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Abstract

A thrackle is a graph drawing in which every pair of edges meets exactly once. Conway’s
Thrackle Conjecture states that the number of edges of a thrackle cannot exceed the number of its
vertices. Cairns et al (2015) prove that the Thrackle Conjecture holds for great-circle thrackles
drawn on the sphere. They also posit that Conway’s Thrackle Conjecture can be restated to
say that a graph can be drawn as a thrackle drawing in the plane if and only if it admits a
great-circle thrackle drawing. We demonstrate that the class of great-circle thrackleable graphs
excludes some trees. Thus the informal conjecture from Cairns et al (2015) is not equivalent to
the Thrackle Conjecture.
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1 Introduction

John Conway introduced the word thrackle to the world as a Scottish fishing term. As a teenager on

vacation in Scotland with his family, Conway encountered a fisherman holding a tangled fishing line.

As Conway told it, the fisherman called his line "thrackled." The term stuck with him and later, as

a young mathematician, Conway used the word "thrackle" to describe a type of graph drawing in

which every pair of edges meets exactly once. He suggested that the number of edges in a thrackle

must be bound above by the number of vertices in the thrackle. Since Conway introduced the term

to the mathematical community, no one has yet been able to confirm that "thrackle" is a regional

term, let alone one having anything to do with fishing. Despite its apocryphal origins, the thrackle

and Conway’s conjecture live on. In fact, there is still an unclaimed cash prize offered for a proof

that Conway’s Thrackle Conjecture is true [7].

Beginning at the conference where Conway posed the Thrackle Conjecture, Douglas Woodall [8]

provided the foundation for most of the research on thrackles that followed. Combinatorial attempts

to prove the Thrackle Conjecture have relied not only on Woodall’s work, but on the research of

Lovasz, Pach, and Szegedy [6]. This research focuses on calculating the upper bound on the number

of edges in a thrackleable graph. Fulek and Pach [3], [4] and Goddyn and Xu [5] continued this

work. Xu [9] has published the latest upper bound.

In doing his initial research about thrackles, Woodall [8] demonstrated that the Thrackle Con-

jecture is true for graphs that can be drawn as thrackles using straight lines. Although he never

worked explicitly on thrackles, Paul Erdos [2] also provided a design-theory proof that straight-line

thrackles obey the Thrackle Conjecture. Woodall also showed that the Thrackle Conjecture does

not hold on the torus. On the sphere, however, Cairns, Koussas, and Nikolayevsky [1] showed that

the Thrackle Conjecture is true for thrackles drawn using arcs of great-circles on the sphere. Since

great-circle thrackleable graphs are thrackleable in the plane, Cairns et al’s result left open the

possibility of proving the Thrackle Conjecture by showing all graphs that are thrackleable in the

plane can be drawn as great circle thrackles. However, in this paper we show that there exists a

class of thrackleable trees that cannot be drawn as great-circle thrackles. Building on the work of

Cairns, Koussas, and Nikolayevsky [1], we classify these trees and begin to characterize great-circle

thrackleabe trees.
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In the remainder of Section 1 we introduce the concept of thrackles generally, and great-circle

thrackles in particular. In Section 2 we present some basic facts about thrackles and known char-

acteristics of great-circle thrackles. Finally, in Section 3 we demonstrate that some trees are not

great-circle thrackleable, the main result of the paper.

We begin with a formal definition of a thrackle.

Definition 1.1. A thrackle is a drawing of a simple, undirected graph in which

1. no curve crosses itself and

2. every pair of curves intersects at exactly one point

If a graph can be drawn as a thrackle, it is called thrackleable.

Figures 1 and 2 demonstrate examples of thrackles.

v0

v1 v2

Figure 1: 3-Cycle

v3v2v1v0

v3

v2v1

v0

Figure 2: Planar and Thrackle Drawings of 3-Path

Conway made the following conjecture about thrackles at a conference in 1969. Despite its age

and the many early advances by Douglas Woodall [8], the Thrackle Conjecture remains open.

Conjecture 1.2 (Conway’s Thrackle Conjecture, 1969). Every thrackleable graph contains at least

as many vertices as edges.
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In 2015, Cairns, Koussas, and Nikolayevsky developed a novel approach to the Thrackle Con-

jecture. They showed that the Conjecture is true for standard great-circle thrackles.

Definition 1.3 (Cairns, Koussas, and Nikolayevsky [1]). A great circle thrackle is a thrackle

drawn on the sphere, whose vertices are represented as points on the sphere and whose edges are

represented by the arcs of great circles. A great-circle thrackle is said to be drawn in general

position if no three vertices lie on the same great circle and no two vertices are antipodal.

In Figure 3, we show great-circle thrackles of the 3-cycle and the 5-cycle, both in general position.

Figure 3: Great-circle Thrackles of the 3-cycle (left) and 5-cycle (right)

Cairns, Koussas, and Nikolayevsky [1] put the further restrictions on great-circle thrackles that

they must contain no leaves and must be connected. A great-circle thrackle of a connected graph

that contains no leaves and is in general position is a standard great-circle thrackle. In addition,

they define a the notion of a crossing orientation on edges that meet. As we are concerned with

trees, we consider connected great-circle thrackles in general position, but we do not require the

absence of leaves. Moreover, we do not consider crossing orientation in this analysis.

Theorem 1.4 (Cairns, Koussas, and Nikolayevsky [1]). Let G be a standard great circle thrackleable

graph. Then G contains at most as many edges as vertices.

Note that if a great-circle thrackle in general position contradicted the Thrackle Conjecture,

it would necessarily contain a standard great-circle thrackle. Therefore, the above theorem holds

for any great-circle thrackle in general position. Moreover, Cairns, Koussas, and Nikolayevsky [1]

demonstrated that every great-circle thrackleable graph is thrackleable in the plane. This result
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was exciting because it suggested that the Thrackle Conjecture could be reduced to showing that

every thrackleable graph can be drawn as a great-circle thrackle. However, we contend that this is

not true. We show that there exists a class of trees that are thrackleable in the plane, but cannot

be drawn as great circle thrackles. Thus the Thrackle Conjecture must be proved through other

means.

2 Facts about Great-circle Thrackles

One subclass of great-circle thrackleable graphs has been known for decades. Because great circles

on the sphere are analogous to straight lines in the plane, all straight-line thrackleable graphs are

great-circle thrackleable. In fact, Woodall [8] classified straight-line thrackleable graphs, including

caterpillars shortly after the conference where Conway presented his conjecture.

Definition 2.1. A straight-line thrackle is a thrackle whose arcs are drawn as straight line

segments.

In Figure 4, we show two examples of straight-line thrackles.

v0

v1

v2 v3 v0

v3

v1v4

v2

Figure 4: 3-Star (left) and 5-Cycle (right)

One important straight-line thrackleable graph is the caterpillar. Woodall [8] showed that any

straight-line thrackleable tree must be a caterpillar. We give an example in Figure 5.

Definition 2.2. A caterpillar is a tree in which every vertex is adjacent to at most two interior

vertices.
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v13

Figure 5: Caterpillar

Theorem 2.3 (Woodall [8]). A finite graph G is straight-line thrackleable if and only if either

1. G contains an odd cycle and every vertex of G is adjacent to a vertex of the cycle or

2. G is a disjoint union of caterpillars

To discuss the broader class of great-circle thrackleable trees, we need to define some important

terms. We start with long and short edges.

Definition 2.4 (Cairns, Koussas, and Nikolayevsky [1]). We represent the great circle containing

edge e as C (e) and denote the positive and negative hemispheres of C (e) by H +
e and H −

e , respec-

tively. If e is shorter than π we call it a short edge and if e is longer than π we call it a long

edge.

In Figure 6, we have illustrations of a short and a long edge.

Figure 6: Short (left) and Long (right) Edges

One restriction on long edges in great-circle thrackles comes almost directly from the definition.
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Lemma 2.5 (Cairns, Koussas, and Nikolayevsky [1]). In any great-circle thrackle, no two long edges

are adjacent.

In fact, this lemma is holds for any great-circle thrackle in general position. If, in a great-circle

thrackle of graph G, any two long edges were adjacent, they would meet at both their shared vertex

and the antipodal point of their shared vertex, which would contradict G being drawn as a thrackle.

To further characterize edges in a great-circle thrackle, we describe how an edge reaches a vertex

and how edges and paths can separate at a vertex.

Definition 2.6 (Cairns, Koussas, and Nikolayevsky [1]). Edge e reaches vertex v through hemi-

sphere H if e is incident to v and in a small neighborhood of v, the interior of e is in H . Let v be

a vertex of G with degree at least 3. Edge e separates at v if there exist edges f, g ∈ G incident to

v such that f reaches v through H +
e and g reaches v through H −

e .

In Figure 7, we see edge e separating at a vertex shared with edges f and g.

Figure 7: Edge separating at a vertex

For the purpose of clarity, we consider only hemispheres bounded by great circles through a

specified vertex, v. In addition to edges that separate at v, we consider paths that separate at v.

Definition 2.7. A k-path P = e1 . . . ek separates at vertex v if either e1 or ek separates at v and

v is either the initial or terminal vertex of P .

In Figure 8, a 2-path separates at vertex v.
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Figure 8: 2-Path separating at vertex v

Let us continue to characterize great-circle thrackleable graphs and how adjacent edges relate

to the vertices they share. For example, if v is a pointed vertex with degree at least three, then at

least one edge incident to v separates at v.

Definition 2.8. If v is a pointed vertex in a graph drawing on the sphere, then all of the edges

incident to v reach v through a single hemisphere whose boundary is a great circle through v.

Figure 9 provides examples of pointed vertices, v0.

v0

v1

v2

v3

Figure 9: Pointed Vertex

Lemma 2.9. Let G be a great-circle thrackleable graph and let deg(v) = k for some v in G. Then

at least k − 2 edges separate at v. If v is pointed, then exactly k − 2 edges separate at v.

Proof. Label the edges incident to v e1, . . . , ek. Let li be the length of edge ei and let U be the

circular neighborhood of radius r centered at v, where 0 < r < min{li}1≤i≤k.

7



Suppose that k = 3 and that neither e1 nor e2 separates at v. Then e2 and e3 reach v through

the same hemisphere of C (e1), say H +
e1

, and e1 and e3 reach v through the same hemisphere of

C (e2), say H +
e2

. Thus e3 reaches v through A = U ∩ (H +
e1

∩H +
e2
), which is bounded in part by e1

and e2. Because neither e1 nor e2 separates at v, the angle between e1 and e2 in A is less than π.

Moreover, C (e3) passes through the interior of A, so e1 and e2 reach v through opposite hemispheres

of C (e3).

Now suppose that k = n and that the claim holds if one edge incident to v is removed. Call this

removed edge en. If either all or all but one edge incident to v separates at v, then the re-insertion

of en in G fulfills the claim. We complete the proof by assuming that two edges in G \ en do not

separate at v. Denote these edges ej and el, where j, l ∈ [1, . . . , n − 1]. Re-insert en and consider

the subgraph (ej ∩ el ∩ en) of G. By the base case, one of the edges ej , el, en separates at v.

Suppose that v is pointed. Denote by Hv the hemisphere through v through which all edges

incident to v reach v. Let C (v) be the boundary of Hv. Let e1 and ek be the edges drawn at the

smallest positive angle from C (v). Then edges e2, . . . ek reach v in the portion of Hv bounded by

C (v) and C (e1). Similarly, edges e1, . . . ek−1 reach v in the portion of Hv bounded by C (v) and

C (ek). Thus exactly k − 2 edges separate at v.

Toward defining the class of great-circle thrackleable trees, we consider edge ajacencies. In

Lemmas 2.10 and 10 we demonstrate some limits on edges and paths that separate at shared

vertices.

Lemma 2.10. Every long edge that separates at a vertex is terminal.

Proof. Let G be a great circle thrackleable graph. Let v0 ∈ G be a vertex of degree k ≥ 3 and e1

an edge that separates at v. Let f and g be adjacent to e via v0. Suppose that e1 is drawn long.

Toward a contradiction, suppose that e2 is adjacent to e1 via v1. Since f and g are in different

hemispheres of C (e1), e2 must be long to cross them both. Yet this is not possible, by Lemma

2.5.

Lemma 2.11. Let G be a great circle thrackleable graph and let v ∈ G be a vertex of degree k ≥ 3.

If all edges incident to v are short, then any path that separates at v contains at most two edges.
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Proof. Let path P separate at degree-k vertex v0, with e1 ⊆ P incident to v0. Suppose that the

length of P is greater than one, with e1 and e2 incident to v1 and e2 incident to v2. Since e1

separates at v0, there exist some f and g that reach v0 through opposite hemispheres of C (e1). By

Lemma 2.10, e1 is drawn short. Because f and g are in opposite hemispheres of C (e1) and v1 lies

on C (e1), e2 must be long to cross both f and g. Without loss of generality, suppose that e2 reaches

v1 through the hemisphere of C (e1) in which f reaches v0, say He1(f). Then v2 lies in He1(g),

between g and e1, as in Figure 10.

Figure 10: Illustration of path P in Lemma 10

Now suppose toward a contradiction that P contains a third edge, e3. Because v2 lies in He1(g),

but e3 must cross both f and g, e3 must be long, which is not possible by Lemma 2.5.

Theorem 2.13 demonstrates that the class of trees that are great-circle thrackleable properly

contains the class of straight-line thrackleable trees. It concerns the spider on three legs of length

two, which is the minimal example of a tree that is not straight-line thrackleable.

Definition 2.12. A spider is a tree in which exactly one vertex, v0 has degree at least 3 and all

others have degree at most 2. The degree of v0 is the number of legs of the spider. The length of

each leg is the length of the path beginning at a degree-1 vertex and terminating at v0.

In Figure 11 we show the spider on three legs of length two.
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v0

v1

v2

v3

v4

v5

v6

Figure 11: Spider with Three Legs of Length 2

Theorem 2.13. The class of great-circle thrackleable graphs properly contains the class of straight-

line thrackleable graphs.

Proof. It suffices to show that the spider on three legs of length two can be drawn as a great-circle

thrackle. Let us construct G, a spider on three legs, each of length two. Let v be its degree-3 vertex

and let v be pointed. Fix a hemisphere through v containing containing all edges incident to v and

call it S. Fix a short edge incident to v in S and call it e1. Let e1 be an edge in path P . Suppose

that P contains a second edge, e2, so that e2 is long and P is drawn in general position. Because

C (e2) is a great circle and since we have the assumption of general position, every point on C (e2)

has distance less than π from v. Let maxe2 be the maximum distance from v to any point on C (e2)

within S and let mine2 be the minimum distance from v to any point on C (e2) within S.

Draw f1 in H +
e1

∩ S so that it crosses e2 with length lf1 greater than maxe2 , but less than π.

Similarly, draw g1 in H −
e1

∩S so that it crosses e2 with length lg1 greater than maxe2 , but less than

π. Let wf be the endpoint of f1 and wg the endpoint of g1. So far, this graph is a spider on three

legs, two of which have length one. It is also a caterpillar, as we see in Figure 12.
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Figure 12: Subgraph of graph G

Let pf be a point on f1 with distance from v less than mine2 and pg a point on g1 with distance

from v less than mine2 . Draw f2 as a short arc on the great circle containing wf and pg so that pg

is in the interior of f2. Draw g2 similarly, as in Figure 13.

Figure 13: Great-circle Thrackle of Spider on Three Legs of Length Two

This is a drawing of a spider on three legs, each of length two.

3 Defining the Class of Great-circle Thrackleable Trees

Now we are prepared to define a class of trees that contains great-circle thrackleable trees. We call

graphs in this class augmented caterpillars

Definition 3.1. An augmented caterpillar, G is a tree consisting of a spine, which is its longest

path, and legs, which are paths that are edge-disjoint from the spine, but which terminate at internal
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vertices of the spine. Every vertex in G is at most distance two from an internal vertex of G’s spine.

We show an example of an augmented caterpillar in Figure 14.

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10
v11

v12v13

v14 v15

v16

v17

v18

v19

Figure 14: Augmented Caterpillar

Note that the minimal thrackleable tree which is not an augmented caterpillar is the spider on

three legs of length three, shown in Figure 15.

z w1 w2 w3

v1

v2

v3

u1

u2

u3

Figure 15: Spider on Three Legs of Length 3

If any edge incident to a leaf is removed from this graph, the resulting graph is an augmented

caterpillar. If any other edge is removed from this spider, the result is the disjoint union of augmented

caterpillars. Thus, by showing that the spider on three legs of length three is not great-circle

thrackleable we demonstrate that the class of great-circle thrackleable trees is contained in the class

of augmented caterpillars. Consequently, every graph that contains a spider on three legs of length

three is cannot be drawn as a great-circle thrackle.

Theorem 3.2. If a tree G is great-circle thrackleable, then G is an augmented caterpillar.

Proof. It suffices to show that a spider on three legs of length three cannot be drawn as a great-

circle thrackle. Let G be a spider on three legs of length three. Let z ∈ G be the degree-3 vertex.
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Label the legs of G as E = e1e2e3, F = f1f2f3, and H = h1h2h3. Let the initial edge in E be

e1 = {z, v1}; in F , f1 = {z, w1}; and in H, h1 = {z, u1}. Let the remaining edges be ei = {vi−1, vi},

fi = {wi−1, wi}, and hi = {ui−1, ui} for i = 2, 3, as in Figure 15.

Suppose, toward a contradiction, that G can be drawn as a great circle thrackle. By Lemmas

2.5 and 10, one of e1, f1, and h1 is long. Without loss of generality, let e1 be long. By Lemma 2.10,

e1 does not separate at z. Again without loss of generality, let f1 separate at z, as in Figure 16.

Denote by le1 , lf1 , and lh1
be the lengths of e1, f1, and h1, respectively. To admit a great circle

arc containing w1 and interior points of e1 and h1, let le1 > π + max{lf1 , lh1
}. This condition is

necessary, but not sufficient to demonstrate that f2 can be drawn to cross both e1 and h1, so we

further require that lh1
> lf1 .

Figure 16: Spider Subgraph of G Containing Three Legs of Length One: Edge labels (left), Vertex
labels (right)

Although e1 and h1 reach z through different hemispheres of C (f1), the segment of e1 bounded

by v1 and the antipodal point of z is in the same hemisphere of C (f1) as h1. Draw a short great

circle arc f2 from w1 through h1 and e1, terminating at w2. Let p be the point where f2 crosses h1

and q the point where f2 crosses e1, as in Figure 17.
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Figure 17: Spider Subgraph of G Containing Two Legs of Length One, One Leg of Length Two:
Edge labels (left), Vertex labels (right)

Note that the arcs [z, w1], [w1, p], and [p, z] form a 3-cycle. Any edge that is not adjacent to f1,

f2, or h1 must cross all three of them. Note that any great circle arc crossing f1, f2, and g1, but

not containing more than one interior point of any of these edges, must contain p, as in Figure 18

for example.

Figure 18: Failure of the Spider on Three Legs of Length Three: Edge labels (left), Vertex labels
(right)

Recall that v1 lies outside the 3-cycle formed by [z, w1], [w1, p], and [p, z]. Suppose that e2

contains both p and an interior point of f1. Then e2 crosses f1 in one hemisphere of f2 and meets

e1 in the other hemisphere. In other words, q lies between v1 and the intersection of e1 and e2. This

situation is impossible, because the intersection of e1 and e2 is v1.
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Hence the spider on three legs of length three is not great circle thrackleable. The remainder of

the proof is immediate from Lemma 10 and Theorem 2.13

This theorem demonstrates that great-circle thrackleable trees are not the key to proving the

Thrackle Conjecture. Moreover, it gives us the following corollary.

Corollary 3.3. No graph containing the spider on three legs of length three can be drawn as a

great-circle thrackle.

To conclude, we present the following two conjectures, which may further specify the class

of trees that are great-circle thrackleable. The authors suspect that reintroducing the notion of

crossing orientation to the discussion of trees may be useful in either proving them or finding

counterexamples. The challenge comes from making the notion of crossing orientation well-defined

in the absence of closed loops.

Conjecture 3.4. The class of great circle thrackleable trees is properly contained in the class of

augmented caterpillars.

Conjecture 3.5. Let G be an augmented caterpillar drawn as a a great circle thrackle and let v

and v′ be adjacent in the spine of G. If some 2-path separates at v, then no 2-path separates at v′.

4 Conclusion

Despite the many efforts to prove the Thrackle Conjecture (or find a counterexample) over the

years, it remains an open problem. The work of Cairns, Koussas, and Nikolayevsky [1] showed that

the Thrackle Conjecture is true for great-circle thrackleable graphs. Moreover, their work suggested

a potential way to prove the Thrackle Conjecture once and for all: show that all graphs that are

thrackleable in the plane can be drawn as great circle thrackles. However, this endeavor fails because

the class of augmented caterpillars cannot be drawn as great-circle thrackles.
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