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Generalized DP-Colorings of Graphs

Alexandr V. Kostochka∗† Thomas Schweser ‡ Michael Stiebitz§

Abstract

By a graph we mean a finite undirected graph having multiple edges but
no loops. Given a graph property P, a P-coloring of a graph G with color set
C is a mapping ϕ : V (G) → C such that for each color c ∈ C the subgraph of
G induced by the color class ϕ−1(c) belongs to P. The P-chromatic number
χ(G : P) of G is the least number k for which G admits an P-coloring with
a set of k-colors. This coloring concept dates back to the late 1960s and is
commonly known as generalized coloring. In the 1980s the P-choice number
χℓ(G : P) of G was introduced and investigated by several authors. In 2018
Ďvorák and Postle introduced the DP-chromatic number as a natural exten-
sion of the choice number. They also remarked that this concept applies to any
graph property. This motivated us to investigate the P-DP-chromatic number
χDP(G : P) of G. We have χ(G : P) ≤ χℓ(G : P) ≤ χDP(G : P). In this paper
we show that various fundamental coloring results, in particular, the theorems
of Brooks, of Gallai, and of Erdős, Rubin and Taylor, have counterparts for
the P-DP-chromatic number. Furthermore, we provide a generalization of a
result from 2000 about partitions of graphs into a fixed number of induced
subgraphs with bounded variable degeneracy due to Borodin, Kostochka, and
Toft.
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1 Introduction and main results

Our notation is standard. In particular, N denotes the set of positive integers and
N0 = N ∪ {0}. For integers k and ℓ, let [k, ℓ] = {x ∈ Z | k ≤ x ≤ ℓ}. The term
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graph refers to a finite undirected graph possibly with multiple edges but without
loops. For a graph G, V (G) and E(G) denote the vertex set and the edge set
of G, respectively. The number of vertices of G is called the order of G and is
denoted by |G|. A graph G is called empty if |G| = 0; in this case we also write
G = ∅. For a vertex v of G, let EG(v) denote the set of edges of G incident with
e. Recall that every edge e of G is incident with exactly two vertices of G which
are called the ends of e. We call dG(v) = |EG(v)| the degree of v in G. Then
∆(G) = maxv dG(v) is the maximum degree of G, and δ(G) = minv dG(v) is the
minimum degree of G, where we set ∆(∅) = δ(∅) = 0. For two different vertices
u, v of G, let EG(u, v) = EG(u) ∩ EG(v). If e ∈ EG(u, v), then we also say that e
is an edge of G joining u and v; and that u is a neighbour of v and vice versa.
Furthermore, µG(u, v) = |EG(u, v)| is the multiplicity of the vertex pair u, v in G;
and µ(G) = maxu 6=v µG(u, v) is the maximum multiplicity of G. The graph G is
said to be simple if µ(G) ≤ 1. As usual, we denote by NG(v) the neighborhood
of v in G, that is, the set of vertices u of G with EG(u, v) 6= ∅. A graph G is called
k-degenerate if each subgraph H of G satisfies δ(H) ≤ k. For X, Y ⊆ V (G), we
denote by EG(X, Y ) the set of edges of G joining a vertex of X with a vertex of
Y . Furthermore, G[X ] is the subgraph of G induced by X , i.e., V (G[X ]) = X
and E(G[X ]) = EG(X,X). Define G − X = G[V (G) \ X ], and, for v ∈ V (G),
define G − v = G − {v}. If G′ is a subgraph of G, we write G′ ⊆ G, that is,
V (G′) ⊆ V (G), E(G′) ⊆ E(G), and each edge of G′ has the same ends in G′ as
in G. If G′ ⊆ G and G′ 6= G, then G′ is a proper subgraph of G. A vertex set
I ⊆ V (G) is independent in G if G[I] has no edges. A matching of a graph G
is a set M of edges of G with no common ends; the matching M is called perfect
if |M | = |G|

2
, or equivalently, if every vertex of G is an end of exactly one edge of

M . A separating vertex of a connected graph G is a vertex v ∈ V (G) such that
G− v has at least two components. The separating vertices of a disconnected graph
are defined to be those of its components. We denote by S(G) the set of separating
vertices of G. Furthermore, a block of G is a maximal connected subgraph B of G
such that S(B) = ∅. Note that each block of G is an induced subgraph of G. If
B(G) = {G}, we also say that G is a block. We denote by Kn the complete graph
of order n ≥ 0 and by Cn the cycle of order n ≥ 3. A cycle is said to be even or odd
depending on whether its order is even or odd. Clearly, both Kn with n ≥ 1 and
Cn with n ≥ 3 are blocks and simple graphs. For a graph G, we denote by Go the
underlying simple graph of G, that is, Go is a simple graph with V (Go) = V (G)
and E(Go) = {uv | u, v ∈ V (G), µG(u, v) > 0}. Note that G and Go have the same
block structure, that is, for every X ⊆ V (G) we have G[X ] ∈ B(G) if and only if
Go[X ] ∈ B(Go).

Given a graph G, a coloring of G with color set C is a mapping ϕ : V (G) → C.
Then, the sets ϕ−1(c) = {v ∈ V (G) | ϕ(v) = c} with c ∈ C are called color classes
of the coloring ϕ. A list assignment of G with color set C is a mapping L : V → 2C

that assigns to each vertex v ∈ V a set (list) L(v) ⊆ C of colors. A coloring ϕ of G
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is called an L-coloring if ϕ(v) ∈ L(v) for all v ∈ V . A cover of G is a pair (X,H)
consisting of a map X and a graph H satisfying the following two conditions:

(C1) X : V → 2V (H) is a function that assigns to each vertex v ∈ V a vertex set
Xv = X(v) ⊆ V (H) such that the sets Xv with v ∈ V are pairwise disjoint.

(C2) H is a graph with vertex set V (H) =
⋃

v∈V (G) Xv such that each Xv is an

independent set of H , and, for any two distinct vertices u, v ∈ V (G), the set
EH(Xu, Xv) is the union of µG(u, v) (possibly empty) matchings of H .

Let G be a graph and let (X,H) be a cover of G. Let uv ∈ E(Go), let X ⊆ Xu,
and Y ⊆ Xv. Then define H(X, Y ) = H [X ∪ Y ]; note that H(X, Y ) is a bipartite
graph with parts X and Y , and ∆(H(Xu, Xv)) ≤ µG(u, v) (by (C2)). If |Xv| ≥ k
for all v ∈ V (G), we say that (X,H) is a k-cover of G. A transversal of (X,H)
is a vertex set T ⊆ V (H) such that |T ∩Xv| = 1 for all v ∈ V . A set T ⊆ V (H) is
called partial transversal of (X,H) if |T ∩Xv| ≤ 1 for all v ∈ V . For Y ⊆ V (H),
let dom(Y : G) = {v ∈ V (G) | Xv ∩ Y 6= ∅} be the domain of Y in G.

Colorings of graphs become a subject of interest only when some restrictions
to the color classes are imposed. Let G denote the class of all graphs. A graph
property is a subclass of G that is closed with respect to isomorphisms. Let P
be a graph property. The property P is said to be non-trivial if P contains a
non-empty graph, but not all graphs. We call P monotone if P is closed under
taking subgraphs; and we call P hereditary if P is closed under taking induced
subgraphs. If P is closed under taking (vertex) disjoint unions, then P is called
additive. Clearly, every monotone graph property is hereditary, but not conversely.
An overview about hereditary graph properties is given in [7]. Some popular graph
properties that are non-trivial, monotone, and additive are the following:

O = {G ∈ G | G is edgeless},

and
Dk = {G ∈ G | G is k-degenerate}

with k ≥ 0. Note that D0 = O, D1 is the class of forests, and O ⊆ Dk ⊆ Dk+1

for all k ≥ 0. If P is additive, then a graph belongs to P if and only if each of its
components belong to P. For a non-trivial and hereditary graph property P, let

CR(P) = {G ∈ G | G 6∈ P, but G− v ∈ P for all v ∈ V (G)}

and define
d(P) = min{δ(G) | G ∈ CR(P)}.

Note that CR(Dk) contains all connected (k+1)-regular graphs and d(Dk) = k+1.
In particular CR(O) = 〈K2〉, that is, each graph in CR(O) is isomorphic to K2, and
d(O) = 1. The statements of the following proposition are well known and easy to
prove (see e.g. [34, Proposition 1]).
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Proposition 1 Let P be a non-trivial and hereditary graph property. Then the

following statements hold:

(a) K0, K1 ∈ P.

(b) A graph G belongs to CR(P) if and only if each proper induced subgraph of G
belongs to P, but G itself does not belong to P.

(c) G 6∈ P if and only if G contains an induced subgraph G′ with G′ ∈ CR(P).

(d) CR(P) 6= ∅ and d(P) ∈ N0.

(e) If G 6∈ P, but G− v ∈ P for some vertex v of G, then dG(v) ≥ d(P).

Let P be a graph property, and let G be a graph. A P-coloring of G with color
set C is a coloring ϕ of G with color set C such that G[ϕ−1(c)] ∈ P for all c ∈ C.
If L is a list assignment for G, then a (P, L)-coloring of G is an P-coloring ϕ of G
such that ϕ(v) ∈ L(v) for all v ∈ V (G). The P-chromatic number of G, denoted
by χ(G : P), is the least integer k for which G admits a P-coloring with a set of k
colors. The P-choice number of G, denoted by χℓ(G : P), is the least integer k
such that G has an (P, L)-coloring whenever L is a list assignment of G satisfying
|L(v)| ≥ k for all v ∈ V (G). If (X,H) is a cover of G, then a P-transversal
of (X,H) is a transversal T of (X,H) such that H [T ] ∈ P. An O-transversal
of (X,H) is also referred to as an independent transversal of (X,H). A P-
transversal of (X,H) is also called a (P, (X,H))-coloring of G. Note that G admits
a (P, (X,H))-coloring if and only if G has a coloring ϕ with color set V (H) such
that T = {ϕ(v) | v ∈ V (G)} is a P-transversal of (X,H). The P-DP-chromatic
number of G, denoted by χDP(G : P), is the least integer k such that G admits a
(P, (X,H))-coloring whenever (X,H) is a k-cover of G. We also write χ(G), χℓ(G)
and χDP(G) for χ(G : O), χℓ(G : O) and χDP(G : O), and the corresponding
terms are chromatic number, choice number, and DP-chromatic number,
respectively. The choice number was introduced, independently, by Vizing [41] and
by Erdős, Rubin, and Taylor [16]. The DP-chromatic number was introduced by
Ďvorák and Postle [15]. From the definition it follows that every graph G satisfies

χ(G : P) ≤ χℓ(G : P) ≤ χDP(G : P) (1.1)

provided that P is non-trivial, hereditary, and additive. The first inequality follows
from the fact that a P-coloring of a graph G with color set C may be considered as
a (P, L)-coloring of G for the constant list assignment L ≡ C. To see the second
inequality, suppose that χDP(G : P) = k and let L be a list assignment for G
with |L(v)| ≥ k for all v ∈ V (G). Define (X,H) to be the cover of G such that
Xv = {v} × L(v) for all v ∈ V (G) and, for two distinct vertices (u, c) and (v, c′) of
H , we have

µH((u, c), (v, c
′)) =

{

µG(u, v) if c = c′,
0 if c 6= c′.
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We say that (X,H) is the cover associated with the list assignment L. It is easy
to check that (X,H) is indeed a k-cover of G, and (X,H) has a P-transversal if and
only if G admits an (P, L)-coloring. This implies, in particular, that χℓ(G : P) ≤ k.
Note that the additivity of P is only needed for the second inequality.

We call a graph property reliable if it is non-trivial, hereditary and additive. In
what follows we shall focus mainly on such properties. Suppose that P is a reliable
graph property and G is an arbitrary graph. Then

G′ ⊆ G implies χDP(G
′ : P) ≤ χDP(G : P). (1.2)

This follows from the fact that a k-cover (X ′, H ′) of G′ can be extended to a k-
cover (X,H) of G such that H ′ is obtained from H by deleting all sets Xv with
v ∈ V (G) \ V (G′). Hence, if T is a P-transversal of (X,H), then T ′ = T ∩ V (H ′)
is a P-transversal of G′, since H ′[T ′] is an induced subgraph of H [T ] and P is
hereditary. Since P is additive, it then follows from (1.2) that

χDP(G : P) = max{χDP(G
′ : P) | G′ is a component of G}. (1.3)

Furthermore, we claim that the deletion of any vertex or edge of G decreases the
P-DP-chromatic number of G by at most µ(G). If e ∈ EG(u, v), then G − v is a
subgraph of G− e. Hence it suffices to show that every vertex v of G satisfies

χDP(G : P)− µ(G) ≤ χDP(G− v : P) ≤ χDP(G : P). (1.4)

The second inequality follows from (1.2). To see the first inequality define k =
χDP(G − v : P) and let (X,H) be a (k + µ(G))-cover of G. Let x ∈ Xv and let
(X ′, H ′) be the cover of G′ such that X ′

u = Xu \ NH(x) for all u ∈ V (G′) and
H ′ = H − (Xv ∪ NH(x)). By (C2), (X ′, H ′) is a k-cover of G′ and, therefore,
(X ′, H ′) has a P-transversal T ′. Then T = T ′ ∪ {x} is a P-transversal of (X,H),
since P is reliable and H [T ] is the disjoint union of H ′[T ′] and K1. Consequently,
χDP(G : P) ≤ k + µ(G) = χDP(G− v : P) + µ(G). This proves (1.4).

We say that G is (P, χDP)-critical if every proper induced subgraph G′ of G
satisfies χDP(G

′ : P) < χDP(G : P). By (1.3) it follows that every (P, χDP)-critical
graph is empty or connected.

Proposition 2 Let P be a reliable graph property and let G be a graph. Then G
has an induced subgraph G′ such that χDP(G

′ : P) = χDP(G : P) and G′ is (P, χDP)-
critical.

Proof: Among all induced subgraphs G′ of G satisfying χDP(G
′ : P) = χDP(G : P)

we choose one whose order is minimum. Then G′ has the desired properties.

The above proposition implies that many problems related to the (P, χDP)-
chromatic number can be reduced to problems about (P, χDP)-critical graphs. The
study of critical graphs with respect to the ordinary chromatic number was initiated
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by Dirac in the 1950s (see e.g. [12] and [13]) and has attracted a lot of attention
until today.

Let G be a graph, and let (X,H) be a cover of G. Given a vertex v ∈ V (G), a
partial transversal T of (X,H) such that dom(T : G) = V (G − v) and H [T ] ∈ P
is said to be a (P, v)-transversal of (X,H). We call (X,H) a P-critical cover
of G if (X,H) has no P-transversal, but for every vertex v ∈ V (G) there exists a
(P, v)-transversal. Note that if G is a (P, χDP)-critical graph with χDP(G : P) = k,
then χDP(G − v : P) ≤ k − 1 for all v ∈ V (G) and, therefore, G has a P-critical
(k − 1)-cover.

Note that if P is a reliable graph property, then any graph in CR(P) is connected.
Furthermore, since K1 ∈ P (by Proposition 1(a)), this implies that d(P) ≥ 1 and
O ⊆ P.

Proposition 3 Let P be a reliable graph property with d(P) = r, let G be graph,

and let (X,H) be a P-critical cover of G. Then the following statements hold:

(a) dG(v) ≥ r|Xv| for all v ∈ V (G).

(b) Let v be a vertex of G such that dG(v) = r|Xv|, and let T be a (P, v)-transversal
of (X,H). Moreover, for x ∈ Xv, let

Hx = H [T ∪ {x}] and dx = dHx
(v).

Then dx = r for all x ∈ Xv and dG(v) =
∑

x∈Xv
dx.

Proof: Let v be an arbitrary vertex of G. Since (X,H) is a P-critical cover of
G, there is a (P, v)-transversal of G. Let T be an arbitrary (P, v)-transversal of
G. Since (X,H) has no P-transversal, Hx = H [T ∪ {x}] 6∈ P for all x ∈ Xv.
Then Proposition 1(e) implies that dx = dHx

(x) ≥ d(P) = r for all x ∈ Xv. Since
|T ∩Xu| = 1 for all u ∈ V (G− v), we then obtain from (C2) that

dG(v) = |EG(v)| ≥
∑

x∈Xv

|EHx
(x)| =

∑

x∈Xv

dx ≥ r|Xv|

Then dG(v) = r|Xv| implies that dx = r for all x ∈ Xv. Thus (a) and (b) are
proved.

Let P be a reliable graph property with d(P) = r, let G be a graph, and let
(X,H) be a P-critical cover of G. Then define

V (G,X,H,P) = {v ∈ V (G) | dG(v) = r|Xv|}

A vertex v ∈ V (G) is said to be a low vertex if v ∈ V (G,X,H,P), and a high
vertex, otherwise. By the above proposition, every high vertex v of G satisfies
dG(v) ≥ r|Xv|+ 1. Moreover, we call G[V (G,X,H,P)] the low vertex subgraph
of G with respect to (X,H,P).
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The next result, which is one of our main results in this paper, characterizes
the block structure of the low vertex subgraph of cover critical graphs. For covers
associated with list assignments of simple graphs, this result was obtained in 1995
by Borowiecki, Drgas-Burchardt and Mihók [9, Theorem 3]. First we need some
notation. If G is a graph and t ∈ N, then G′ = tG denotes the graph that results
from G by replacing each of its edges with t parallel edges, that is, V (G′) = V (G)
and µG′(u, v) = tµG(u, v) for any two distinct vertices u, v of G. A graph G is called
a brick if G = tKn with t, n ∈ N, or G = tCn with t, n ∈ N and n ≥ 3. The proof
of the next result is given at the end of Section 2.

Theorem 4 Let P be a reliable graph property with d(P) = r, let G be a graph,

and let (X,H) be a P-critical cover of G. If B is a block of the low vertex subgraph

G[V (G,X,H,P)] of G, then B is a brick, or B = tB′ with t ∈ N such that either

B′ ∈ CR(P) and B′ is r-regular, or B′ ∈ P and ∆(B′) ≤ r.

In 1963, Gallai [17, Satz (E1)] characterized the low vertex subgraph of simple
graphs being critical with respect to the ordinary chromatic number. He proved
that each block of such a low vertex subgraph is a complete graph or an odd cycle,
thereby extending Brooks’ famous theorem in [11]. That this also holds for list
critical simple graphs was proved by Thomassen [40], an extension to list critical
simple hypergraphs was given by Kostochka and Stiebitz [23]. For simple graphs,
both results are special cases of Theorem 4 by putting P = O and by choosing covers
associated either with constant list assignments or with arbitrary list assignments.

Corollary 5 Let P be a reliable graph property with d(P) = r. Then the following

statements hold:

(a) If G is a (P, χDP)-critical graph with χDP(G : P) = k + 1 and k ≥ 0, then
δ(G) ≥ rk. Moreover, if U = {v ∈ V (G) | dG(v) = rk}, then each block B
of G[U ] satisfies that B is a brick, or B = tB′ with t ∈ N such that either

B′ ∈ CR(P) and B′ is r-regular, or B′ ∈ P and ∆(B′) ≤ r.

(b) Every graph G satisfies χDP(G : P) ≤ ∆(G)
r

+ 1.

Proof: To prove (a), note that the assumptions imply that G has a P-critical k-
cover, say (X,H) such that |Xv| = k for all v ∈ V (G). Then dG(v) ≥ r|Xv| = rk
for all v ∈ V (G) (by Proposition 3). Hence δ(G) ≥ rk and U = V (G,X,H,P) and,
therefore, the statements about the blocks in B(G[U ]) are implied by Theorem 4.
To prove (b), let G be an arbitrary graph with χDP(G : P) = k+1. Then there is a
(P, χDP)-critical graph G′ with G′ ⊆ G and χDP(G

′ : P) = k+1 (by Proposition 2).
Hence, ∆(G) ≥ ∆(G′) ≥ δ(G′) ≥ rk (by (a)), which leads to χDP(G : P) = k + 1 ≤
∆(G)/r + 1.

7



For the ordinary DP-chromatic number (i.e. for P = O), Corollary 5(a) was
proved by Bernshteyn, Kostochka, and Pron [3]; they indeed proved Theorem 4
for P = O. Since CR(O) = 〈K2〉 and d(P) = 1, the only type of blocks that can
occur in this case are bricks. As noticed by Bernshteyn, Kostochka, and Pron [3], for
t, n ∈ N with n ≥ 3, we have χDP(tCn) = 2t+1 even in the case when n ≡ 0 (mod 2).

For a reliable graph property P and a graph G, we have χDP(G : P) = 0 if and
only if |G| = 0; and χDP(G : P) = 1 if and only if G ∈ P. Furthermore, G ∈ CR(P)
if and only if G is (P, χDP)-critical and χDP(G : P) = 2 (Proposition 1(b)). Next,
we want to establish a Brooks type result for the P-DP-chromatic number. The
case P = O of the following result was obtained by Bernshteyn, Kostochka, and
Pron [3].

Theorem 6 Let P be a reliable graph property with d(P) = r, and let G be a

connected simple graph. Then

χDP(G : P) ≤

⌈

∆(G)

r

⌉

, (1.5)

unless G = Kkr+1 for some integer k ≥ 0, or G is r-regular and G ∈ CR(P), or
P = O and G is a cycle.

Proof: Let G be a connected graph. If ∆(G) is not divisible by r, then (1.5)
is an immediate consequence of Corollary 5(b) and we are done. So assume that
∆(G) = kr for some integer k ≥ 0. Then χDP(G : P) ≤ k + 1 (by Corollary 5(b)).
In the case that χDP(G : P) ≤ k we are done, too. Hence it remains to consider the
case that χDP(G : P) = k + 1. Then G has an induced subgraph G′ such that G′ is
(P, χDP)-critical and χDP(G

′ : P) = k + 1 (by Proposition 2). Then δ(G′) ≥ rk (by
Corollary 5(b)) and, since G is connected and ∆(G′) ≤ ∆(G) = rk, we obtain that
G = G′ and so G is regular of degree rk. This implies that the set of low vertices
U = {v ∈ V (G) | dG(v) = rk} satisfies U = V (G) = V (G′) and so G = G′[U ]. Since
G is a simple graph, it then follows from Theorem 4 that G is a complete graph, or
G is a cycle, or G is r-regular and G ∈ CR(P), or G ∈ P and ∆(G) ≤ r. Since G
is regular of degree kr, we conclude that G itself is a block, unless k = 1. If k = 1,
then G is r-regular and χDP(G : P) = 2, which implies that G 6∈ P. Since G is
(P, χDP)-critical, χDP(G − v : P) ≤ 1 for every v ∈ V (G), and so G − v ∈ P for
every v ∈ V (G). Consequently, G ∈ CR(P) and we are done. Now assume that
k 6= 1. Then G is a block and so G is a complete graph or a cycle.

If G is a Kn, then n− 1 = kr and we are done. It remains to consider the case
that G is a cycle. Since G is kr-regular and k 6= 1, this implies that k = 2, r = 1
and χDP(G : P) = 3. Since P is reliable, O ⊆ P. If K2 ∈ CR(P) then P = O
(by Proposition 1(b)(c)) and we are done, too. Otherwise K2 ∈ P, and it is not
difficult to show that χDP(G : P) ≤ 2, a contradiction. Let (X,H) be an arbitrary
cover of G such that |Xv| = 2 for all v ∈ V (G). It suffices to show that there
exists a transversal T of (X,H) such that H [T ] ∈ P. If (X,H) has an independent
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transversal, this is obviously true. Otherwise, it follows from [35, Theorem 2] that
if e is an edge of H , then there exists a transversal T of (X,H) such that e is the
only edge of H [T ] and so H [T ] ∈ P. This completes the proof.

Note that the above theorem for P = O implies Brooks’ famous theorem [11]
from 1941 saying that any connected simple graph G satisfies χ(G) ≤ ∆(G) unless
G is a complete graph or an odd cycle (use (1.1) and the trivial fact that any even
cycle has χ = 2).

The next result is an extension of a well known result about degree choosable
graphs due to Erdős, Rubin, and Taylor [16], it was independently proved by Oleg
Borodin in his thesis (Problems of coloring and of covering the vertex set of a graph
by induced subgraphs, Novosibirsk 1979). For P = O, the next result was obtained
by Bernshteyn, Kostochka, and Pron [3]. Note that K2 is the only graph in CR(O)
and K1 is the only block belonging to O.

Theorem 7 Let P be a reliable graph property with d(P) = r, let G be a connected

graph, and let (X,H) be a cover of G such that r|Xv| ≥ dG(v) for all v ∈ V (G). If

G is not (P, (X,H))-colorable, then each block B of G is a brick, or B = tB′ with

t ∈ N such that either B′ ∈ CR(P) and B′ is r-regular, or B′ ∈ P and ∆(B′) ≤ r.

Proof: By assumption, (X,H) has no P-transversal. Then there is a vertex set
U ⊆ V (G) such that the cover (X ′, H ′) of G′ = G − U with H ′ = H −

⋃

u∈U Xu

and X ′ = X|V (G)\U is P-critical. By Proposition 3, we have dG′(u) ≥ r|X ′
u| =

r|Xu| ≥ dG(u) for all u ∈ V (G′). Since G is connected, this implies that G = G′

and so (X,H) is a P-critical cover of G. Moreover it follows that r|Xv| = dG(v),
from which we obtain that V (G,X,H,P) = V (G), that is, G is its own low vertex
subgraph. Then Theorem 4 implies the required properties for the blocks of G.

2 DP-Coloring and variable degeneracy

For proving Theorem 4, we shall establish a result (Theorem 8) that combines DP-
coloring with variable degeneracy. Let H be a graph and let f be a vertex function
of H , i.e. f : V (H) → N0. Then sp(f) = {x ∈ V (H) | f(x) > 0} is the support of
f in H , and spo(f) = {x ∈ V (H) | f(x) = 0} is the complementary support of
f in H . For a set X ⊆ V (H), define

f(X) =
∑

x∈X

f(x).

A subgraph H̃ of H is called strictly f-degenerate if each non-empty subgraph
H ′ of H̃ contains a vertex x such that dH′(x) < f(x). Note that if a subgraph
H̃ of H is a strictly f -degenerate, then V (H̃) ⊆ sp(f). The concept of variable
degeneracy seems to have been first studied by Borodin, Kostochka, and Toft [6].
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DP-colorings with variable degeneracy for simple graphs were introduced by Sittitrai
and Nakprasit [37] although they use a slightly different approach.

In this section we study the following coloring problem. A configuration is a
tuple C = (G,X,H, f) such that G is a graph, (X,H) is a cover of G, and f is a
vertex function of H . Given a configuration C = (G,X,H, f), we want to decide
whether (X,H) has a transversal T such that H [T ] is strictly f -degenerate. In
general, this decision problem is NP-complete. However, if we add a certain degree
condition it might become a polynomial problem.

Let C = (G,X,H, f) be a configuration. We call C degree-feasible if for each
vertex v of G we have

f(Xv) =
∑

x∈Xv

f(x) ≥ dG(v).

Furthermore, we say that C is colorable if (X,H) has a transversal T such that
H [T ] is strictly f -degenerate, otherwise C is said to be uncolorable. If we want
to decide whether C is colorable, or not, we always assume that |Xv| = r for all
v ∈ V (G) with r ≥ 1, for otherwise we may add virtual vertices x and put f(x) = 0.
In what follows, we shall use this assumption in order to simplify our description.
Our aim is to characterize degree feasible uncolorable configurations.

G = 2C4

(X̃, H̃)

(X,H)

G = 2C4

(X̃, H̃)

(X,H)

Figure 1: A G-saturated cover (X,H) of G and its 2-inflation (X̃, H̃).

First, we need some more notation. Let G be a non-empty graph, and let (X,H)
be a cover of G. For every edge uv of Go, H(Xu, Xv) is a bipartite graph with
parts Xu and Xv and ∆(H(Xu, Xv)) ≤ µG(u, v) (by (C2)). We say that (X,H) is
G-saturated if for every edge uv of Go, the bipartite graph H(Xu, Xv) is regular of
degree µG(u, v), see Fig. 1. If the cover (X,H) is G-saturated and G is connected,
then there is an integer r ∈ N such that |Xv| = r for all v ∈ V (G); in this case we
say that (X,H) is an r-uniform cover of G. Let U ⊆ V (H) be an arbitrary set. For
v ∈ V (G), we define Xv(U) = Xv∩U . Let G′ = G[dom(U : G)], let H ′ = H [U ], and
let X ′ : V (G′) → 2U be the map with X ′

v = Xv(U) for all v ∈ V (G′). Then (X ′, H ′)
is a cover of G′ and we write (X ′, H ′) = (X,H)/U , we call this cover a subcover
of (X,H) restricted to U . If dom(U : G) = V (G), then (X ′, H ′) is a cover of G,
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in this case we say that (X ′, H ′) is a full subcover of (X,H) restricted to U . If
(X ′, H ′) = (X,H)/U is a full subcover of (X,H) restricted to U and (X ′, H ′) is
G-saturated, then EH(U, V (H) \ U) = ∅ (by (C1) and (C2)).

Let G be a non-empty graph, let (X,H) be a cover of G, and let s ∈ N be an
integer such that µH(x, y) ≡ 0 (mod s) for every pair (x, y) of distinct vertices of H .
We now construct a new cover (X̃, H̃) of G as follows:

• For every vertex x ofH let Ux be a set of s new vertices, and letX ′
v =

⋃

x∈Xv
Ux

for all v ∈ V (G); note that |X ′
v| = s|Xv|.

• For every pair x, y of distinct vertices of H , let H̃x,y = H̃ [Ux∪Uy ] be a copy of
the bipartite graph mKs,s with parts Ux and Uy where m = µH(x, y)/s. Let
H̃ denote the union of all these graphs H̃x,y.

It is easy to show that (X̃, H̃) is a cover of G; we call this cover s-inflation of
(X,H) (see Fig. 1). By an inflation of (X,H) we mean an s-inflation of (X,H) with
s ∈ N, which only exists if H = sH ′. Clearly, if (X,H) is G-saturated, so is each of
its inflations.

Given a graph G, we define two special types of covers of G. A cover (X,H) of
G is called a G-cover if Xv = {xv} for all v ∈ V (G) and µH(xu, xv) = µG(u, v) for
every edge uv of Go. Note that H is a copy of G with xv 7→ v as isomorphism, and
so dH(xv) = dG(v) for all v ∈ V (G). Furthermore, (X,H) is G-saturated. A cover
(X,H) of G is called a double G-cover if G = tCn with n ≥ 3 and t ∈ N for a
cycle Cn = (v1, v2, . . . , vn, v1), Xvi (i ∈ [1, n]) is a set of two vertices, say xi, xn+i,
and µH(xi, xj) = t if i − j ≡ 1 (mod 2n) else µH(xi, xj) = 0. Clearly, (X,H) is G-
saturated. Note that the cover (X,H) shown on the right side of Fig. 1 is a double
G-cover for G = 2C4.

Next we recursively define the family of constructible configurations. A uni-
form configuration (G,X,H, f) is called constructible if one of the following five
conditions hold:

(K1) (G,X,H, f) is an M-configuration, that is, G is a block and there exists a set
U ⊆ V (H) such that (X,H)/U is an inflation of a G-cover, and, for v ∈ V (G)
and x ∈ Xv,we have f(x) = dG(v)/|Xv(U)| if x ∈ U else f(x) = 0. The set U
is called layer of (X,H).

Remark 1 Note that the cover (X,H)/U is a full subcover of (X,H) that is
G-saturated, and, for v ∈ V (G), we have f(Xv) = f(Xv(U)) = dG(v). Hence
any M-configuration is degree feasible.

(K2) (G,X,H, f) is a K-configuration, that is, G = tKn with t, n ∈ N and there
are integers n1, n2, . . . , np ∈ N with p ≥ 1 such that n1 + n2 + . . . + np =
n− 1. Moreover, there are p disjoint subsets U1, U2, . . . , Up of V (H) such that
(X,H)/Ui is an inflation of a G-cover for i ∈ [1, p], and, for v ∈ V (H) and
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x ∈ Xv, we have f(x) = (tni)/|Ui(Xv)| if x ∈ Ui for i ∈ [1, p] else f(x) = 0.
The set Ui is said to be a layer of (G,X,H, f) of type ni (i ∈ [1, p]).

Remark 2 Note that the cover (X,H)/Ui is G-saturated for i ∈ [1, p], and,
for v ∈ V (G), we have f(Xv(Ui)) = tni and so f(Xv) = t(n − 1) = dG(v).
Hence any K-configuration is degree feasible. Furthermore, a K-configuration
with p = 1 is also an M-configuration.

(K3) (G,X,H, f) is an odd C-configuration, that is, G = tCn with t, n ∈ N and
n ≥ 3 odd. Moreover, there are two disjoint subsets U1, U2 of V (H) such that
(X,H)/Ui is an inflation of a G-cover for i ∈ {1, 2}, and, for v ∈ V (G) and
x ∈ Xv, we have f(x) = t/|Ui(Xv)| if x ∈ Ui for i ∈ {1, 2} else f(x) = 0.

Remark 3 Note that the cover (X,H)/Ui is G-saturated for i ∈ {1, 2}, and,
for v ∈ V (G), we have f(Xv(Ui)) = t and so f(Xv) = 2t = dG(v). Hence any
odd C-configuration is degree feasible. Furthermore, if n = 3 then (G,X,H, f)
is also a K-configuration.

(K4) (G,X,H, f) is an even C-configuration, that is, G = tCn with t, n ∈ N

and n ≥ 4 even. Moreover, there is a subset U of H such that (X,H)/U is
an inflation of a double G-cover, and, for v ∈ V (G) and x ∈ Xv, we have
f(x) = 2t/|U(Xv)| if x ∈ U else f(x) = 0.

Remark 4 Note that the cover (X,H)/U is G-saturated, and, for v ∈ V (G),
we have f(Xv) = f(Xv(U)) = 2t = dG(v). Hence any even C-configuration is
degree feasible.

(K5) There are two disjoint constructible configurations, say (G1, X1, H1, f 1) and
(G2, X2, H2, f 2), such that G is obtained from the disjoint graphs G1 and G2

by identifying a vertex v1 ∈ V (G1) and a vertex v2 ∈ V (G2) to a new vertex
v∗, H is obtained from the disjoint graphs H1 and H2 by choosing a bijection
π from Xv1 to Xv2 and identifying each vertex x ∈ Xv1 with π(x) to a vertex
x∗, and f is defined as

f(y) =



















f 1(y) if y ∈ V (H1) \Xv1 ,

f 2(y) if y ∈ V (H2) \Xv2 ,

f 1(x) + f 2(π(x)) if y is obtained from the identification of x ∈ Xv1

with π(x) ∈ Xv2 .

In this case, we say that (G,X,H, f) is obtained from (G1, X1, H1, f 1) and
(G2, X2, H2, f 2) by merging v1 and v2 to v∗.

By a C-configuration we mean either an odd or an even C-configuration. The
next result characterizes uncolorable degree feasible configurations whose underlying
graph is connected.
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Theorem 8 Let G be a connected graph, let (X,H) be a cover of G, and let f :
V (H) → N0 be a function. Then, (G,X,H, f) is an uncolorable degree-feasible

configuration if and only if (G,X,H, f) is constructible.

For the class of simple graphs, Theorem 8, formulated in a slightly different
terminology, was obtained by F. Lu, Q. Wang and T. Wang, see [29]. For covers
(X,H) associated with constant list assignments of G, Theorem 8 is a reformulation
of a result that was obtained in 2000 by Borodin, Kostochka, and Toft [6, Theorem
8] for simple graphs and extended in 2021 by Schweser and Stiebitz [36, Theorem 2]
to graphs and hypergraphs. The proof of Theorem 8 resembles the proofs given in
[6] and [36]; the proof is done via a sequence of five propositions and one theorem.

Recall that for a graphG, we denote by B(G) the set of blocks ofG. Furthermore,
for v ∈ V (G), let Bv(G) = {B ∈ B(G) | v ∈ V (B)}. Note that two blocks of G
have at most one vertex in common; and a vertex v belongs to S(G) if and only if v
belongs to more than one block of G. The blocks of G form a tree-like structure, and
a block B of G is called an end-block of G if |S(G) ∩ V (B)| = 1. Any connected
graph G is either block or has at least two end-blocks.

Next, we want to describe the block structure of a constructible configuration.
First, we need some notation. Let G be a connected graph, let (X,H) be a cover
of G, and let B be a non-empty induced subgraph of G. Then we denote by XB

the restriction of the map X to V (B), and by HB we denote the subgraph of H
induced by the vertex set U =

⋃

v∈V (B) Xv. Clearly, (XB, HB) is a cover of B,

and (XB, HB) = (X,H)/U . In particular, XB
v = Xv for every vertex v of B, and

HB(Xu, Xv) = H(Xu, Xv) for every edge uv of Bo. The proof of the following
proposition can be easily done by induction on the number of blocks of the graph
G. The after next proposition is an immediate consequence; note that an edge of G
belongs to exactly one block of G.

Proposition 9 Let C = (G,X,H, f) be a constructible configuration. Then for

every B ∈ B(G), there is a unique function fB, such that CB = (B,XB, HB, fB) is
an M-, K- or C-configuration, and, for v ∈ V (G) and x ∈ Xv, we have

f(x) =
∑

B∈Bv(G)

fB(x)

In what follows, we call fB the B-part of the function f .

Proposition 10 Let C = (G,X,H, f) be a constructible configuration, let B ∈
B(G), let fB be the B-part of f , and let CB = (B,XB, HB, fB). Suppose that there

is a pair u, v of distinct vertices of B such that H(Xu, Xv) has only one component.

Then C
B is an M-configuration, and if u, v are distinct vertices of B with µH(u, v) =

m > 0, then H(Xu, Xv) is a tKs,s with m = ts for s, t ∈ N.

The next proposition proves the “if”-direction of Theorem 8.
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Proposition 11 Let (G,X,H, f) be a constructible configuration. Then the follow-

ing statements hold:

(a) f(Xv) = dG(v) for all v ∈ V (G).

(b) (G,X,H, f) is uncolorable.

Proof: Statements (a) holds if G is a block (see Remarks 1 - 4); for arbitrary
connected graphs G it then easily follows from Proposition 9. The proof of (b) is by
reductio ad absurdum. Then we may choose a configuration C = (G,X,H, f) such
that

(1) C is constructible,

(2) C is colorable, i.e., there is a transversal T of (X,H) such that H [T ] is strictly
f -degenerate, and

(3) |G| is minimum subject to (1) and (2).

Note that if f(x) = 0 for some vertex x ∈ V (H), then H [{x}] is not strictly f -
degenerate and, hence, x cannot be contained in any strictly f -degenerate subgraph
of H .

First, assume that (G,X,H, f) is an M-configuration. Then G is a block and
there exists a set U ⊆ V (H) such that (X,H)/U is an s-inflation of a G-cover of
G. Let v ∈ V (G) and x ∈ Xv. Then s = |Xv(U)|, and f(x) = dG(v)/s if x ∈ U
else f(x) = 0. Consequently, T ⊆ U and dH[T ](x) = dG(v)/s = f(x) if x ∈ T , a
contradiction.

Next assume that (G,X,H, f) is a K-configuration. Then G = tKn with t, n ∈ N

and there are integers n1, n2, . . . , np ∈ N with p ≥ 1 such that n1+n2+. . .+np = n−1.
Moreover, there are p disjoint subsets U1, U2, . . . , Up of V (H) such that (X,H)/Ui

is an inflation of a G-cover for i ∈ [1, p], and for v ∈ V (H) and x ∈ Xv we have
f(x) = (tni)/|Ui(Xv)| if x ∈ Ui for i ∈ [1, p] else f(x) = 0. Then T is a subset of
U1 ∪ U2 ∪ · · · ∪ Up. Since |T | = n, there is an i ∈ [1, p], such that m = |T ∩ Ui| ≥
ni + 1. If (X,H)/Ui is an s-inflation of G, then s = |Ui(Xv)| for all v ∈ V (G) and
H ′ = H [T ∩ Ui] is a (t/s)Km implying that d′H(x) = (t/s)(m− 1) ≥ (t/s)ni = f(x)
for every x ∈ V (H ′), a contradiction. If (G,X,H, f) is a C-configuration, we may
argue similarly to get a contradiction.

To complete the proof, it remains to consider the case that C = (G,X,H, f)
is obtained from two constructible configurations C

1 = (G1, X1, H1, f 1) and C
2 =

(G2, X2, H2, f 2) by merging v1 ∈ V (G1) and v2 ∈ V (G2) to a new vertex v∗. To
simplify the proof, we assume that v1 = v2 = v∗ and X1

v∗ = X2
v∗ (i.e., π = id).

Since |G| was chosen minimal with respect to (1) and (2), we conclude that C
i is

uncolorable for i ∈ {1, 2}. By (2), (X,H) has a transversal T such that H [T ] is
strictly f -degenerate. Let T i = T ∩ V (H i) (i ∈ {1, 2}) and let xv∗ be the unique
vertex from Xv∗ ∩ T . Then T 1 ∩ T 2 = {xv∗}, and f(xv∗) = f 1(xv∗) + f 2(xv∗) and
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f(x) = f i(x) for all x ∈ T i \{xv∗} (i ∈ {1, 2}). Since Ci is uncolorable, the subgraph

H [T i] is not strictly f i-degenerate implying that there is a subgraph H̃ i of H [T i]

such that d
H̃i(x) ≥ f i(x) for all x ∈ V (H̃ i) (i ∈ {1, 2}). If xv∗ does not belong

to H̃ i, then H̃ i is a subgraph of H [T ] − xv∗ and so H̃ i is strictly f i-degenerate as

H [T ] is strictly f -degenerate, which is impossible. Hence xv∗ belongs to H̃ i (for
i ∈ {1, 2}). Then H̃ = H̃1 ∪ H̃2 is a subgraph of H [T ]. Let x be an arbitrary

vertex of H̃. If x 6= xv∗ , then x belongs to H̃ i − xv∗ for some i ∈ {1, 2}, and so
dH̃(x) = d

H̃i(x) ≥ f i(x) = f(x). Furthermore, we have

dH̃(xv∗) = d
H̃1(xv∗) + d

H̃2(xv∗) ≥ f 1(xv∗) + f 2(xv∗) = f(xv∗).

Hence, H̃ ⊆ H [T ] is not strictly f -degenerate and soH [T ] is not strictly f -degenerate,
as well, a contradiction.

As a consequence of the above proposition, it only remains to show that each
uncolorable degree-feasible configuration is constructible. To this end, we apply the
following reduction method.

Proposition 12 (Reduction) Let C = (G,X,H, f) be a configuration, let v ∈
V (G) \ S(G) and xv ∈ Xv such that f(xv) > 0. Moreover, let C′ = (G′, X ′, H ′, f ′)
be the tuple with G′ = G− v, (X ′, H ′) = (XG′

, HG′

), and

f ′(x) = max{0, f(x)− µH(x, xv)}

for all x ∈ V (H ′). Then, C′ is a configuration and the following statements hold:

(a) If C is degree-feasible, then so is C
′.

(b) If C is uncolorable, then so is C
′.

In the following, we write C
′ = C/(v, xv).

Proof: That C′ is a configuration is evident, note that H ′ = H −Xv. For the proof
of (a) assume that C is degree-feasible. Let u be an arbitrary vertex of G′. Then we
have

dG(u)− dG′(u) = µG(u, v) ≥
∑

x∈Xu

µH(x, xv),

where the last inequality follows from the fact that both sets Xu and Xv are in-
dependent and EH(Xu, Xv) is a union of µG(u, v) matchings (by (C2)). Then we
conclude that

∑

x∈Xu

f ′(x) ≥
∑

x∈Xu

(f(x)− µH(x, xv)) ≥ dG(u)−
∑

x∈Xu

µH(x, xv) ≥ dG′(u).

Hence C
′ is degree-feasible and (a) is proved. For the proof of (b) assume that C

′

is colorable. Then there is a transversal T ′ of (X ′, H ′) such that H ′[T ′] is strictly
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f ′-degenerate. Clearly, T = T ′ ∪ {xv} is a transversal of (X,H). Let H̃ be a
non-empty subgraph of H [T ]. We claim that there is a vertex x in H̃ such that
dH̃(x) < f(x). If xv is the only vertex of H̃ , then f(xv) > 0 = dH̃(xv) and we
are done. Otherwise, H̃ contains a vertex x 6= xv such that dH[T ′](x) < f ′(x) since
H ′[T ′] is strictly f ′-degenerate. Then f ′(x) = f(x)− µH(x, xv) and so

dH̃(x) ≤ dH[T ](x) + µH(x, xv) < f ′(x) + µH(x, xv) = f(x)

This proves that H [T ] is strictly f -degenerate. Consequently, C is colorable and (b)
is proved.

By using the reduction method, we obtain the following useful properties of
uncolorable degree-feasible configurations.

Proposition 13 Let G be a connected graph and let (G,X,H, f) be an uncolorable

degree-feasible configuration. Then, the following statements hold:

(a) f(Xu) = dG(u) for all u ∈ V (G).

(b) If v ∈ V (G)\S(G) and xv ∈ Xv with f(xv) > 0, then, for every u ∈ V (G−v),
we have f(y) ≥ µH(y, xw) for all y ∈ Xu and µG(v, u) =

∑

x∈Xv
µH(y, xv).

(c) If |G| ≥ 2 and if u is an arbitrary vertex of G, then there is a partial transver-

sal T of (X,H) such that dom(T : H) = V (G − u) and H [T ] is strictly

f -degenerate, and, for every such transversal T and every vertex x ∈ Xu, we

have f(x) = dH[T∪{x}](x).

Proof: The proof of (a) is by induction on the order of G. If |G| = 1 then spo(f) =
V (H) and the statement is obvious. Suppose |G| ≥ 2 and let u ∈ V (G) be an
arbitrary vertex. Since G is connected, there is a non-separating vertex v 6= u in G
and, since f(Xv) ≥ dG(v) ≥ 1, there is at least one vertex xv ∈ Xv with f(xv) > 0.
By Proposition 12, (G′, X ′, H ′, f ′) = (G,X,H, f)/(v, xv) is an uncolorable degree-
feasible configuration, where G′ = G− v and X ′

w = Xw for all vertices w of G′. By
applying the induction hypothesis, we obtain

f ′(Xu) = f ′(X ′
u) = d′G(u).

Since G′ = G− v, we have

dG(u)− dG′(u) = µG(v, v) ≥
∑

y∈Xu

µH(y, xv),

where the last inequality follows from (C2). Furthermore, f ′(y) ≥ f(y)− µH(y, xv)
for all y ∈ Xu. Consequently, we obtain that

dG′(u) =
∑

y∈Xu

f ′(y) ≥
∑

y∈Xu

(f(y)− µH(y, xv)) ≥ dG(u)−
∑

y∈Xu

µH(y, xv) ≥ dG′(u),
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which implies that
∑

y∈Xu
f(y) = dG(u), f

′(y) = f(y)−µH(y, xv) ≥ 0 for all y ∈ Xu

and µG(v, u) =
∑

y∈Xu
µH(y, xv). This proves (a) and (b).

For the proof of (c), assume that |G| ≥ 2 and u ∈ V (G). Let G′ = G − u, let
X ′ be the restriction of X to V (G′), and let H ′ = H −Xu. Then (G′, X ′, H ′, f) is a
degree-feasible configuration. Furthermore, each component of G′ contains a vertex
v ∈ NG(u) and we then obtain from (a) that

f(Xv) = dG(v) > dG′(v).

Then it follows from (a) applied to each component ofG′ that (X ′, H ′) has a transver-
sal T such that H ′[T ] is strictly f -degenerate. Then T is a partial transversal of
(X,H) such that dom(T : H) = V (G′) and H [T ] = H ′[T ] is strictly f -degenerate.
Now let T be such a partial transversal. Since (G,X,H, f) is uncolorable, for each
x ∈ Xu, H [T ∪{x}] contains a non-empty subgraph Hx such that f(y) ≤ dHx

(y) for
all y ∈ V (Hx). Clearly, Hx contains x and so f(x) ≤ dHx

(x) ≤ dH[T∪{x}](x). For a
vertex y ∈ T , let v = vy be the unique vertex of G′ such that y ∈ Xv. Using (a) and
(C2), we then obtain that

dG(u) =
∑

x∈Xu

f(x) ≤
∑

x∈Xu

dH[T∪{x}](x) =
∑

x∈Xu

∑

y∈T

µH(x, y)

=
∑

y∈T

∑

x∈Xu

µH(x, y) ≤
∑

y∈T

µG(u, vy) =
∑

v∈V (G′)

µG(u, v) = dG(u).

This obviously implies that f(x) = dH[T∪{x}](x) for all x ∈ Xu. This proves (c).

Let C = (G,X,H, f) be a configuration. Then we call G the fundamental
graph of C, (X,H) the cover of C, and f the function of C. The next theorem
proves the “only if”-direction of Theorem 8.

Theorem 14 If C is an uncolorable degree-feasible configuration whose fundamental

graph is connected, then C is colorable.

Proof: The proof is by reductio ad absurdum. Let C = (G,X,H, f) be a minimal
counter-example, that is, G is a connected graph such that

(A) C is an uncolorable degree-feasible configuration,

(B) C is not constructible, and

(C) |G| is minimum subject to (A) and (B).

By Proposition 13(a) we have

f(Xv) = dG(v) for all v ∈ V (G). (2.1)

Clearly, |G| ≥ 2, as for |G| = 1 we have V (G) = {v} and f(x) = 0 for all x ∈ Xv

implying that (G,X,H, f) is an M-configuration and hence constructible, a contra-
diction to (B). We reach a contradiction via a sequence of twelve claims.
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Claim 1 G is a block.

Proof : Otherwise, G is the union of two connected graphs G1 and G2 such that
V (G1) ∩ V (G2) = {v∗} and |Gi| < |G| for i ∈ {1, 2}. For i ∈ {1, 2}, let (X i, H i) =
(X,H)/V (Gi) which is a cover of Gi. We now define a vertex function f i of H i

as follows. By Proposition 13(c), (X,H) has a partial transversal T such that
dom(T : G) = V (G − v∗) and H [T ] is strictly f -degenerate. Let T1 = T ∩ V (G1)
and let T2 = T ∩V (G2). Then H [T ] is the disjoint union of H [T1] and H [T2]. Then,
using Proposition 13(c), we obtain that

f(x) = dH[T∪{x}](x) = dH[T1∪{x}](x) + dH[T2∪{x}](x)

for all x ∈ Xv∗ , and we set f i(x) = dH[Ti∪{x}](x) for i ∈ {1, 2} and x ∈ Xv∗ . For a
vertex v of Gi − v∗, let f i(x) = f(x) for all x ∈ Xv. Clearly, C

i = (Gi, X i, H i, f i) is
a configuration for i ∈ {1, 2}.

First, we claim that Ci is uncolorable for i ∈ {1, 2}. For otherwise, by symmetry,
we may assume that C

1 is colorable. Then, there is a transversal T 1 of (X1, H1)
such that H1[T 1] is strictly f 1-degenerate. Clearly, T = T 1 ∪ T2 is a transversal
of (X,H), and we claim that H [T ] is strictly f -degenerate. Otherwise, there is a
subgraph H̃ of H [T ] with dH̃(x) ≥ f(x) for all x ∈ V (H̃). Since H [T2] is strictly
f -degenerate, H̃ contains vertices of T 1. Since H [T 1] is strictly f 1-degenerate, there
is a vertex y ∈ V (H̃) ∩ T 1 such that dH̃−T2

(y) < f 1(y). If y 6∈ Xv∗ , then

f(y) ≤ dH̃(y) = dH̃−T2
(y) < f 1(y) = f(y),

which is impossible. If y ∈ Xv∗ , then f 2(y) = dH[T2∪{y}](y) and we obtain that

f(y) ≤ dH̃(y) = dH̃−T2
(y) + dH̃[T2∪{y}]

(y) < f 1(y) + f 2(y) = f(y),

which is impossible, too. Hence, H [T ] is strictly f -degenerate and so C is colorable,
a contradiction to (A). This shows that Ci is uncolorable for i ∈ {1, 2}, as claimed.

Next, we claim that Ci is degree-feasible for i ∈ {1, 2}. By (2.1) and the definition
of f i, we obtain that f i(Xv) = f(Xv) = dG(v) = dGi(v) for all v ∈ V (Gi − v∗).
Moreover, we have

dG(v
∗) = f(Xv∗) = f 1(Xv∗) + f 2(Xv∗) = dG1(v∗) + dG2(v∗). (2.2)

Since Ci is uncolorable, it follows from Proposition 13(a) that f i(Xv∗) ≤ dGi(v∗) for
i ∈ {1, 2}. By (2.2), this implies that f i(Xv∗) = dGi(v∗) for i ∈ {1, 2}. Consequently,
C
i is degree-feasible for i ∈ {1, 2}.
Since C = (G,X,H, f) is a minimal counter-example and |Gi| < |G| for i ∈

{1, 2}, we conclude that C
i = (Gi, X i, H i, f i) is a constructible configuration, and

so C is obtained from the constructible configurations C
1 and C

2 by merging two
vertices to v∗. Hence, C is a constructible configuration, a contradiction to (B). �
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Claim 2 Let v ∈ V (G) and let xv ∈ Xv such that f(xv) > 0. Then the configuration

C
′ = C/(v, xv) is constructible. If f

′ is the function of C′, then for every vertex u of

G− v, we have

(a) f ′(y) = f(y)− µH(y, xv) ≥ 0 for all y ∈ Xu, and

(b) µG(u, v) =
∑

y∈Xu
µH(y, xv).

Proof : From (A) and Proposition 12 it follows that C′ = C/(v, xv) is an uncolorable
degree-feasible configuration. Since G is a block (by Claim 1), G−v is connected. By
(B) and (C), this implies that C′ is a constructible configuration. Furthermore, we
have f(y) ≥ µH(y, xv) (by Proposition 13(b)) and f ′(y) = max{0, f(y)−µH(y, xv)},
which yields (a). Statement (b) also follows from Proposition 13(b). �

Let uv be an edge of Go, let X ⊆ Xv and X ′ ⊆ Xu. We call (X,X ′) a complete
uv-pair of type (t, s) if H(X,X ′) is a tKs,s and µH(u, v) = ts. Note that if (X, Y )
is a complete uv-pair of type (t, s) and U = X ∪ Y , then G′ = G[{u, v}] is a (ts)K2,
and (X,H)/U is an s-inflation of a G′-cover of G′. Let

CP (G) = {uv ∈ E(Go) | (Xu, Xv) is a complete uv-pair}

Let U = sp(f) be the support of f , and let f ∗ be the restriction of f to U .
Then it follows from Claim 2 that the cover (X ′, H ′) = (X,H)/U is G-saturated.
Furthermore, (G,H ′, X ′, f ∗) is an uncolorable degree-feasible configuration which is
not constructible. Hence (G,X ′, H ′, f ∗) is also a smallest counterexample and we
may assume that U = V (H). As an immediate consequence of Claim 2, we then
obtain the following result.

Claim 3 For the configuration C = (G,X,H, f) the following statements hold:

(a) For every edge uv of Go, the graph H(Xu, Xv) is a bipartite graph with parts

Xu and Xv that is regular of degree µG(u, v).

(b) If v ∈ V (G) and x ∈ Xv, then C/(v, x) is a constructible configuration.

Since G is connected, it follows from Claim 3(a) that C is r-uniform for an integer
r ≥ 1. If r = 1, then Xv = {xv} for all v ∈ V (G) and µH(xv, xu) = µG(u, v) for
every pair u, v of distinct vertices of G implying that (X,H) is a G-cover of G and
f(xv) = dG(v) for all v ∈ V (H). Hence C is an M-configuration. This contradiction
to (B) shows that r ≥ 2.

Let v be an arbitrary vertex of G, and let x be an arbitrary vertex of Xv. Then
define Cx = C/(v, x). By Claim 3, Cx is a constructible configuration and we denote
by fx the function of Cx. Note that G′ = G − v is a connected graph and Cx =
(G′, XG′

, HG′

, fx). Since Cx is constructible, we can use the block decomposition of
Cx described in Proposition 9. If B ∈ B(G′), then we denote by fB

x the B-part of
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the function fx. One important consequence of Proposition 9 and Claim 2(a) is the
following:

fB
x (y) = fx(y) = f(y)− µH(y, x) whenever y ∈ Xu and u ∈ V (B) \ S(G′). (2.3)

Claim 4 Let v ∈ V (G) be an arbitrary vertex, let G′ = G− v, let B ∈ B(G′), and
let u, u′ be two distinct vertices of V (B) \S(G′). If u ∈ NG(v) and u′ 6∈ NG(v), then
uv ∈ CP (G).

Proof : Suppose that (Xu, Xv) is not a complete pair. Let m = µH(u, v). By
Claim 3(a), H(Xu, Xv) is an m-regular bipartite graph with parts Xu and Xv. Con-
sequently, there is a vertex y ∈ Xu and two distinct vertices x1, x2 ∈ Xv such that
µH(x1, y) 6= µH(x2, y). For i ∈ {1, 2}, let fi = fB

xi
. Then C

B
xi

= (B,XB, HB, fi)
is an M-, or K-, or C-configuration (i ∈ {1, 2}). Since u′ 6∈ NH(v), we have
f1(z) = f2(z) = f(z) > 0 for all z ∈ Xu′ (by (2.3)). Consequently, sp(fi) = V (HB)
for i ∈ {1, 2}. Since µH(x1, y) 6= µH(x2, y), we have f1(y) 6= f2(y) (by (2.3)). First
assume that CB

x1
is an M-configuration. Then C

B
x2

is anM-configuration, too (Propo-
sition 10), implying that f1(y) = dB(u)/r = f2(y), a contradiction. Otherwise, CB

x1

is a K-configuration with at least two layers, or a C-configuration where the underly-
ing cycle has at least four vertices. This also leads to f1(y) = f2(y), a contradiction.
This completes the proof. �

Claim 5 We have CP (G) 6= E(Go).

Proof : Suppose that CP (G) = E(Go). Then (X,H) is an r-inflation of a G-cover
of G. Our aim is to show that C is an M-configuration, a contradiction to (B). To
this end, it suffices to show that f(y) = dG(u)/r whenever y ∈ Xu and u ∈ V (G).
So let u ∈ V (G). Since |G| ≥ 2, there is a vertex v ∈ NG(u) and a vertex x ∈ Xv.
Then vu ∈ CP (G), and so H(Xu, Xv) is a tKr,r with tr = µG(u, v), which leads to
f(y) = fx(y)+ t for all y ∈ Xu. Note that G

′ = G−v is a connected graph and Cx is
constructible. If u is the only vertex of G′, then fx(y) = 0 for all y ∈ Xu, which leads
to f(y) = t = dG(u)/r as claimed. It remains to consider the case that |G′| ≥ 2.
Let B ∈ B(G′) be an arbitrary block. Then |B| ≥ 2 and hence there is an edge
ww′ ∈ E(Bo). Since ww′ ∈ CP (G), we obtain that HB(Xw, Xw′) = H(Xw, Xw′) is a
t′Kr,r with t′r = µG(w,w

′). Hence C
B
x is an M-configuration (Proposition 10), and,

therefore, fB
x (z) = dB(z)/r whenever z ∈ Xw and w ∈ V (B). Using Proposition 9

for Cx, for every vertex y ∈ Xu obtain that

fx(y) =
∑

B∈Bu(G′)

fB
x (y) =

1

r

∑

B∈Bu(G′)

dB(u) =
d′G(u)

r
,

which implies that f(y) = fx(y)+ t = 1
r
(d′G(u)+µG(u, v)) =

1
r
dG(u). This completes

the proof. �
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Assume that G has only two vertices, say u and v. For any vertex x ∈ Xv, the
configuration Cx is constructible and so fx(y) = 0 for all y ∈ Xu, which implies
that f(y) = fx(y) + µH(y, x) = µH(y, x) for y ∈ Xu. By symmetry, we also obtain
for any vertex y ∈ Xu that µH(y, x) = f(x) > 0 for all x ∈ Xv. Furthermore,
f(Xv) = f(Xu) = dG(u) = dG(v). This implies that H(Xu, Xv) is a tKr,r and
f(x) = t for all x ∈ V (H). Hence C is an M-configuration. This contradiction to
(B) shows that |G| ≥ 3.

Claim 6 We have CP (G) = ∅.

Proof : Suppose that CP (G) 6= ∅. By Claim 5, there is an edge e = uw ∈
E(Go) \ CP (G). Since G is a block, there is a cycle in Go containing the edge e
and an edge belonging to CP (G). Let C be a shortest such cycle. Then C is an
induced cycle of Go. First assume that there is a vertex v ∈ V (G) \ V (C). Then Cx

is an constructible configuration where x ∈ Xv. Clearly, there is a block B of G− v
containing V (C). Then Bo contains uv and an edge of CP (G), which implies, by
Proposition 10, that uv ∈ CP (G), a contradiction. It remains to consider the case
that Go = C. Then there are three vertices v, w, w′ such that vw ∈ E(C) \ CP (G)
and ww′ ∈ E(C)∩CP (G). Then B = G[{w,w′}] is a block ofG′ = G−v. Let x ∈ Xv

be an arbitrary vertex. Clearly, CB
x is an M-configuration. Since ww′ ∈ CP (G), we

have sp(fB
x ) = Xw ∪ Xw′, which implies that fB

x (y) = t for all y ∈ Xw. Since
w 6∈ S(G′), we obtain, for y ∈ Xw, that fx(y) = fB

x (y) = t and f(y) = t + µH(y, x)
(by (2.3)). Since x was chosen arbitrarily in Xv and H(Xv, Xw) is a regular bipartite
graph, we obtain that H(Xv, Xw) is a t′Kr,r. Hence vw ∈ CP (G), a contradiction.�

Combining Claim 6 and Claim 4, we obtain the following result.

Claim 7 Let v ∈ V (G) be an arbitrary vertex, let G′ = G− v, let B ∈ B(G′), and
let u, u′ be two distinct vertices of V (B) \ S(G′). Then, either {u, u′} ⊆ NG(v) or

{u, u′} ∩NG(v) = ∅.

Claim 8 The simple graph Go is a cycle or a complete graph.

Proof : Suppose that Go is not a complete graph. Since G is a block and |G| ≥ 3,
we have 2 ≤ δ(Go) ≤ |Go| − 2 = |G| − 2. Let v ∈ V (G) be a vertex of minimum
degree in Go. If B = G − v is a block, then B contains a vertex u ∈ NG(v) and a
vertex u′ 6∈ NG(v), contradicting Claim 7. So G′ = G − v is not a block and there
are at least two end-blocks of G′. Let B be an arbitrary end-block of G′. By the
choice of v, we obtain that |B| ≥ δ(Go). Since B is an end-block of G′, there is
exactly one vertex u ∈ V (B) ∩ S(G′). Since G is a block, v has in G a neighbor
belonging to B − u. By Claim 7 this implies that V (B − u) ⊆ NG(v). Since G has
at least two end-blocks, this leads to δ(Go) ≥ 2(δ(Go)− 1) and hence to δ(Go) = 2.
Then |B| = 2 and the vertex w ∈ V (B − u) has degree δ(Go) in Go. Furthermore
G′ = G − v has exactly two end-blocks. If we repeat this argument with w, we
obtain that Go is a cycle. �
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Let uw be an arbitrary edge of Go and let m = µH(u, w). Then m > 0 and the
bipartite graph H(Xu, Xw) is regular of degree m (Claim 3(a)). A component of
H(Xu, Xw) is called a uw-part of H . For a uw-part H ′, let Xu(H

′) = Xu ∩ V (H ′)
and Xw(H

′) = Xw ∩ V (H ′). If (Xu(H
′), Xw(H

′)) is a complete uw-pair, then H ′ is
a tKs,s with m = ts; in this case we say that H ′ is a full uv-part of H of type
(t, s). Note that if H1 and H2 are full uw-parts of H , then V (H1) = V (H2) or
V (H1) ∩ V (H2) = ∅, and in the later case EH(V (H1), V (H2)) = ∅.

Claim 9 If uw is an edge of Go, then H(Xu, Xv) is the disjoint union of p full

uw-parts with p ≥ 2.

Proof : Let uw be an arbitrary edge of Go. Since |G| ≥ 3, there is a vertex
v ∈ NG(u) \ {w}. Then G′ = G − v is connected and there is a block B ∈ B(G′)
containing u and w. Since Go is a cycle or a complete graph (by Claim 8), it
follows that u 6∈ S(G′). Let x ∈ Xv be an arbitrary vertex. Then Cx is a con-
structible configuration. Since CP (G) = ∅, it then follows from Proposition 10
that H(Xu, Xw) = HB(Xu, Xw) has at least two components. Since uw was chosen
arbitrarily, the same holds for the bipartite graph H(Xv, Xu). Now let y be an ar-
bitrary vertex of Xu. Then for x we can choose a vertex in Xv that is no neighbor
of y in H . By (2.3), this implies that fB

x (y) = f(y) > 0. Then y belongs to a
full uw-part of H , since C

B
x is an M-, or K-, or C-configuration, y ∈ sp(fB

x ), and
H(Xu, Xw) = HB(Xu, Xw). This proves the claim. �

Claim 10 Let vu and uw be two distinct edges of Go, let (X, Y ) be a complete vu-
pair, and (Z,W ) be a complete uw-pair. Suppose that Y ∩ Z 6= ∅. Then Y = Z
and, moreover, the following statements hold:

(a) If Go is a complete graph of order n ≥ 4, then (X,W ) is a complete vw-pair.

(b) If Go is a cycle, then there are exactly two complete vu pairs.

Proof : First assume that Go is a complete graph of order n ≥ 4. Then there is a
vertex y ∈ Y ∩ Z and a vertex v′ ∈ V (G) \ {u, v, w}. By Claim 9, there is a vertex
x ∈ Xv′ such that µH(x, y) = 0. Then we have fx(y) = f(y) > 0 (by Claim 2(a)).
Since Go is a complete graph, Cx is an M-configuration or a K-configuration and
y belongs to a layer U of Cx. Then X, Y,W, and Z are all contained in U , which
implies that Y = Z and (X,W ) is a complete vw-pair. So we are done.

Now assume that Go is a cycle. Then Go − v is a path, B = G[{u, w}] is an
end-block of G′ = G− v and u 6∈ S(G′). Let x ∈ Xv be an arbitrary vertex, and let
Ux = sp(fB

x ) and U c
x = spo(fB

x ). Then C
B
x = (B,XB, HB, fB

x ) is an M-configuration
implying that H [Ux] is a full uw-part of H . By Claim 9, Ux 6= ∅. For x, x′ ∈ Xv,
we have Ux = Ux′ or Ux ∩Ux′ = ∅. Now let X ′ = {x ∈ Xv | H [Ux] = H(Z,W )}. By
(2.3), we obtain that for y ∈ Xu and x ∈ Xv we have

fB
x (y) = fx(y) = f(y)− µH(x, y)
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Suppose that H(Z,W ) is a tKs,s. Let Z ′ = Xu \ Z. If x ∈ X ′, then Z ′ ⊆ spo(fB
x )

which yields that µH(x, y) = f(y) > 0 for all y ∈ Z ′. Consequently, Z ′ ⊆ NH(x)
for all x ∈ X ′. Now let x ∈ Xv be a vertex such that there is an y ∈ Z with
µH(x, y) = 0. Then fx(y) = f(y) > 0 which implies that Z ⊆ sp(fx) and so x ∈ X ′.
Consequently, Z ⊆ NH(x) for all x ∈ Xv \ X ′. From Claim 9 it then follows that
(X ′, Z ′) and (Xv \X

′, Z) are the only complete vu-pairs. This implies (b). �

Claim 11 Go is a complete graph of order n ≥ 4.

Proof : Suppose this is false. Then, by Claim 8, Go is a cycle C and n = |C| ≥ 3.
Let v be an arbitrary vertex of C, let u and w be the two neighbors of v in C, and let
u′ be the neighbor of u in C different from w. Then it follows from Claim 10(b), that
V (H) has a partition into two sets, say U1 and U2, such that, for every edge v′w′ of
the path C−uu′, (Xv′(Ui), Xw′(Ui)) is a complete v′w′-pair of type (ti(v

′w′), si(v
′w′))

for i ∈ {1, 2}. Then, by Claim 10(b), either (Xu(U1), Xu′(U1)) or (Xu(U1), Xu′(U2)
is a complete uu′ pair.

Case 1: (Xu(U1), Xu′(U1)) is a complete uu′ pair. Then (Xu(U2), Xu′(U2)) is a
complete uu′ pair, too, and (X,H)/Ui is an si-inflation of G (i ∈ {1, 2}. Further-
more, we obtain that n is odd. For otherwise, (X,H) has an independent transversal
and so C is colorable, a contradiction to (A). Choose two vertices y ∈ Xu(U1) and
y′ ∈ Xw(U2). Since n is odd, there is a partial transversal T of (X,H) such that
dom(T : G) = V (G − v), y, y′ ∈ T , and T is an independent set of H , which
implies that H [T ] is strictly f -degenerate. By Proposition 13(c), we obtain that
f(x) = dH[T∪{x}](x) for all x ∈ Xv. Consequently, f(x) = µH(x, y) = t1(vu) for all
x ∈ Xv(U1) and f(x) = µH(x, y

′) = t2(vw) for all x ∈ Xv(U2). Now we can choose
two vertices y ∈ Xu(U2) and y′ ∈ Xw(U1) to show that f(x) = µH(x, y) = t1(vw)
for all x ∈ Xv(U1) and f(x) = µH(x, y

′) = t2(vu) for all x ∈ Xv(U2). This implies
that ti(vu) = ti(vw) for i ∈ {1, 2}. Since v was chosen arbitrarily, it then follows
that G = tCn and f(x) = ti for all x ∈ Ui with tisi = t. Hence C is an odd
C-configuration, a contradiction to (B).

Case 2: (Xu(U1), Xu′(U2)) is a complete uu′ pair. Then (Xu(U2), Xu′(U1)) is a
complete uu′ pair, too, implying that |Xu(Ui))| = s for i ∈ {1, 2} and all u ∈ V (G),
where s ∈ N. This implies that t1(v

′w′) = t2(v
′w′) = µG(v

′, w′)/s for all edges
v′w′ of C − uu′. Then we obtain that n is even, For otherwise, (X,H) has an
independent transversal and so C is colorable, a contradiction to (A). Now we may
argue similarity as in the first case to show that G = tCn and f(x) = t/s for all
x ∈ V (H). Hence C is an even C-configuration, a contradiction to (B). �

By the above claim, Go is a complete graph of order n ≥ 4. Then it follows
from Claim 10(a) that V (H) has a partition into p sets, say U1, U2, . . . , Up such
that (X,H)/U i is an si-inflation of G for i ∈ [1, p] and p ≥ 2 (by Claim 9).
Then for every i ∈ [1, p] and every edge vu of Go, there is an integer ti(uv)
such that H(Xu(U

i), Xv(U
i)) is a ti(uv)Ks,s and µG(u, v) = ti(uv)si. Furthermore,
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EH(U
i, V (H) \U i) = ∅. Our aim is to show that C is a K-configuration. This final

contradiction then completes the proof of Theorem 14.

Let x ∈ V (H) be an arbitrary vertex. Then x ∈ Xu for exactly one vertex
u ∈ V (G). For i ∈ [1, p], we define U i

x = U i \Xu. Then (X,H)/U i
x is an si-inflation

of G− v. Since Cx is constructible (by Claim 3(b)) and Go − v is a complete graph,
Cx is an M-configuration or a K-configuration. For the function fx of Cx we obtain
that fx(y) = f(y)− µH(x, y) for all y ∈ V (H) \Xu (by Claim 2(a)). Consequently,
if x ∈ U i, j ∈ [1, p] \ {i} and G′ = G− u, then the following statements hold:

(1) fx(y) = f(y) for all y ∈ U j
x, and U j

x is a layer of Cx. Furthermore, if v ∈ V (G′)
and y ∈ Xv(U

j), then fx(y) = dG′(v)/sj.

(2) fx(y) = f(y)− ti(uv) for all v ∈ V (G′) and y ∈ Xv(U
i).

Claim 12 No configuration Cx with x ∈ V (H) is an M-configuration.

Proof : Suppose, this is false. Then Cx is an M-configuration for a vertex x ∈ V (H),
say x ∈ Xu for u ∈ V (G). Let G′ = G− u, let U = sp(fx) and U c = spo(fx). Then
(X,H)/U is an inflation of a G′-cover and fx(y) = 0 for all y ∈ U c. By (1), this
implies that p = 2 and either U = U1

x or U = U2
x . By symmetry we may assume

that U = U1
x and hence x ∈ U2. Since U1

x is the only layer of the M-configuration
Cx, we obtain from (1) and (2) that

(3) f(y) = fx(y) = dG′(v)/s1, provided that v ∈ V (G′) and y ∈ Xv(U
1), and

(4) f(y) = t2(uv), provided that v ∈ V (G′) and y ∈ Xv(U
2).

Let T be an arbitrary transversal of (X,H)/U1
x . Then, for every vertex v ∈ V (G′),

denote by y(v) the unique vertex in T∩Xv(U
1). Furthermore, since G′o is a complete

graph, we obtain that dH[T ](y) = fx(y) = f(y) for all y ∈ T , where the second
equation follows from (1). Now let v be an arbitrary vertex of G′, and let y ∈ Xv(U

2)
be an arbitrary vertex. Replace in T the vertex y(v) by y and denote the resulting
set by T ′. Then T ′ is a partial transversal of (X,H). Since EH(U

1, V (H)\U1) = ∅,
we obtain that y is an isolated vertex in H [T ′] and, therefore, H [T ′] is strictly f -
degenerate. Since dom(T ′ : G) = V (G′), it then follows from Proposition 13 that for
all x′ ∈ Xu(U

2) we have f(x′) = dH[T ′∪{x′}](x
′) = µH(x

′, y) = t2(uv) = f(y), where
the last equality follows from (3). Since (v, y) was chosen arbitrarily with v ∈ V (G′)
and y ∈ Xv(U

2), we obtain that there is an integer t2 such that f(z) = t2 for all
z ∈ U2 and ti(uv) = t2 for all v ∈ V (G′). Let vv′ be an arbitrary edge of Go−u. Then
Claim 2(a) implies that t2 ≥ t2(vv

′). We claim that equality holds. For otherwise,
t2 > t2(vv

′), and we choose two vertices y ∈ Xv(U
2) and y′ ∈ Xv′(U

2), and let T ′

be the set obtained from T by replacing y(v), y(v′) by y, y′. Then T ′ is a partial
transversal of (X,H) such that dom(T ′ : G) = V (G′), EH(T

′ \ {y, y′}, {y, y′}) = ∅,
and dH[T ′](y) = dH[T ′](y

′) = t2(vv
′) < t2 = f(y) = f(y′). Consequently, H [T ′] is
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strictly f -degenerate and Proposition 13 implies that, for the vertex x ∈ Xu, we
have

0 < t2 = f(x) = dH[T ′∪{x}](x) = µH(x, y) + µH(x, y
′) = f(y) + f(y′) = 2t2,

which is impossible. This proves the claim that t2(vv
′) = t2. Consequently, G = tKn

with t = s2t2, (X,H)/U2 is an s2-inflation of G, and f(z) = t2 for all z ∈ U2. Then
G′ = tKn−1 and it follows from (3) that

f(y) = t(n− 2)/s1 for all y ∈ U1
x . (2.4)

Let t1 = t/s1. Let x
′ ∈ Xu(U

1) be an arbitrary vertex. There is a partial transversal
T of (X,H) such that dom(T : G) = V (G′) and |T ∩ U1| = |G′| − 2 = n − 2. If
y′ is the only vertex of T belonging to U2, then y′ is an isolated vertex of H [T ].
For every vertex y ∈ T ∩ U1, we have dH[T ](y) = t1(n − 3) = t(n − 3)/s1 < f(y)
(by (2.4)). Hence H [T ] is strictly f -degenerate, and Proposition 13(c) then yields
that f(x′) = dH[T∪{x′}](x

′) = t1(n − 2). Since (X,H)/U1 is an s1-inflation of G
and G = tKn, this implies that C is a K-configuration, where U1 is a layer of type
n1 = n − 2, and U2 is a layer of type n2 = 1. This contradiction completes the
proof. �

Since Go is a complete graph of order n ≥ 4, Claim 12 implies that Cx is a
K-configuration for all x ∈ V (H) and, therefore, G − v is a tvKn for all v ∈ V (G).
Since n ≥ 4, this implies that G = tKn with t ∈ N. For i ∈ [1, n], (X,H)/U i is
an si-inflation of G, which implies that there is a ti ∈ N such that t = siti. Now
we claim that the function f of C restricted to U j is constant. So let y, y′ be two
vertices of U j . Then there is a vertex u ∈ V (G) such that neither y nor y′ belongs
to Xu. Since p ≥ 2, there is a vertex x ∈ Xu(U

i) with i 6= j. By (1), this implies
that U j

x is a layer of the M-configuration Cx. Then fx(y) = fx(y
′) and, by (1),

f(y) = fx(y) = fx(y
′) = f(y′). This proves the claim.

Now, let u be an arbitrary vertex of G. By Proposition 13(c), there is a par-
tial transversal of (X,H) such that dom(T : G) = V (G′) and H [T ] is strictly f -
degenerate. For i ∈ [1, p], let ni = |T ∩U i| implying that n1 +n2+ · · ·+np = n− 1.
By Proposition 13(c), f(x) = dH[T∪{x}](x) for all x ∈ Xu, which implies that
f(x) = tini = tni/si when x ∈ Xu(U

i) (i ∈ [1, p]). Consequently, f(z) = tni/si
for all z ∈ U i (i ∈ [1, p]), and so C is a K-configuration, where U i is a layer of order
ni > 0. This contradiction completes the proof of Theorem 14

Proof of Theorem 4 : Let P be a reliable graph property with d(P) = r, let
G be a graph, let (X,H) be a P-critical cover of G, and let B be an arbitrary
block of the low vertex subgraph G[V (G,X,H,P)], and let G′ = G− V (B). Since
(X,H) is a P-critical cover of G, there is a partial transversal T of (X,H) such
that domG(T ) = V (G′) and H [T ] ∈ P. For a vertex u ∈ V (B) and a color x ∈ Xu,
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let Hu = H [T ∪ {x}] and du,x = dHu
(x). Let U be the union of the sets Xu with

u ∈ V (B), and let (X ′, H ′) = (X,H)/U . Furthermore, define a vertex function f
for H by

f(x) = max{0, r − du,x}

whenever u ∈ V (B) and x ∈ Xu. Note that X ′ = XB and H ′ = HB. First assume
that (X ′, H ′) has a transversal T ′ such that H ′[T ′] is strictly f -degenerate. Note
that this implies that f(x) > 0 for all x ∈ T ′. Furthermore, T ′∪T is a transversal of
(X,H), and hence H [T ′ ∪ T ] 6∈ P. From Proposition 1(c) it then follows that there
is a set T1 ⊆ T ′ ∪ T such that H [T1] ∈ CR(P). Then Proposition 1(e) implies that
δ(H [T1]) ≥ r. Since H [T ] ∈ P, we have T1 ∩ T ′ 6= ∅, and so H [T1 ∩ T ′] is a non-
empty induced subgraph of H ′[T ′] = H [T ′]. Since H ′[T ′] is strictly f -degenerate,
H̃ = H [T1 ∩ T ′] contains a vertex x with dH̃(x) < f(x). Then x ∈ Xu for some u ∈
V (B) and f(x) = r− du,x. This leads to dH[T1](x) = dH̃(x) + du,x < f(x) + du,x ≤ r,
a contradiction to δ(H [T1]) ≥ r.

It remains to consider the case when (X ′, H ′) has no transversal that is strictly
f -degenerate. Let u ∈ V (B) be an arbitrary vertex. As u is a low vertex, we have
dG(u) = r|Xu|. Furthermore, we have

∑

x∈Xu

du,x ≤ dG−V (B−u)(u) = dG(u)− dB(u),

where the first inequality follows from (C2). Then we obtain that
∑

x∈Xu

f(x) ≥
∑

x∈Xu

(r − dx,u) = r|Xu| −
∑

x∈Xu

dx,u = dG(u)−
∑

x∈Xu

dx,u ≥ dB(u). (2.5)

Consequently, C = (B,X ′, H ′, f) is an uncolorable degree-feasible configuration. By
Theorem 8 it then follows that C is a constructible configuration. Since B is a block,
C is a K-, C-, or M-configuration. In the first two cases, B is a brick, and we are
done. It remains to consider the case when C is an M-configuration. Then there is
a set U ⊆ V (H ′) such that (X ′, H ′)/U is an s-inflation of B, and for u ∈ V (B) and
x ∈ Xu, we have s = |Xu(U)| and f(x) = dB(u)/s if x ∈ U else f(x) = 0. This
implies that B = sB′. Consequently, for every vertex u of B, we have

f(Xu) = dB(u) = sdB′(u).

By (2.5), this implies that f(x) = r − dx,u whenever u ∈ V (B) and x ∈ Xu. Hence

sdB′(u) = dB(u) = f(Xu) = f(Xu(U)) =
∑

x∈Xu(U)

(r − du,x) ≤ rs,

which implies that ∆(B′) ≤ r. If B′ ∈ P, then we are done. If B′ 6∈ P, then B′ has
an induced subgraph B∗ ∈ CR(P) (by Proposition 1(c)). Then δ(B∗) ≥ d(P) = r,
which implies that B′ = B∗ and B′ is r-regular. Hence we are done, too. This
completes the proof. �
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3 Critical graphs with few edges

Gallai [17] established a lower bound for the number of edges possible in a simple
graph G being critical with respect to the chromatic number, where the bound is
depending on |G| and χ(G). The proof given by Gallai uses the characterization of
the low vertex subgraph that he obtained in [17]. We can easily adopt Gallai’s proof
to establish a Gallai type bound for the number of edges of cover critical simple
graphs in general. Our result is an extension of Gallai’s result [17, Satz 4.4]. First
we need the following result due to Mihók and Škrekovsky [30, Corollary 4]; this
result is an extension of Gallai’s technical lemma [17, Lemma 4.5].

Theorem 15 Let p ≥ 1 be an integer. Let F be a non-empty simple graph such

that ∆(F ) ≤ p and ∆(B) < p for all blocks B ∈ B(F ). Then
(

p− 1 +
2

p

)

|F | − 2|E(F )| ≥ 2.

Theorem 16 Let P be a reliable graph property with d(P) = r, let G be a simple

graph that has a P-critical k-cover with k ≥ 3. Then

2|E(G)| ≥

(

kr +
kr − 2

(kr + 1)2 − 3

)

|G|+
2kr

(kr + 1)2 − 3

unless G = Kkr+1.

Proof: Let V be the vertex set of G, and let n = |V |. For a set X ⊆ V , let e(X)
denote the number of edges of the subgraph G[X ] of G induced by X . Let p = kr
and let

R =

(

p+
p− 2

(p+ 1)2 − 3

)

and R′ =
2p

(p+ 1)2 − 3

Our aim is to show that 2e(V ) ≥ Rn + R′. Let U = {v ∈ V | dG(v) = p} be the
set of low vertices and let W = V \ U . Note that dG(v) ≥ p + 1 for all v ∈ W (by
Proposition 3). Note that p ≥ 3r ≥ 3 and n ≥ p + 1 = kr + 1. If U = ∅, then
2e(V ) ≥ (p+1)n ≥ Rn+R′ and we are done. So assume that U 6= ∅. Let F = G[U ]
be the low vertex subgraph. If K = Kp+1 is a subgraph of F , then K is a component
of G. As G has a P-critical k-cover, G is connected. Hence G = K = Kkr+1 and
we are done. So suppose that no subgraph of F is a Kp+1. Since p ≥ 3r ≥ 3,
Theorem 4 then implies that ∆(F ) ≤ p and ∆(B) < p for all blocks B ∈ B(F ).
From Theorem 15 it then follows that

(

p− 1 +
2

p

)

|U | − 2e(U) ≥ 2

Since every vertex of U has degree p in G and n = |U |+ |W |, we then obtain that

2e(V ) = 2e(W ) + 2p|U | − 2e(U) ≥ 2p|U | − 2e(U) ≥

(

p+ 1−
2

p

)

|U |+ 2
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On the other hand, since every vertex in W has degree at least p+1, we obtain that

2e(V ) ≥ pn+ |W | ≥ (p+ 1)n− |U |.

Adding the first inequality to the second inequality multiplied with (p + 1 − 2/p)
yields

2e(V )(p+ 2− 2/p) ≥ (p+ 1− 2/p)(p+ 1)n+ 2.

As (p+ 2− 2/p) = (p2 + 2p− 2)/p > 0, this leads to

2e(V ) ≥
(p2 + p− 2)(p+ 1)n+ 2p

p2 + 2p− 2
= Rn+R′.

Thus the proof is complete.

Corollary 17 Let G be a simple graph that has an O-critical k-cover of G with

k ≥ 3. Then

2|E(G)| ≥

(

k +
k − 2

(k + 1)2 − 3

)

|G|+
2k

(k + 1)2 − 3

unless G = Kk+1.

For covers associated with constant list assignments Corollary 17 is a reformu-
lation of Gallai’s result [17, Satz 4.4] from 1963. For covers associated with general
list assignments, Corollary 17 was obtained by Kostochka, Stiebitz, and Wirth [24].
The next corollary for P = O was obtained by Bernshteyn, Kostochka, and Pron
[3, Corollary 10].

Corollary 18 Let P be a reliable graph property with d(P) = r and let G be a

(P, χDP)-critical simple graph with χDP(G : P) = k + 1 and k ≥ 3. Then

2|E(G)| ≥

(

kr +
kr − 2

(kr + 1)2 − 3

)

|G|+
2kr

(kr + 1)2 − 3

unless G = Kkr+1.

However, the first bound for the number of edges of simple graphs being critical
with respect to the chromatic number was obtained in 1957 by Dirac [13]. In 1974
he proved that his bound is sharp and he characterized the extremal graphs.

For k ≥ 2, let Dir(k) denote the family of simple graphs G whose vertex set
consists of three non-empty pairwise disjoint sets A,B1 and B2 with

|B1|+ |B2| = |A|+ 1 = k

and two additional vertices v1 and v2 such that A and B1 ∪B2 are cliques in G not
joined by any edge, and NG(vi) = A∪Bi for i = 1, 2. Then G has order 2k + 1 and
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independence number 2, and so χ(G) ≥ k + 1. However, if we delete a vertex or
an edge, then it is easy to check that the resulting graph has an O-coloring with k
colors. Consequently, if G ∈ Dir(k) then χ(G− v) < χ(G) = k+1 for all v ∈ V (G)
(such graphs are usually called (k + 1, χ)-critical, similarly we define (k + 1, χℓ)-
critical and (k + 1, χDP)-critical). This implies that if G ∈ Dir(k) and (X,H) is
the cover of G associated with the constant list assignment L ≡ [1, k], then (X,H)
is an O-critical k-cover of G. A simple graph G is called k-list-critical if G has
an O-critical k-cover that is associated with a list assignment L, which is the case
if and only if G has no L-coloring, but G − v has one for all v ∈ V (G). Every
simple graph G that is (k + 1, χℓ)-critical is k-list-critical, but not conversely. The
standard example is a graph G that is obtained from two disjoint copies of Kk+1

by adding exactly one edge joining a vertex u of the first copy with a vertex u′ of
the second copy. The cover (X,H) associated with the list assignment L defined by
L(u) = L(u′) = [2, k+1] and L(v) = [1, k] is an O-critical k-cover of G, and so G is
k-list-critical, but G is not (k + 1, χℓ)-critical as χℓ(Kk+1) = χℓ(G) = k + 1.

In 1957 Dirac proved that every (k + 1, χ)-critical graph G distinct from Kk+1

and with k ≥ 3 satisfies
2|E(G)| ≥ k|G|+ k − 2

and in 1974 he proved that equality holds if and only if G ∈ Dir(k). In 2002
Kostochka and Stiebitz [22] proved that every k-list-critical graph G not containing
Kk+1 and with k ≥ 3 satisfies the Dirac bound, and they asked whether equality
holds if and only if G belongs to Dir(k). That this is indeed the case was proved in
2018 by Bernsteyn and Kostochka [2] by proving the following result.

Theorem 19 Let G be a simple graph that has an O-critical k-cover with k ≥ 3. If
G does not contain Kk+1 as a subgraph, then

2|E(G)| ≥ k|G|+ k − 2

and equality holds if and only if G ∈ Dir(k).

The graphs belonging to Dir(k) have another interesting feature. As observed
by Stiebitz, Tuza, and Voigt [39], if G ∈ Dir(k) and (X,H) is a k-cover associated
with a list assignment L of G, then G has no (O, (X,H))-coloring if and only if
L ≡ [1, k] is the constant list assignment. Whether this also holds for arbitrary
k-covers of G seems to be unknown.

For simple graphs whose order is large, the Gallai bound beats the Dirac bound,
however, only if the order is at least quadratic in k. Let fk(n) denote the minimum
number of edges in any (k + 1, χ)-critical simple graph of order n. By König’s
theorem, characterizing bipartite graphs (i.e., graphs with χ ≤ 2), the only (3, χ)-
critical graphs are the odd cycles. So the function is only interesting for k ≥ 3.
For the many partial results obtained for this function the reader is referred to the
paper by Kostochka and Yancey [25] from 2014. Kostochka and Yancey succeeded
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to determine the best linear approximation for the function fk(n) with k ≥ 3, a as
consequence they obtained that

lim
n→∞

2fk(n)

n
= k + 1−

2

k

Let f ℓ
k(n) denote the minimum number of edges in any (k + 1, χℓ)-critical of order

n, and let f dp
k (n) denote the minimum number of edges in any (k + 1, χDP)-critical

simple graph of order n. For both functions we have the Gallai bound as well as the
the Dirac bound. For the function f dp

k (n) this seems to be all what is known. For
the function f ℓ

k(n) some improvements have been made by Kostochka and Stiebitz
[23] and more recently by Kierstead and Rabern [20]. It would be interesting to find
further improvements, and to prove or disprove that f ℓ

k(n) ≥ fk(n) (n ≥ k+2 ≥ 5).
Given a reliable graph property P with d(P) = r, we say that a graph G is

(k + 1,P, χ)-critical if χ(G − v : P) < χ(G : P) = k + 1 for all v ∈ V (G). Let
FP(k, n) denote the minimum number of edges in any (k + 1,P, χ)-critical simple
graph of order n. From Theorem 16 it follows that

2FP(k, n) ≥

(

kr +
kr − 2

(kr + 1)2 − 3

)

n+
2kr

(kr + 1)2 − 3
.

Until now this Gallai type bound is all what is known. One question is whether a
Dirac type bound can be proved, at least for some specific properties P. Apart from
the property O, the best investigated property is D1. The class Dd of d-degenerate
(simple) graphs was introduced and investigated in 1970 by Lick and White [27]. For
the parameter χ(G : Dd) Lick and White used the term point partition number
while Bollobás and Manvel [4] used the term d-chromatic number. The point par-
tition number were investigated by various researchers including Lick andWhite [27],
Kronk and Mitchem [26], Mitchem [31], Borodin [5], Bollobás and Manvel [4], and
possibly others. The term P-chromatic number was introduced by Hedetniemi [19]
in 1968. He studied, in particular, the D1-chromatic number under the name point
aboricity and proved that any planar graph G satisfies χ(G : D1) ≤ 3. Clearly, this
is a simple consequence of the fact that any planar graph G is 5-degenerate; hence
we have χDP(G : D1) ≤ 3. Note that CR(Dd) contains all connected (d+ 1)-regular
graphs and so d(Dd) = d+ 1. This implies, in particular, that

2FD1
(k, n) ≥

(

2k +
2k − 2

(2k + 1)2 − 3

)

n+
4k

(2k + 1)2 − 3
.

In 2002 Škrekovski [38] proved that 2FD1
(k, n) ≥ 2kn+ 2k − 2, but it is not known

whether FD1
(k, n) ≥ 2fk(n), provided that n is large enough. The only reliable

property P for which a Dirac-type bound for the function FP is known are the
properties D0 = O and D1.

Readers who are interested in additional information concerning the generalized
coloring problem are referred to the survey by Albertson, Jamison, Hedetniemi, and
Locke [1] and to the survey by Borowiecki and Mihók [10]
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4 Concluding remarks

Partitioning and coloring graphs under given degree constraints is a well-established
area within graph theory and has attracted a lot of attention to date. One of the
earliest results in this area was obtained by Lovász [28] in 1966. He proved that
every simple graph G with ∆(G) < d1 + d2 + · · · + dp for d1, d2, . . . , dp ∈ N has
a coloring ϕ with color set C = [1, p] such that ∆(G[ϕ−1(i)]) < di for all colors
i ∈ C. Partitioning of simple graphs into a fixed number of induced subgraphs
with bounded degeneracy (coloring number) were first studied in the late 1970s by
Borodin [5] as well as by Bollobás and Manvel [4]. Colorings of simple graphs under
variable degeneracy constraints were first studied in 2000 by Borodin, Kostochka,
and Toft [6]. They investigated the following coloring problem for the class of simple
graphs; for the class of graphs and hypergraphs this problem was studied by Schweser
and Stiebitz [36]. Let p ∈ N be a fixed integer, and let (G, f) be a pair such that G
is a graph and f = (f1, f2, . . . , fp) is a vector function of G, i.e., fi : V (G) → N0. We
say that (G, f) is colorable if there is a coloring ϕ of G with color set C = [1, p] such
that G[ϕ−1(i)] is strictly fi-degenerate for all colors i ∈ C, for otherwise we say that
(G, f) is uncolorable. This coloring problem has several interesting applications
(see [6], [35] and [36]); the two most popular applications are the following. If fi ≡ 1
for all i ∈ C, then (G, f) is colorable if and only if χ(G) ≤ p. Let L be a list
assignment with color set C, and define, for a vertex v ∈ V (G) and a color i ∈ C,
fi(v) = 1 if i ∈ L(v) else fi(v) = 0. Recall that if a subgraph H of G is strictly
fi-degenerate, then V (H) ⊆ sp(fi) implying that i ∈ L(v) for all v ∈ V (H). Hence
(G, f) is colorable if and only if G has a proper L-coloring, i.e., an (O, L)-coloring.
Hence the decision problem whether (G, f) is colorable is NP-complete. However, if
we add a certain degree condition, this problem can be solved in polynomial time.
We call (G, f) degree-feasible if every vertex v ∈ V (G) satisfies

p
∑

i=1

fi(v) ≥ dG(v).

A good characterization for uncolorable degree feasible pairs (G, f) whose underlying
graph G is connected were obtained in [6], for the class of simple graphs, and in
[36], for the class of graphs and hypergraphs. This characterization can be easily
deduced from Theorem 8. To this end, we associate to the pair (G, f) a configuration
C as follows: the fundamental graph of C is G, the cover of C is the cover (X,H)
associated to the constant list assignment L ≡ C = [1, p], that is, Xv = {v} ×C for
all v ∈ V (G) and for two distinct vertices (u, i) and (v, j) of H we have

µH((u, i), (v, j)) =

{

µG(u, v) if i = j,
0 if i 6= j,

and the function of C is the function f with f(u, i) = fi(u) for u ∈ V (G) and i ∈ C.
Then it is easy to check that (G, f) is degree feasible if and only if C = (G,X,H, f) is
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degree feasible; and (G, f) is colorable if and only if C is colorable. Hence Theorem 8,
respectively Proposition 9, yields a constructive characterization for an uncolorable
degree-feasible pair (G, f), provided that G is a connected graph. This is exactly
the characterization given in [6] for simple graphs and in [36] for graphs in general.
If (G, f) is an uncolorable degree-feasible pair and G is a block, then it follows from
Theorem 8 that (G, f) satisfies one of the following three conditions:

• There is an integer j such that fj(v) = dG(v) and fi(v) = 0 for i 6= j and
v ∈ V (G).

• G = tKn for some integers t, n ∈ N and there are integers n1, n2, . . . , np ∈ N0

such that n1 + n2 + · · · + nd = n − 1 and f(v) = (tn1, tn2, . . . , tnp) for all
v ∈ V (G).

• G = tCn for some integers t, n, where t ≥ 1 and n ≥ 3 is odd, and there are
two integers k, ℓ ∈ [1, p] such that

fi(v) =

{

t if i ∈ {k, ℓ},
0 if i ∈ [1, p] \ {k, ℓ}

for all v ∈ V (G).

Note that if G is a block, the configuration associated to (G, f) can never be an
even C-configuration. Consequently, Theorem 8 is a far reaching generalization of
many well known and interesting results related to ordinary colorings as well as to
generalized colorings of graphs. That it is worthwhile to study these coloring prob-
lems also for graphs having multiple edges was first pointed out by Kim and Ozeki
[21]; they used these concepts to study colorings of signed graphs. As demonstrated
by the second author in his thesis (Coloring of Graphs, Digraphs, and Hypergraphs,
TU Ilmenau, 2020) the characterization of uncolorable pairs for graphs in general
can be used to obtain Brooks type results for the dichromatic number and list di-
cromatic number of digraphs; such results were first obtained by Harutyunyan and
Mohar [18] in 2012. The decomposition result of Laslo Lovász has a short and ele-
gant proof. Moreover, it has motivated a large number of follow-up investigations
in this direction. Two more recent papers about partitioning and coloring graphs
with degree constrains were published by Landon Rabern, see [32] and [33].
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