and therefore xt 6∈ E(G). Since
G is diamond-free, some edge exists in X that does not exist in G. Suppose first that
xv 6∈ E(G). This implies x has a neighbor in Hℓ, call it s, where ℓ 6= i and x has a neighbor

7



z 6∈ {s, w} such that z ∈ Hi or z ∈ Hℓ′ where ℓ′ 6∈ {ℓ, i} . This implies NG[x] induces
a claw in G which is a contradiction. Therefore, we shall assume wv 6∈ E(G). Thus, w
has a neighbor in some Hℓ where ℓ 6= i and it follows that NG[w] induces a claw, another
contradiction. Hence, Hi is diamond-free.

As in the proof of Theorem 10, we can find a 2-factor C = C1 ∪ · · · ∪ Ck of Hi where
|V (Cj)| ≥ 6 for j ∈ [k]. We may enumerate the vertices of Cj as Cj = xj

1 . . . x
j
nj

such that

3 | nj and G[{xj
s, x

j
s+1, x

j
s−1}] = K3 for all s ≡ 1 (mod 3). Moreover, we can find a power

dominating set S′
i of cardinality |Hi|/6 such that D ∩ V (Cj) 6= ∅ for each j ∈ [k].

Case 2 Assume r is odd. Let H ′
i be the graph obtained from Hi by adding the edges xjxj+1 for

2 ≤ j ≤ r where j is even and let Hi = sH′

i
(x1). Thus, Hi is a 2-edge-connected cubic

multigraph with exactly one pair of vertices that have two edges between them. In fact,
if we let x and y be the neighbors of x1 in Hi, then xy ∈ E(G) for otherwise NG[x1] is a
claw. It follows that x and y have exactly two edges between them in Hi.

As in Case 1, Hi is claw-free. Next, we show that Hi is in fact diamond-free. Suppose to the
contrary that {u, v, w, t} induces a diamond in Hi, call it X . We may assume ut 6∈ E(Hi)
and therefore ut 6∈ E(G). Note that {u, v, w, t} ∩ {x, y} = ∅ since x and y share two edges
between them. Now similar arguments to that used in Case 1 show that X cannot exist
unless G contains a claw. Thus, Hi is diamond-free.

As in the proof of Corollary 2, we can find a 2-factor C = C1 ∪ · · · ∪ Ck of Hi where
|V (Cj)| ≥ 6 for j ∈ [k]. We may enumerate the vertices of Cj as Cj = xj

1 . . . x
j
nj

such that

3 | nj for 2 ≤ j ≤ k, n1 ≡ 2 (mod 3), G[{xj
s, x

j
s+1, x

j
s−1}] = K3 for all s ≡ 1 (mod 3) where

s 6= x1
n1−1, and C1 = x1

1x
1
2 . . . x

1
n1−3xyx

1
n1
. Moreover, we can find a power dominating set

S′
i of Hi of cardinality (|Hi| − 2)/6 such that D ∩ V (Cj) 6= ∅ for each j ∈ [k].

All we need to do now is prove that S′ = ∪iS
′
i is a power dominating set of G. Let ui ∈ At

for some 0 ≤ t ≤ d. Note that if t ∈ {0, d}, we have already shown that all vertices of Hi

are observed. Assume first that t = d − 1. If Hi is of Type II, then Hi = K3. We write
V (Hi) = {x1, x2, x3} where x1 has a neighbor w in Hℓ where uℓ ∈ Ad−2. It follows that x2 has
a neighbor y in Hℓ′ where uℓ′ ∈ Ad. Since y is observed, x2 is the only unobserved neighbor of
y. Thus, x2 is observed. Similarly, x3 is observed. It follows that x1 is also observed. Therefore,
we may assume that Hi is of Type III. Let X = {x1, . . . , xr} be all the vertices of Hi of degree
2 where x1 has a neighbor in Hℓ where uℓ ∈ Ad−2.

We first consider when r is even. Define Hi as above in Case 1 with 2-factor C = C1∪· · ·∪Ck

of Hi where |V (Cj)| ≥ 6 for j ∈ [k] and S′ ∩ V (Cj) 6= ∅. Moreover, enumerate the vertices of Cj

as Cj = xj
1 . . . x

j
nj

such that 3 | nj and G[{xj
ℓ , x

j
ℓ+1, x

j
ℓ−1}] = K3 for all ℓ ≡ 1 (mod 3). Note that

C is still a 2-factor in Hi. Furthermore, each xα where 2 ≤ α ≤ r is observed by some vertex in
Hp where up ∈ Ad. Since S

′ ∩V (Cj) 6= ∅ for each j ∈ [k], it follows that all vertices of Hi except
possibly x1 are observed. We may assume x1 = xj

a for some a ≡ 1 (mod 3) and 1 ≤ j ≤ k.
Since all vertices in NHi

(xj
α) are observed, xj

a will also be observed. Thus, all vertices of Hi are
observed.

Finally, suppose r is odd. Define Hi as above in Case 2 with 2-factor C = C1 ∪ · · · ∪ Ck of
Hi where |V (Cj)| ≥ 6 for j ∈ [k] and S′ ∩ V (Cj) 6= ∅. For 2 ≤ j ≤ k, enumerate the vertices

of Cj as Cj = xj
1 . . . x

j
nj

such that 3 | nj and G[{xj
s, x

j
s+1, x

j
s−1}] = K3 for all s ≡ 1 (mod 3).

Moreover, write C1 = x1
1x

1
2 . . . x

1
n1−3xyx

1
n1

such that x and y share two edges between them
and G[{x1

s, x
1
s+1, x

1
s−1}] = K3 for all s ≡ 1 (mod 3). Note that the 2-factor C′ = C′

1 ∪ · · · ∪ C′
k

defined as C′
j = Cj for 2 ≤ j ≤ k and C′

1 = x1
1x

1
2 . . . x

1
n1−3xx1yx

1
n1

is a 2-factor of Hi where
S′ ∩ V (C′

j) 6= ∅ for each j ∈ [k]. Each xα where 2 ≤ α ≤ r is observed by some vertex in Hp
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where up ∈ Ad. Moreover, S′ ∩ V (Cj) 6= ∅ for each j ∈ [k], x will eventually be observed by its
only neighbor in Hi other than y, and y will eventually be observed by its only neighbor in Hi

other than x. Thus, x will observe x1 in Hi and all vertices of Hi will be observed.
Therefore, we have shown that for any ui ∈ Ad−1, all vertices of Hi are observed. Repeating

these same arguments will show that all vertices of G will eventually be observed as we work
our way up the tree TG. It follows that S′ is a power dominating set of G where |S′| ≤ n

6 . The
sharpness of the bound is provided in Theorem 10.

3 Cartesian products

We now turn our attention to the Cartesian products of two connected graphs G and H . Note
that the results presented in this section may be extended to disconnected graphs since the
power domination of a disconnected graph is the sum of the power domination numbers of each
component. First, we will consider lower bounds for γP (G�H). Note that the following was
shown by Koh and Soh in [8].

Lemma 1. [8] For any connected graphs G and H, γP (G�H) ≥ γP (H).

In [8], it was also claimed that γP (G�T ) ≥ γP (G)γP (T ) where T is any tree. The proof
provided relies on the following. A spider is a tree with at most one vertex having degree 3 or
more. The spider number of a tree T , denoted sp(T ), is the minimum number of subsets into
which V (T ) can be partitioned so that each subset induces a spider. Such a partition is referred
to as a spider partition and each set of the partition a spider subset. The following was proven
by Haynes et al. [7].

Theorem 11. [7] For any tree T , γP (T ) = sp(T ).

Koh and Soh [8] used the above result to show γP (G�T ) ≥ γP (G)γP (T ). However, there is
a hole in their proof, which we provide here in order to address the issue.

Theorem 12. [8] For any graph G and any tree T , γP (G)γP (T ) ≤ γP (G�T ).

Proof. Let S be a power dominating set of G�T where m = γP (G) and n = γP (T ). By
Theorem 11, we can partition V (T ) into n spider subsets V1, V2, . . . , Vn. Let Ti = G[Vi], the
subgraph induced by Vi, where 1 ≤ i ≤ n. By Lemma 1, γP (G�Ti) ≥ γP (G) = m. It follows
that |S ∩ V (G�Ti)| ≥ m, and therefore

γP (G�T ) = |S| =
n∑

i=1

|S ∩ V (G�Ti)| ≥ mn.

The issue in the above proof is the conclusion that γP (G�Ti) ≥ γP (G) = m implies that
|S ∩ V (G�Ti)| ≥ m. We provide an example where this need not be the case. Consider the
graph G�T depicted in Figure 3 where G is the graph of order 7. We claim that sp(T ) = 4.
To see this, suppose there exists a spider partition of size 3, say V1, V2, and V3. By definition,
V1, V2, and V3 must each induce a tree. Thus, we may assume that v3 ∈ V1, v12 ∈ V2 and
v18 ∈ V3. Note that if v9 is in V1, then V1 will contain two vertices of degree 3, v3 and v5, since
V1 must be connected. So v9 /∈ V1. A similar argument can be made to show v9 /∈ V3. Therefore,
v9 ∈ V2. In addition, v8 /∈ V2; otherwise, V2 contains two vertices, v12 and v9, of degree 3. If
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v8 ∈ V1, then v7 ∈ V1. So V1 now contains two vertices, v3 and v5, each of degree 3. Hence,
it must the case of v8 ∈ V3. However, V3 now contains two vertices, namely v16 and v18, each
with degree 3. Therefore, no such spider partition exists. However, V1 = {v1, v2, v3, v4, v5, v6},
V2 = {v7, v8, v15}, V3 = {v9, v10, v11, v12, v13, v14}, and V4 = {v16, v17, v18, v19, v20} is a spider
partition. Furthermore, S = V (G)× {v3, v5, v9, v12, v16, v18}, illustrated by the black vertices, is
a power dominating as it is a dominating set of G�T yet S ∩ (V (G)× V2) = ∅.

It is quite possible that the statement of Theorem 12 is correct. In fact, we can show the
Vizing-like inequality holds in specific situations. Recall that given a tree T , we refer to any
vertex adjacent to a leaf as a support vertex and any vertex adjacent to at least two leaves as
a strong support vertex. Note that strong support vertices can be used to bound the power
domination number of a graph. For example, assume x is a strong support vertex of G with
leaves ℓ1 and ℓ2 and D is power dominating set of G. Let X = {x, ℓ1, ℓ2} and assume D∩X = ∅.
Then the only vertex of X adjacent to a vertex outside of X is x. Even if x is observed at
some time step, ℓ1 and ℓ2 can never be observed by the rules of the propagation step which is a
contradiction. In fact, if we let vs(G) denote the number of strong support vertices in a graph
G, then vs(G) ≤ γP (G) using similar arguments. We use the following result shown in [7] and
strong support vertices to show the Vizing-like inequality holds in specific situations.

Theorem 13 ([7]). For any tree T of order at least 3, γP (T ) = γ(T ) if and only if T has a
unique γ(T )-set S and every vertex in S is a strong support vertex.

Theorem 3 If T1 and T2 are trees with γP (T1) = γ(T1) and γP (T2) = γ(T2), then γP (T1�T2) ≥
γP (T1)γP (T2).

Proof. Let S1 be a γ(T1)-set and let S2 be a γ(T2)-set. By Theorem 13, every vertex in S1 is a
strong support vertex in T1 and every vertex in S2 is a strong support vertex in T2. Enumerate
the vertices of S1 = {x1, . . . , xk} and enumerate the vertices of S2 = {y1, . . . , yℓ}. Choose a
partition Π = Π1 ∪ · · · ∪ Πk for V (T1) such that xi ∈ Πi and Πi ⊆ NT1

[xi] for each 1 ≤ i ≤ k.
Similarly, choose a partition Ω = Ω1∪· · ·∪Ωℓ such that yi ∈ Ωi and Ωi ⊆ NT2

[yi] for all 1 ≤ i ≤ ℓ.
Define

Bi,j = {(u, v) | u ∈ Πi, v ∈ Ωj}

for all 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ. Note that ∪i,jBi,j is a partition of V (T1�T2). Suppose there exists
a power dominating set D of T1�T2 of cardinality |S1||S2|− 1. This implies that D∩Bi,j = ∅ for
some i ∈ [k], j ∈ [ℓ]. Note that since xi is a strong support vertex of T1, there exist two leaves,
say ℓ1 and ℓ2, of xi. Moreover, {ℓ1, ℓ2} ⊂ Πi. Similarly, there exist two leaves, say ℓ′1 and ℓ′2, of
yj and {ℓ′1, ℓ

′
2} ⊂ Ωj . However, the only vertices of

Xij = {(xi, yj), (xi, ℓ
′
1), (xi, ℓ

′
2), (ℓ1, yj), (ℓ1, ℓ

′
1), (ℓ1, ℓ

′
2), (ℓ2, yj), (ℓ2, ℓ

′
1), (ℓ2, ℓ

′
2)}

adjacent to a vertex outside of X are (xi, yj), (xi, ℓ
′
1), (xi, ℓ

′
2), (ℓ1, yj), and (ℓ2, yj). Even if all of

these vertices are observed at some time step, (ℓ1, ℓ
′
1) will never be observed as both (xi, ℓ

′
1) and

(ℓ1, yj) each have two unobserved neighbors. Therefore, no such power dominating set of T1�T2

exists and γP (T1�T2) ≥ γP (T1)γP (T2).

In Theorem 3, we could provide a new lower bound on the power domination number of two
trees T1 and T2 when γP (T1) = γ(T1) and γP (T2) = γ(T2). By Theorem 13, we also know that
the minimum power dominating sets of T1 and T2 consisted of strong support vertices. Since the
number of strong support vertices is a lower bound on the power domination number of a graph,
we know γP (T1) = vs(T1) and γP (T2) = vs(T2) in this case. We can also use strong support
vertices to extend this result and bound the power domination number of general Cartesian
products.
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Figure 3: G�T

Lemma 2. For any connected graphs G and H, vs(G)vs(H) ≤ γP (G�H). In addition, if
γP (G) = vs(G) and γP (H) = vs(H), then γP (G)γP (H) ≤ γP (G�H).

Proof. Let D be a power dominating set of G�H . Assume xi is a strong support vertex of G
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with leaves ℓ1 and ℓ2, and assume yi is strong support vertex of H with leaves ℓ′1 and ℓ′2. Let

Xij = {(xi, yj), (xi, ℓ
′
1), (xi, ℓ

′
2), (ℓ1, yj), (ℓ1, ℓ

′
1), (ℓ1, ℓ

′
2), (ℓ2, yj), (ℓ2, ℓ

′
1), (ℓ2, ℓ

′
2)}.

First, assume Xij ∩ D = ∅. Note that the only vertices of Xij adjacent to a vertex outside of
Xij are (xi, yj), (xi, ℓ

′
1), (xi, ℓ

′
2), (ℓ1, yj), and (ℓ2, yj). Even if all of these vertices are observed at

some time step, it follows that (ℓ1, ℓ
′
1) will never be observed. Thus, it must be the case that

Xij ∩D 6= ∅. Since similar arguments hold for any support vertices of G and H , vs(G)vs(H) ≤
|D|.

For any graphs G and H , γP (G�H) ≤ Z(G�H). Therefore, the above result provides a
lower bound on the zero forcing number of G�H .

Corollary 3. For any connected graphs G and H, vs(G)vs(H) ≤ Z(G�H).

We will now consider the power domination number of certain Cartesian products. The
hypercube graph, Qn, can be defined recursively as Qn := Qn−1�K2 for n ≥ 1, where Q0 = K1.
In [3], Dean et al. conjectured that γP (Qn) = γ(Qn−1). While this conjecture was disproven in
[12], an interesting question that arises is if there exists a graph G such that γP (G�K2) = γ(G).
In order to answer this question, we first turn our attention to upper bounds on γP (G�H). A
general upper bound of γP (G�H) was provided in [15].

Theorem 14. [15] For any connected graphs G and H,

γP (G�H) ≤ min{γP (G)|V (H)|, γP (H)|V (G)|}.

We construct a new upper bound based on the domination and zero forcing numbers of the
graphs.

Lemma 3. For any connected graphs G and H,

γP (G�H) ≤ min{γ(G)Z(H), γ(H)Z(G)}.

Proof. We will first show γP (G�H) ≤ γ(G)Z(H). Let D be a minimum dominating set of G
and Z be a minimum zero forcing set of H . We claim that S := D ×H is a power dominating
set of G�H . Note that each vertex in V (G) × Z is dominated by S. It follows that for each
g ∈ V (G), each vertex in {g} × V (H) will be observed as Z is a zero forcing set of H . Thus,
S is a power dominating set of G�H and γP (G�H) ≤ γ(G)Z(H). Similarly, one can prove
γP (G�H) ≤ γ(H)Z(G).

When Z(H) = 1, Lemma 3 yields γP (G�H) ≤ γ(G). Note that Z(H) = 1 if and only if H
is a path. Similarly, when γ(H) = 1, Lemma 3 yields γP (G�H) ≤ Z(G). By Lemmas 1 and 2,
we also know that γP (G) ≤ γP (G�H) and vs(G)vs(H) ≤ γP (G�H). This in turn allows us to
find the power domination number of γP (G�H) for certain classes of graphs.

Corollary 4. Let G be a connected graph.

1. If γP (G) = γ(G), then γP (G�Pn) = γ(G).

2. If γP (G) = Z(G) and γ(H) = 1, then γP (G�H) = Z(G).
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3. If vs(G) = γ(G) and vs(H) = Z(H), then γP (G�H) = γ(G)Z(H).

We can now turn our attention back to the question posed earlier: does there exist a graph G
such that γP (G�K2) = γ(G)? From Corollary 3, we know γP (G�K2) = γ(G) if γP (G) = γ(G).
For example, when G = Km,n, then γP (Km,n�K2) = γ(Km,n). In addition, if γP (G) = Z(G),
then γP (G�K2) = Z(G). Finally, note that Corollary 3 provides another example of a cubic
graph where the bound given in Theorem 2 is sharp. Consider G = C3�K2. Since γP (C3) =
γ(C3), it follows that γP (C3�K2) = γ(C3) =

n
6 .

4 Conclusions

In this paper, we improved on the upper bound of the power domination number of claw-free
diamond-free cubic graphs. In particular, in Theorem 2, we showed that if G is a claw-free
diamond-free cubic graph of order n, then γP (G) ≤ n/6 and this bound is sharp. To do so, we
created power dominating sets based on a specific 2-factor of the graph where each cycle in the
2-factor has length 6 or more. One can verify that given such a 2-factor C = C1 ∪ · · · ∪Ck where
|V (Ci)| ≥ 6 for i ∈ [k], that γP (G) ≥ k. Thus, if there exists a 2-factor of G that consists only
of cycles of length 6, then γP (G) = n/6. An example of such a graph is shown in Figure 1. One
open problem to consider is if these are the only such claw-free diamond-free cubic graphs whose
power domination number equals this bound.

We also considered the power domination number of Cartesian products. We showed that a
Vizing-like inequality holds in the case of certain trees. In fact, in Theorem 3, we proved that if
T1 and T2 are trees with γP (T1) = γ(T1) and γP (T2) = γ(T2), then γP (T1�T2) ≥ γP (T1)γP (T2).
The next immediate question that comes to mind is if γ(T1�T2) ≥ γP (T1)γP (T2) for any trees T1

and T2? Additionally, we found graphs G where γP (G�K2) = γ(G). Can we classify all graphs
G where γP (G�K2) = γ(G)?
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