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Abstract

Let H be a graph. The generalized outerplanar Turán number of H, denoted by
fOP(n,H), is the maximum number of copies of H in an n-vertex outerplanar graph.
Let Pk denotes a path on k vertices. In this paper we give an exact value of fOP(n, P4)
and a best asymptotic value of fOP(n, P5). Moreover, we characterize all outerplanar
graphs containing fOP(n, P4) copies of P4.

Keywords: Outerplanar graph, Maximal outerplanar graph, Generalized outerplanar Turán
number.

1 Introduction

In 1941, Turán [13] proved a classical result in the field of extremal graph theory. He
determined exactly the maximum number of edges an n-vertex Kr-free graph may contains.
After his result, for a graph H, the maximum number of edges in an n-vertex H-free graph,
denoted by ex(n,H), is named as Turán number of H. A major breakthrough in the study of
the Turán number of graphs came in 1966, with the proof of the famous theorem by Erdős,
Stone and Simonovits [6, 7]. They determined an asymptotic value of the Turán number of

any non-bipartite graph H. In particular, they proved ex(n,H) =
(

1− 1
χ(H)−1

) (
n
2

)
+ o(n2),

where χ(H) is the chromatic number of H.
Since then, researchers have been interested working on Turán number of class of bipartite

(degenerate) graphs and extremal graph problems with some more generality. Determining
the maximum number of copies of H in an n-vertex F -free graph, denoted by ex(n,H, F ),
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is among such problems. Since we count the number of copies of a given graph which is
not necessarily an edge, such an extremal graph problem is commonly named as generalized
Turán problem. The results on ex(n,Kr, Kt) by Zykov [14] (and independently by Erdős [5]),
ex(n,C5, C3) by Győri [10] and ex(n,C3, C5) by Bollobás and Győri [9] were sporadic initial
contributions.

Recently, some researchers were interested in extremal graph problems in some particular
family of graphs, for instance, the family of planar graphs.

The study of generalized extremal problems in the family of planar graphs was initiated
by Hakimi and Schmeichel [11] in 1979. Define the generalized planar Turán number of a
graph H, denoted by fP(n,H), as the maximum number of copies of H in an n-vertex planar
graph. Hakimi and Schmeichel [11] determined the exact value of fP(n,C3) and fP(n,C4).
Currently, this topic is active and many exact and best asymptotic values were obtained for
different planar graphs. We refer to [1, 4, 8] for more results.

In a different setting, Matolcsi and Nagy in [12] initiated the study of the generalized
planar Turán number version in the family of outerplanar graphs. Before discussing the
problem and our findings, some important notations we have used are mentioned below.

Let G be a graph. The vertex and edge sets of G are denoted respectively by V (G) and
E(G). For a vertex v ∈ V (G), the degree of v is denoted by dG(v). We use the notation
d(v) instead of dG(v) if there is no ambiguity on the graph. The maximum and minimum
degree of G are denoted by ∆(G) and δ(G) respectively. We denote a k-vertex path with
vertices v1, v2, . . . , vk in sequential order by (v1, v2, . . . , vk). We may call a k-vertex path as a
path of length k− 1, or simply a (k− 1)-path. We use the notation Pk to denote a k-vertex
path. Let H be a graph. The notation N (H,G) is the number of isomorphic copies of H as
a subgraph in G. We use the notation [k] to describe the set of the first k positive integers.

Definition 1. The generalized outerplanar Turán number of a graph H, denoted by fOP(n,H),
is the maximum number of copies of H in an n-vertex outerplanar graph. i.e.,

fOP(n,H) = max{N (H,G) : G is n-vertex outerplanar graph}.

Matolcsi and Nagy in [12] determined sharp and asymptotically sharp bounds of fOP(n,H)
for certain families of graphs H and described the extremal graphs. In particular, they de-
termined the exponential growth of the generalized outerplanar Turán number of Pk, as a
function of k. They also determined the exact value of fOP(n, P3) and characterized the
extremal graphs.

Theorem 1. (Matolcsi and Nagy [12])

h(k)

(
n

2

)
< fOP(n, Pk) ≤ 4k

(
n

2

)
, where lim

k−→∞
k
√
h(k) = 4.

Theorem 2. (Matolcsi and Nagy [12]) Suppose that n ≥ 3. Then

fOP(n, P3) =
n2 + 3n− 12

2
,

and the unique extremal outerplanar graph containing fOP(n, P3) P3’s is K1 + Pn−1.
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In this paper, we determine the exact value of fOP(n, P4) and an asymptotic value
fOP(n, P5). Moreover, we characterize all outerplanar graphs containing fOP(n, P4) copies
of P4 as a subgraph. The following two theorems summarize our results.

Theorem 3. For n ≥ 8,
fOP(n, P4) = 2n2 − 7n+ 2.

Moreover, for n ≥ 9, the only n-vertex outerplanar graph containing fOP(n, P4) number of
P ′4s is K1 + Pn−1.

Theorem 4.

fOP(n, P5) =
17

4
n2 + Θ(n).

We state the following two easy lemmas without proof.

Lemma 1. Every maximal outerplanar graph with at least 3 vertices contains a degree 2
vertex.

Lemma 2. For an n-vertex, n ≥ 3, maximal outerplanar graph G, e(G) = 2n− 3.

We will use the following lemma in our proof of the main results. It gives a relation how
to count the number of P4’s in a given simple graph G. Its proof can be seen in [8], but we
give the proof for completeness.

Lemma 3. For any simple graph G, the number of P4’s in G is

N (P4, G) =
∑

{x,y}∈E(G)

(d(x)− 1)(d(y)− 1)− 3N (C3, G),

where C3 is a cycle of length three.

Proof. Consider an edge {x, y} ∈ E(G) and count the number of 3-paths containing x as
the second and and y the third vertex of the 3-path. There are d(x) − 1 possibilities to
choose the first vertex and d(y)− 1 possibilities to choose the last vertex of the path. Since
the first and the last vertex of the 3-path need to be different, from the total number of
(d(x)− 1)(d(y)− 1) possibilities we need to subtract the number of triangles containing the
edge {x, y}, which is d(x, y).

Therefore,

N (P4, G) =
∑

{x,y}∈E(G)

((d(x)− 1)(d(y)− 1)− d(x, y))

=
∑

{x,y}∈E(G)

(d(x)− 1)(d(y)− 1)− 3N (C3, G),

as each triangle is counted 3 times in the sum. This completes the proof of Lemma 3.
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Figure 1: An n-vertex maximal outerplanar graph Gn = K1 + Pn−1.

2 Generalized outerplanar Turán number of the P4

Proof of Theorem 3. It is easy to check using Lemma 3 that an n-vertex maximal outerplanar
graph Gn = K1 + Pn−1 shown in Figure 1 contains 2n2 − 7n+ 2 P4’s. Therefore,

fOP(n, P4) ≥ 2n2 − 7n+ 2.

Next we shall prove that fOP(n, P4) ≤ 2n2 − 7n + 2. Let G be an n-vertex maximal
outerplanar graph. The main idea of the proof is to find a degree 2 vertex w in G, such that
the number of P4’s containing w is at most 4n − 9 and consequently by deleting w and by
induction we have

N (P4, G) ≤ 2(n− 1)2 − 7(n− 1) + 2 + (4n− 9) = 2n2 − 7n+ 2.

The base case of the induction step, when n = 7, is done separately in later in Claim 4.
Now, let G be a maximal outerplanar graph on n ≥ 8 vertices, and let x be a degree 2

vertex in G. Since each face (except the unbounded face) in G is a triangle, there exist u and
v such that u, v and x forms a triangle. Let d(u) = a+ 2 and u1, u2, . . . , ua be the vertices
which are adjacent to u (except v and x) in counterclockwise direction. Let d(v) = b + 2
and v1, v2, . . . , vb be vertices adjacent to v (except u and x) in clockwise direction. Again,
since every face of G (except the unbounded face) is a triangle, necessarily the vertices ua
and vb are identical, see Figure 2. For the reason that G is a maximal outerplanar graph,
{ui, ui+1} ∈ E(G) and {vj, vj+1} ∈ E(G), where i ∈ [a − 1] and j ∈ [b − 1], see the broken
red edges in Figure 2.
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Notice that for i ∈ [a− 1] and j ∈ [b− 1], the arc joining ui and ui+1 in counterclockwise
direction and the arc joining vj and vj+1 in clockwise direction may contain an interior
vertex. We labeling such vertices in the following way. For each i ∈ [a − 1], denote the
interior vertices (if any) between the vertices ui and ui+1 in counterclockwise direction by
u1i , u

2
i , . . . , u

ni
i . Similarly for each j ∈ [b− 1], denote the interior vertices (if any) between vj

and vj+1 in clockwise direction by v1j , v
2
j , . . . , v

nj

j .

u vx

u1

u2

u3

u4

ua = vb

v1

v2

v3

Figure 2: Structure of a maximal outerplanar graph.

It can be checked that the 3-paths containing the vertex x are those starting with
(x, u, ui, . . . ), (x, u, v, . . . ), (v, x, u, . . . ), (x, v, vi, . . . ), (x, v, u, . . . ) and (u, x, v, . . . ). In all
cases, vertex x is either an end vertex of the 3-path or an end vertex of the middle edge of
a 3-paths. Let P be a 3-path containing the vertex x. We define a “red edge” of P with
respect to x as the farthest edge in P from x. Obviously, there are two possibilities based
on the position of x in P , see Figure 3.

x

x

Figure 3: Red edges of a 3-path P with respect to a vertex x.

Next, we count the number of 3-paths containing x in G considering the number of
possibilities that an edge in G can be a red edge. The following gives us the counting lists
for each edge.
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1. The edges {x, u}, {x, v} and {u, v} can not be a red edge in a 3-path that contains x.

2. Each edge {u, ui}, i ∈ [a − 1], is a red edge in two 3-paths containing the vertex
x. Indeed, (v, x, u, ui) and (x, v, u, ui) are the 3-paths. Similarly each edge {v, vj},
j ∈ [b− 1], is a red edge in two 3-paths containing the vertex x.

3. Each edge {ui, ui+1}, i ∈ [a − 2], is a red edge in two 3-paths containing the vertex
x. Indeed, (x, u, ui, ui+1) and (x, u, ui+1, ui) are the 3-paths. Similarly, each edge
{vj, uj+1}, j ∈ [b− 2], is a red edge in two 3-paths containing the vertex x.

4. The edge {u, ua} is a red edge in three 3-paths containing the vertex x. Indeed, the
3-paths are (v, x, u, ua), (x, v, ua, u) and (x, v, u, ua). Similarly, the edge {v, vb} is a red
edge in three 3-paths containing the vertex x.

5. The edge {ua, ua−1} is a red edge in three 3-paths containing the vertex x. Here it
can be checked that the paths are (x, u, ua, ua−1), (x, u, ua−1, ua) and (x, v, ua, ua−1).
Similarly, the edge {vb, va−1} is a red edge in three 3-paths containing the vertex x.

6. For i ∈ [a− 2], if there exist interior vertices between ui and ui+1 in counterclockwise
direction, then each edge {uki , uk+1

i }, k ∈ [ni − 1] is not contained in a 3-path that
contains x. Moreover, for each vertex u∗i in {u1i , u2i , . . . , u

ni
i } which is adjacent to ui or

ui+1, the edge {ui, u∗i } or {u∗i , ui+1} is a red edge in exactly one 3-path that contains
x.

7. For j ∈ [b−2], if there exist interior vertices between vj and vj+1 in clockwise direction,
then each edge {vkj , vk+1

j }, k ∈ [nj − 1] is not contained in a 3-path that contains x.

Moreover, for each vertex v∗i in {v1j , v2j , . . . , v
nj

j } which is adjacent to vj or vj+1, the
edge {vj, v∗j} or {v∗j , vj+1} is a red edge in one 3-path that contains x.

8. If there exist interior vertices between ua−1 and ua in counterclockwise direction, then
each edge {uka, uk+1

a }, k ∈ [na−1] is not contained in 3-path that contains x. Moreover
for each vertex u∗a ∈ {1, 2, . . . , na} which is adjacent to ua−1, the edge {ua, u∗a} is a
red edge in one 3-path that contains x. On the other hand, for each vertex u∗a ∈
{u1a, u2a, . . . , una

a } which is adjacent to ua, the edge {ua, u∗a} is a red edge in two 3-paths
that contains x. Indeed that paths are (x, u, ua, u

∗
a) and (x, v, ua, u

∗
a).

9. If there exist interior vertices between vb−1 and vb in counterclockwise direction, then
each edge {vkb , vk+1

b }, k ∈ [nb− 1] is not contained in 3-path that contains x. Moreover
for each vertex v∗b ∈ {1, 2, . . . , nb} which is adjacent to vb−1, the edge {vb, v∗b} is a
red edge in one 3-path that contains x. On the other hand, for each vertex v∗b ∈
{v1b , v2b , . . . , v

nb
b } which is adjacent to vb, the edge {vb, v∗b} is a red edge in two 3-paths

that contains x. Indeed that paths are (x, v, vb, v
∗
b ) and (x, u, vb, v

∗
b ).

Notice that the number of edges in an n-vertex maximal outerplanar graph is 2n− 3.
We need the following claims to complete the proof of Theorem 3.
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Claim 1. For each i ∈ [a − 2] and j ∈ [b − 2] there is no interior vertices between ui and
ui+1 in counterclockwise direction, and no interior vertices between vj and vj+1 in clockwise
direction. Otherwise, the number of 3-paths containing x is at most 4n− 10.

Proof. Without loss of generality, assume that there exist interior vertices between ui and
ui+1 in counterclockwise direction, for some i ∈ [a−2]. We separate the proof into two cases.

i. There exist at least two interior vertices between ui and ui+1 in counterclockwise di-
rection. Then the edge {u1i , u2i } is not contained in any 3-path containing x. Thus, the
number of 3-paths containing x is at most 2((2n− 3)− 8) + 12 = 4n− 10.

ii. There exists one interior vertex between ui and ui+1 in counterclockwise direction.
Then the edge {ui, u1i } and {ui+1, u

1
i } are contained in only one 3-path each. Indeed,

(x, u, ui, u
1
i ) and (x, u, ui+1, u

1
i ), respectively. Thus, the number of 3-paths containing

x in this case is at most 2((2n− 3)− 9) + 14 = 4n− 10.

This completes the proof of Claim 1.

Claim 2. There is no interior vertex between ua−1 and ua. Moreover, there is no interior
vertex between vb−1 and vb. Otherwise, there exists a degree 2 vertex in G such that the
number of 3-paths containing this vertex is at most 4n− 10.

Proof. Without loss of generality, we assume that there exist interior vertices between ua−1
and ua in counterclockwise direction. We distinguish two cases considering the number of
interior vertices.

i. The number of interior vertices between ua−1 and ua in counterclockwise direction is
at least 2. In this case the edge {u1a−1, u2a−1} is contained in no 3-path containing x.
Thus, the number of 3-paths containing x in G is at most 2((2n−3)−8)+12 = 4n−10.

ii. There exists only one interior vertices between ua−1 and ua in clockwise direction.

It can be checked that u1a−1 is a degree 2 vertex such that the number of 3-paths
containing u1a−1 is at most 4n− 10. Indeed, we interchange the roles of x with u1a−1, u
with ua and v with ua−1.

Since n ≥ 8, either there exists one interior vertex between u and ua−1 in counterclock-
wise direction and one between v and ua in clockwise direction or there exist at least
two interior vertices between u and ua−1 in counterclockwise direction or between v and
ua in clockwise direction. We separate the rest proof into 2 subcases correspondingly.

(a) There exists one interior vertex u1 between u and ua−1 in counterclockwise direc-
tion and v1 between v and ua = vb in clockwise direction, see Figure 4. It can be
checked that in this case, n = 8 and the number of 3-paths in G is 74 which is
equal to 2n2 − 7n+ 2.
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x

v

v1

u

uau1a−1

ua−1

u1

Figure 4: An 8-vertex maximal outerplanar graph.

(b) There exist at least two interior vertices between u and ua−1 in counterclockwise
direction or between v and ua in clockwise direction. Without loss of generality, we
assume that there exist at least two interior vertices between u and ua−1 in coun-
terclockwise direction. Hence, all the interior vertices between u and ua−2 (coun-
terclockwise direction) are not adjacent to the vertex ua−1. Otherwise, it contracts
to the fact that G is outerplanar. It can be seen that the edges {ua−2, ua−3} and
vx are red edges in only one 3-path containing u1a−1. Indeed the 3-paths are
(u1a−1, ua−1, ua−2, ua−3) and (u1a−1, ua, v, x) respectively. In fact, the vertex ua−3 is
nothing but u1 if the number of interior vertices between u and ua−1 (counter-
clockwise direction) is two. Notice that the edges {u, ua−2}, {u, ua−1}, {u, ua} and
{u, v} are red edges in three 3-paths containing the vertex u1a−1. Therefore the
number of 3-paths containing u1a−1 is at most 2((2n− 3)− 9) + 14 = 4n− 10.

This completes the proof of Claim 2.

Claim 3. For each i ∈ [a− 1] and j ∈ [b− 1], if there is no interior vertex between ui and
ui+1 and no interior vertex between vj and vj+1. Then, either N (P4, G) = 2n2 − 7n + 2 or
there exists a degree 2 vertex, say z, such that the number of 3-paths containing z is at most
4n− 10.

Proof. Notice that both a and b are at least 1. We distinguish two cases to finish the proof
of the claim.

1. Either a = 1 or b = 1. Without loss of generality assume that b = 1. In this case
ua = v1 and by Claim 1 u is adjacent to every vertices in G and we exactly get the
maximal outerplanar graph shown in Figure 1 and hence N (P4, G) = 2n2 − 7n+ 2.

2. a, b ≥ 2. Now consider the degree 2 vertex u1 and the two adjacent vertices u2 and u.
Next we interchange the roles of x with u1, u with u2 and v with u and check what
happens to our previous computation with this choice of degree 2 vertex u1. Since v
is adjacent to ua, u can not be adjacent with any interior vertices between v and ua
in clockwise direction. Clearly the vertex v1 is an interior vertex between v and ua in
clockwise direction. Thus, by Claim 1, the number of 3-paths containing the vertex u1
is at most 4n− 10.
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This completes the proof of Claim 3.

Considering Claims 1, 2 and 3, the only case that G contains 2n2 − 7n + 2 number of
3-paths is when a = 1 and v is adjacent to every vertex of G or b = 1 and u is adjacent to
every vertex of G. Otherwise, there exists a vertex of degree 2, say v, such that the number
of 3-paths containing v is at most 4n−10. Hence, by deleting v and the induction hypothesis
we get

N (P4, G) ≤ N (P4, G− v) + 4n− 10 ≤ 2(n− 1)2 − 7(n− 1) + 2 + (4n− 10) = 2n2 − 7n+ 1

< 2n2 − 7n+ 2.

Notice that in both cases when G contains 2n2 − 7n + 2, the graph we get is isomorphic to
K1 + Pn−1 which is shown in Figure 1.

To complete proof of the theorem we need to start of the induction step when n = 7.

Claim 4. fOP(7, P4) = 51 = 2n2 − 7n+ 2.

Proof. Let G be a 7-vertex maximal outerplanar graph. It can be checked that there are

N (P4, G) = 51 N (P4, G) = 51 N (P4, G) = 48 N (P4, G) = 46

Figure 5: All 7-vertex maximal outerplanar graphs.

only four, 7-vertex maximal outerplanar graphs, see the lists with their number of 3-paths.
There are 2 graphs attaining the upper bound. This completes the proof of Claim 4.

This completes the proof of Theorem 3.

3 Generalized outerplanar Turán number of the P5

proof of Theorem 4. The following construction verifies the lower bound.

Definition 2. Let n be an even positive integer and Cn = (v1, v2, . . . , vn) be an n-vertex
cycle. An n-vertex maximal outerplanar graph Gn(see Figure 6) is defined as follows:

1. Cn is the outer cycle of Gn,

9



vn

vn
2
+1

v2

v3

vn
2
−2

vn−1

v1

vn
2

Figure 6: An n-vertex maximal outerplanar graph Gn.

2.

E(Gn) =E(Cn) ∪
{
{v1, vi} : i ∈ {n

2
,
n

2
+ 1, . . . , n}

}
∪
{
{v1, vi} : i ∈ {3, 5, . . . , n

2
− 2}

}
∪
{
{vi, vi+2} : i ∈ {3, 5, . . . , n

2
− 2}

}
Lemma 4. N (P5, Gn) ≈ 17

4
n2. In other words,

lim
n−→∞

N (P5, Gn)(
17
4
n2
) = 1.

Proof. It is easy to check that the number of P5’s of the form (u1, u2, u3, u4, u5), where
ui ∈ V (Gn) (i ∈ [5]) and uj 6= v1 (for all j ∈ {2, 3, 4}) is linear.

Now we count the number of P5’s containing v1 as an interior vertex. We call such a
P5 as a symmetric P5 if v1 is a middle vertex (see Figure 7, left). Otherwise, we call the
P5 as asymmetric P5 (see Figure 7, right). Denote these two vertices adjacent to v1 in the
symmetric P5 as x1 and x2. Moreover, denote the asymmetric P5 as (x1, v1, x2, x3, x4).

Denote S1 = {v2, v3, . . . , vn
2
−1}, S2 = {vn

2
+1, vn

2
+2, . . . , vn−1}. Next we count the num-

ber of symmetric and asymmetric P5’s containing v1 as an interior vertex considering the
positions of x1 and x2.

10



v1

x1 x2

v1

x1 x2 x3 x4

Figure 7: Structure of P5’s containing v1 as an interior vertex.

1. Both x1 and x2 are in S1.

• Symmetric P5’s. Since the degree of x1 and x2 are 5, the number of such P5’s is
roughly 4× 4×

(n
4
2

)
= n2

2
.

• Asymmetric P5’s. It can be checked that the number of 2-paths of the form
(x2, x3, x4) is 8. Since we have two options of doing that, the number of such P5’s
is roughly 2× 8×

(n
4
2

)
= n2

2
.

2. Both x1 and x2 are in S2.

• Symmetric P5’s. Since the degree of x1 and x2 is 3, the number of such P5’s is
roughly 2× 2×

(n
2
2

)
= n2

2
.

• Asymmetric P5’s. Clearly the number of 2-paths of the form (x2, x3, x4) is 2.
Since we have two options of doing that, the number of such P5’s is roughly
2× 2×

(n
2
2

)
= n2

2
.

3. x1 ∈ S1 and x2 ∈ S2 or vice versa.

• Symmetric P5’s. Without loss of generality, we assume that x1 ∈ S1 and x2 ∈ S2.
Hence, the degree of x1 and x2 are respectively 3 and 5. Thus, the number of
symmetric P5’s is roughly 2× 4× n

2
× n

4
= n2.

• Asymmetric P5’s. For the case when x2 is in S1, the number of 2-paths of the form
(x2, x3, x4) is 8. Thus the number of such asymmetric P5’s is roughly 8×n

2
×n

4
= n2.

On the other hand for the case that x2 is in S2, the number of such asymmetric
P5’s is 2× n

2
× n

4
= n2

4
.

Therefor, N (P5, Gn) ≈ 17
4
n2. This completes proof of Lemma 4.

The following lemma claims that no mater how these n
4

degree 2 vertices are distributed
in the outer cycle Cn, the maximal outerplanar graph contains roughly 17

4
n2 P5’s.

Lemma 5. Let n be even and G be an n-vertex maximal outerplanar with outer cycle Cn
and let G contains n

4
degree 2 vertices and all the remaining vertices are adjacent to a vertex,

say v ∈ V (Cn). Then

N (P5, G) ≈ 17

4
n2.

11



Proof. Denote vertices which are adjacent to v in counterclockwise direction as v1, v2, . . . , vr.
Obviously r = 3n

4
+ 3. Denote a degree 2 vertex (if exist) between vi and vi+1 in the

counterclockwise direction by v1i . Notice that in such case {vi, vi+1} ∈ E(G).
Next we count the number of P5’s containing v (but not as a terminal vertex). Precisely

speaking we count the number of symmetric and asymmetric P5’s shown in Figure 8.

v v

Figure 8: P5’s containing v as an interior vertex.

• Asymmetric P5’s. Here we count in how many ways each edge, which is different from
{v, vi} i ∈ [k], is contained in an asymmetric P5 as terminal edge (the red edge which
is shown in Figure 8, right).

For an edge {vi, vi+1}, it can be checked that it is contained in two possibilities for each
other vertex vj /∈ {vi−1, vi, vi+1, vi+2}. Indeed, (vj, v, vi−1, vi, vi+1) and (vj, v, vi+2, vi+1, vi).
The number of such edges is roughly 2n− 3n

4
− 2× n

4
= 3n

4
. This implies, the number

of P5’s containing the edges {vi, vi+1} as terminal edge is 3n
4
× 2× 3n

4
= 9n2

8
.

Let v1i be a degree 2 vertex between vi and vi+1. Now we count in how many ways
the edge {vi, v1i } is possibly contained in an asymmetric P5 as a terminal edge. In
this case for each vj /∈ {vi−1, vi, vi+1}, it can be checked that the edge {vi, v1i } is
contained in three such P5’s. Indeed, the paths are (vj, v, vi−1, vi, v

1
i ), (vj, v, vi+1, v

1
i , vi)

and (vj, v, vi+1, vi, v
1
i ). Notice that the same property hold for the edge {v1i , vi+1}.

Clearly the number of such edges id 2 × n
4
. Therefore, the number of P5’s containing

the edge {vj, u}, where u is a degree two vertex, as a terminal edge is 3n
4
×3× n

2
= 9n2

8
.

• Symmetric P5’s. Here P5 is of the form shown in Figure 8(left). In counting such
P5’s we consider three possibilities considering the two terminal red edges. Let the red
edges are of the form {vi, vi+1} and {vj, vj+1}. In this case we have there are four P5’s
of such a form. Indeed the paths are (vi+1, vi, v, vj+1, vj), (vi+1, vi, v, vj, vj+1),

(vi, vi+1, v, vj+1, vj) and (vi, vi+1, v, vj, vj+1). Notice that we have roughly
( 3n

4
2

)
such

pairs of edges. Therefore the number of symmetric P5’s such that the terminal red

edges are both in {vi, vi+1} is roughly 4×
( 3n

4
2

)
≈ 9n2

8
.

It is easy to check that number of symmetric P5 such that both terminal red edges are
in {u, vi}, where u is a degree two vertex, is only one. Roughly such pair of edges is(n

2
2

)
≈ n2

8
.

Finally we count the the number of symmetric P5’s such that one terminal red edge
is of the form {vi, vi+1} and the other terminal red edge is of the form {vj, v1j}. Here
it can be checked that the number of such P5’s is two, namely, (vi, vi+1, v, vj, v

1
j ) and

12



(vi+1, vi, v, vj, v
1
j ). Clearly the number of such pair of edges is roughly 3n

3
× n

2
= 3n2

8
.

Thus, the number of P5’s of such kind is roughly 2× 3n2

8
= 6n2

8
.

Therefor, adding all the symmetric and asymmetric P5’s we have,

N (P5, G) ≈ 9n2

8
+

9n2

8
+

9n2

8
+
n2

8
+

6n2

8
=

17

4
n2.

This completes proof of Lemma 5.

We need the following lemmas to complete the proof of Theorem 4.

Lemma 6. Let T be an n-vertex tree with ∆(T ) ≤ 3. Then there is an edge e ∈ E(T ) such
that both components of T − e have at least n−1

3
vertices.

Proof. We may assume that ∆(T ) ≥ 2. Let k be the number of degree 3 vertices in T .
Clearly the lemma holds when k = 0. Indeed, if k = 0, then T is a path. We can take an
edge e which is incident to a center vertex of T so that both components of T − e have at
least n−1

2
> n−1

3
vertices.

Next we apply induction on the number of degree 3 vertices in T . Let k ≥ 1, v be a
degree 3 vertex in T and N(v) = {v1, v2, v3}. For i ∈ [3], denote the maximal sub-tree of T
containing the vertex vi but not v by Ti. Let v(Ti) = ni, i ∈ [3]. Clearly either n1 or n2 or
n3 is at least n−1

3
. Without loss of generality assume that n1 ≥ n−1

3
. If n2 + n3 ≥ n−1

3
, we

are done with the choice of e = {v, v1}.
Let n2 + n3 < n−1

3
. Consider the tree T ′ which is obtained from T by deleting the

vertices in T2 and T3 and identifying the vertex v and a terminal vertex (say r1) of an
(n2 + n3 + 1)-vertex path (r1, r2, . . . , rn2+n3+1). Obviously, v(T ′) = n and the number of
degree-3 vertices in T ′ is less than k. So by induction, there is an edge e ∈ E(T ′) such that
both components T ′ − e has at least n−1

3
vertices. For clear reason e can not be an edge of

the path (v1, v, r2, . . . , rn2+n3+1). In other words, e ∈ E(T1). Therefore with the choice of
edge e, both components of T − e has at least n−1

3
vertices.

This completes the proof of Lemma 6.

Definition 3. Let G be a maximal outerplanar graph and C be its outer cycle. An edge
{x, y} ∈ E(G) is called a chord if x and y are two nonconsecutive vertices of C.

Lemma 7. Let G be an n-vertex maximal outerplanar graph. Then there is a chord {x, y} in
G such that the number of interior vertices between x and y in counterclockwise and clockwise
directions are greater than n

3
.

Proof. Let the outer cycle of G be C. Each edge in E(G)\E(C) are contained in two
triangular face. Let T be the dual of G minus the vertex representing the unbounded face.
Clearly T is a tree, with ∆(T ) ≤ 3. Since G contains n− 2 triangles, v(T ) = n− 2.

By Lemma 6, there is an edge e ∈ E(T ) such that T − e results components with at least
n−3
3

vertices. Let the end vertices of e be x and y and e′ be an edge in G which is shared by
the triangular faces represented by x and y respectively in the dual of G. Thus the number
of vertices between the end vertices of e′ in counterclockwise and clockwise directions are at
least n−3

3
+ 2 > n

3
. This completes the proof of Lemma 7.
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Definition 4. Let G be a maximal outerplanar graph. A chord {x, y} in G is called a “nice
chord” if the number of vertices between x and y (including x and y) in counterclockwise and
clockwise direction are at least n

3
.

Definition 5. Let G be a maximal outerplanar graph and {x, y} be a chord in G. Let I1
be a set of interior vertices between x and y in counterclockwise direction and I2 be the set
of interior vertices between x and y in clockwise direction. A path P of length four in G is
called a crossing P5 with respect to {x, y} if P contains a vertex in both I1 and I2.

Notice that every crossing P5 with respect to the chord {x, y} contains either x or y. We
classify the crossing P5’s with respect to {x, y} as follows.

i. A crossing P5 with respect to {x, y} is called Type-I crossing P5 if it contains the
edge {x, y}. Notice that, the edge {x, y} can not be a terminal edge of a crossing P5.
Moreover, such a crossing P5 contains only one vertex in I1 and two vertices in I2 or
vice-versa. See Figure 9.

y

x

Figure 9: An example of Type-I crossing P5 with respect to {x, y}.

ii. A crossing P5 with respect to {x, y} is called Type-II crossing P5 if it contains both x
and y, but not the edge {x, y}. Notice that x and y can not be both terminal vertices.
In this case we have two possibilities based on the position of x and y.

• If both x and y are not terminal vertex of the P5, then we call the crossing P5 as
Type-II(A) crossing P5, see Figure 10 (the first two graphs).

y

x

y

x

y

x

y

x

Figure 10: Examples of Type-II crossing P5 with respect to {x, y}.
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• If either x or y is a terminal vertex of the P5, then we call the P5 as Type-II(B)
crossing P5, see Figure 10 (last two graphs).

iii. A crossing P5 with respect to {x, y} is called Type-III crossing P5 if the crossing P5

contains either x or y but not both.

• If the crossing P5 contains two vertices in I1 and two vertices of I2, then we call
the P5 as Type-III(A) crossing P5, see Figure 11(left).

• If the crossing P5 contains only one vertex in I1 or I2, then we call the P5 as
Type-III(B) crossing P5, see Figure 11(right).

y

x

y

x

Figure 11: Examples of Type-III crossing P5 with respect to {x, y}.

Definition 6. Let G be a maximal outerplanar graph and e be a chord in G. Denote the
number of crossing P5’s with respect to e by Ne(P5, G).

Lemma 8. Let G be an n-vertex maximal outerplanar graph and e = {x, y} be a nice chord
in G. Let n1 be the number of interior vertices laying between x and y in counterclockwise
direction and n2 be the number of interior vertices between x and y in clockwise direction.
Then

Ne(P5, G) =
17

2
n1n2 +O(n).

Proof. Let C be the outer cycle of G and I1 and I2 be the set of interior vertices between
x and y in counterclockwise and clockwise direction respectively. Let x be adjacent with
s1 vertices in I1 and the vertices in counterclockwise direction be x̃1, x̃2, . . . , x̃s1 . Let y
be adjacent with t1 vertices in I1 and the vertices in clockwise direction be ỹ1, ỹ2, . . . , ỹt1 .
Obviously ỹt1 and x̃s1 are identical vertices. Similarly let x and y be adjacent with p1 and q1
number of vertices in I2 respectively. Let the vertices which are adjacent to x in clockwise
direction and adjacent to y in counterclockwise direction respectively be x̂1, x̂2, . . . , x̂p1 and
ŷ1, ŷ2, . . . , ŷq1 . Obviously, x̂p1 and ŷq1 are identical vertices. The remaining vertices of G are
labeled as follows.

• Label the interior vertices in clockwise direction (if any) between x̂i and x̂i+1 by
x̂1i , x̂

2
i , . . . x̂

ni
i , i ∈ [p1 − 1].
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• Label the interior vertices between ŷj and ŷj+1 in counterclockwise direction (if any)
by ŷ1j , ŷ

2
j , . . . , ŷ

nj

j , j ∈ [q1 − 1].

• Label the interior vertices in counterclockwise direction (if any) between x̃k and x̃k+1

by x̃1k, x̃
2
k, . . . , x̃

nk
k , k ∈ [s1 − 1].

• Label the interior vertices in clockwise direction (if any) between ỹ` and ỹ`+1 by
ỹ1` , ỹ

2
` , . . . , ỹ

n`
` , ` ∈ [t1 − 1].

Since each face (except the unbounded face) of G are triangular, for each i ∈ [p1− 1], j ∈
[q1−1], k ∈ [s1−1] and ` ∈ [t1−1], the edges {x̂i, x̂i+1}, {ŷj, ŷj+1}, {x̃k, x̃k+1} and {ỹ`, ỹ`+1}
are in G. The following claim is important to finish proof of the lemma.

Claim 5. If a maximal outerplanar graph H has the property that either there is no or
only one interior vertex between each pair (x̃k, x̃k+1) counterclockwise direction, (ỹ`, ỹ`+1)
clockwise direction, (x̂i, x̂i+1) clockwise direction and (ŷj, ŷj+1) counterclockwise direction,
where i ∈ [p1 − 1], j ∈ [q1 − 1], k ∈ [s1 − 1] and ` ∈ [t1 − 1], then

Ne(P5, H) =
17

2
n1n2 +O(n).

Proof. Let the set of interior vertices between x and x̃s1 in counter clockwise direction be
S. Denote the size of S with s and the number of degree 2 vertices in S by s0. Denote
the set of vertices between y and ỹt1 in clockwise direction by T . Denote the size of T and
degree 2 vertices in T by t and t0 respectively. Denote the set of vertices between x and x̂p1
in clockwise direction by P . Moreover denote the size of P and degree 2 vertices in P by p
and p0 respectively. Finally, denote the set of vertices between y and ŷq1 in counterclockwise
direction by Q. Moreover denote the size of Q and degree 2 vertices in Q by q and q0
respectively.

Obviously s = s0 + s1, t = t0 + t1, p = p0 + p1 and q = q0 + q1. Moreover, n1 = s+ t− 1
and n2 = p+ q − 1. Next we count the number of crossing P5’s with respect to the chord e,
and we do this type-wise.

1. Type-I crossing P5’s with respect to e: First we count the number of crossing P5’s of
the form (x̃k, x, y, ŷj, v). It can be checked that for a vertex v ∈ Q, the number of
cherries with terminal vertices y and v is at most 2. So, the number of Type-I crossing
P5’s of the form (x̃k, x, y, ŷj, v) is at most 2s1q. Considering the other possibilities, the
number of Type-I crossing P5’s is at most 2(s1q + q1s + t1p + p1t), which is at most
4sq + 4tp.

2. Type-II(A) crossing P5’s with respect to e: It can be checked that the number of Type-
II(A) crossing P5’s with respect to e is at most s1t1 + p1q1 + 2(s1q1 + t1p1), which is at
most st+ pq + 2(sq + tp).

3. Type-II(B) crossing P5’s with respect to e: We ignore this kind of crossing P5’s as the
number is linear.
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4. Type-III(A) crossing P5’s with respect to e: First we count number of crossing P5’s
of the form (v1, x̃k, x, x̂i, v1). Clearly for a vertex v1 ∈ S the number of cherries with
terminal vertices v1 and x is at most 2. Moreover, for a vertex v2 ∈ P , the number of
cherries with terminal vertices x and v2 is at most 2. Therefore, number of Type-III(A)
crossing P5 of the form (v1, x̃k, x, x̂i, v1) is 4sp. Hence considering the other possibility,
the number of Type-III(A) crossing P5’s in G is 4sp+ 4tq.

5. Type-III(B) crossing P5’s with respect to e: First we count the number of Type-III(B)
crossing P5’s of the form (x̃k, x, x̂i, v1, v2), where k ∈ [s1], i ∈ [p1] and v1, v2 ∈ P .
Considering the structure of G of the claim, the edge {v1, v2} is either {x̂i, x̂i+1} or
{v, x̂i} or {v, x̂i+1}, for some i ∈ [p1 − 1] and v a degree 2 vertex in P . For each edge
{x̂i, x̂i+1}, i ∈ [p1−1], the number of 3-paths of the form (x, h, x̂i, x̂i+1) or (x, h, x̂i+1, x̂i)
is 2, namely (x, x̂i+2, x̂i+1, x̂i) and (x, x̂i−1, x̂i, x̂i+1). Let v ∈ P be a degree 2 vertex
be an interior vertex between x̂i and x̂i+1 in clockwise direction. Notice that we have
p1 number of edges of the form {x̂i, x̂i+1}. Next we count the number of 3-paths
of the form (x, h, x̂i, v) and (x, h, v, x̂i) and similar argument can be given for the
number of 3-paths of the form (x, h, x̂i+1, v) and (x, h, v, x̂i+1). There are only three
3-paths of the form (x, h, x̂i, v) and (x, h, v, x̂i), namely (x, x̂i−1, x̂i, v), (x, x̂i+1, v, x̂i)
and (x, x̂i+1, x̂i, v). Notice that for each degree 2 vertex v ∈ P , we have 2 edges this
kind, namely {v, x̂i} and {v, x̂i+1}.
Thus, the number of 3-paths of the form (x, x̂i, v1, v2) , where i ∈ [p1] and v1, v2 ∈ P
is at most 2p1 + 6p0. Therefore, the number of Type-III(B) crossing P5’s of the form
(x̃k, x, x̂i, v1, v2), where k ∈ [s1], i ∈ [p1] and v1, v2 ∈ P is at most s1(2p1 + 6p0).

With similarly, the number of Type-III(B) crossing P5’s of the form (x̂i, x, x̂k, v1, v2),
where k ∈ [s1], i ∈ [p1] and v1, v2 ∈ S is at most p1(2s1 + 6s0).

Thus taking the sum of the two and p0 = p− p1 and s0 = s− s1 the number of Type-
III(B) crossing P5’s with respect to e and containing x is at most 4s1p1 + 6s1(p− p1) +
6p1(s− s1).
Notice that p1 ∈ [1, p] and s1 ∈ [1, s]. Now define a function g : [1, s] × [1, p] −→ R
as g(s1, p1) := 4s1p1 + 6s1(p − p1) + 6p1(s − s1). It can be checked that g attains
maximum value at the critical point (3

4
s, 3

4
p). Moreover at this point the value of g is

g(3s
4
, 3p

4
) = 9

2
ps. That means the number of Type-III(B) crossing P5’s containing the

vertex x is at most 9ps
2

.

With similar argument, the number of Type-III(B) crossing P5’s containing y is at
most 9

2
tq. Therefore, the number of Type-III(B) crossing P5’s with respect to e is at

most 9
2
ps+ 9

2
tq.

Summing up all the upper bound, the number of crossing P5’s with respect to e is at most
(4sq+ 4tp) + (st+ pq+ 2sq+ 2tp) + (4sp+ 4tq) + (9

2
ps+ 9

2
tq), which is 8.5ps+ 8.5tq+ 6sq+

6tp + st + pq. Considering that q = n1 − p and t = n2 − s, the last expression is equal to
8.5n1n2 + 5sp + n1s + n2q − s2 − p2 − 5

2
n2s − 5

2
n1p. Notice that s ∈ [1, n1] and p ∈ [1, n2].
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Define a function h(s, p) : [1, n1] × [1, n2] −→ R as h(s, p) := 8.5n1n2 + 5sp + n1s + n2q −
s2 − p2 − 5

2
n2s − 5

2
n1p. We treat h as a continuous real valued function in the rectangular

region to find the maximum value of h.
It can be checked that h possesses a critical point (1

2
n1,

1
2
n2). The values of h at the points

(1, 1), (1, n2), (n1, 1), (n1, n2) and (1
2
n1,

1
2
n2) are respectively, f(1, 1) = 17

2
n1n2− 3

2
n1− 3

2
n2+3,

h(1, n2) = 6n1n2 + n2 + 5
2
n2 − 1, h(n1, 1) = n1n2 + n2 + 5

2
n1 − 1, h(n1, n2) = 17

2
n1n2 and

h(1
2
n1,

1
2
n2) = 29

4
n1n2 + 1

4
n2
1 + 1

4
n2
2 = 17

2
n1n2 + 1

4
n2
1 + 1

4
n2
2 − 5

4
n1n2.

To finish our proof we need to show that h(1
2
n1,

1
2
n2) = 17

2
n1n2+O(n). Indeed, remember

that n = n1 + n2 and n
3
≤ n1 ≤ 2

3
n. Define a function f(n1) : [1

3
n, 2

3
n] −→ R as f(n1) =

1
4
n2
1 + 1

4
(n − n1)

2 − 5
4
n1(n − n1). It is easy to check that f attains maximum value when

n1 = n
2
. Moreover the maximum value of f is f(1

2
n) = − 3

16
n2. This completes the proof of

Claim 5.

From Claim 5, without loss of generality we may assume that i∗ ∈ [p1− 1] is the smallest
integer such that there is at least two interior vertices in clockwise direction between x̂i∗ and
x̂i∗+1. Hence, there is no or one interior vertex in clockwise direction between x̂i and x̂i+1,
for each i ∈ [i∗ − 1]. Notice that {x̂i∗ , x̂i∗+1} is an edge in G.

Let I∗ be the set of interior vertices between x̂1i∗ and x̂i∗+1(clockwise direction) which are
adjacent to x̂i∗ . Denote I = I∗ ∪ {x̂i∗+1}.

Let G′ be the maximal outerplanar graph obtained from G with three consecutive oper-
ations. Call the operations collectively as a reduction operation.

1. Delete the edges {x̂i∗ , w}, for each w ∈ I.

2. Add the edges {x̂1i∗ , w}, for each w ∈ I. Where x̂1i∗ is the first interior vertex in
clockwise direction between x̂i∗ and x̂i∗+1. Notice that there is exactly one vertex in I
which is adjacent to x̂1i∗ . Denote the vertex by w∗. Notice that w∗ can be x̂i∗+1.

3. Delete the multiple edge which results from procedure (2) and finally add the edge
{x, x̂1i∗}.

We complete our proof by showing the following important claim.

Claim 6. Ne(P5, G) ≤ Ne(P5, G
′).

Proof. It is enough to show that for each crossing P5’s with respect to e containing the edges
{x̂i∗ , w} in G, where w ∈ I, we correspondingly find a unique crossing P5’s with respect to
e in G′ but not in G. We distinguish two cases considering the position of i∗.

Case 1: i∗ 6= p1 − 1.

• Type-I crossing P5’s in G containing the edges {x̂i∗ , w}: Type-I crossing P5’s in G
containing {x̂i∗ , w} are either (ỹ`, y, x, x̂i∗ , w) or (ỹ`, y, x, x̂i∗+1, x̂i∗), ` ∈ [t1].

For (ỹ`, y, x, x̂i∗ , w), we take the crossing P5’s in G′ of the form (ỹ`, y, x, x̂
1
i∗ , w).
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We consider two cases concerning the crossing P5’s of the form (ỹ`, y, x, x̂i∗+1, x̂i∗) in
G. If w∗ = x̂i∗+1, we take the replacement crossing P5 (ỹ`, y, x, x̂

1
i∗ , x̂i∗). If w∗ 6= x̂i∗+1,

we take the replacing crossing P5 (ỹ`, y, x, x̂i∗+1, x̂
1
i∗).

• Type-II(A) crossing P5’s in G containing the edges {x̂i∗ , w}: It can be seen that there
is no Type-II(A) crossing P5’s in G containing the edges {x̂i∗ , w}.

• Type-II(B) crossing P5’s in G containing the edges {x̂i∗ , w}: In this case the only
crossing P5’s are of the form (y, x̃s1 , x, x̂i∗ , w) and (y, x̃s1 , x, x̂i∗+1, x̂i∗).

For the former crossing P5’s we can take the replacing crossing P5’s of the form
(y, x̃s1 , x, x̂

1
i∗ , w). For the later case we consider two cases. If w∗ = x̂i∗+1, then we

take the replacing crossing P5 (y, x̃s1 , x, x̂
1
i∗ , x̂i∗). If w∗ 6= x̂i∗+1, we take the crossing

P5 of the form (y, x̃s1 , x, x̂i∗+1, x̂
1
i∗).

• Type-III(A) crossing P5’s in G containing the edges {x̂i∗ , w}: The crossing P5’s are
of the form (z, x̃k, x, x̂i∗ , w) and (z, x̃k, x, x̂i∗+1, x̂i∗), k ∈ [s1] and z (6= y) is a vertex
adjacent to x̂k.

For the former case we take the crossing P5’s in G′ of the form (z, x̃k, x, x̂
1
i∗ , w). For

the latter case we consider two cases. If w∗ = x̂i∗+1, we take the replacing crossing
P5, (z, x̃k, x, x̂

1
i∗ , x̂i∗). If w∗ 6= x̂i∗+1, we take replacement crossing P5 of the form

(z, x̃k, x, x̂i∗+1, x̂
1
i∗).

• Type-III(B) crossing P5’s in G containing the edges {x̂i∗ , w}: In this case we distinguish
two cases.

Case 1.1: i∗ 6= p1 − 2.

The crossing P5’s in G containing {x̂i∗ , w} and their respective replacement crossing
P5’s in G′ are considered below.

1. For crossing P5’s of the form (x̃k, x, x̂i∗−1, x̂i∗ , w), where k ∈ [s1] and w 6= w∗, we
take the replacement (x̃k, x, x̂i∗ , x̂

1
i∗ , w). Notice that when w = w∗, {x̂1i∗ , w∗} is

already an edge in G. In this case we replace the crossing P5 (x̃k, x, x̂i∗−1, x̂i∗ , w
∗)

with (x̃k, x, x̂
1
i∗ , x̂

2
i∗ , x̂

3
i∗). Recall that there are at least two interior vertices between

x̂i∗ and x̂i∗+1 in clockwise direction. If there are exactly two interior vertices,
x̂3i∗ = x̂i∗+1.

2. For crossing P5’s of the form (x̃k, x, x̂i∗ , w, u), where k ∈ [s1] and u is a vertex
adjacent to w and u 6= x̂1i∗ , we replace it with by (x̃k, x, x̂

1
i∗ , w, u). For the cross-

ing P5’s of the form (x̃k, x, x̂i∗ , w
∗, x̂1i∗), we replace it by (z1, z2, x̃k, x, x̂

1
i∗), where

(z1, z2, x̃k) is a 2-path with respect to vertex alignment in the outer cycle of G in
clockwise direction.
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3. For the crossing P5’s of the form (x̃k, x, x̂i∗+1, x̂i∗ , u), where k ∈ [s1] and u is a
vertex adjacent to x̂i∗ . We may consider two cases.

If w∗ = x̂i∗+1, the only crossing P5’s of the stated form are (x̃k, x, x̂i∗+1, x̂i∗ , x̂
1
i∗),

(x̃k, x, x̂i∗+1, x̂i∗ , x̂i∗−1) and (x̃k, x, x̂i∗+1, x̂i∗ , x̂
1
i∗−1). The last crossing P5 may or

may not exist, it depends with the existence of the vertex x̂1i∗−1. The respective
replacement crossing P5’s we take are (z2, x̃k, x, x̂

1
i∗ , x̂

2
i∗), (x̃k, x, x̂

1
i∗ , x̂i∗ ,

x̂i∗−1) and (x̃k, x, x̂
1
i∗ , x̂i∗ , x̂

1
i∗−1), where z2 is the vertex as defined in(2).

On the other hand, for the case that w∗ 6= rxi∗+1, the crossing P5’s of the
stated form are (x̃k, x, x̂i∗+1, x̂i∗ , w), (x̃k, x, x̂i∗+1, x̂i∗ , x̂

1
i∗), (x̃k, x, x̂i∗+1, x̂i∗ , x̂i∗−1)

and (x̃k, x, x̂i∗+1, x̂i∗ , x̂
1
i∗−1). The last crossing P5 may or may not exist. In this

case we take the the replacement crossing P5’s, (x̃k, x, x̂i∗+1, x̂
1
i∗ , w), (x̃k, x, x̂i∗+1,

x̂1i∗ , x̂i∗), (x̃k, x, x̂
1
i∗ , x̂i∗ , x̂i∗−1) and (x̃k, x, x̂

1
i∗ , x̂i∗ , x̂

1
i∗−1) respectively.

4. For the case that w∗ 6= x̂i∗+1, we have a crossing P5 of the form (x̃k, x, x̂i∗+1, f,
x̂i∗), where f is the second from the last x̂i∗+1 in I such that {x̂i∗ , f} is an
edge in G. In this case we take replacement crossing P5 (z3, z4, x̃k, x, x̂

1
i∗). where

(z3, z4, x̃k) is a 2-path with respect to vertex alignment in the outer cycle of the
G in counterclockwise direction.

5. For the crossing P5 of the form (x̃k, x, x̂i∗+2, x̂i∗+1, x̂i∗). We distinguish two cases.
If w∗ = x̂i∗+1, then we take the replacement crossing P5 (z4, x̃k, x, x̂

1
i∗ , x̂

2
i∗). If

w∗ 6= x̂i∗+1, we take the replacement crossing P5 (x̃k, x, x̂i∗+2, x̂i∗+1, x̂
1
i∗).

Case 1.2: i∗ = p1 − 2.

Apart from the crossing P5’s considered above, the crossing P5’s which is not con-
sidered yet are Type-III(B) crossing P5 of the form (ỹ`, y, x̂p1 , x̂p1−1, x̂p1−2), where
` ∈ [t1]. Here we distinguish two cases. If w∗ = x̂p1−1, we take the replacing
crossing P5, (ỹ`, y, x, x̂

1
p1−2, x̂p1−2). If w∗ 6= x̂p1−1, we take the replacing crossing P5

(ỹ`, y, x̂p1 , x̂p1−1, x̂
1
p1−2).

Case 2: i∗ = p1 − 1.

For completeness we consider crossing P5’s of each type containing the edges {x̂p1−1, w},
where w ∈ I.

• Type-I crossing P5’s in G containing the edges {x̂p1−1, w}: Apart from crossing Type-I
crossing P5’s considered in Case 1, the Type-I crossing P5 which is not considered in
this case is (x̃k, x, y, x̂p1 , x̂p1−1). We consider two cases. If w∗ = x̂p1 , then we take
the replacement crossing P5’s (z4, x̂k, x, x̂

1
p1−1, x̂

2
p1−1), where the z4 is the vertex whose

definition is given in Case 1.1 (4). If w∗ 6= x̂p1 , we take the replacement crossing P5 of
the form (x̃k, x, y, x̂p1 , x̂

1
p1−1).

• Type-II(A) crossing P5’s in G containing the edges {x̂p1−1, w}: It can be seen that
there is no Type-II(A) crossing P5’s in G containing the edges {x̂p1−1, w}.
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• Type-II(B) crossing P5’s in G containing the edges {x̂p1−1, w}: The crossing P5’s of
this kind which are not yet considered are (x̃k, x, x̂p1−1, x̂p1 , y) and (ỹt, y, x̂p1 , x̂p1−1, x),
where k ∈ [s1] and ` ∈ [t1]. In this case we take the replacement crossing P5’s of the
form (x̃k, x, x̂

1
p1−1, x̂p1 , y) and (ỹt, y, x̂p1 , x̂

1
p1
, x) respectively.

• Type-III(A) crossing P5’s in G containing the edges {x̂p1−1, w}: Apart from the crossing
P5’s of Type III(A) stated in Case 1, the following are the new Type-III(A) crossing
P5’s which are not yet considered. These are (v, ỹ`, y, x̂p1 , x̂p1−1), where ` ∈ [t1]. We
consider two cases. If w∗ = x̂p1 , we take the replacement crossing P5 of the form
(v, ỹ`, y, x, x̂

1
p1−1). If w∗ 6= x̂p1 , we take the replacement crossing P5’s of the form

(v, ỹ`, y, x̂p1 , x̂
1
p1−1).

• Type-III(B) crossing P5’s in G containing the edges {rxp1−1, w}: In this case we do not
have crossing P5’s which are stated in Case 1.1(5). However we have new Type-III(B)
crossing P5’s. The following are these crossing P5’s and their respective replacements.

1. Consider the crossing P5’s of the form (ỹ`, y, x̂p1 , x̂p1−1, u). We distinguish two
cases. If w∗ = x̂p1 , then there are only three crossing P5’s of such kind. These are
(ỹ`, y, x̂p1 , x̂p1−1, x̂

1
p1−1), (ỹ`, y, x̂p1 , x̂p1−1, x̂p1−2) and (ỹ`, y, x̂p1 , x̂p1−1, x̂

1
p1−2). No-

tice that the existence of the last crossing P5 depends on the existence of the ver-
tex x̂1p1−2. We take the following respective replacement crossing P5’s, (u1, ỹ`, y, x,
x̂1p1−1), (u2, ỹ`, y, x, x̂

1
p1−1) and (ỹ`, y, x, x̂

1
p1−1, x̂

2
p1−1) respectively. It can be seen

that non of these crossing P5’s is used in any the previous crossing P5’s.

If w∗ = x̂p1 , then the crossing P5’s of such kind are (ỹ`, y, x̂p1 , x̂p1−1, w), (ỹ`, y, x̂p1 ,
x̂p1−1, x̂

1
p1−1), (ỹ`, y, x̂p1 , x̂p1−1, x̂p1−2) and (ỹ`, y, x̂p1 , x̂p1−1, x̂

1
p1−2). In this case we

take the replacement crossing P5’s of the form (ỹ`, y, x̂p1 , x̂
1
p1−1, w), (ỹ`, y, x̂p1 , x̂p1−1,

x̂p1−1) (u1, ỹ`, y, x, x̂
1
p1−1) and (u2, ỹ`, y, x, x̂

1
p1−1).

2. For the case that w∗ 6= x̂p1 , we have a crossing P5’s of the form (ỹ`, y, x̂p1 , f,
x̂p1−1), where f is second vertex from the last x̂p1 in I. In this case we take the
replacement crossing P5 of the form (ỹ`, y, x̃s1 , x, x̂

1
p1−1).

3. Consider the crossing P5’s of the form (ỹ`, y, ŷq1−1, x̂p1 , x̂p1−1). In this case we take
the replacement (ỹ`, y, x̂p1 , x, x̂

1
p1−1).

Therefore the number of crossing P5’s with respect to e in G is at most the number of
crossing P5’s with respect to e in G′. This completes the proof of Claim 6.

From Claim 6, we can proceed with the reduction operation procedure for each neighbours
of x and y in I1 and I2 till we reach on the situation that, for each i ∈ [p1−1], j ∈ [q1−1], k ∈
[s1−1] and ` ∈ [t1−1], there is no interior or one interior vertex between the pairs (x̃k, x̃k+1)
in counterclockwise direction, (ỹ`, ỹ`+1) in clockwise direction, (x̂i, x̂i+1) in clockwise direction
and (ŷj, ŷj+1) counterclockwise direction.
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Let the resulting graph at the end of a sequence of reduction operations be H. Thus
Ne(P5, G) ≤ Ne(P5, H). But by Claim 5, Ne(P5, H) = 17

2
n1n2 +O(n). Therefore,

Ne(P5, G) =
17

2
n1n2 +O(n).

This completes the proof of Lemma 8.

Next we finish the proof of Theorem 4. Let the graph induced by I1∪{x, y} and I2∪{x, y}
be G1 and G2 respectively. Since e is a nice chord, by induction N (P5, G1) = 17

4
n2
1 + O(n)

and N (P5, G2) = 17
4
n2
2 +O(n). From Lemma 8, Ne(P5, G) = 17

2
n1n2 +O(n).

Therefore,

N (P5, G) = N (P5, G1) +N (P5, G2) +Ne(P5, G)

=
17

4
n2
1 +O(n) +

17

4
n2
2 +O(n) +

17

2
n1n2 +O(n)

=
17

4
(n1 + n2)

2 +O(n)

=
17

4
n2 +O(n).

This completes the proof of Theorem 4.

4 Concluding remarks and conjectures

Considering the complexity of the proof we have for a best asymptotic value of fOP(n, P5),
it might be not easy to determine a best asymptotic value of the generalized outerplanar
Turán number of short paths. We pose the following conjecture related to the generalized
outerplanar Turán number of the P6.

Conjecture 1. fOP(n, P6) = 11n2 + Θ(n).

The following construction of an n-vertex maximal outerplanar graph Gn verifies the
lower bound is attainable. Gn contains n

2
degree-2 vertices and all the remaining n

2
− 1

vertices are adjacent to a vertex, say v, in Gn (see Figure 12). It can be checked that
N (P6, Gn) = 11n2 + Ω(n).
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v

Figure 12: A maximal outerplanar graph Gn containing roughly 11n2 P6’s.
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[8] A. Grzesik, E. Győri, A. Paulos, N. Salia, C. Tompkins and O. Zamora. The maximum
number of paths of length three in a planar graph. Journal of Graph Theory, (2022).
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