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April 16, 2020

Abstract

A classical conjecture of Erdős and Sós asks to determine the Turán number of a tree. We
consider variants of this problem in the settings of hypergraphs and multi-hypergraphs. In
particular, for all k and r, with r ≥ k(k − 2), we show that any r-uniform hypergraph H with

more than n(k−1)
r+1 hyperedges contains a Berge copy of any tree with k edges different from the

k-edge star. This bound is sharp when r + 1 divides n and for such values of n we determine
the extremal hypergraphs.

1 Background

We recall a classic theorem of Erdős and Gallai [3].

Theorem 1 (Erdős, Gallai [3]). Let n, k be positive integers and let G be an n-vertex graph
containing no path of k edges, then

e(G) ≤
(k − 1)n

2
.

Equality is obtained if and only if k divides n and G is the graph consisting of n/k disjoint complete
graphs of size k.

Erdős and Sós [2] conjectured that the same bound would hold for any tree with k edges.
A proof of this conjecture for sufficiently large k was announced in the 90’s by Ajtai, Komlós,
Simonovits and Szemerédi. We will consider a variant of this problem in the setting of hypergraphs
and multi-hypergraphs. We obtain exact results for the case of large uniformity.

Given a hypergraphH, we denote the vertex and edge sets ofH by V (H) and E(H), respectively.
We denote the number of vertices and hyperedges by v(H) = |V (H)| and e(H) = |E(H)|. A
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hypergraph is said to be r-uniform if all of its hyperedges have size r. We now provide some
definitions which we will need.

Definition 1. For a given uniformity r and a fixed graph G, an r-uniform multi-hypergraph H is a
Berge copy of G, if there exists an injection f1 : V (G) → V (H) and a bijection f2 : E(G) → E(H),
such that if e = {v1, v2} ∈ E(G), then {f1(v1), f1(v2)} ⊆ f2(e). The set of Berge copies of G is
denoted by BG. The sets f1(V (G)) and f2(E(G)) are called the defining vertices and hyperedges,
respectively.

We recall the classical definition of the Turán number of a family of hypergraphs.

Definition 2. The Turán number of a family of r-uniform hypergraphs F , denoted exr(n,F), is
the maximum number of hyperedges in an n-vertex, r-uniform, simple-hypergraph which does not
contain an isomorphic copy of H, for all H ∈ F , as a sub-hypergraph.

The same question may be asked for multi-hypergraphs, we denote the Turán number for multi-
hypergraphs by exmulti

r (n,F).

Remark 1. If every hypergraph in F has at least r+1 vertices, then exmulti
r (n,F) is infinite, since

a hypergraph on r vertices and multiple copies of the same hyperedge is F-free.

The classical theorem of Erdős and Gallai was extended to Berge paths in r-uniform hypergraphs
by Győri, Katona and Lemons [7].

Theorem 2 (Győri, Katona, Lemons [7]). Let n, k, r be positive integers and let H be an r-uniform
hypergraph with no Berge path of length k. If k > r + 1 > 3, we have

e(H) ≤
n

k

(

k

r

)

.

If r ≥ k > 2, we have

e(H) ≤
n(k − 1)

r + 1
.

The remaining case when k = r + 1 was settled later by Davoodi, Győri, Methuku and Tomp-
kins [1], the Turán number matches the upper bound of Theorem 2 in the k > r + 1 case.

We now turn our attention to the case of trees in hypergraphs. The Turán number of certain
kinds of trees in r-uniform hypergraphs has long been a major topic of research. For example, there
is a notoriously difficult conjecture of Kalai [4] which is more general than the Erdős-Sós conjecture.
The trees which Kalai considers are generalizations of the notion of tight paths in hypergraphs. In
another direction, Füredi [6] investigated linear trees, constructed by adding r − 2 new vertices to
every edge in a (graph) tree. In this setting, he proved asymptotic results for all uniformities at
least 4. Whereas, the articles above considered classes of trees containing tight and linear paths,
respectively, we will consider the setting of Berge trees.

In the range when k > r, a number of results on forbidding Berge trees were obtained by
Gerbner, Methuku and Palmer in [5]. In particular they proved that if we assume the Erdős-Sós
conjecture holds for a tree T with k edges and all of its sub-trees and also that k > r+ 1, we have
exr(n,BT ) ≤

n
k

(

k
r

)

(a construction matching this bound when k divides n is given by n/k disjoint
copies of the complete r-uniform hypergraph on k vertices). In the present paper, we will consider
the range r > k, where we prove some exact results.
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2 Main Results

Considering multi-hypergraphs, we prove the following.

Theorem 3. Let n, k, r be positive integers and let T be a k-edge tree, then for all r ≥ (k−1)(k−2),

exmulti
r (n,BT ) ≤

n(k − 1)

r
.

If r > (k−1)(k−2) and T is not a star, equality holds if and only if r divides n and the extremal
multi-hypergraph is n

r
disjoint hyperedges, each with multiplicity k− 1. If T is a star equality holds

only for all (k − 1)-regular multi-hypergraphs.

We conjecture that Theorem 3 holds for the following wider set of parameters.

Conjecture 1. Let n, k, r be positive integers and let T be a k-edge tree, then for all r ≥ k + 1,

exmulti
r (n,BT ) ≤

n(k − 1)

r
.

For all trees T , where T is not a star, equality holds if and only if r divides n and the extremal
multi-hypergraph is n

r
disjoint hyperedges each with multiplicity k − 1.

The special case of Conjecture 1, when the forbidden tree is a path, was settled by Győri,
Lemons, Salia and Zamora [8] (see the first corollary).

We now define a class of hypergraphs which we will need when we classify the extremal examples
in our main result about simple hypergraphs, Theorem 4.

Definition 3. An r-uniform hypergraph H is two-sided if V (H) can be partitioned into a set X
and pairwise disjoint sets Ai, i = 1, 2, . . . , t (also disjoint from X) of size r − 1, such that every
hyperedge is of the form {x} ∪ Ai for some x ∈ X. We say that a two-sided r-uniform hypergraph

is (a, b)-regular if every vertex of X has degree a and every vertex of

t
⋃

i=1

Ai has degree b.

Remark 2. A two-sided r-uniform hypergraph can also be viewed as a graph obtained by taking a
bipartite graph G with bipartite classes X and Y , and “blowing up” each vertex of Y to a set of
size r − 1, and replacing each edge {x, y} by the r-hyperedge containing x together with the blown
up set for y.

Theorem 4. Let n, k, r be positive integers and let T be a k-edge tree which is not a star, then for
all r ≥ k(k − 2),

exr(n,BT ) ≤
n(k − 1)

r + 1
.

Equality holds if and only if r + 1 divides n, and the extremal hypergraph is obtained from n
r+1

disjoint sets of size r+1, each containing k− 1 hyperedges. Unless k is odd, and T is the balanced
double star, where the balanced double star is the tree obtain from and edge by adding k−1

2 incident
edges to each of the ends of the edge, in which case equality holds if and only if r+1 divides n and
H is obtained from the disjoint union of sets of size r + 1 containing k − 1 hyperedges each and
possibly a (k − 1, k−1

2 )-regular two-sided r-uniform hypergraph (see Figure 1).
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r + 1 vertices

k − 1 hyperedges

r + 1 vertices

k − 1 hyperedges

r + 1 vertices

k − 1 hyperedges

|Ai| = r − 1, d(Ai) =
k−1
2

d(x) = k − 1

Figure 1: An extremal graph for Theorem 4 is pictured. Any such graph can be obtained from
disjoint copies of a sets of r+1 vertices with k− 1 hyperedges and if T is the balanced double star,
possibly a (k − 1, k−1

2 )-regular two-sided r-uniform hypergraph.

3 Proofs of the main results

We start with some results about graphs.

Definition 4. For a Graph G, we denote by d(G) the average degree of G, that is d(G) = 2e(G)
v(G) .

Lemma 1. Any non-empty graph G contains a subgraph G′ with minimum degree greater than
d(G)/2.

The previous lemma is a well-known result in graph theory, which can be proved using the
following lemma.

Lemma 2. Let G be a graph and V ′ ⊆ V , if V ′ is incident with at most d(G)
2 |V ′| edges, then

d(G[V \ V ′]) ≥ d(G).

Proof. Note that if m is the number of edges incident with V ′, then we have that

2e(G[V \ V ′]) = 2e(G) − 2m ≥ d(G)v(G) − d(G)
∣

∣V ′
∣

∣ = d(G)(|V | −
∣

∣V ′
∣

∣) = d(G)v(G[V \ V ′]).

We are going to use the following fact about trees, before proving the next bound on the degrees
of the vertices in clusters.

Claim 1. If T is k-edge tree which is not a star, then there exists a vertex of T which is not a leaf
and has degree at most k+1

2 .

Proof. Let T ′ be the tree obtained by T by removing every leaf of T , since T is not a star, T ′ has
at least two vertices, take any v,w which are leaves in T ′, and note that for each, every neighbor
but one is a leaf, and also, since at most one the k edges of T is incident with both u and v, we
have that dT (u) + dT (v) ≤ k + 1. And so, one of these vertices have the desired properties.

Now we introduce two more definitions which we will need in the proofs.

Definition 5. Let H be a (multi-)hypergraph. A (k − 1)-cluster is a set of k − 1 hyperedges of H
that intersect in at least k − 1 vertices. The intersection of the k − 1 hyperedges is called the core
of the (k − 1)-cluster. The union of the k − 1 hyperedges is called the span of the (k − 1)-cluster.
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Definition 6. Let H = (V,E) be a multi-hypergraph. A multi-hypergraph H′ = (V ′, E′) is called
a reduced sub-hypergraph of H if V ′ ⊆ V and there exists an injection f : E′ → E such that
h ⊆ f(h) for all h ∈ E′. For an edge h ∈ E′ we call f(h) ∈ E its correspondent edge in H.

In the following claims, we bound the degrees of the vertices in a (k−1)-cluster for a hypergraph
which does not contain a copy of a Berge tree.

Claim 2. Let n, k, r be positive integers, with r ≥ k + 1, and let T be a k-edge tree. If H is an
r-uniform multi-hypergraph containing no Berge copy of T and S is a (k − 1)-cluster in H, then
the vertices in the core of S have degree exactly k− 1. In particular, the core vertices of S are only
incident with the hyperedges of S.

Proof. Let C be the set of vertices in the core of S. Suppose, by contradiction, there is a vertex v
in C with degree at least k, and let T ′ be a tree obtained from T by removing any two leaves x, y.
Suppose that the neighbors of these leaves are x′ and y′ respectively (it is possible that x′ = y′).
Since C has at least k − 1 vertices and there are k − 1 hyperedges containing all the vertices in
C, we can greedily embed T ′ in C in such a way that v takes the role of x′. Suppose the vertex u
takes the role of y′ in this greedy embedding. We can complete the embedding of T by using the
last hyperedge of S and an unused vertex in it (one exists since r ≥ k+ 1) to embed y. Then since
the degree of v is at least k, we have a hyperedge available to embed x as a unused vertex of this
hyperedge. Thus we have found a Berge copy of T in H, a contradiction.

Claim 3. Let n, k, r be positive integers, with r ≥ k + 1, and let T be a k-edge tree which is not a
star. If H is an r-uniform multi-hypergraph containing no Berge copy of T and S is a (k−1)-cluster
of H, then any vertex in the span of S that is incident with a hyperedge not from S, has degree at
most

⌊

k−1
2

⌋

.

Proof. Since T is not a star, by Claim 1, there is a vertex x ∈ V (T ) which is not a leaf and has
degree s, s ≤

⌊

k+1
2

⌋

, such that all but one of its neighbors is a leaf, let y be the neighbor of x
which is not a leaf. Suppose, by contradiction, there is a vertex v in the span of S which is incident
with a hyperedge that is not in S and v has degree at least

⌊

k+1
2

⌋

. Let C be the set of vertices
in the core of S. From Claim 2 we know that v cannot be in C. Pick s hyperedges h1, h2, . . . , hs
incident to v in such a way that h1 is not in S and h2 is in S. Choose a vertex w ∈ h1 not in C (in
fact, every vertex in h1 is outside C by Claim 2) and u ∈ h2 in C. Choose further distinct vertices
v3, v4, . . . , vs from the hyperedges h3, h4, . . . , hs. The vertex v will be assigned to the vertex x in
the tree, and the vertex u will be assigned to the vertex y (v3, v4, . . . , vs will be assigned to the
leaves adjacent to x). Thus, using the hyperedges h1, h2, . . . , hs we can embed the vertex x and all
its neighbors in T using at most s− 1 hyperedges from S and at most s− 1 vertices from C (v and
w are not in C).

There are at least (k−1)− (s−1) = k−s remaining vertices in C. Each of these is contained in
at least k−s unused hyperedges of S. Thus, the remaining k−s vertices of the tree can be mapped
to distinct vertices from C, and the remaining edges of the tree may be assigned to distinct unused
hyperedges of S.

Remark 3. Note that by Claim 2 and Claim 3, if H is a multi-hypergraph with uniformity r ≥ k+1
that does not contain a Berge copy of a tree on k edges which is not a star, then (k− 1)-clusters of
H are edge-disjoint.
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Lemma 3. Let k be a positive integer and let T be a k-edge tree which is not a star. Let H be a
multi-hypergraph not necessarily uniform, not containing a Berge copy of T , and assume that each
hyperedge in H has size at least k + 1. If there exists a reduced sub-hypergraph H′ = (V ′, E′) of
H such that dH′(v) ≥ k − 1 for each v ∈ V ′ and |h| ≥ k − 1 for each h ∈ E′, then H′ contains a
(k − 1)-cluster. Note that if S is a (k − 1)-cluster in H′, then the correspondent edges of S in H
are a (k − 1)-cluster.

Proof. Let h2 ∈ E′. We will show that every vertex in h2 is contained in the same set of hyperedges
in E′. Let v1, v2 ∈ h2, and suppose by contradiction that there exists a hyperedge h3 incident to v2
and not to v1. Enumerate the vertices of T by x0, x1, . . . , xk in such a way that the graph induced
by the vertices x0, x1, . . . , xi is connected for all i, x0 is a leaf of T and x0, x1, x2, x3 is a path of
length 3 (such a path exists since T is not a star). For each i = 1, 2, . . . , k, the vertex xi is adjacent
to exactly one vertex of smaller index, call the edge using xi and the vertex of smaller index ei.

We can embed T into H in the following way. First assign v1 to x1, h2 to {x1, x2}, v2 to x2,
h3 to {x2, x3} and any vertex in v3 ∈ h3 \ {v1, v2} to x3. For i = 4, . . . , k, suppose ei = {xi, xji}.
Pick any hyperedge hi ∈ E′ incident to vji and distinct from h2, h3, . . . , hi−1 (such hyperedges exist
since dH′(vji) ≥ k − 1) and assign it to ei. If i ≤ k − 1, pick any vi ∈ hi \ {v1, v2, . . . , vi−1}, and
if i = k, then let h̃k be the correspondent hyperedge of hk in H. As h̃k has size bigger than k, let
vk be any vertex in h̃k \ {v1, v2, . . . , vk−1}. This vertex vk is assigned to xk. Finally, since v1 is
incident with at least k − 1 hyperedges distinct to h3, there is a hyperedge h1 incident to v1 and
distinct from the already chosen hyperedges. Let h̃1 be the correspondent hyperedge of h1. Take
any vertex in h̃1 which has not been assigned yet and assign it to x0. Thus, by replacing the edge
hi with their correspondent hyperedges, we have found a Berge copy of T in H, a contradiction.

It follows that for any v1, v2 ∈ h2, we have that v1 and v2 must be incident with the same set
of hyperedges in H′ (by assumption at least k − 1), and so H′ contains a (k − 1)-cluster.

Lemma 3 says that if H does not contain a Berge copy of a tree and we are able to find a large
enough reduced sub-hypergraph, then H must have at least one (k − 1)-cluster. The main idea of
the proofs of the main results is to show that if H has too many hyperedges and no Berge copy of a
tree, then after removing all (k − 1)-clusters, we would still be able to find a large enough reduced
sub-hypergraph. This would imply that there is still another (k − 1)-cluster in H, a contradiction.

Proof of Theorem 3. Let T be a k-edge tree, which is not a star. Suppose that H is an n-vertex
r-uniform hypergraph with at least n(k−1)

r
hyperedges such that H does not contain a Berge copy

T , and let G be the incidence bipartite graph of H, i.e., the bipartite graph with color classes V (H)
and E(H) where v ∈ V (H) is adjacent to h ∈ E(H) if and only if v ∈ h.

Since e(H) ≥
n(k − 1)

r
, we have

e(G)

v(G)
=

re(H)

n+ e(H)
=

r
n

e(H) + 1
≥

r
r

k−1 + 1
=

r(k − 1)

r + k − 1
, and

note that

r(k − 1)

r + k − 1
≥ k−2 ⇔ r(k−1) ≥ (k−2)(r+k−1) = r(k−1)+(k−2)(k−1)−r ⇔ r ≥ (k−2)(k−1).

Hence d(G) = 2e(G)
v(G) ≥ 2

(

r(k−1)
r+k−1

)

≥ k − 2, since r ≥ (k − 2)(k − 1). Suppose H has t distinct

(k− 1)-clusters S1, S2, . . . , St (recall that by Remark 3 (k− 1)-clusters are edge-disjoint). For each
Si, let Xi be the set of vertices which are incident only with hyperedges of Si, let X =

⋃t
i=1Xi and

let Y be the set of vertices that are not in X but are incident with at least one of the (k−1)-clusters.
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Let G1 be the induced subgraph of G obtained by removing X, Y and all (k−1)-cluster hyperedges
from the vertex set of G. We will show that d(G1) ≥ d(G) (provided G1 is not the empty graph).

The number of edges removed in G is
∑

v∈X dH(v) +
∑

v∈Y dH(v). Since the degree of each

v ∈ X is at most k− 1, we have that

(

∑

v∈X

dH(v)

)

≤ |X| (k− 1). Also X is only incident with the

(k − 1)-cluster hyperedges, thus we also have the bound

(

∑

v∈X

dH(v)

)

≤ tr(k − 1), and since the

degree of each v ∈ Y is at most k−1
2 (Claim 3), we have that

(

∑

v∈Y

dH(v)

)

≤
(k − 1) |Y |

2
. Therefore

(

∑

v∈X

dH(v) +
∑

v∈Y

dH(v)

)

(r + k − 1)

=

(

∑

v∈X

dH(v)

)

r +

(

∑

v∈X

dH(v)

)

(k − 1) +

(

∑

v∈Y

dH(v)

)

(r + k − 1)

≤ |X| r(k − 1) + tr(k − 1)2 +
(k − 1) |Y |

2
(r + k − 1) ≤ r(k − 1)(|X|+ t(k − 1) + |Y |),

where in the last inequality we used r+k−1
2 < r. Thus, equality can hold only if Y = ∅.

Rearranging we have
(

∑

v∈X

dH(v) +
∑

v∈Y

dH(v)

)

≤
r(k − 1)

r + k − 1
(|X|+ t(k − 1) + |Y |) . (1)

The left-hand side of (1) is the number of removed edges, and the right-hand side is d(G)/2 times
the number of removed vertices. Therefore, by Lemma 2, if G1 is non-empty, we have that

d(G1) ≥ d(G) ≥ 2(k − 2).

Hence, by Lemma 1 there is a subgraph G2 of G1 with minimum degree at least k − 1. Suppose
that G2 has bipartite classes A ⊆ V (H) and B ⊆ E(H), and define H′ by taking the vertex set
V ′ = A and E′ = {h∩V ′ : h ∈ B}. The condition on the minimum degree of G2 implies that every
vertex of H′ has degree at least k − 1 and every hyperedge of H′ has size at least k − 1. Then by
Lemma 3, H′ contains a (k − 1)-cluster, but this (k − 1)-cluster corresponds to a (k − 1)-cluster
in H contradicting the fact that we removed every (k − 1)-cluster from H. So H must contain a
Berge copy of T , unless G1 is empty.

Note that, for G1 to be empty it is necessary that d(G) = 2r(k−1)
r+k−1 and that equality holds in

the inequality (1). This can be possible only if Y = ∅ and

|X| =
1

k − 1

∑

v∈X

dH(v) = tr.

Since every (k− 1)-cluster contains at least r vertices, we have |Xi| ≥ r, and so each Xi must have
size exactly r, hence H is the disjoint union of t hyperedges each with multiplicity k− 1. Therefore
the number of vertices would be a multiple of r and e(H) = n(k−1)

r
. Hence if e(H) ≥ n(k−1)

r
, then

H must contain a Berge copy of T , or r|n and H is the disjoint union of n
r
hyperedges each with

multiplicity k − 1.

7



Remark 4. For r = (k− 2)(k− 1), the proof above also shows that if e(H) > n(k−1)
r

, then H must
contain a Berge copy of T . However, the extremal construction does not follow from that proof.

Proof of Theorem 4. Let T be a k-edge tree which is not a star. We may assume k > 3, since
otherwise T is a path, and we already know the result for paths. Let H be an n-vertex hypergraph
with at least n(k−1)

r+1 hyperedges and r ≥ k(k − 2). We will proceed by induction on the number of
vertices n; the base cases n ≤ r + 1 are trivial.

If there is a set U of size r+1 which is incident with at most k− 1 hyperedges, put V ′ = V \U

and let n′ = |V ′|= n− r − 1. By induction, H′ the hypergraph induced by V ′, has at most n′(k−1)
r+1

hyperedges and equality holds if r + 1|n′ and H′ is the disjoint union of cliques, unless T is the
balanced double star, then it may contain a (k− 1, k−1

2 )-regular two-sided hypergraph as described
in the statement of the theorem. Note that if one of the hyperedges incident with U is incident
with a vertex v, v ∈ V ′, then v has degree at least

⌊

k+1
2

⌋

, and v is in a (k−1)-cluster of H′, thus we
have a Berge copy of T from Claim 3. Hence, the k − 1 hyperedges incident with U are contained
in the vertex set U and H has the desired structure.

Similarly to the proof of Theorem 3, we have that

e(G)

v(G)
=

re(H)

n+ r(H)
=

r
n

e(H) + 1
≥

r
r+1
k−1 + 1

=
r(k − 1)

r + k
,

and note that

r(k − 1)

r + k
≥ k − 2 ⇔ r(k − 1) ≥ (k − 2)(r + k) = r(k − 1) + (k − 2)k − r ⇔ r ≥ k(k − 2).

Hence d(G) = 2e(G)
v(G) ≥ 2

(

r(k−1)
r+k−1

)

≥ k − 2, since r ≥ (k − 2)(k − 1). Suppose that H has t distinct

(k − 1)-clusters S1, S2, . . . , St. Define the sets X1, . . . ,Xt,X and Y as in the proof of Theorem 3.
We are going to remove all vertices and hyperedges of these (k−1)-clusters as in the previous proof,
and we will denote the incidence bipartite graph of H by G. By G1 we will denote the incidence
bipartite graph of the hypergraph H′, obtained from H after removing the (k − 1)-clusters.

If |Xi| ≥ r+1 for some i, then by taking U ⊆ Xi of size r+1, we would have that U is incident
with at most k−1 hyperedges, and we would be done by induction. Hence we assume that |Xi| ≤ r.

For each i, with |Xi| = r, we have

∑

v∈Xi

dH(v) ≤ (r − 1)(k − 1) + 1 = |Xi| (k − 1)− (k − 2),

since any hyperedge is incident with at most r− 1 vertices from Xi, with the possible exception of
at most one hyperedge (Xi, if Xi ∈ E(H)).

For each i, with |Xi| ≤ r − 1, we have

∑

v∈Xi

dH(v) ≤ |Xi| (k − 1) ≤ (r − 1)(k − 1).

Let a be the number of Xi, 1 ≤ i ≤ t, with the size r. Then we have the following inequalities

∑

v∈X

dH(v) =
∑

|Xi|=r
v∈Xi

dH(v) +
∑

|Xi|<r
v∈Xi

dH(v) ≤ t(r − 1)(k − 1) + a, (2)

8



and

∑

v∈X

dH(v) ≤
∑

|Xi|=r
v∈Xi

(|Xi|)(k − 1)− (k − 2)) +
∑

|Xi|<r
v∈Xi

|Xi| (k − 1) = |X| (k − 1)− a(k − 2). (3)

We also have

tr(k − 1) ≤
∑

v∈X

dH(v) +
∑

v∈Y

dH(v) ≤ t(r − 1)(k − 1) + a+
k − 1

2
|Y | , (4)

where in the first inequality follows from the fact the set the edges of t(k − 1) hyperedges of the t
cluster are incident only with the set X∪Y , and the second inequality follows directly from Claim 3
together with the fact that dH(v) ≤ k − 1 by definition.

Rearranging (4) yields

t(k − 1) ≤ a+
|Y | (k − 1)

2
. (5)

The following three bounds come from multiplying inequality (3) and (2) by r and k, respectively,
and the bound from Claim 3 by k + r.

(

∑

v∈X

dH(v)

)

r ≤ |X| r(k − 1)− ar(k − 2). (6)

(

∑

v∈X

dH(v)

)

k ≤ t(r − 1)k(k − 1) + ak. (7)

(

∑

v∈Y

dH(v)

)

(k + r) ≤
|Y | (k − 1)

2
(k + r). (8)

Now we bound the number of deleted hyperedges times r + k. From (6), (7), (8) and then (5),
it follows that
(

∑

v∈X

dH(v) +
∑

v∈Y

dH(v)

)

(k+r) ≤ |X| r(k−1)−ar(k−2)+t(r−1)k(k−1)+ak+
|Y | (k − 1)

2
(k+r)

= |X| r(k − 1)− ar(k − 2) + tr(k − 1)2 + t(k − 1)(r − k) + ak +
|Y | (k − 1)

2
(k + r)

≤ |X| r(k − 1)− ar(k − 2) + tr(k − 1)2 + (r − k)

(

a+
|Y | (k − 1)

2

)

+ ak +
|Y | (k − 1)

2
(k + r)

= |X| r(k − 1)− ar(k − 3) + tr(k − 1)2 + |Y | (k − 1)r = r(k − 1)(|X|+ |Y |+ t(k − 1))− ar(k − 3)

≤ r(k − 1)(|X|+ |Y |+ t(k − 1)).

Rearranging we have

(

∑

v∈X

dH(v) +
∑

v∈Y

dH(v)

)

≤
r(k − 1)

r + k
(|X|+ t(k − 1) + |Y |) . (9)
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The left-hand side of (9) is the number of removed edges, and the right-hand side of (9) is d(G)/2
times the number of removed vertices.

Hence, by Lemma 2 if G1 is nonempty, we have that

d(G1) ≥ d(G) ≥ 2(k − 2).

Thus, by Lemma 1 we can find a subgraph G2 of G1 with minimum degree at least k− 1. Suppose
that G2 has bipartite classes A ⊆ V and B ⊆ E(H), define H′ by taking the vertex set V ′ = A and
hyperedge set E′ = {h ∩ V ′ : h ∈ B}. The condition on the minimum degree of G2 implies that
every vertex of H has minimum degree at least k − 1, and every hyperedge of H′ has size at least
k − 1. Then by Lemma 3, H′ contains a (k − 1)-cluster, which contradicts that we have removed
all (k − 1)-clusters in H.

For G1 to be empty it is necessary that d(G) = 2 r(k−1)
r+k

, and for (9) to hold with equality, we

must have that e(H) = n(k−1)
r+1 . To obtain equality in (9), it is necessary that a = 0 (since k > 3)

and that every hyperedge contains one of the Xi. It then follows that |X| = t(r − 1), and by (5),
|Y | = 2t. By (8), for every v ∈ Y , we have dH(v) = k−1

2 , so n = t(r + 1). Then H is a disjoint
union of sets of r+1 vertices with k−1 hyperedges, and a hypergraph constructed from the classes
A = {X1,X2 . . . ,Xt} and B = Y , where {y,Xi} is an edge if Xi ∪ {y} is a hyperedge of H. Note
that 2t = 2 |A| = |B|, the degree of every vertex in B is k−1

2 and every vertex of A has degree k−1;

that is, H is a (k − 1, k−1
2 )-regular two-sided hypergraph.

However, this is only possible if k is odd, and it is simple to check that this construction contains
a Berge copy of every k-edge tree which is not a balanced k-edge double star or the k-edge star.
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[8] E. Győri, N. Lemons, N. Salia and O. Zamora. The structure of hypergraphs without long Berge
cycles. arXiv preprint arXiv:1812.10737 (2018).

11

http://arxiv.org/abs/1808.10842
http://arxiv.org/abs/1812.10737

	1 Background
	2 Main Results
	3 Proofs of the main results

