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Abstract

A collection of sets is intersecting, if any pair of sets in the collection
has nonempty intersection. A collection of sets C has the Helly property
if any intersecting subcollection has nonempty intersection. A graph
is Helly if the collection of maximal complete subgraphs of G has the
Helly property. We prove that if G is a k-regular graph with n vertices
such that n > 3k +

√
2k2 − k, then the complement G is not Helly.

We also consider the problem of whether the properties of Hellyness
and convergence under the clique graph operator are equivalent for the
complement of k-regular graphs, for small values of k.

1 Introduction

In this paper we consider only finite simple graphs. As a reference for Graph
Theory, we follow [8]. We usually identify subsets of vertices of a graph G
with the subgraph they induce. A complete in a graph G is a set of vertices
which are adjacent by pairs, and a clique is a maximal complete. The clique
graph K(G) of a graph G is the intersection graph of the cliques of G.
We can then define a sequence of iterated clique graphs as: K0(G) = G,
Kn(G) = K(Kn−1(G)) for n ≥ 1. If this sequence of graphs has a finite
number of different graphs up to isomorphism, we say that G is convergent,
otherwise, G is said to be divergent. There is a number of criteria in the
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literature in order to determine which of these behaviors correspond to a
given graph G, however it is conjectured that the problem in general is
algorithmically unsolvable for finite graphs ([1]).

A collection of sets is intersecting if any two members of the collection
has nonempty intersection. The collection has the Helly property if any
intersecting subcollection has nonempty intersection. We say that a graph
G is Helly if the collection of the cliques of G has the Helly property (in
the literature, this is usually called the clique-Helly property). The Helly
property on cliques can be tested in polynomial time ([6], [16]), and has
been studied in several papers (for example, [5], [13]) and generalized ([4],
[3]).

A Helly graph is convergent ([7]) but there are convergent graphs which
are not Helly. However, there are several graph classes for which it is has
been proven that a graph in such a class is convergent if and only if it is
Helly. Such classes include that of cographs ([9]), complements and powers
of cycles ([15], [10]), chessboard graphs ([12]) and circulants with three small
jumps ([11]).

In this note we consider a class of regular graphs. We want to study
regular graphs with high degree, hence it will be convenient for us to consider
the complement. We prove that for k = 1, 2, the complements of k-regular
graphs are convergent if and only if they are Helly, and we show that this
happens exactly when the order of the graph is sufficiently small. Then for
each k ≥ 3, we determine a number N(k) such that all k-regular graphs
with at least N(k) vertices are such that their complements are not Helly.
In contrast to the cases k = 1, 2, we can show examples of 3-regular graphs
G such that G is not Helly, and still G is convergent. In fact, we conjecture
that there are arbitrarily large 3-regular graphs G where the complement G
is convergent but not Helly.

2 Preliminaries

2.1 Definitions

The disjoint union G∪H of two graphs G,H is the graph that has as vertex
set the disjoint union of the vertex sets of G and H, and as edge set the
union of the edge sets of G and H. We can extend this definition to the
disjoint union of a finite collection of graphs. The disjoint union of m copies
of the graph G is denoted by mG. We denote by G+H the graph obtained
from the disjoint union of G and H, adding all edges between a vertex in G
and a vertex in H. It is immediate that G ∪H = G+H.
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The m-th octahedron Om is the complement of the graph mK2.
A triangle in a graph G is a complete with three vertices. If T is a

triangle, then its extended triangle T̂ in G is the induced subgraph of G on
the vertices that are adjacent to at least two elements of T . A graph is a
cone if it has a vertex adjacent to all other vertices in the graph.

A cotriangle in a graph G is an independent set of three of its vertices.
If G is a graph, and σ : G → G is an automorphism, we say that σ is a

coaffination if σ(x) 6= x and σ(x) is not a neighbor of x for every x ∈ G.
Note that the complement of every cyclic graph has a coaffination.

2.2 Theorems on clique behavior

The following theorem appeared in [6] but it was proved independently
in [16].

Theorem 2.1. ([6], [16]) A graph G is Helly if and only if for any triangle T
in G, the extended triangle T̂ is a cone.

We can now pose a theorem that gives a sufficient condition for conver-
gence.

Theorem 2.2. ([7]) If a graph G is Helly, then G is convergent.

We now mention some theorems that imply divergence of a graph.

Theorem 2.3. ([15]) The graph Om is divergent if and only if m ≥ 3.

Theorem 2.4. ([10], Theorem 5.4) The complement of a cycle Cn is diver-
gent if and only if n ≥ 8.

Theorem 2.5. ([10], Theorem 4.6) If G,H are graphs that have a coaffina-
tion, and H is connected, then G+H is divergent.

Theorem 2.6. ([10], Theorem 3.6) If A, B, C are graphs that have a coaf-
fination, then A+B + C is divergent.

3 The complements of regular graphs of low degree

3.1 The case k = 1

Theorem 3.1. The complement of a 1-regular graph with n vertices is di-
vergent if and only if n ≥ 6.
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Proof. A 1-regular graph is the disjoint union of m copies of K2. It fol-
lows that the complements of the 1-regular graphs are precisely the octahe-
drons Om. From Theorem 2.3, we obtain that if the order of the graph is
greater than six, then the graph is divergent. Now, the graph O1 consists
of two isolated vertices and O2 is a 4-cycle, and both such graphs are Helly
and convergent.

3.2 The case k = 2

Theorem 3.2. The complement of every 2-regular graph with n vertices is
divergent if n ≥ 9.

Proof. A 2-regular graph is the disjoint union of several cycles. If there is
only one cycle in the union (that is, if the graph is connected), then the
result follows from Theorem 2.4. If there are exactly two cycles, then one of
them has at least five vertices, and so its complement is connected. We can
then apply Theorem 2.5 in this case. Now, if there are three or more cycles,
we can apply Theorem 2.6.

Contrary to the case k = 1, Theorem 3.2 is not an equivalence, since
there are 2-regular graphs with not more than 8 vertices and with divergent
complement. Theorem 2.4 deals with the case of cycles, and in that case,
we get that G = C8 is the only 2-regular connected graph with divergent
complement and |G| ≤ 8. The only other 2-regular graphs with at most 8
vertices are C3 ∪Ci for i = 3, 4, 5 and C4 ∪C4. The complement of C3 ∪C3

is K3,3 which has no triangles, and thus is Helly by Theorem 2.1, there-
fore convergent by Theorem 2.2. The complements of both graphs C3 ∪ C4

and C4 ∪ C4 can also be shown to be Helly by applying Theorem 2.1. Now
the complement of C3 ∪C5 is divergent, because it is isomorphic to C3 +C5

and then Theorem 2.5 applies. We have thus proven that the complement
G of a 2-regular graph G is convergent if and only if G is Helly.

4 The case k ≥ 3

Given a graph G, denote by t(G) the number of triangles in G.

Lemma 4.1. ([14], Lemma 1) For a k-regular graph G with n vertices, we
have:

t(G) + t(G) =

(
n

3

)
− 1

2
nk(n− k − 1). (1)
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If T is a cotriangle in a graph G and x ∈ G, we will say that x is adjacent
to T if x is a neighbor of at least two vertices of T .

Lemma 4.2. Let G be a k-regular graph such that G is Helly, and let T be
a cotriangle in G. Then there are at least k vertices in G that are adjacent
to T .

Proof. We have that T is a triangle in G and so T̂ , its extended triangle
in G, is a cone, by Theorem 2.1. Since G is (n− k − 1)-regular, considering
the apex of the cone we obtain that |T̂ | ≤ n−k. This means that there must
be at least k vertices that are neighbors to one or none of the vertices of T
in G. Such vertices are adjacent to T .

We will use 2-switches, as defined in ([2], page 20). This means the
process of substituting the edges {a, b}, {u, v} in G with the edges {a, u},
{b, v}. Of course, this requires that a, u are not already adjacent in G, and
also that b, v are not adjacent in G. Applying a 2-switch to a k-regular graph
produces another k-regular graph.

Lemma 4.3. Let G be a k-regular with n vertices, where n ≥ 4k, and x ∈ G.
Then x is adjacent to at most

(
k
2

)
(n− 2k) +

(
k
3

)
cotriangles. If this bound is

met, then the connected component of x is Kk,k.

Proof. Let x ∈ G, as in our hypothesis. We prove first that if there is an
edge e = {a, b} in N = NG(x), we can perform a 2-switch on G, obtaining a
graph G′, where a and b are no longer adjacent, no new edges appear between
vertices of N , and x is adjacent to at least the same amount of cotriangles
in G′ as it was in G.

The edges in G that cannot be switched with {a, b} are of the form {r, s},
and where both r, s are neighbors of either a or b; or one of {r, s} is a neighbor
of both a, b.

Consider then the edge e = {a, b} in NG(x). Let C be the set of common
neighbors of the vertices a, b different from x. Suppose that |C| = t. Let Z
be the set of vertices that are at distance at least 2 from x, and let Z1 ⊆ Z
be the vertices in Z that are not neighbors of either a, b. Then in Z1 there
are at least 4k− [t+2(k− t− 2)+ k+1] = k+ t+3 vertices. We claim that
there is an edge from a vertex in Z1 to a vertex that is not in C ∪N ∪ {x}.
If not, then all edges incident with Z1 have one end in Z1 and the other
in C ∪ N . In this case, there are at least (k + t + 3)k edges incident with
Z1 and at most t(k − 2) + (k − 2)(k − 1) possible edges from C ∪N to Z1.
If the former number was actually less than the latter, we would have that
6k+2t ≤ 2, which is impossible. Therefore, there is an edge joining a vertex
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r ∈ Z1 to a vertex s 6∈ N that is not a neighbor of at least one among a, b.
Without loss, assume that s is not a neighbor of b.

We perform a 2-switch to G removing the edges {a, b}, {r, s} and adding
the edges {a, r}, {b, s}, obtaining the graph G′. Since neither of r, s is in N ,
the graph G′ has one less edge in N than G. We claim that x is adjacent to
no less cotriangles in G′ than it was in G. Suppose that T = {u, v, w} was a
cotriangle in G but is not a cotriangle in G′. The only way that can happen
is if exactly one of the new edges involves two vertices from T . Suppose
u = a, v = r. Then w could have been any of the other elements in N
different from a and b and not a neighbor of r. That is, in the process of
going from G to G′, the vertex x loses at most k − 2 adjacent cotriangles.
On the other hand, any set of the form {a, b, z} with z ∈ Z1−{r, s} was not
a cotriangle in G but is a cotriangle in G′. This means that the vertex x
gains at least k+ t+1 new adjacent cotriangles in the process of going from
G to G′.

Because of the argument of the previous paragraph, we may now assume
that the k-regular graph G is such that there are no edges among the vertices
in N = NG(x). Then x is adjacent to exactly

(
k
3

)
cotriangles where the three

vertices of the cotriangle are contained in N . We will estimate the amount
of cotriangles adjacent to x where exactly two vertices of the cotriangle are
elements of N . For each pair ab of vertices of N , denote by nab the number
of common neighbors of a, b different from x. Then there are 2k − 2 − nab
vertices different from x that are neighbors of either a or b. Hence there are
n − (2k − 2 − nab) − k − 1 = n − 3k + 1 + nab vertices that can be used
to extend the set {a, b} to a cotriangle adjacent to x of the required form.
Summing over all pairs of vertices of N we get S =

(
k
2

)
(n− 3k+1)+

∑
nab.

We have that
(
k
2

)
(n− 2k)− S =

(
k
2

)
(k − 1)−

∑
nab. Since 0 ≤ nab ≤ k − 1

for each pair a, b, this expression is non-negative, proving our first claim. It
is equal to zero if and only if nab = k − 1 for each pair a, b of vertices of
N . If this were the case, then the open neighborhood of each of the vertices
in N consists of the same vertices, therefore the connected component that
contains x is isomorphic to Kk,k.

5 Proof of the main theorem

Theorem 5.1. If n > 3k+
√
2k2 − k, then the complement of any k-regular

graph with n vertices is not Helly.

Proof. Let k > 1 and n as in the hypothesis of the Theorem. Then n > 4k.
Let G be a k-regular graph with n vertices such that G is Helly. Let B be
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the bipartite graph where one part is the set of vertices of G and the other
part is the set of cotriangles of G. In B, a vertex corresponding to a vertex
in G is a neighbor to the vertex corresponding to a cotriangle whenever the
vertex is adjacent to the cotriangle. Denote with e(B) the amount of edges
of B. We will estimate e(B) from below and from above.

In the graph G, each vertex is in at most
(
k
2

)
triangles. Therefore, there

are at most n(k2)
3 = 1

6nk(k − 1) triangles. Since we have that t(G) + t(G) =(
n
3

)
− 1

2nk(n− 1− k) by Lemma 4.1 , there are at least

Cn,k =

(
n

3

)
− 1

2
nk(n− 1− k)− 1

6
nk(k − 1) (2)

cotriangles in G. By Lemma 4.2, since each cotriangle is adjacent to at least
k vertices, we have that kCn,k ≤ e(B).

On the other hand, by Lemma 4.3, the maximum amount of cotriangles
adjacent to any fixed vertex in G is Tn,k =

(
k
2

)
(n − 2k) +

(
k
3

)
. Therefore,

e(B) ≤ nTn,k.
It follows that kCn,k ≤ e(B) ≤ nTn,k. Now, the difference nTn,k − kCn,k

is equal to −kn
6 a(n, k), where a(n, k) = n2−6kn+(7k2+k). Hence, we must

have a(n, k) ≤ 0. Fixing k, and considering a(n, k) as a quadratic polynomial
on n, its roots are 3k ±

√
2k2 − k. From this, the theorem follows.

6 The cubic case

Theorem 5.1 implies that the complement of a cubic graph is not Helly if
the graph has at least 14 vertices. This bound is tight, since the graph
K3,3 ∪K3,3 has 12 vertices and its complement is Helly. However, unlike the
cases k = 1 and k = 2, in this case there are graphs that are not Helly but are
convergent under the clique graph operator. As examples of that behavior
we can give the graphs in Figure 1, which were found by a computer search.
We conjecture that there are cubic graphs G with an arbitrarily large number
of vertices, such that G is Helly.
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(a) 14 vertices (b) 16 vertices (c) 18 vertices

Figure 1: Cubic graphs with convergent (non Helly) complements
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