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Abstract

An incidence of a hypergraph H = (X,S) is a pair (x,s) with x € X, s € S and x € 5. Two

incidences (x, s) and (x’, s") are adjacent if (i) x = x’, or (ii) {x,x’} C sor {x,x’} C .

C C A proper
incidence k-coloring of a hypergraph H is a mapping ¢ from the set of incidences of H to {1,2,...,k}
so that ¢(x,s) # @(x’,s’) for any two adjacent incidences (x, s) and (x’,s”) of H. The incidence
chromatic number y;(H) of H is the minimum integer k such that # has a proper incidence k-coloring.
In this paper we prove x;(H) < (4/3 + o(1))r(H)A(H) for every t-quasi-linear hypergraph with r <<
r(H) and sufficiently large A(H), where r(H) is the maximum of the cardinalities of the edges in H.
It is also proved that y;(H) < A(H) + r(H) — 1 if H is an a-acyclic linear hypergraph, and this bound
is sharp.

Keywords: incidence coloring; strong edge coloring; linear hypergraph; a-acyclic hypergraph.

1 Introduction

Let H be a hypergraph (X, S), where X is a vertex set and S is an edge set which is a family of non-empty
subsets of X. A hypergraph H’ = (X', S’) is a subhypergraph of H, written as H’ € H, if X’ C X and
S’ € S. A hypergraph (X’,S’) is an induced subhypergraph of H on a set Y C X of vertices, denoted by
H[Y],if X’ =Yand S’  ={e|lenY #0,ec S}

An (x1, x)-path of H is a sequence (xy, S, ..., X1, Sk—1, Xx) With distinct vertices xp, ..., x; and dis-
tinct edges sy, ..., sy_; such that {x;, x;;1} C s, foreach 1 < i < k—1. Now H is connected if there exists an
(x, x')-path for every two distinct vertices x, x’ € X, is k-uniform if |s| = k for every edge s € S, and is lin-
ear if [sNs’| < 1 for every two distinct edges s, s” € §. We denote by deg,,(x) = |[{s | x € s € S}| the degree

*This work was supported by the National Natural Science Foundation of China (11631014) and the National Key Research
& Development Program of China (2017YFC0908405).



of xin ‘H. Now H is d-regular if deg, (x) = d for every vertex x € X. Let A(H) = max{deg,(x) | x € X},
S(H) = min{deg, (x) | x € X}, and r(H) = max{|s|| s € S}.

We call (x, s) an incidence of H if x € X, s € § and x € s. Let I(H) be the set of incidences of H.
Two incidences (x, s) and (x’, s") are adjacent if (i) x = x’, or (ii) {x, x’} C s or {x, x'} C s".

A proper incidence k-coloring of H is a mapping ¢: I(H) — {1,2,...,k} so that ¢(x, 5) # ¢(x’, s") for
any two adjacent incidences (x, s) and (x’, ") of H. The incidence chromatic number y;(H) of H is the
minimum integer k such that H has a proper incidence k-coloring. This notion generalizes the incidence
chromatic number of graphs, which was introduced in 1993 by Brualdi and Quinn Massey [11].

In the literature, many topics concerning the incidence coloring of graphs were investigated, including
incidence coloring of certain graph classes [6-8, 13, 14, 20, 21, 26, 29, 32], incidence choosability [3],
interval incidence coloring [25], fractional incidence coloring [36], incidence coloring game [1], digraph
incidence coloring [15], the complexity of the incidence coloring [27], and the application of incidence
coloring to multi-frequency assignment problems [6]. To our knowledge, there is no publication concern-
ing the incidence coloring of hypergraphs.

In a graph G = (V, E), the distance of two vertices u,v € V in G is the length (the number of edges)
of the shortest path between u and v, denoted by dist;(u, v). The square of G is a graph G* with vertex
set V(G?) = V and edge set E(G?) = E U {uv | distg(u,v) = 2}. The line graph of G is a graph L(G)
with vertex set V(L(G)) = {v. | e € E} and edge set E(L(G)) = {v.ve |0 # ene C E, e # €'}; then
let distg(e, e’) = disty)(ve, V) for two edges e,e’ € E. A strong edge-k-coloring of G is a mapping
¢ EG)—{1,2,...,k} sothat ¢(e;) # ¢(ey) if distg(ey, e2) < 2. The strong chromatic index )/'(G) of G is
the minimum integer k such that G has a strong edge k-coloring. Since a strong edge k-coloring of G can
be easily translated into a proper k-coloring of L(G)* and vise versa, y.(G) = x(L(G)?) for every graph G.

The Levi graph of H is a bipartite graph B(H) = (V|, Vo, E) where Vi = X, V, =S and E = {xs | x €
X,s € §,x € s}. According to the definitions of Levi graph, proper incidence coloring, and strong edge
coloring, the following is straightforward.

Observation 1.1. A hypergraph H has a proper incidence k-coloring if and only if B(H) has a strong
edge k-coloring.

To see this, we let ¢ be an incidence coloring of H = (X, S) and let ¢ be an edge coloring of B(H) such
that ¢(x, s) = ¢(xs) for every x € X and s € § with x € s. Note that (x, s) is an incidence of H and xs is
an edge of B(H). Now ¢ is a strong edge coloring if and only if ¢(x1, s1) = @¢(x151) # P(x252) = @(x2, 52)
(x; € X, s; €8,i=1,2) whenever 1 < distg (X151, X252) < 2, which is equivalent to say that one of the
following holds: (a) x; = x, and s; # 52, (b) x; # X, and 51 = $, or (¢) X| # X2, S # §» and either x; s, or
x,51 is an edge of B(H), and thus that (x;, s1) and (x,, s,) are two adjacent incidences of . Hence ¢ is a
strong edge coloring if and only if ¢ is a proper incidence coloring.

Observation 1.1 immediately implies

x1(H) = Xy (BIH) = x(LBH))). (1.1)



We combine the first equality of (1.1) with known results on the strong chromatic index of graphs to
estimate upper bounds for y 7(#). This story began in 1985, in which year Erdés and Nesetfil conjectured
X.(G) < 1.25A(G)* for every graph G (note that this conjecture was first presented in a formal paper by
Faudree et al. [17]). They also pointed out that the upper bound in the conjecture is sharp. However, this
conjecture is far away to be completely resolved until now.

Let G be a graph with sufficiently large maximum degree A . As 2A? — 2A + 1 is a trivial greedy upper
bound for x’.(G), finding the biggest constant & such that sy’(G) < (2 — £)A? is interesting. The extremal
graph of Erdds and Nesetfil [17] implied € < 0.75. In 1997, Molloy and Reed [30] proved that £ > 0.002,
and thus y’(G) < 1.998A2. This was the first breakthrough result beating the trivial greedy upper bound
for x,(G). The next improvement was due to Bruhn and Joos [12], who proved in 2018 that ¢ > 0.07. Soon
after, Bonamy, Perrett, and Postle [9] improved this by showing that & > 0.165. Very recently (actually
in 2021), Hurley, de Verclos, and Kang [24] came to the best known result that £ > 0.228. This implies
XA(G) < 1.772A%.

Let H be a hypergraph and denote B(H) = (V,E). Since A(B(H)) = o(H) = max{r(H), A(H)}, we
combine the first equality of (1.1) with the result of Hurley, de Verclos, and Kang to obtain

yr(H) < 1.7720(H)* (1.2)

for every hypergraph H with sufficiently large o(#). On the other hand, since |{e’ €E|l1< distgg (e, e’) <
2}| < (A(H) = Dr(H) + ((H) = DAH) = 2r(H)A(H) — (H) — AH) < 2r(H)A(H) for each e € E,
Y(L(B(H))*) < AUL(B(H))?) + 1 < 2r(H)A(H), and thus

yr(H) < 2r(H)A(H). (1.3)

for every hypergraph H by the second equality of (1.1).

The first goal of this paper is to break the 1.772 barrier of (1.2) or the 2 barrier of (1.3). This seems
extremely challenging yet alternatively it is natural to consider the same problem for restricted hyper-
graphs. Maybe the first one special hypergraph class in our mind is the class of linear hypergraphs, which
are well studied in the literature [22]. To go a step further, we introduce a new notion generalizing linear
hypergraphs.

A hypergraph H = (X, S) is a t-quasi-linear hypergraph if

e |sNs’| <t forevery two distinct edges s,s5" € S;
° |{s €S |{xx}C s}| < t for every two distinct vertices x, x" € X.

Clearly, linear hypergraphs are exactly 1-quasi-linear hypergraphs.
In the next sections we devote to proving the following theorem. A more detailed form of the result
will be presented in Section 4 by Theorem 4.3.

Theorem 1.1. Let H be a t-quasi-linear hypergraph with t << r(H). If A(H) is sufficiently large, then
4
Xr(H) < (§ + 0(1));»(74)A(7{).
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Another special hypergraph class we investigate in this paper is the class of a-acyclic hypergraphs.
Note that the a-acyclicity is an important notion in database theory [5]. Many NP-hard problems concern-
ing databases can be solved in polynomial time when restricted to instances for which the corresponding
hypergraphs are a-acyclic [2, 35].

Specifically, Graham [19], and independently, Yu and Oszoyoglu [37] defined the a-acyclicity of a
hypergraph through a property of reducibility to the empty hypergraph via a certain “reduction” process
called GYO-reduction. Given a hypergraph H, the GYO-reduction applies the following operations re-
peatedly to H until none can be applied anymore: (i) eliminate a vertex in only one edge; (ii) eliminate an
edge contained in another; and (iii) eliminate an edge containing no vertex. A hypergraph is a-acyclic if
GYO-reduction on it results in an empty hypergraph.

An interesting phenomenon pointed out by Simon and Wojtczak [33] for the a-acyclicity is that a sub-
hypergraph of an a-acyclic hypergraph may not be a-acyclic. In other words, a-acyclic is not a hereditary
property for hypergraphs. Surprisingly, a-acyclic is definitely a hereditary property for linear hypergraphs.
We will show the reason for this in Section 6 and then apply this property to prove the following.

Theorem 1.2. If H is an a-acyclic linear hypergraph, then x r(H) < A(H) + r(H) — 1. In particular, if
we further assume H is k-uniform, then y ;(H) = A(H) + k — 1.

2 Properties of quasi-linear hypergraphs

A bipartite graph G with bipartition A and B is (a, b)-bipartite if A(A) = a and A(B) = b, and is (a, b)-
regular if each vertex of A has degree a and each vertex of B has degree b. A graph G is H-free if G does
not contain H as a subgraph.

Proposition 2.1. If H is a k-uniform A(H)-regular t-quasi-linear hypergraph, then B(H) is a K 11-free
(k, A(H))-regular bipartite graph.

Proof. Let H = (X,S) and A = A(H). Since H is k-uniform and A-regular, B := B(‘H) is a (k, A)-regular
bipartite graph with bipartition X and S, where every vertex of X has degree A and every vertex of S has

degree k in B.

Suppose for a contradiction that B contains a copy of K,,,; as a subgraph. We distinguish two asym-
metric cases. If there are two vertices x;, x, € X and 7+1 vertices sy, ..., 5,41 € S of Bsuch that x;s; € E(B)
(thus x; € s; € SinH) foreach 1 <i<2and1 < j <+ 1, then {x;,x} C ;:11 s;. If there are two
vertices s1,5, € S and ¢ + 1 vertices xi,...,x,; € X of B such that x;s; € E(B) (thus x; € 5; € S in H)
foreachl <i<t+1land1 < j <2, then {xq,...,x41} C 51 N s,. Each of the above two conclusions
contradicts the definition of the 7-quasi-linearity. O

Proposition 2.2. If ‘H is a t-quasi-linear hypergraph, then there exists an r(H)-uniform A(H)-regular
t-quasi-linear hypergraph H* containing H as a subhypergraph.



Proof. Let k = r(H) and A = A(H). We construct the desired hypergraph by following two steps.

Step 1. Construct a k-uniform t-quasi-linear hypergraph H’ such that A(H') = A and H C H'.

LetH =(X,S)andletSy ={se€ S ||s| <k}.IfSy =0, thenlet H’ = H; otherwise let So = {s1,..., s¢}
(¢>1). Letd; =k—|sj] i =1,...,¢). Into each s; with 1 < i < £, we import a set z; of d; new vertices
insuchawaythatzNX =01 <i<fandziNz; =0 <i# j<{). NowletH = (X',§"),
where X’ = X U Ule zand S"  =(S \ Sy U Ule(s,- U z;). One can easily check that H’ is k-uniform and
t-quasi-linear, A(H") = A(H) = A, and H C H'.

Let§ = 6(H'). If 6 = A, then H’ is A-regular and let H* = H’, as desired; otherwise we turn to Step

Step 2. Construct a k-uniform t-quasi-linear hypergraph H" such that A(H") = A, H' € H”, and
O(H") > 5(H).

Let Y" = {x € X" | degy,(x) < A}. As we are in this step, 6 < A and thus Y’ # (. So we may assume
Y ={x,...,x,} (p > 1) and denote X" = Y’ U {x,.1,..., x,}. Make k vertex-disjoint copies H'y, ..., H';
of H’ and denote H! = (X!,S7) (1 < i < k), where X! = U?:dxj-} is the vertex set of each copy H’;
homomorphic to the vertex set X" = |J}_,{x;} of the original hypergraph H’. Now let H” = (X",S"),
where X” = |, X/ and §” = L, S/ U U% {x},.... ). One can immediately check that H” is k-
uniform and t-quasi-linear and H’ € H”. Moreover, A(H"”) = A(H’) = A and §(H") = 6(H’) + 1, as
desired.

If 6(H") = A, then H" is A-regular and let H* = H’, as desired; otherwise we return back to Step 2
by letting H’ := H". This iteration would stop with a desired hypergraph H* after we have visited Step 2

A — § times. O

The idea of proving Theorem 1.1 is to bound y 7(H) above by y 7 (H*) as H C H*, where H* is the hy-
pergraph obtained from H by Proposition 2.2. Since A(H*) = A(H), B(H") is a K ;1-free (r(H), A(H))-
regular bipartite graph by Proposition 2.1. Since y7(H*) = x.(B(H*)) by (1.1), it is sufficient to prove an
upper bound for the strong chromatic index of birugular bipartite graphs, or exactly, (r(H), A(H))-regular
bipartite graphs.

3 The sparsity of biregular bipartite graphs

Inagraph G = (V,E), welet Ng(v) ={u € V|uv € E} and E5(v) = {e € E | v € e}. Foreach edge e € E, let
Dy(e) = {e’ € E \ {e} | distg(e,e") < 2}.

For every edge ¢’ € D,(e), let
{(e',e) = IDy(e") N Dafe)l.

Lemma 3.1. If G is a K, ,-free (a, b)-regular bipartite graph (U, V; E), then for each edge e € E,

D L0 < (4a = 3)ib? + o(b?).

e’eD;(e)



Proof. Assume by symmetry that deg;(«) = a for every u € U and deg;(v) = b for every v € V. Denote
ebyuv(u e Uandve V). Let No(v) \ {u} = {uy,uz,...,up—1} and Ng(u) \ {v} = {v1,02,...,0,-1}. Denote
up = u and vy = v. Since G is bipartite, (Ng(v) \ {©}) N (Ng(u) \ {v}) = 0. Let

vu; | 1 <i<b-1},

|1 <i<a-1)},

ww|1<i<b-1,we Ngw)\ {v}},and
Sy={vw|l<i<a-1,we Ng@)\ {u}}.

={

= {uw

= {

{

Clearly,
D2(6)2S1US2US3US4 (31)
Foranyedgee' =vu; € S1 (1 <i<b-1),

Dy @)N(S1US,) =(S1USy) \{e'}and Dy(e')NS3 =93 (3.2)

If there is one edge ¢” € D,(e') N (S4\ S3), then ¢” = v;w for some 1 < j < a—-1and w # u, and we
further have v; € Ng(u;) and Eg(v;) \ {uvj, uiv;} € Dy(e”) N (S4\ S3). This implies

Dye)N S\ S3) = | ] Ecw)) \{uvj,uj). (3.3)
UjEN(;(Ll,‘)
Since G is K ., -free,
INg(u;) N {1, ..., 0,1} <t = 1. (3.4)

Hence by (3.1), (3.2), and (3.3), we conclude

D(e") N Dy(e) S (Dr(e)N(S1US) U(Dr(e)NS3)U(Dy(e)N(S4\S3)
=(S1USUS3) \{e'}u U Eg()) \ {uvj, ujv;}.

v;ENG(u;)
Thus
[(e,e)<IS1US,USs =1+ (- 1)(b-2)
<b-D+@a-D+b-Da-D)-1+@-1)b-2)
=(a+t-1)b-2t.
by (3.4), and
DL o)< (b= 1)((a+1-1)b-20) (3.5)
e’'eS



and by symmetry we further have

Z Ze,e) < (a—D((b+1t—1a-20). (3.6)

e’eSy

Forany edge ¢’ =uwe S; (1 <i<b-1,w e Ng(u;) \ {v}),
D, e)YNS;=5;. (3.7)

Let A = Ng(v) N Ng(w) and A = Ng(v) \ A. Note that u; € A and thus »; ¢ A. Now

(1 Eotup \ o)) v 1) € Date. (3.8)

u;€A

Since G is K ,,1-free, |A| < t. Hence

-1<ta-1)-1 (3.9)

D) 0 (| Eotup \ tout)] <| | Eatup \ tow)

u;€A u;€A

by (3.8).
If there is one edge ¢” € D,(e’) N (S, U S3) incidence with some vertex in A, then ¢’ = u jw’” for some
uj € A< j<b-1)andw # v, w, and we further have y;u’ € E, i.e., w’ € Ng(u;) \ {v, w}. Hence

Dy(e') N ( U Eg(u;j) \ {qu}) ={uw |u; € A,w' € No(w;) \ {v, w}}
IA_,‘EA~
= {uw' | u; € Ng(v) N No(w') N A, w" € No(u) \ {v, w}} (3.10)
Since G is K; . -free, INg(v) N Ng(w') N Al <t—1for every w’ € Ng(u;) \ {v, w} (recall that u; ¢ A). Hence

<(@-1@a-2) (3.11)

Da) (| Bt \ fou;)
u;eA

by (3.10).
Combining (3.15) and (3.11), we conclude

D2 N (52059 = |Da(e) 1 (| Eotup \ fe)| + D2t 0 (| Eatup \ to)
ujeA quA
<QRa-3)t—-—a+1. (3.12)

Let B = Ng(u) N Ng(;) \ {v} and B = Ng(u) \ (B U {v}). Now

) Ecp \ fuvj, uvj} € Da(e) \ (S2U ). (3.13)

v;€EB



Since G is K, ,i-free, |B| <t — 1. Hence

Dy(e)NSsN ( U EG(v)) \ {uvj}) < |Da(e') N ( U E(v)) \ {uv;, uivj})
v;EB v;€B
= ' | Eawp \ fuvj, wij}| < (6 = 1)(b - 2). (3.14)
v;EB

by (3.13).
If there is one edge ¢” € D,(e’) N S 4 incidence with some vertex in B, then e’ = v,u’ for some v; € B
(I1<j<a-1)andw # u,u;, and we further have ww’ € E, i.e., w’ € Ng(vj) N Ng(w). Hence

Dy(e)N Sy N ( | J Es\ {uuj}) = (o0 | v; € B,w' € No(v)) N Ne(w))
v;eB

={vw' |v; € No(u) \ (BU {v}),w € Ng(v;) N Ng(w)} (3.15)

Since G is K>, -free, |[Ng(v;) N Ng(w)| < t for every v; € Ng(u) \ (B U {v}). Hence

<ta-1) (3.16)

Do) 01840 (U Eotwn \ o)

DjGB

by (3.15). According to (3.11) and (3.16), we conclude

D2 0S4l = [Dae) 01840 (| Eawp \ ey +[Date) 05401 (| Eoo) \ o)
v;EB ijB
<(a+b-3)-b+2. (3.17)

Combining (3.7), (3.12), and (3.17) together, we obtain
{(€',e) = |Da(e") N Dy(e)| = |Dr(e) N S|+ 1Dx(e) N (S2 U S3)| +[Da(e") NS4
=S|+ [D2(e) N (S2 U S3)| +|Dy(e) NS4l
<b-1D)+QRa-3)t—-a+1+@+b-3)t—-b+2
=3t-1)a-2)+ bt
for every ¢’ € S; by (3.1). It follows

DL e) < (a=1)b - 1)((3t = 1)a - 2) + br) (3.18)

e’eSs

and by symmetry we further have

DL e) < (a= )b - 1)((Bt = 1)(b - 2) +a). (3.19)

6’654



Finally, we combine (3.5), (3.6), (3.18), and (3.19) together and then obtain

4
Dl o= e e

e’eDy(e) i=1 ¢’€S;

— (b= 1)(a+1-1)b=20)+ (@@= 1)((b+1-Da-20)

a=1)b = 1Bt = 1)@= 2) +bt) + (a- )b - 1B = (b —2) +ar)
— (4k - 3)b* + (4ta2 (201 — 4)a + 13t - 4)b - (3ta2 (13t - 4)a + 81 — 4)
= (4k — 3)tb* + o(b*)

as desired. O
A graph G is o-sparse if for every vertex v of G, the graph induced by Ng(v) has at most (1 — U)(A(ZG))
edges.

Theorem 3.2. Let G be a K, . -free (a, b)-regular bipartite graph with t < a. For each number g5, > 0,
there exists an integer Bz, such that if b > Bz, then L(G)? is
( | - (4a - 3)t
(2a — 1)?
Proof. Since G is an (a, b)-regular bipartite graph, A(L(G)?) = (b — 1)a + (a — 1)b = 2ab — a — b. For each
vertex v, of L(G)?, the graph induced by N, 162 (ve) has at most % f(a,b,t) edges by Lemma 3.1.
Let

- 83~2)—sparse.

f(a,b,t) = (4a — 3)tb* + o(b?),
2ab—a—-b
2

Observe g(a, b, 1) = (2a — 1)?b? + o(b*), so
lim fla,b,t) (4a—3)th*> + o(b*) (4a—3)t
1 = = R
b+ g(a,b,t)  (a—1)?b> +0(b?) (2a - 1)?
For any small number &3, > 0, there exists an integer Bs, such that if » > B;, then
fla.b,t)  (4a -3
gla,b,t) (2a—1)

g(a,b,f) = 2( ): (2a — 1)’b* — (4a* = Db + a(a + 1).

&32.

This follows
1 1/(4a - 3)t
Ef(a’ b,1) < E(ﬁ + 83.2)9(0, b,1)
3 ((4a—3)t e ) 2ab—a—-b
“\Qa-12 "7 2
NICE LU,
“\Qa-1)2 "7 2
and thus L(G)? is (1 - % - 83_2)—sparse. ]



Remark: For a K, -free (a, b)-regular bipartite graph G, we would assume ¢ < a or ¢ < b, for otherwise
G does not contain a subgraph isomorphic to K, ,,; and thus the condition of K ,.-free would be vacuous,
and what is worse, G is possible to be the complete bipartite graph K,,;, and then L(G)? cannot be o-sparse
for any o < 1. This is indeed the reason why we assume ¢ < a in the statement of Lemma 3.2.

4 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1.

Lemma 4.1. [24] For each €41 > 0 and 0 < o < 1, there exists an integer By such that
X(G) < (1 —0/2+0?/6+£41)AG)
for any o-sparse graph G with A(G) > By ;.

Lemma 4.2. Let G be a K, ,.-free (a, b)-regular bipartite graph with t < a. For each g4, > 0, there exists
an integer By, such that if b > By, then

X(L(G)?) < (Z(a, 1) + £42)) ML(G)?),

where
1 (4a—3)t) 1( (4a—3)t)3/2
Za,t) = =1+ =22 4 (1 - 22222
@1 2( T 2a-12) "6\ T 2a-1y
Proof. Let
_@a-3
Qa—-12 *

Now 1 — /2 +0%?/6 < Z(a,t) + &4,/2.

Let B3, and By be the integers satisfying Lemmas 3.2 and 4.1 where we input &5, and &4 by &4, and
1e4,, respectively. Let By, = max{Bs,, Bs; + 1} and assume b > By..

Since b > By, > Bs», L(G)? is o-sparse by Lemma 3.2. Since A(L(G)*) = 2ab—a—-b >b -1 >
Bir =12 By,

X(L(GY) < (1 =0/2+ /6 + £4,/2)MLG)?)
< (Z(a, 1) + £42/2 + £42/2)AUL(G)?)
= (Z(a, 1) + &) ML(G)’)

by Lemma 4.1. O

We are now ready to complete the proof of Theorem 1.1 by the following theorem.
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Theorem 4.3. Let H be a t-quasi-linear hypergraph with t < r(H) = k. If A(H) is sufficiently large, then

x1(H) < Wk, )r(H)A(H),

where
3 4k - 3)t 1 (4k = 3)t\*/?
Wik, 1) = (1 T k- 1)2) - 5(1 T k- 1)2) '
In particular,
4
Vi H) < (§ + o(l))r(W)A(ﬂ).
ift << r(H).

Proof. By Propositions 2.1 and 2.2, there exists a f-quasi-linear hypergraph H* containing H as a subhy-
pergraph such that B(H*) is a K5 ,.-free (k, A(H))-regular bipartite graph. Therefore,

xr(H) < x1(H*) = x(L(B(H))*)
< (Z(k, 1) + o())AUL(B(H)))
= (Z(k, 1) + o(1))RkA(H) — k — A(H)
< 2Z(k, HkA(H)
= W(k, Hr(H)AH)

by (1.1) and by Lemma 4.2.
It is easy to check that

k—+00 4
Wk, t) —— —.
k. 1) r=o(k) 3

Hence if 1 << r(‘H), then

4
Xr(H) < (5 + o(l))r(?{)A(ﬂ-l),

as desired. O

5 Discussions on Theorem 1.1

Since linear hypergraphs are exactly 1-quasi linear hypergraphs, we deduce the following from Theorem
4.3.

Corollary 5.1. Let H be a linear hypergraph. If A(H) is sufficiently large, then
xr(H) < f(r(H)A(H),
where f(r(H)) = W(r(H), D)r(H).
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We naturally assume r(H) > 3 in Corollary 5.1. Since W(r(H), 1) is a deceasing function of r(H),
fr(H) < WG, Dr(H) < 1.531r(H).
We write down this result as a corollary.
Corollary 5.2. Let H be a linear hypergraph with r(H) > 3. If A(H) is sufficiently large, then
xr(H) < 1.531r(H)A(H).

Mahdian [28] showed x(G) < (2 + o(1)A(G)?/log A(G) for K, ,-free bipartite graphs G with suffi-
ciently large A(G), and the bound is asymptotically best possible. This can be used to give another upper
bound for the incidence chromatic number of linear hypergraphs.

Let H be a linear hypergraph. One can easily check that B(H) is a K, -free bipartite graph. Hence
applying (1.1) we obtain the following.

Corollary 5.3. Let H be a linear hypergraph. If o(H) := max{r(H), A(H)} is sufficiently large, then

x1(H) < 2+ o(1)o(H)* [ log o(H).

Comparing Corollary 5.2 with 5.3, one can see that the bound given by Corollary 5.2 is better than the
one given by Corollary 5.3 provided r(H) < 1.3A(H)/ log A(H).

In 1990, Faudree, Gyarfas, Schelp, and Tuza [18] conjectured y’.(G) < A(G)? for every bipartite graph
G. In 1993, Brualdi and Quinn Massey [11] refined it and put forward the following
Conjecture 5.4. y'.(G) < ab for every (a, b)-bipartite graph.

Nakprasit [31] confirmed it for a = 2. Huang, Yu, and Zhou [23] verified it for a = 3 (there were some
earlier partial results: Steger and Yu [34] proved it for a = b = 3, and Bensmail, Lagoutte, and Valicov [4]
proved xi(G) < 4b for every (3, b)-bipartite graph G). To our knowledge, whether Conjecture 5.4 holds
for a = 4 is unknown.

Applying Theorem 1.1 (or its detailed form Theorem 4.3), we obtain the following result towards
Conjecture 5.4.

Theorem 5.5. If G is a K;,.1-free (a, b)-bipartite graph witht << a < b, then

m«D§(§+dD%b

Proof. Let A and B be the bipartition of G with A(A) = a and A(B) = b. Let H be a hypergraph (X, S)
such that X = Band S = {Ng(u) | u € A}. One can see that r(H) = a, A(H) = b, and G = B(‘H). Since G
is K, .41-free, H is t-quasi-linear. Hence by (1.1) and by Theorem 1.1 (or Theorem 4.3), x'.(G) = x7(H) <
(3 + o(1))ab. O

We can also apply Theorem 4.3 to obtain certain results in the following example form:
X(G) < 6b for every K, »-free (4, b)-bipartite graph with sufficiently large b.

We leave the contents and proofs of them to the interested readers.
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6 «a-Acyclic hypergraphs

The minimization M(H) of a hypergraph H = (X, S) is a hypergraph (X’,S’) with X’ = X and §’ = {e €
S|VfeS,e¢ f}. To begin with, we introduce results of Brault-Baron [10] and Fagin [16].

Lemma 6.1. [10] A hypergraph H = (X, S) is a-acyclic if and only if there is no set X’ C X such that
either M(H|[X']) is a usual graph cycle (i.e., a connected 2-regular 2-uniform hypergraph) or the edge
set of M(H[X']) is {X' \ {x} | x € X'}

Lemma 6.2. [16] If H is a hypergraph such that B(H) is a forest, then H is a-acyclic.
Lemma 6.3. If H is an a-acyclic linear hypergraph, then B(H) is a forest.

Proof. Let H = (X,S) and B(H) = (V,,Vy; E) where Vi = X,V, =S and E = {xs|x€ X,s € S,x € s}.
Suppose, for a contradiction, that B(H) contains a cycle. We choose C be the shortest cycle of B(H) and
denote C by s1x1 -+ 5,x,51 (@ > 2,51 €8S).

If g = 2, then {x;, x,} C 51 N 55, contradicting the linearity of H. If ¢ > 3, then let X" = {x;, x2, ..., x,}.
For each 1 <i < g, s, is the unique edge containing {x;_;, x;} (here we denote xy by x,) by the linearity of
H. Hence by the minimum of ¢, M(H[X’]) is a usual graph cycle, contradicting Lemma 6.1. O

The following is an immediate corollary of Lemmas 6.2 and 6.3.
Corollary 6.4. If H is a linear hypergraph, then H is a-acyclic if and only if B(H) is a forest.

Lemma 6.5. If H is an a-acyclic linear hypergraph and H' C H, then H’ is also an a-acyclic linear
hypergraph.

Proof. Since H is a-acyclic and linear, B(H) is a forest by Corollary 6.4. Since H’' € H, B(H') € B(H)
and thus B(H’) is a forest. It is clear that " is linear, and therefore it is @-acyclic by Corollary 6.4. O

Lemma 6.5 is a key point of proving Theorem 1.2 by induction. To accomplish the proof of Theorem
1.2, we need one more lemma as follows.

Given a strong edge coloring ¢ of a graph G, we use ¢[v] denote the set of colors that are assigned to
the edges incident with v.

Lemma 6.6. Let T be a rooted tree with root v and let Np(v) = {uy, ..., us} such that deg(u;) > deg,(u;)
whenever i > j. We can modify any strong edge coloring of T by permuting the labels of the colors into a
strong edge coloring ¢ so that

elui] \ o(vu;) 2 pluipi ]\ e(vuir)

foreachl1 <i<s—1.
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Proof. Given a strong edge coloring ¢ of T, let j be the largest integer such that 1 < j < s and ¢ can be
modified by permuting the labels of the colors into a strong edge coloring ¢ so that

olur] \ p(ouy) 2 -+ 2 @lu;] \ p(ou). (6.1)

If j = s, then there is nothing to prove. We thus assume j < s — 1.
We fix a ¢ satisfying (6.1) so that Z,, := (¢[u;1]\ @(vu 1))\ (lu;]\ ¢(vu;)) is as minimum as possible.
By the choice of j, Z, # 0. Let
a € Z,.

Since degr(u;) > degr(u;r1) and @lu;]\ (vu;) 2 luji ]\ uj), (elul\ @up)\ (plujil\ euji1)
is non-empty, and thus we let

B € (SD[Mj] \ (P(qu)) \ (QO[M}'H] \ 90(qu+1))-

Since ¢ is a strong edge coloring, ¢[v] N {a, 5} = 0. It guarantees that exchanging the colors of @ and
B in the colored subtree T,,,, induced by u;,; and its descendants would result in a strong edge coloring ¢’
of T such that
'l \ @' (vur) 2 -+ 2 ¢'[u;1\ @' (vuy),

and either
(@) 1<1Zy| <|Z,], or
(®) @'lu]\ ¢’ (ou)) 2 @' 1\ @ (Witji1).
Note that (a) contradicts the choice of ¢ and (b) contradicts the choice of j. This completes the proof. O
Now we are ready to prove Theorem 1.2 by the following two separating theorems.

Theorem 6.7. If H is an a-acyclic linear hypergraph and A, k are fixed integers such that A(H) < A and
r(H) <k, then y;(H) < A+ k- 1.

Proof. We proceed induction on the sum of the number of vertices and edges of H. Let H,,...,H;
(s > 1) be components of H. If s > 2, then by Lemma 6.5 and then by induction, y7(H;) < A+ k-1 for
1 < j < s, and thus y7(H) = max <<, x7(H;) < A+k~—1. So we assume s = 1 below.

Since H is connected and a-acyclic, B(H) is a tree by Lemma 6.3. Denote this tree by 7' and root
it at a leaf r. For every vertex u of T, let T, be the subtree of T induced by u and its descendants. Let
Nr,(r) = {z} and Nr,(2) = {u1, u, ..., us}. Assume, without loss of generality, that deg; (u;) > degy (u;+1)
foreach 1 <i < s— 1. Let H’ be the graph derived from H by removing r. Now T, = B(H").

Note that r is a vertex of 7', representing either an edge or a vertex of H. If r represents an edge
(resp. a vertex) of H, then z is the unique vertex contained in (resp. edge containing) r in H, and u;’s are
edges containing (resp. vertices contained in) z. It follows deg,(z) < A(H) < A and deg,(;) < k for each
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1 <i< s(resp.deg(z,T) < k and deg,(1;) < A(H) < Aforeach 1 < i < s5). By Lemma 6.5 and then
by induction, H’ has a proper incidence (A + k — 1)-coloring, which can be translated into a strong edge
(A + k — 1)-coloring ¢ of T, by Observation 1.1.

We permute by Lemma 6.6 the labels of the colors of ¢ so that the resulting coloring ¢ of T, satisfies
that o[u;] \ o(vu;) 2 @lui1] \ ¢(vu;yp) foreach 1 <i < s — 1. Now we can finish a strong edge (A + k — 1)-
coloring of T by coloring the last uncolored edge € of T with a color not in ¢[£] U ¢[u;]. This is possible
since |¢[€]U ¢[u;]] < A+k—2 no matter r represents an edge or a vertex of H. Again, by Observation 1.1,
the strong edge (A + k — 1)-coloring of T can be translated back to a proper incidence (A + k — 1)-coloring
of H. Hence y7(H) < A+ k- 1. O

Theorem 6.8. If H is an a-acyclic k-uniform linear hypergraph, then y ;(H) = A(H) + k — 1.

Proof. There is nothing to be proved if K = 1, so we assume k > 2. Let xy be a vertex of H such that
degg (xo) = A(H). Let s1, ..., saq) be the edges incident with xy and let s; = {xo, X1, X2, ..., xx_1}. Since
the A(H)+k—1 incidences (xo, $1), - . ., (X0, Sa¢#))» (X1, 1), - - ., (Xx—1, $1) are pairwise adjacent, they cannot
be colored the same. This implies y7(H) > A(H) + k — 1 and thus the equality holds by Theorem 6.7. O
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