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Abstract

A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for
every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood.
As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar

Graphs with Respect to Neighborhoods, arXiv preprint], the minimum number of colors in
any such proper coloring of graph G is the PCF chromatic number of G, denoted χpcf(G).
In this paper, we determine the value of this graph parameter for several basic graph
classes including trees, cycles, hypercubes and subdivisions of complete graphs. We also
give upper bounds on χpcf(G) in terms of other graph parameters. In particular, we show
that χpcf(G) ≤ 5∆(G)/2 and characterize equality. Several sufficient conditions for PCF
k-colorability of graphs are established for 4 ≤ k ≤ 6. The paper concludes with few open
problems.

Keywords: conflict-free coloring, proper coloring, neighborhood, PCF chromatic number, pla-
nar graph.

1 Introduction

All considered graphs in this paper are simple, finite and undirected. We follow [2] for all
terminology and notation not defined here. A k-(vertex-)coloring of a graph G is an assignment
ϕ ∶ V (G) → {1, . . . , k}. A coloring ϕ is said to be proper if every color class is an independent
subset of the vertex set of G. A hypergraph H = (V (H),E(H)) is a generalization of a graph, its
(hyper-)edges are subsets of V (H) of arbitrary positive size. There are various notions of (vertex-
)coloring of hypergraphs, which when restricted to graphs coincide with proper graph coloring.
One such notion was introduced by Even at al. [16] (in a geometric setting) in connection with
frequency assignment problems for cellular networks, as follows. A coloring of a hypergraph H
is conflict-free (CF) if for every edge e ∈ E(H) there is a color c that occurs exactly once on the
vertices of e. The CF chromatic number of H is the minimum k for which H admits a CF k-
coloring. For graphs, Cheilaris [7] studied the CF coloring with respect to neighborhoods, that is,
the coloring in which for every non-isolated vertex x there is a color that occurs exactly once in
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the (open) neighborhood N(x), and proved the upper bound 2
√
n for the CF chromatic number

of a graph of order n. For more on not necessarily proper CF colorings see, e.g., [9, 19, 23, 28, 33].
Quite recently, Fabrici et al. [18] initiated a study of proper conflict-free colorings with respect
to neighborhoods while focusing mainly on planar and outerplanar graphs. In fact, combining
the coloring notions of ‘conflict-free’ and ‘proper’ is only natural as the former was initially
introduced (in the hypergraph setting) in order to generalize the latter.

The minimum number of colors in any proper conflict-free coloring (with respect to neigh-
borhoods) of a graph G is the PCF chromatic number of G, denoted χpcf(G). Note that the
obvious inequality χ(G) ≤ χpcf(G) becomes an equality for every complete graph. On the other
hand, the mentioned inequality may also be strict. In fact, the ratio χpcf(G)/χ(G) can acquire
arbitrarily high value. Indeed, consider a non-empty graph G and let S(G) be the complete sub-
division of G, i.e., the graph obtained from G by subdividing every edge in E(G) exactly once.
Then χpcf(S(G)) ≥ χ(G) whereas χ(S(G)) = 2. Consequently, χpcf(S(G))/χ(S(G)) ≥ χ(G)/2.

On the other hand, the ratio χpcf(G)/χ(G) is bounded from above by the CF chromatic
number of G, denoted χcf(G), which is the minimum number of colors in any (not necessarily
proper) conflict-free coloring of G (with respect to neighborhoods). Indeed, in order to show
that χpcf(G) ≤ χcf(G)χ(G) simply take f to be a conflict-free coloring that realizes χcf(G) and
g be a proper coloring the realizes χ(G). Then h = (f, g) is a conflict-free coloring by the first
coordinate and a proper coloring by the second coordinate, and it uses χcf(G)χ(G) colors.

Note in passing a fundamental distinction between the chromatic number and the PCF chro-
matic number. The former graph parameter is monotonic in regard to the ‘subgraph relation’,
that is, if H ⊆ G then χ(H) ≤ χ(G). This nice monotonicity feature does not hold for the PCF
chromatic number in general. For example, C4 is a subgraph of the kite K4 − e, but nevertheless
we have χpcf(C4) = 4 > 3 = χpcf(K4 − e).

We bring this introductory section to an end by mentioning another related and recently
introduced coloring concept for graphs, so-called ‘odd coloring’. The motivation came from
another notion of (vertex-)coloring of hypergraphs, which when restricted to graphs coincides
with proper graph coloring. Namely, as introduced by Cheilaris et al. [8], an odd coloring of
hypergraph H is a coloring such that for every edge e ∈ E(H) there is a color c with an odd
number of vertices of e colored by c. Particular features of the same notion notion (under
the name weak-parity coloring) have been considered by Fabrici and Göring [17] (in regard to
face-hypergraphs of planar graphs) and also by Bunde et al. [3] (in regard to coloring of graphs
with respect to paths, i.e., path-hypergraphs). For various edge colorings of graphs with parity
condition required at the vertices we refer the reader to [1, 30, 21, 25, 26, 31, 32].

As defined in [34], a proper coloring of a graph G is odd if in the open neighborhood N(v)
of every non-isolated vertex v a color appears an odd number of times. The minimum number
of colors in any odd coloring of G is the odd chromatic number of G, denoted χo(G). This
new graph parameter spurred instant interest among graph theorists (see [11, 6, 29, 12, 10, 15]).
Clearly χ(G) ≤ χo(G) ≤ χpcf(G), where the latter inequality comes from the obvious fact that
every proper conflict-free coloring is odd. The following was conjectured in [6].

Conjecture 1.1. If G is a connected graph of maximum degree ∆ ≥ 3, then χo(G) ≤∆ + 1.

By the end of this paper we shall be posing a considerably stronger conjecture. The rest of
the article is organized as follows. The next section provides characterizations of several basic
graph classes in terms of the value of the PCF chromatic number. In Section 3 we discuss PCF
colorability of claw-free and chordal graphs. This is followed by a section on upper bounds
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for χpcf(G) in degree-constrained graphs G. In Section 5 we turn to PCF k-colorability where
4 ≤ k ≤ 6. At the end, we briefly convey some of our thoughts for possible further work on the
subject of proper conflict-free colorings.

2 Basic results

Here we determine the proper conflict-free chromatic number of some basic/simple graph classes
and study the behavior of this graph parameter under certain standard graph constructions.
Since this is a relatively new graph parameters, we believe that some of these observations will
be useful in future study.

2.1 Trees, cycles and cubes

First we characterize trees in terms of the PCF chromatic number.

Observation 1. Let T be a non-trivial tree. Then,

χpcf(T ) =
⎧⎪⎪⎨⎪⎪⎩
2 if T =K2 ;

3 if otherwise ;
(1)

Proof. Observe that if T =K2, then χpcf(T ) = 2. Otherwise, it holds ∆(T ) ≥ 2 and let us look at
a vertex v of degree deg(v) =∆(G). At least three colors must appear in the closed neighborhood
N[v] under any conflict-free proper coloring of T . Thus, if T ≠K2 then χpcf(T ) ≥ 3. To complete
the argument, we show by induction on the number of vertices that every tree admits a conflict-
free proper 3-coloring. Consider a leaf u, and take a PCF 3-coloring of the smaller tree T − u.
Let w be the neighbor of u in T . Then by forbidding at u the color of w and a color with unique
appearance in NT−u(w), the coloring extends a PCF 3-coloring of T .

In regard to cycles, things are quite similar to the case of odd colorings. Namely,

χpcf(Cn) = χo(Cn) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3 if 3 ∣ n ;

4 if 3 ∤ n and n ≠ 5 ;

5 if n = 5 .

(2)

Concerning hypercubes we have the following.

Observation 2. For d ≥ 2, it holds χpcf(Qd) = 4.

Proof. In order to show that four colors always suffice, perceive Qd as comprised of two copies of
Qd−1, call them the ‘left’ and ‘right’ copy, and a perfect matching between them. Color properly
by 1 and 2 the left copy of Qd−1 and color by 3 and 4 the right copy of Qd−1. Obviously, the
obtained 4-coloring is conflict-free and proper.

Let us argue by contradiction that four colors are always required. Suppose there is a PCF
3-coloring of Qd. Say vertex u is colored by 1 and its ‘unique-neighbor color’ is 2. So apart from
a certain neighbor v of u which is of color 2, all the other d−1 neighbors x1, x2, . . . , xd−1 of u are
of color 3. The vertex v has with each xi another common neighbor zi (distinct from u) and in
view of the properness all these zi’s must be of color 1. However, then v has all its neighbors
colored by 1, a contradiction.
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For comparison, the following have been shown in [6] in regard to the odd chromatic number
of cubes.

χo(Qd) =
⎧⎪⎪
⎨
⎪⎪⎩

2 if d is odd ;
4 if d is even .

(3)

2.2 Complexity

The corona of a graph is obtained by attaching a pendant edge to each vertex.

Observation 3. Let H be the corona of a connected graph G. Then χpcf(H) ∈ {χ(G), χ(G)+1},
and for every bipartite graph G it holds χpcf(H) = χ(G) + 1. On the other hand, if G is not
bipartite and ∆(G) ≤ 2χ(G) − 3 then χpcf(H) = χ(G).

Proof. Clearly χpcf(H) ≥ χ(G) since the restriction of any PCF coloring of H to G is proper. As
for χpcf(H) ≤ χ(G)+ 1, simply take a proper coloring of G with colors 1,2, . . . , χ(G) and assign
the color χ(G) + 1 to each leaf of the corona. Let us show that the latter inequality becomes
an equality whenever G is bipartite. If G is empty then χpcf(H) = 2 = χ(G) + 1. Otherwise,
χ(G) = 2 and for any non-isolated vertex v of G the closed neighborhood NH[v] uses at least
three colors.

Consider a graph G such that χ(G) ≥ 3 and χpcf(H) = χ(G) + 1. Take a proper coloring
c of G with colors 1,2, . . . , χ(G). Since c does not extend to a PCF coloring of H with the
same color set, there exists a vertex v ∈ V (G) whose closed neighborhood NG[v] contains all
χ(G) colors, and moreover apart from the color c(v) every other color appears at least twice
in NG(v). For otherwise, either some color is missing from NG[v] in which case simply assign
it to the leaf attached to v, or there are χ(G) − 1 colors in NG(v) and at least one of those
colors appears just once in which case give the leaf of the corona at v another color from the
χ(G) − 1 ≤ 2 colors appearing in NG(v). In particular, we conclude that dG(v) ≥ 2(χ(G) − 1).
Hence if ∆(G) ≤ 2χ(G) − 3 then χpcf(H) = χ(G) indeed.

Remark. The condition ∆(G) ≤ 2χ(G)− 3 cannot be replaced by ∆(G) ≤ 2χ(G)− 2 as soon as
∆(G) ≥ 4. For example, let G = K3 ◻K3. This is a 4-regular 3-colorable graph and under any
proper 3-coloring c of G every vertex v has exactly two neighbors from each color other than
c(v). Hence, for its corona H it holds χpcf(H) = 4 = χ(G) + 1.

Now let us discuss the hardness of PCF colorings.

Observation 4. Determining the PCF chromatic number is NP-hard.

Proof. Let G be a graph of chromatic number at least 3, and consider its corona H . By Obser-
vation 3, it holds χ(G) ≤ χpcf(H) ≤ χ(G)+1. So if we can determine the PCF chromatic number
in polynomial time, let alone if we can determine it for Corona graphs, than we can efficiently
find a proper coloring of G that uses at most χ(G) + 1 colors (induced by the PCF-coloring of
H). However, it has been shown by Khanna at al. [22] that already for 3-colorable graphs it is
NP-hard to find a proper 4-coloring.

In [6], we have shown that the odd chromatic number of a graph is bounded by the sum of
the total domination number and chromatic number. Here we prove an analogous inequality for
the PCF chromatic number.

4



Observation 5. Let G be a connected graph with total domination γt(G). Then

χpcf(G) ≤ γt(G) + χ(G).

Proof. Let D be a total dominating set of G of cardinality γt(G). Color each vertex of D with
distinct color, and the rest V ∖ D by at most χ(G) original colors. Every vertex in G has a
vertex of unique color in D hence this is proper conflict free coloring.

Remark. Observe if G has a vertex v of degree deg(v) = ∣V (G)∣−1 (i.e., a universal dominating
vertex) then χpcf(G) ≤ χ(G) + 2 simply by taking v and a neighbor of v as a total dominating
set.

Remark. The previous remark can be used to give another proof of the NP-hardness of deter-
mining the PCF chromatic number. Namely, let G be an instance for the k-coloring problem.
Let H be obtained from G by adding a new vertex v adjacent to all vertices of G. Clearly
χ(H) = χ(G) + 1. So, we have χ(G) ≤ χpcf(H) ≤ χ(H) + 2 ≤ χ(G) + 3. However the mentioned
paper [22] reveals that it is NP-hard to find a k+⌊k/3⌋−1 coloring for k-colorable graphs. Notice
that for k ≥ 6 it holds k + 3 < k + ⌊k/3⌋ − 1 and is in the range of NP-hard.

2.3 Subdivisions

First we determine the PCF chromatic number of the complete subdivision of a complete graph.
Recall that S(G), the complete subdivision of graph G, is obtained from G by subdividing every
edge in E(G) exactly once. If G =Kn we denote S(G) by SKn.

Observation 6. For n ≥ 3, it holds χpcf(SKn) = n.

Proof. Denote by v1, . . . , vn the vertices of Kn, and denote by ui,j the vertex that subdivides the
edge vivj of the original graph Kn. Observe that:

• SK3 is PCF 3-colorable since SK3 = C6;

• SK4 is PCF 4-colorable as follows: let c(vj) = j for j = 1,2,3,4, and let c(u1,2) = 4,
c(u1,3) = 2, c(u1,4) = 3, c(u2,3) = 1, c(u2,4) = 1, c(u3,4) = 2;

• SK5 is PCF 5-colorable as follows: let c(vj) = j for j = 1,2,3,4,5, and let c(u1,2) = 3,
c(u2,3) = 4, c(u3,4) = 5, c(u4,5) = 1, c(u5,1) = 2, c(u1,3) = 4, c(u1,4) = 5, c(u2,4) = 5,
c(u2,5) = 1, c(u3,5) = 1.

Let n ≥ 6. Color the original vertices of Kn with n colors 1, . . . , n, by assigning the color i to vi.
We extend this to a PCF n-coloring of SKn by considering separately the cases of even and odd
n.

Case 1: n is even. Let M = {v1v2, v3v4, . . . , vn−1vn}. Color the subdividing vertices of degree 2
within the perfect matching M such that u1,2 is colored by n and every other u2j−1,2j is colored
by 1. Now consider an arbitrary 2-vertex uj,k (obtained by subdividing the edge vjvk) which
is not colored yet. Its two adjacent vertices vj and vk forbid for uj,k the colors j, k due to
properness. Forbid also the colors used within M , i.e., the colors 1 and n. Since at most 4

colors are forbidden at the vertex uj,k, a fifth color can be used. Notice that this furnishes a
PCF n-coloring of SKn. Namely, properness is clear. As for the conflict-free part, the color n is
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unique in the neighborhoods of v1 and v2, the color 1 is unique in the neighborhoods of v3, . . . , vn,
and each 2-vertex has distinctly colored neighbors.

Case 2: n is odd. This time let M = {v1v2, v3v4, . . . , vn−2vn−1, vnv1}. Once again we start by
coloring the vertices of degree 2 within the edges of M : u1,2 is colored by n, every other u2j−1,2j

is colored by 1, and u1,n is colored by 2. Repeating the argument from above, we see that at
most 5 colors are forbidden at a subdivision vertex not within M , and a sixth color can be used.
It is readily seen that this furnishes a PCF n-coloring of SKn.

Next we give a bound on the PCF chromatic number of S(G) whenever G has a 1-factor.

Observation 7. Let S(G) be the complete subdivision of a graph G that has a perfect matching.
Then χpcf(S(G)) ≤max{5, χ(G)}. If additionally G is bipartite it holds χpcf(G) ≤ 4, and this is
sharp.

Proof. Color properly the vertices of G in S(G) by using colors 1,2, . . . , χ(G). Color next each
subdividing vertex w of a matching edge uv by always picking a color distinct from c(u) and
c(v). Every not yet colored vertex z is a subdivision vertex of an edge xy not belonging to the
matching. Forbid at z the two colors c(x), c(y), and also forbid the colors of the subdividing
vertices on the two edges in the matching that are incident to x or y. So at most 4 colors are
forbidden at z, and we can use a fifth color. The obtained PCF coloring of S(G) uses at most
max{5, χ(G)} colors. Hence χpcf(S(G)) ≤max{5, χ(G)}.

Assume now G is bipartite with perfect matching M . We construct a PCF 4-coloring of S(G)
as follows. Apply to the vertices of G in S(G) a proper coloring with color set {1,2}. Assign the
color 3 to each subdividing vertex of the matching M and color by 4 the rest of the subdividing
vertices. This is clearly a proper conflict free coloring of S(G). The bound of 4 colors is sharp;
for example it is realized by every Cn with 3 ∤ n since then S(Cn) = C2n has PCF chromatic
number 4.

Observation 8. Suppose H is obtained from G by subdividing once every edge of a spanning
forest F without isolated vertices. Then χpcf(H) ≤ χ(G)+2. Moreover, if F is a perfect matching
then χpcf(H) ≤ χ(G) + 1.
Proof. Consider a spanning forest F (including the possibility of a spanning tree) without isolated
vertices that is subdivided (every edge once). Root the components F1, . . . , Ft at roots v1, . . . , vt
which are all leaves of the respective trees. Apply a proper coloring on all original vertices of G
in H with χ(G) colors.

Consider the subdividing vertices of degree 2. We shall color them by two new colors, say x

and y. In any Fi, assign the color x to the unique neighbor of the root, then assign the color y

to the next level of subdivision vertices, and so on, alternate between x, y up to the end.
Clearly, all subdivision vertices are colored properly and each has its two neighbors of distinct

colors. Every original vertex u is properly colored as all its neighbors have colors distinct from
the color of u. Each u appears in some forest component which was subdivided. If it is the root
of a component then it has a unique neighbor colored by x; otherwise, every original vertex has
a unique color x or y determined by its father in the subdivided spanning component.

If the components of the forest F were isolated edges (namely, if F was a matching) than we
used only one extra color, and χ(G) + 1 colors suffice.

Remark. The obtained bound is sharp: e.g., if we subdivide a spanning tree of K3 we get C5

with χpcf(C5) = 5 while χ(K3) = 3.
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Observation 9. Suppose H is obtained from G by subdivision of a spanning forest without
isolates and possible further edges. Then χpcf(H) ≤max{5, χ(G) + 2}.

Proof. Suppose we subdivide a spanning forest F without isolates vertices and further subdivide
certain edges in E(G)∖E(F ). Color the original vertices of G and the subdivided vertices of F
as in the proof of Observation 8. Uncolored remain the subdivision vertices w, not belonging to
the subdivided forest. Let an arbitrary such w be adjacent to u and v, which are original vertices
of G having distinct colors. Forbid at w the colors of u, v and also forbid the colors x, y. Thus
4 colors are forbidden at z, which leaves free for z a color from max{5, χ(G) + 2} colors.

We shall be giving next sufficient conditions for PCF 5-colorability and 4-colorability, re-
spectively. But before proceeding with that discussion, for the reader’s convenience, we make a
brief digression in order to mention some standard terminology that shall be used. A j-vertex,
j+-vertex, or j−-vertex is a vertex with degree equal to j, at least j, or at most j, respectively.
Given positive integer ℓ, an ℓ-thread in a graph G is a trail of length ℓ+ 1 in G whose ℓ internal
vertices have degree 2 in the full graph G. Note that under this definition, an ℓ-thread contains
two (ℓ − 1)-threads, and the endpoints of a thread may coincide. So, in general, we distinguish
between the notions of a ‘path-thread’ and a ‘cycle-thread’.

Recall that a complete subdivision of a graph G is obtained from G by subdividing every
edge exactly once. More generally, for k ≥ 1 a k-subdivision of G is obtained by subdividing
every edge at least k times. We already know from Observation 6, that a 1-subdivision graph
can have arbitrarily large PCF chromatic number. To put it other words, given a graph G, let
K(G) = {v ∈ V (G) ∶ deg(v) ≥ 3}. If the distance d(u, v) ≥ 2 between all vertices from K(G),
then still χpcf(G) can acquire arbitrarily large values. Contrarily, the PCF chromatic number of
all 2-subdivisions of graphs is bounded, in view of the following.

Observation 10. Let G be a graph such that every two 3+-vertices are at distance at least 3.
Then χpcf(G) ≤ 5.

Proof. Consider a minimal counter-example G. It is a connected graph of order at least 6.
Take a pair of adjacent 2−-vertices, say v and w. By the minimality choice of G, the graph
G′ = G − {v,w} admits a PCF 5-coloring c. We extend c to G by assigning to v and w distinct
colors that are ‘available’ for them in the sense that properness and conflict-freeness of the
coloring are preserved. Noting that v and w can have at most one neighbor each in V (G′), we
forbid at them the colors of those neighbors, denote them v′ and w′. Moreover, at v we forbid
a possible third color which is unique in having single appearance in NG′(v′). Thus there are at
least two colors that are available for v. Similarly, at least two colors are available for w. We
pick distinct colors that are available for v and w, respectively. This gives a PCF 5-coloring of
G as any possible isolated vertex u of G′ has NG(u) ⊆ {v,w}.

Remark. A generalization of Observation 10 is given by Theorem 4.1 in the upcoming section.

One naturally wonders if by increasing the minimum distance between 3+-vertices, a color
can be saved. We ought to be careful here because of the following negative example. Let G

consist of two copies of C5 having one common vertex. Then χpcf(G) = 5, and at the same time
(since ∣K(G)∣ = 1) the distance between any two 3+-vertices is arbitrarily large. Note in passing
that the girth g(G) = 5. On the other hand, by putting constraint on the girth as well, we have
the following positive result for 5-subdivisions.

7



Theorem 2.1. Let G be a graph of girth g ≥ 6 and distance d(u, v) ≥ 6 for every two vertices
u, v ∈K(G). Then χpcf(G) ≤ 4.

Proof. Consider a minimal counter-example G. It is a connected graph of minimum degree
δ(G) = 2. Indeed, for otherwise, there is a 1-vertex u, and by the minimality choice of G, the
graph G−u admits a PCF 4-coloring. But any such coloring readily extends to a PCF 4-coloring
of G by forbidding two colors at u. Also note that K(G) ≠ ∅, for otherwise G is a cycle ≠ C5,
and thus it is PCF 4-colorable (see equation (2)). We construct a bipartite graph H[A,B] whose
A-side is comprised of all vertices in K(G), whereas the side B has a vertex for any maximal
path-thread in G that has an endpoint in K(G). (Such a path may have exactly one endpoint
in K(G) if it is contained in a cycle-thread having only one vertex in K(G).) Connect by an
edge in H every vertex of the B-side to each of its endpoints.

Claim 1. There exists a matching in H that saturates A. Any vertex v of A has degree at least
2; i.e., v is a 2+-vertex of H . Contrarily, any vertex P of B has degree either 1 or 2; hence P

is a 2−-vertex of H . In order to apply Hall Theorem [20] on matchings in bipartite graphs, we
need to verify Hall’s condition for the A-side of H . Letting A∗ ⊆ A, denote by N(A∗) the set
of vertices having a neighbor in A∗. By double-counting the edge set [A∗,N(A∗)] we obtain
the following inequalities regarding its size: 2∣A∗∣ ≤ e(A∗,N(A∗)) ≤ 2∣N(A∗)∣. Consequently,
∣A∗∣ ≤ ∣N(A∗)∣, and we are done.

So we may assign to each vertex v of K(G) a maximal path-thread P (v) with endpoint v

such that v′ ≠ v′′ implies P (v′) ∩ P (v′′) = ∅. Note that any such P (v) is a path on at least six
vertices. We shall use the following auxiliary coloring result.

Claim 2.If Pn ∶ v1v2⋯vn−1vn is a path on n ≥ 5 vertices, then it admits a PCF 4-coloring c such
that c(v1), c(v2), c(vn−1), c(vn) ∈ {1,2,3} and c(v1), c(vn) are preassigned. Upon permutation
of the colors 1,2,3, we may assume that c(v1) = 1 and c(vn) ∈ {1,2}. Consider first the case
of 5 ≤ n ≤ 7. If c(vn) = 1 then take (c(v1), c(v2), . . . , c(vn−1), c(vn)) be equal to: (1,2,4,3,1)
(for n = 5), (1,2,4,3,2,1) (for n = 6), or (1,2,3,4,3,2,1) (for n = 7). Contrarily, if c(vn) = 2
then set (c(v1), c(v2), . . . , c(vn−1), c(vn)) be equal to: (1,2,4,3,2) (for n = 5), (1,2,4,3,1,2)
(for n = 6), or (1,2,3,4,1,3,2) (for n = 7). The case n ≥ 8 is settled inductively. Namely, let
(c(v1), c(v5), . . . , c(vn)) be the already constructed coloring of Pn−3 and set (c(v2), c(v3), c(v4)) =
(3,4,1).

We are ready to construct the desired PCF 4-coloring of G. Start by coloring every P (v), v ∈
K(G) as follows. With enumeration P (v) ∶ vv1v2⋯vn−1vn, color v by 4 and color P (v) − v in
accordance with Claim 2 such that v1 receives the color 1 and vn receives the color 2. Any
other non-colored 2-vertex w lies in a maximal path-thread Q consisting entirely of 2-vertices.
Observing that Q is of order at least 5, color it in accordance with Claim 2 so that its endpoints
are assigned with the color 2. This completes a proper 4-coloring of G. Notice that it is
conflict-free as every 2-vertex has differently colored neighbors, and in the neighborhood of
every 3+-vertex the color 1 has single appearance.

Note in passing that one cannot hope in general for PCF 3-colorability no matter how far
apart are 3+-vertices, how large the girth is, and how large the maximum degree is. For simply
take t copies of some C3k+2, all sharing a common vertex v of degree 2t. To conclude that the
obtained graph is not PCF 3-colorable, we argue by contradiction. By dropping the common
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vertex v, one gets a collection of t disjoint copies of P3k+1. Since we are not using a fourth color,
the first and the last vertex on each path are colored the same. So in N(v) every color occurs
an even number of times, a contradiction.

3 Claw-free graphs and chordal graphs

Graph G is said to satisfy the 1/2-neighborhood condition, if for every vertex v in V (G), it holds
χ([N(v)]) ≥ ⌊deg(v)/2⌋ + 1.

Proposition 3.1. If G satisfies the 1/2-neighborhood condition then χpcf(G) = χ(G).

Proof. Consider a proper coloring of G with χ(G) colors. Let v be an arbitrary vertex from
V (G). Since χ([N(v)]) ≥ ⌊deg(v)/2⌋ + 1, it follows that N(v) contains at least ⌊deg(v)/2⌋ + 1
colors. Hence it is impossible that every color appearing in N(v) appears there at least twice. In
other words, there is a color that appears exactly once, which makes the coloring conflict-free.

Proposition 3.2. Every claw-free graph G with odd degrees has χpcf(G) = χ(G).

Proof. Observe that if v is a vertex in a claw-free graph G then χ([N(v)]) ≥ ⌈deg(v)/2⌉. Thus,
if v is of odd degree k then χ([N(v)]) ≥ ⌊deg(v)/2⌋+1. In particular, if all degrees in G are odd
than G satisfies the 1/2-neighborhood condition and χpcf(G) = χ(G).

Let us add to the discussion regarding the class of claw-free graphs by establishing an upper
bound on the proper conflict-free chromatic number in terms of the maximum vertex degree.

Proposition 3.3. Let G be a claw-free graph of maximum degree ∆. Then

χpcf(G) ≤ 2∆ + 1.

Proof. Consider a minimal counter-example G. Then ∆ ≥ 3. Let u, v be a pair of adjacent
vertices in G, and let G′ = G−{u, v} be of maximum vertex degree ∆′. Since G′ is claw-free and
∆′ ≤∆, it admits a PCF coloring c with color set {1,2, . . . ,2∆ + 1}, by the minimality choice of
G. Our objective is to extend c to a PCF coloring of G with the same color set by assigning to
u and v distinct colors that are ‘available’ in the sense that properness and conflict-freeness are
preserved. Note that this takes care of any possible isolated vertices of G′, which are of degree 1

or 2 in G, as their neighborhoods are subsets of {u, v}. We shall be looking at the neighborhoods
N ′(u) = NG(u)/{v} and N ′(v) = NG(v)/{u}, and distinguish between three cases in regard to
the existence of uniquely appearing colors.

Case 1: In each of N ′(u) and N ′(v) there is a color (not necessarily the same) appearing
exactly once. Forbid at u all colors in c(N ′(u)) and a color with unique appearance in N ′(v).
Additionally, for each w ∈ N ′(u) that has a unique color with single appearance in NG′(w),
forbid that color at u. Therefore, in total we are forbidding at most 2∆ − 1 colors, which leaves
at least two colors that are available for u. By symmetry, there are also at least two available
colors for v. We pick two distinct colors that are available for u and v, respectively, and we are
done.

Case 2: In either N ′(u) or N ′(v), but not both, there is a color that appears exactly once. By
symmetry, assume this happens in N ′(u). Thus, for any color α ∈ c(N ′(v)) there are x, y ∈ N ′(v)
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such that c(x) = c(y) = α. The properness of c implies that x and y are non-adjacent. Therefore,
since the edge set of G[{u, v, x, y}] already contains the edges uv, vx, vy, the fact that G is claw-
free assures u is adjacent to at least one of the vertices x, y. Consequently, α ∈ c(N ′(u)). From
the arbitrariness of α it follows that c(N ′(v)) ⊆ c(N ′(u)). Let us extend c to G. Forbid at u

all colors in c(N ′(u)) ∪ c(N ′(v)) = c(N ′(u)). Similarly to before, for each w ∈ N ′(u) that has a
unique color with single appearance in NG′(w), forbid that color at u. So, we are forbidding at
most 2∆−2 colors, which leaves at least three colors that are available for u. Turning to v, forbid
all colors in c(N ′(v)) and a color with unique appearance in N ′(u). Also, for each w ∈ N ′(v)
that has a unique color with single appearance in NG′(w), forbid that color at v. Therefore, we
are forbidding at most (3∆ − 1)/2 colors, which leaves at least (∆ + 3)/2 colors available for v;
hence at least three colors are available for v. Assign to u and v distinct available colors, which
completes a PCF coloring of G.

Case 3: In neither N ′(u) nor N ′(v) a certain color appears exactly once. Consequently, both
c(N ′(u)) and c(N ′(v)) are of size at most ⌊(∆−1)/2⌋. Moreover, by the reasoning applied in the
previous case, we deduce that c(N ′(u)) = c(N ′(v)). Forbid at u all colors in c(N ′(u)) = c(N ′(v)).
Additionally, for each w ∈ N ′(u) that has a unique color that appears exactly once in NG′(w),
forbid that color at u. Therefore, we are forbidding in total at most (3∆ − 3)/2 colors, which
leaves at least (∆ + 5)/2 colors that are available for u; hence at least four colors are available
for u. Analogously, there are also at least four colors which are available for v. By picking two
distinct colors that are available for u and v, respectively, we extend c to a PCF coloring of G.

Since all possible cases have been covered, this completes our proof.

Remark. Every claw-free graph G has χ(G) ≥ ∆/2. Consequently, in view of Proposition 3.3,
for every claw-free graph G it holds that χpcf(G) ≤ 4χ(G) + 1. This gives us an example of a
large family of graphs G where the ratio χpcf(G)/χ(G) is bounded by a constant.

In the next section, we shall apply the proof method of Proposition 3.3 in order to obtain
several general upper bounds for the PCF chromatic number. But first let us establish the same
upper bound od 2∆ + 1 colors for the PCF chromatic number of chordal graphs.

Proposition 3.4. Let G be a chordal graph of maximum degree ∆. Then

χpcf(G) ≤ 2∆ + 1.

Proof. We shall make use of the fact that every chordal graph G has a perfect elimination order
such that whenever we remove a simplicial vertex v according to the perfect elimination order
(with N[v] forming a clique of order deg(v) + 1) G − v is another chordal graph.

Suppose G is a minimal counter-example, thus χpcf(G) ≥ 2∆+2. Let v be the simplicial vertex
that is first in a perfect elimination order. Then N(v) forms a clique of cardinality deg(v) ≤ ∆.
Delete v to obtain H = G − v which is chordal of maximum degree ∆′ ≤∆. Then by minimality
choice of G, it holds that χpcf(H) ≤ 2∆′ + 1 ≤ 2∆ + 1. Observe that all vertices of N(v) receive
distinct colors as they from a clique.

Consider now v. Since all vertices in N(v) have distinct colors, v has deg(v) forbidden colors
dictated by N(v) and at most deg(v) forbidden colors dictated by the unique color for each
member of N(v); altogether at most 2deg(v) ≤ 2∆ colors are forbidden. Consequently, there is
an available color for v (among the possible 2∆+1 colors), and thus G has a proper conflict-free
coloring with at most 2∆ + 1 colors - a contradiction.
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Remark. The graph G obtained from C5 by adding two diagonals from the same vertex is
chordal, and ∆(G) = 4, χ(G) = 3, χpcf(G) = 4. So the equality χ(G) = χpcf(G) need not hold for
chordal graphs.

4 Sparse graphs

Here we turn to general upper bounds for the PCF chromatic number. Given integers a, b with
2 ≤ a ≤ b, a graph G is said to be (a, b)-degenerate if every induced subgraph H (including G)
has the following property: there exists a 1−-vertex u in H (i.e. degH(u) ≤ 1) or an (a−, b−) edge
vw, i.e., such that degH(v) ≤ a and degH(w) ≤ b. Notice that, if present, (a, b)-degeneracy is a
hereditary property by definition.

Theorem 4.1. For every (a, b)-degenerate graph G, it holds that

χpcf(G) ≤max{5, ⌊a/2⌋ + 2b − 1}. (4)

Proof. Arguing by contradiction, let (a, b) be a pair of minimum sum a+ b for which there exist
(a, b)-degenerate counter-examples. Among those graphs, consider a minimal counter-example
G. Thus G is connected and isolate-free. Letting ℓ = max{5, ⌊a/2⌋ + 2b − 1}, the graph G is not
PCF ℓ-colorable, but any (other) induced subgraph of G admits a PCF ℓ-coloring.

Claim 1. The minimum degree δ(G) ≥ 2. If G has a 1-vertex u, take a PCF ℓ-coloring of G− u
and extend to G by forbidding the following (at most two) colors at u: the color of its only
neighbor and a possible second color that is unique in having a single occurrence in the second
neighborhood of u. The obtained contradiction settles the claim.

Claim 2. There are no adjacent 2-vertices in G. Suppose v and w are adjacent 2-vertices in
G. Denote G′ = G− {v,w} and let v′,w′ ∈ V (G′) be the respective other neighbor of v and w (it
is not excluded that v′ = w′). Since δ(G) = 2 and G ≠ C3, there are no isolated vertices in G′.
We extend a PCF ℓ-coloring of G′ to G as follows. Forbid at the vertices v and w the colors of
v′,w′. Moreover, at v (resp. w) we forbid a possible third color which is unique in having single
appearance in NG′(v′) (resp. NG′(w′)). Since ℓ ≥ 5, at least two colors remain available for v,
and similarly at least two colors are available for w. Assign v and w with distinct colors that
are available for them, respectively. This gives a PCF ℓ-coloring of G, a contradiction.

Claim 3. a + b ≥ 5. For otherwise, a = b = 2. However, then G is (2,2)-degenerate and of
minimum degree 2, which by definition of (a, b)-degeneracy yields a pair of adjacent 2-vertices,
contradicting Claim 2.

It is implied by Claim 3 that ℓ = ⌊a/2⌋ + 2b − 1 ≥ 6. The (a, b)-degeneracy of G provides
us with an edge vw such that deg(v) ≤ a and deg(w) ≤ b. We may assume deg(v) ≤ deg(w).
Notice that if b = 3 then deg(w) = b, by Claim 2. Also observe that, as G ≠ C3, there are no
isolated vertices in G′ = G − {v,w}. By the minimality choice of G, there is a PCF coloring c of
G′ with color set {1,2, . . . , ⌊a/2⌋ + 2b − 1}. We shall extend c to a PCF coloring of G with the
same color set by assigning to v and w distinct available colors. Looking at the neighborhoods
N ′(v) = NG(v)/{w} and N ′(w) = NG(w)/{v}, we distinguish between four cases in regard to the
existence of uniquely appearing colors.
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Case 1: In each of N ′(v) and N ′(w) there is a color (not necessarily the same) appearing
exactly once. Forbid at v all colors in c(N ′(v)). Moreover, unless b = 3, forbid also a color with
single appearance in N ′(w). Additionally, for each z ∈ N ′(v) that has a unique color with single
appearance in NG′(z), forbid that color at v. Therefore, in total we are forbidding at most 2a−1
colors at v if b > 3, and at most 2a − 2 colors if b = 3. Thus, still available for v are at least
2(b− a) + ⌊a/2⌋ colors if b > 3, and at least 2(b − a)+ ⌊a/2⌋+ 1 colors if b = 3. Hence there always
are at least two available colors for v. Turning to w, we forbid at most 2b − 1 colors: namely,
all colors in c(N ′(w)), a color with single appearance in N ′(v), and for each z ∈ N ′(w) that has
a unique color with single appearance in NG′(z), forbid that color at w. This leaves at least
⌊a/2⌋ ≥ 2 available colors for w. Thus we are able to pick two distinct colors that are available
for v and w, respectively.

Case 2: A color has unique appearance in N ′(v), but no such color exists for N ′(w). Hence
∣c(N ′(w))∣ ≤ ⌊(b−1)/2⌋. Forbid at v all colors in c(N ′(v))∪c(N ′(w)). Similarly to before, for each
z ∈ N ′(v) that has a unique color with single appearance in NG′(z), forbid that color at v. So, we
are forbidding at most 2(a−1)+(b−1)/2 = 2(b−1)+(a−1)/2−3(b−a)/2 ≤ 2b+⌊a/2⌋−2−3(b−a)/2
colors; hence at least 3(b − a)/2 + 1 ≥ 1 colors are available for v. Turning to w, forbid all colors
in c(N ′(w)) and a color with single appearance in N ′(v). Also, for each z ∈ N ′(w) that has
a unique color that occurs exactly once in NG′(z), forbid that color at w. Therefore, we are
forbidding at most (b − 1)/2 + 1 + (b − 1) = b+ (b − 1)/2 colors; hence at least (b− 1)/2+ ⌊a/2⌋ ≥ 2
colors are available for w. Assign to v and w distinct available colors, and we are done.

Case 3: A color has unique appearance in N ′(w), but no such color exists for N ′(v). Hence
∣c(N ′(v))∣ ≤ ⌊(a − 1)/2⌋. Forbid at v all colors in c(N ′(v)) and a color with unique appearance
in N ′(w). Similarly to before, for each z ∈ N ′(v) that has a unique color with single appearance
in NG′(z), forbid that color at v. So, in total we are forbidding at most (a − 1)/2 + 1 + (a − 1) ≤
(⌊a/2⌋ + 2b − 1) − (2b − a − 1) colors, which leaves at least 2b − a − 1 ≥ 2 available colors for v.
Turning to w, forbid all colors in c(N ′(v))∪ c(N ′(w)). Moreover, for each z ∈ N ′(w) that has a
unique color with exactly one appearance in NG′(z), forbid that color at w. Therefore, we are
forbidding at most (a − 1)/2 + (b − 1) + (b − 1) ≤ ⌊a/2⌋ + 2b − 2 colors; hence there is an available
color for w. Assign to v and w distinct available colors from S, and thus complete the desired
PCF coloring of G with color set {1,2, . . . , ⌊a/2⌋ + 2b − 1}.

Case 4: In neither N ′(v) nor N ′(w) a certain color appears exactly once. Consequently,
∣c(N ′(v))∣ ≤ ⌊(a−1)/2⌋ and ∣c(N ′(w))∣ ≤ ⌊(b−1)/2⌋. Forbid at v all colors in c(N ′(v))∪c(N ′(w)).
Additionally, for each z ∈ N ′(v) that has a unique color which appears exactly once in NG′(z),
forbid that color at v. Therefore, in total we are forbidding at most ⌊a/2⌋ + ⌊(b − 1)/2⌋ + (a − 1)
colors, which leaves at least (b − a) + (b + 1)/2 colors that are available for v; hence at least two
colors are available for v. Analogously, we forbid at most ⌊a/2⌋ + ⌊(b − 1)/2⌋ + (b − 1) colors at
w, which leaves at least (b + 1)/2 colors that are available for w; hence at least two colors are
available for w. By picking two distinct colors that are available for v and w, respectively, we
extend c to a PCF coloring of G with the same color set.

Since all possible cases have been covered, this completes our proof.

There are plenty of (2,2)-degenerate graphs that have PCF chromatic number 5. One such
graph family is defined as follows. Let F = {G ∶ G is a non-trivial connected graph such that
every block of G is isomorphic to C5}.
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Proposition 4.2. If G ∈ F then χpcf(G) = 5.

Proof. Consider a counter-example G with minimum number of blocks b(G). As G is clearly
(2,2)-degenerate, Theorem 4.1 implies that χpcf(G) ≤ 5. Hence G admits a PCF 4-coloring. Let
B = be an endblock of G, and let v1, v2, v3, v4, v5 be the vertices of the 5-cycle B met on a circular
traversing that starts at the unique cut vertex v1 contained within B. Consider a PCF coloring
c of G with color set {1,2,3,4}. Upon permutation of colors, we may assume that c(vi) = i for
1 ≤ i ≤ 4. Hence, it must be that c(v5) = 2. Thus, the color 2 does not have single appearance
in NG(v1). It follows that the restriction of c to G′ = G − {v2, v3, v4, v5} is a PCF 4-coloring.
However, G′ ∈ F and b(G′) = b(G) − 1, contradicting the minimality choice of G.

Note in passing that every connected graph G of maximum degree ∆ ≥ 2 and degenericity
k ≥ 2 is (k,∆)-degenerate. Thus, by Theorem 4.1, χpcf(G) ≤ 2∆ + ⌊k/2⌋, and the inequality is
strict as soon as ∆ ≥ 3. The same bound clearly holds if ∆ = 1 or k = 1. The following result
characterizes the case of equality χpcf(G) = 2∆ + ⌊k/2⌋.

Corollary 4.3. Let G be a connected graph of maximum degree ∆ ≥ 1 and degenericity k. Then

χpcf(G) ≤ 2∆ + ⌊k/2⌋, (5)

with equality if and only if G =K2 or G = C5.

Proof. As already noticed, the inequality (5) follows immediately from the inequality (4). As-
sume G is a graph for which (5) turns into an equality. If k = 1 then G is a non-trivial tree, hence
(by Observation 1) χpcf(G) ≤ 3. Consequently, 2∆ = 2∆ + ⌊k/2⌋ ≤ 3, implying ∆ = 1. Hence,
G = K2. If k ≥ 2 then G is (k,∆)-degenerate and Theorem 4.1 gives χpcf(G) ≤ 2∆ + ⌊k/2⌋ − 1
unless k = ∆ = 2. Therefore G is a cycle. Now, in view of (2), χpcf(G) ≤ 4 unless G = C5, in
which case χpcf(C5) = 5.

Remark. Note that a bound involving only the degenericity k is not possible. For example,
every SKn has k = 2 whereas χpcf(SKn) = n can be arbitrarily large.

Corollary 4.4. Let G be a connected graph of maximum degree ∆ ≥ 1. Then

χpcf(G) ≤ ⌊5∆/2⌋, (6)

with equality if and only if G =K2 or G = C5.

Remark. In conclusion to this section we mention that a slightly more general concept than
(a, b)-degeneracy still allows to apply the technique presented in Theorem 4.1. For an integer
h ≥ 4 a graph G is said to be h-edge degenerate if every induced subgraph H (including G) has
the following property: there exists a 1−-vertex u in H (i.e. degH(u) ≤ 1) or there is an edge
vw such that degH(v) + degH(w) ≤ h. Clearly, if G is (a, b)-degenerate then it is (a + b)-edge
degenerate. Notice that, h-edge degeneracy is hereditary, by definition.

Now Theorem 4.1 can be applied to h-edge degenerate graphs by observing that 2b+ ⌊a/2⌋ ≤
2(h − 2) + 1; consequently, every h-edge degenerate graph G has χpcf(G) ≤max{5,2(h − 2)}.
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5 Application to PCF colorability of planar graphs

The recent work of Fabrici et al. [18], where the notion of ‘proper conflict-free coloring’ was
introduced, focuses on planar and outerplanar graphs. Among other things, [18] contains a ‘proof
from the Book’ of the fact that every planar graph is PCF 8-colorable (cf. Theorem 5.3). The
authors of that paper also provide an example of a planar graph (having girth 3) which requires
6 colors for a PCF coloring, and purport that 6 colors always suffice (cf. Conjecture 9.1 (a)). For
the class of outerplanar graphs, they establish the tight upper bound of 5 on the PCF chromatic
number (cf. Corollary 5.1).

Throughout this paper we have been using standard graph theory terminology. However,
we recall here some notions relevant for this section. An upper bound on the average degree
ad(G) = 2∣E(G)∣

∣V (G)∣ of graph G forces sparse local configurations. In order to use such structure
results in inductive proofs, one also requires the same bound in all subgraphs. Recall that
maximum average degree, written mad(G), is mad(G) =maxH⊆G ad(H). The girth g(G) of G is
the length of a shortest cycle in G.

In this section, by making use of Theorem 4.1 and other structure results about sparse local
configurations, we deduce several sufficient conditions for PCF k-colorability (4 ≤ k ≤ 6) in terms
of the maximum average degree, and also in terms of the girth of planar graphs.

First we discuss PCF k-colorability in terms of the maximum average degree. For item (iii)
of the next result, recall from Proposition 4.2 that every member of the family F = {G ∶ G is a
non-trivial connected graph such that every block of G is isomorphic to C5} requires 5 colors for
a PCF coloring.

Theorem 5.1. Let G be a connected graph with maximum average degree mad(G) =m. Then:

(i) m < 8
3

implies χpcf(G) ≤ 6;

(ii) m < 5
2

implies χpcf(G) ≤ 5;

(iii) m < 24
11

implies χpcf(G) ≤ 4, unless G ∈ F .

Proof. To prove (i) we use the following special case of Remark 2.1 from [14] (see also bottom
pp. 19 in the same reference): Every graph G with mad(G) < 8

3
and δ(G) ≥ 2 has a 2-vertex

adjacent with a 3−-vertex. Hence, every graph with maximum average degree less than 8
3

is
(2,3)-degenerate. Now, from Theorem 4.1 we deduce that χpcf(G) ≤ 6.

Turning to (ii), suppose G is a minimal counter-example. Thus G is a connected graph of
order at least 6. Note that the minimum degree δ(G) equals 2. Indeed, for otherwise there is
a 1−-vertex u. But then, the minimality choice of G yields a PCF 5-coloring of G − u, which
readily extends to a PCF 5-coloring of G by forbidding at most two colors at u. The following
structure result has been proved by Cranston et al. [13]: If G is a connected graph with at
least four vertices, having ad(G) < 5

2
and δ(G) ≥ 2, then G contains adjacent two vertices or

a 3-vertex having three 2-neighbors one of which has a second 3-neighbor. Hence our minimal
counter-example G has adjacent 2-vertices or a 3-vertex of the specified kind. We consider the
two possibilities separately:
Case 1: There are two adjacent vertices v,w with deg(v) = deg(w) = 2. Denote by v′ the other
neighbor of v, and similarly denote by w′ the other neighbor of w. (It is not excluded that
v′ = w′.) Let G′ = G − {v,w}. Since δ(G) = 2 and G ≠ C3, the graph G′ is isolate-free. By the
minimality choice of G, take a PCF 5-coloring c of G′. We extend to G as follows. Forbid at v
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the colors c(v′), c(w′) and a color with unique appearance in NG′(v′). This leaves at least two
colors available for v. Analogously, there are at least two colors that are available for w. So
distinct available colors can be assigned to v and w.
Case 2: There is a 3-vertex v having three 2-neighbors x, y, z such that x has another 3-neighbor.
Clearly x is not adjacent to y nor to z. We may assume that y and z are non-adjacent as well,
for otherwise we are back in the previous case. Let x′, y′, z′ be the other neighbors of x, y, z,
respectively. We may also assume that deg(y′),deg(z′) ≥ 3. Set G′ = G − {v, x, y, z} and notice
that there are no isolated vertices in G′. Once again, the minimality choice of G provides us
with a PCF 5-coloring c of G′. Forbid at v the colors c(x′), c(y′), c(z′). Thus at least two colors
are available for v. Forbid at x the color c(x′), thus leaving at least four available colors. Forbid
at y the color c(y′) and a color with unique appearance in NG′(y′). This leaves at least three
colors that are available for y. Analogously, there are at least three available colors for z. Assign
an available color to v, and forbid this colors at x, y, z. This leaves at least 3 available colors at
x, and at least two available colors at y and z, respectively. So distinct available colors can be
assigned to x, y and z.

Since we have obtained a contradiction in every possible case, this settles (ii).

Let us discuss (iii). Again we work with a minimal counter-example G, and give several
claims that clarify the structure of G.

Claim 1. G is not obtainable from a member of F by attaching a pendant edge. Let v1, v2, v3, v4, v5
be the vertices of a C5 in circular order, and let v0 be a leaf attached to v1. Color v0 and v3 by
1, v1 by 2, v2 and v5 by 3, and v4 by 4. This is a PCF 4-coloring of the graph obtained from C5

by attaching a pendant edge. Now consider a graph H ∈ F of connectivity 1. We induct on the
number of blocks b(H) ≥ 2 that the graph H + e, obtained from H by attaching a pendant edge
e, is PCF 4-colorable. Let B be an end-block of H such that e is not attached to an internal
vertex of B. Let w1,w2,w3,w4,w5 be an enumeration of V (B) on a circular traversing that
starts at the cut vertex w1. The graph H ′ =H − {w2,w3,w4,w5} is also a member of F and has
b(H ′) = b(H)− 1 blocks. By the inductive hypothesis, the graph H ′ + e admits a PCF coloring c

with color set 1,2,3,4. Upon permutation of colors, assume that c(w1) = 1, and that the color 2
appears exactly once in NH′+e(w1). Extend c to H + e by setting c(w2) = 3, c(w3) = 4, c(w4) = 2
and c(w5) = 3. This clearly gives a PCF 4-coloring of G, which completes the inductive step.

Claim 2. δ(G) = 2. For otherwise, there is a 1-vertex u. However, by Claim 1, the connected
graph G − u is not in F . Hence, it is PCF 4-colorable. Notice that any PCF 4-coloring of G − u
readily extends to G by forbidding at most two colors at u.

Claim 3. There is a 4-thread in G. This is implied by Claim 2 and the following well-known
result (see e.g. Lemma 2.5 in [14]): Any graph G with ad(G) < 2 + 2

3ℓ−1 that has no 2-regular
component contains a 1−-vertex or an ℓ-thread. Indeed, simply take ℓ = 4 and observe that G is
not a cycle.

So let v0v1v2v3v4v5 be a 4-thread in G (the vertices v0 and v5 may coincide).

Claim 4. No component of G′ = G − {v1, v2, v3, v4} belongs in F . Suppose the opposite. Then
v0 ≠ v5, for otherwise G ∈ F . Notice that G′ has at most two components. Let us look into the
possibility of two components, say H and K, such that v0 ∈ V (H) an v5 ∈ V (K). By Claim 1
and the minimality choice of G, both H + v0v1 and K + v4v5 admit PCF colorings with color set
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{1,2,3,4}. Upon permutation of colors, we may assume that v1 and v4 are colored by 1, whereas
v0 and v5 are colored by 2. Then simply color v3 by 3 and v4 by 4, and we have a PCF 4-coloring
of G. This conclusion discards the possibility of two components in G′. Hence, we are left with
the case of a single component, say H ∈ F .

Suppose first that at least one of the vertices v0, v5 is not a cut vertex of G′. Say v5 is such.
By Claim 1, the graph H+v0v1 admits a PCF coloring c with color set {1,2,3,4}. Without loss of
generality, assume that c(v1) = 1 and c(v0) = 2. Hence the list L(v2) = {3,4} consists of the colors
that are available for v2. Similarly, L(v3) = {2,3,4}/{c(v5)} and L(v4) = {1,2,3,4}/{c(v5)} (as
degG′(v5) = 2). So we are able to color v2, v3, v4 with distinct colors from their lists. Suppose
now that both v0, v5 are cut vertices of G′. Let K be a component of G′ − v0 that does not
contain v5. The graph G − V (K) is PCF 4-colorable, by the minimality choice of G. However,
a straightforward induction on the number of blocks of the v-lobe [V (K)∪ {v}] shows that any
PCF 4-coloring of G − V (K) extends to a PCF 4-coloring of G. The obtained contradiction
settles the claim.

We are ready to complete our argument.

Claim 5. χpcf(G) ≤ 4. Consider once again the graph G′ = G−{v1, v2, v3, v4}. By the minimality
choice of G and Claim 4, there is a PCF 4-coloring c of G′. Let v−1 and v6 be neighbors of
v0 and v5 in G′, respectively, such that c(v0) occurs exactly once in NG′(v0), and similarly
c(v6) occurs exactly once in NG′(v5). Our objective is to extend c to a PCF 4-coloring of G.
The initial lists of available colors for the vertices in V (G)/V (G′) are the following: L(v1) =
{1,2,3,4}/{c(v−1), c(v0)},L(v2) = {1,2,3,4}/{c(v0)},L(v3) = {1,2,3,4}/{c(v5)}, and L(v4) =
{1,2,3,4}/{c(v5), c(v6)}. Hence ∣L(v1)∣ = ∣L(v4)∣ = 2, ∣L(v2)∣ = ∣L(v3)∣ = 3. If L(v1) ∩ L(v4) ≠ ∅
then assign to both v1 and v4 a common available color x, and pick distinct colors from L(v2)/{x}
and L(v3)/{x} for v2 and v3, respectively. This clearly gives a PCF 4-coloring of G. Therefore we
may assume that L(v1)∩L(v4) = ∅. Upon permutation of colors, we have L(v1) = {1,2},L(v4) =
{3,4} and L(v2) = {1,2,3},L(v3) = {2,3,4}. Set c(vi) = i for i = 1, . . . ,4, and we are done. The
obtained contradiction completes our proof.

Let us turn to girth-constrained planar graphs. For proving the next result we mostly rely
on Theorem 5.1 and the following well-known fact: every planar graph G with girth at least g
satisfies mad(G) < 2g

g−2 (see [4] and also [14], pp. 13).

Theorem 5.2. Let G be a planar graph with girth g(G) = g. Then:

(i) g ≥ 7 implies χpcf(G) ≤ 6;

(ii) g ≥ 10 implies χpcf(G) ≤ 5;

(iii) g ≥ 24 implies χpcf(G) ≤ 4.

Proof. Concerning (i), in view of the above mentioned inequality mad(G) < 2g

g−2 , planar graphs
G of girth g ≥ 8 satisfy mad(G) < 8

3
; hence they have χpcf(G) ≤ 6 by Theorem 5.1 (i). However,

in some cases, planarity permits a stronger result in regard to girth. Namely, Lemma 3.7 in [14]
reads: Every planar graph G with girth at least 7 and minimum degree at least 2 has a 2-vertex
with a 3−-neighbor. Consequently, every planar graph G of girth g ≥ 7 is (2,3)-degenerate, and
Theorem 4.1 applies.

As for (ii), the inequality 2g

g−2 ≤
5
2

reduces to g ≥ 10. Hence, every planar graph of girth g ≥ 10

has maximum average degree strictly less than 5
2
, and Theorem 5.1 (ii) applies.
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And similarly for (iii), the inequality 2g

g−2 ≤
24
11

reduces to g ≥ 24. Consequently, every planar
graph of girth g ≥ 24 has maximum average degree strictly less than 24

11
, and we simply use

Theorem 5.1 (iii).

We end this brief discussion on PCF 4-colorability with a result about outerplanar graphs.

Theorem 5.3. Every outerplanar graph G of girth g ≥ 6 is PCF 4-colorable.

Proof. We invite the reader to check that the proof of Claim 5 used while proving Theorem 5.1
applies verbatim to the following: No minimal counter-example to Theorem 5.3 contains a 4-
thread. On the other hand, it is easily argued that every outerplanar graph of girth g and
minimum degree δ ≥ 2 contains a (g − 2)-thread (see e.g. [27], Proposition 19). So it suffices to
observe that any minimal counter-example to Theorem 5.3 is of minimum degree 2.

The girth constrain in Theorem 5.3 is sharp in view of Proposition 4.2.

Notice that one cannot hope for analogous non-trivial sufficient conditions granting PCF
3-colorability. More precisely, no value m > 2 would guarantee that graphs G with mad(G) <m
have χpcf(G) ≤ 3. Similarly, there is no value g such that planar or outer planar graphs of
girth at least g are PCF 3-colorable. Namely, every C3k+2 requires at least four colors, has
mad(C3k+2) = 2, and is planar of girth 3k + 2.

6 Further work

In view of Observations 6, 10 and 2.1, we propose the following.

Problem 6.1. For k = 4,5 determine the minimal pairs (d, g) such that for every graph G having
distance at least d between any two 3+-vertices and girth at least g, it holds that χpcf(G) ≤ k.

As already observed in the introduction, the ratio χpcf(G)/χ(G) can acquire arbitrarily high
value. Then again, by the remark after Proposition 3.3, this ratio is bounded by a constant for
the class of claw-free graphs G. This happens to be the case for the class of planar graphs as
well, and for the class of k-subdivisions with k ≥ 2.

Problem 6.2. Find other ‘generic’ graph families G for which there exists a constant c = c(G)
such that χpcf(G)/χ(G) ≤ c for every G ∈ G.

Corollary 4.4 gives an upper bound on the PCF chromatic number in terms of the maximum
degree. The established bound (of ⌊5∆/2⌋ colors) is sharp for ∆ ≤ 2, and open to improvement
for ∆ ≥ 3, which gives rise to the following problem.

Problem 6.3. Find the function f ∶ N→ N such that

f(∆) =maxχpcf(G)

where the maximum is running over all graphs G of maximum degree ∆.
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Notice that ∆ + 1 ≤ f(∆) ≤ 5∆/2. The three initial values of f are: f(1) = 2, f(2) = 5 and
f(3) = 4, as explained below.

It is our belief that for some positive constant C, it turns out that ∆+C colors always suffice.
In that direction, the following holds true for connected graphs G having one of the three initial
values of ∆. If ∆ = 1 then χpcf(G) ≤ 2. If ∆ = 2 then χpcf(G) ≤ 5, and moreover χpcf(G) ≤ 4 if
C5 is excepted. As for ∆ = 3, recall that a linear coloring of a graph is a proper coloring such
that each pair of color classes induces a linear forest, that is a union of disjoint paths. A linear
coloring is said to be superlinear if the neighbors of every 2-vertex receive different colors. The
following is implied by the main result of [24] (see Theorem 2): If G ≠K3,3 is a connected graph
of maximum degree 3, then G is superlinearly 4-choosable. As it is readily checked that K3,3 is
superlinearly 4-colorable, it follows that every connected graph of maximum degree 3 admits a
superlinear 4-coloring. But notice that such a coloring is precisely a PCF coloring of G. Thus,
if ∆ = 3 then χpcf(G) ≤ 4.

We were not able to find any graph of maximum degree ∆ = 4 or 5 that requires more
than ∆ + 1 colors. So we are intrigued and enticed to propose the following extremely bold
generalization of Conjecture 1.1 from the introduction.

Conjecture 6.4. If G is a connected graph of maximum degree ∆ ≥ 3, then

χpcf(G) ≤∆ + 1.
Notice that if the above conjecture turns out to be true, then the function f from Problem 6.3

satisfies f(∆) =∆ + 1 for every ∆ ≠ 2.

We complete the paper by asking a pair of questions in the realm of planar graphs. If
answered in the positive, they would provide significant improvements to Theorem 5.2, items
(ii) and (iii), respectively.

As already mentioned in Section 5, along with an example of a planar graph having PCF
chromatic number 6, it was conjectured in [18] that every planar graph is PCF 6-colorable. We
accompany this with the following.

Question 6.5. Does every triangle-free planar graph G have χpcf(G) ≤ 5?

By Proposition 4.2, there exist plenty of planar graphs with girth 5 that require five colors
for a PCF coloring. In view of Theorem 5.3, we are tempted to end the article by asking the
following.

Question 6.6. Does every planar graph G of girth at least 6 have χpcf(G) ≤ 4?

Notice that an affirmative answer to Question 6.6 would imply the Four Color Theorem
(4CT). Indeed, say G is an arbitrary planar graph. Subdivide every edge of G once, i.e., consider
the complete subdivision S(G). As girth g(S(G)) ≥ 6, take a PCF 4-coloring c of S(G). The
restriction of c to V (G) is a proper 4-coloring of G.

A weaker form of Question 6.6 could be asking whether every planar graph G of girth at
least 6 has χo(G) ≤ 4. If answered in the affirmative, even this weaker form would imply 4CT.
And a stronger form of Question 6.6 (resp. its odd coloring variant) could be asking whether
every planar graph G of odd-girth at least 7 has χpcf(G) ≤ 4 (resp. χo(G) ≤ 4).
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