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Abstract

An incidence of a hypergraph H = (X, S ) is a pair (x, s) with x ∈ X, s ∈ S and x ∈ s. Two

incidences (x, s) and (x′, s′) are adjacent if (i) x = x′, or (ii) {x, x′} ⊆ s or {x, x′} ⊆ s′. A proper

incidence k-coloring of a hypergraphH is a mapping ϕ from the set of incidences ofH to {1, 2, . . . , k}

so that ϕ(x, s) , ϕ(x′, s′) for any two adjacent incidences (x, s) and (x′, s′) of H . The incidence

chromatic number χI(H) ofH is the minimum integer k such thatH has a proper incidence k-coloring.

In this paper we prove χI(H) ≤ (4/3 + o(1))r(H)∆(H) for every t-quasi-linear hypergraph with t <<

r(H) and sufficiently large ∆(H), where r(H) is the maximum of the cardinalities of the edges in H .

It is also proved that χI(H) ≤ ∆(H) + r(H) − 1 ifH is an α-acyclic linear hypergraph, and this bound

is sharp.

Keywords: incidence coloring; strong edge coloring; linear hypergraph; α-acyclic hypergraph.

1 Introduction

LetH be a hypergraph (X, S ), where X is a vertex set and S is an edge set which is a family of non-empty
subsets of X. A hypergraph H ′ = (X′, S ′) is a subhypergraph of H , written as H ′ ⊆ H , if X′ ⊆ X and
S ′ ⊆ S . A hypergraph (X′, S ′) is an induced subhypergraph of H on a set Y ⊆ X of vertices, denoted by
H[Y], if X′ = Y and S ′ = {e | e ∩ Y , ∅, e ∈ S }.

An (x1, xk)-path of H is a sequence (x1, s1, . . . , xk−1, sk−1, xk) with distinct vertices x1, . . . , xk and dis-
tinct edges s1, . . . , sk−1 such that {xi, xi+1} ⊆ si for each 1 ≤ i ≤ k−1. NowH is connected if there exists an
(x, x′)-path for every two distinct vertices x, x′ ∈ X, is k-uniform if |s| = k for every edge s ∈ S , and is lin-
ear if |s∩ s′| ≤ 1 for every two distinct edges s, s′ ∈ S . We denote by degH (x) = |{s | x ∈ s ∈ S }| the degree
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of x inH . NowH is d-regular if degH (x) = d for every vertex x ∈ X. Let ∆(H) = max{degH (x) | x ∈ X},
δ(H) = min{degH (x) | x ∈ X}, and r(H) = max{|s| | s ∈ S }.

We call (x, s) an incidence of H if x ∈ X, s ∈ S and x ∈ s. Let I(H) be the set of incidences of H .
Two incidences (x, s) and (x′, s′) are adjacent if (i) x = x′, or (ii) {x, x′} ⊆ s or {x, x′} ⊆ s′.

A proper incidence k-coloring ofH is a mapping ϕ: I(H)→ {1, 2, . . . , k} so that ϕ(x, s) , ϕ(x′, s′) for
any two adjacent incidences (x, s) and (x′, s′) of H . The incidence chromatic number χI(H) of H is the
minimum integer k such that H has a proper incidence k-coloring. This notion generalizes the incidence
chromatic number of graphs, which was introduced in 1993 by Brualdi and Quinn Massey [11].

In the literature, many topics concerning the incidence coloring of graphs were investigated, including
incidence coloring of certain graph classes [6–8, 13, 14, 20, 21, 26, 29, 32], incidence choosability [3],
interval incidence coloring [25], fractional incidence coloring [36], incidence coloring game [1], digraph
incidence coloring [15], the complexity of the incidence coloring [27], and the application of incidence
coloring to multi-frequency assignment problems [6]. To our knowledge, there is no publication concern-
ing the incidence coloring of hypergraphs.

In a graph G = (V, E), the distance of two vertices u, v ∈ V in G is the length (the number of edges)
of the shortest path between u and v, denoted by distG(u, v). The square of G is a graph G2 with vertex
set V(G2) = V and edge set E(G2) = E ∪ {uv | distG(u, v) = 2}. The line graph of G is a graph L(G)
with vertex set V(L(G)) = {ve | e ∈ E} and edge set E(L(G)) = {veve′ | ∅ , e ∩ e′ ⊆ E, e , e′}; then
let distG(e, e′) = distL(G)(ve, ve′) for two edges e, e′ ∈ E. A strong edge-k-coloring of G is a mapping
φ : E(G)→ {1, 2, . . . , k} so that φ(e1) , φ(e2) if distG(e1, e2) ≤ 2. The strong chromatic index χ′s(G) of G is
the minimum integer k such that G has a strong edge k-coloring. Since a strong edge k-coloring of G can
be easily translated into a proper k-coloring of L(G)2 and vise versa, χ′s(G) = χ(L(G)2) for every graph G.

The Levi graph of H is a bipartite graph B(H) = (V1,V2; E) where V1 = X,V2 = S and E = {xs | x ∈
X, s ∈ S , x ∈ s}. According to the definitions of Levi graph, proper incidence coloring, and strong edge
coloring, the following is straightforward.

Observation 1.1. A hypergraph H has a proper incidence k-coloring if and only if B(H) has a strong
edge k-coloring.

To see this, we let ϕ be an incidence coloring ofH = (X, S ) and let φ be an edge coloring ofB(H) such
that ϕ(x, s) = φ(xs) for every x ∈ X and s ∈ S with x ∈ s. Note that (x, s) is an incidence of H and xs is
an edge of B(H). Now φ is a strong edge coloring if and only if ϕ(x1, s1) = φ(x1s1) , φ(x2s2) = ϕ(x2, s2)
(xi ∈ X, si ∈ S , i = 1, 2) whenever 1 ≤ distB(H)(x1s1, x2s2) ≤ 2, which is equivalent to say that one of the
following holds: (a) x1 = x2 and s1 , s2, (b) x1 , x2 and s1 = s2, or (c) x1 , x2, s1 , s2 and either x1s2 or
x2s1 is an edge of B(H), and thus that (x1, s1) and (x2, s2) are two adjacent incidences ofH . Hence φ is a
strong edge coloring if and only if ϕ is a proper incidence coloring.

Observation 1.1 immediately implies

χI(H) = χ′s(B(H)) = χ(L(B(H))2). (1.1)
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We combine the first equality of (1.1) with known results on the strong chromatic index of graphs to
estimate upper bounds for χI(H). This story began in 1985, in which year Erdős and Nešetřil conjectured
χ′s(G) ≤ 1.25∆(G)2 for every graph G (note that this conjecture was first presented in a formal paper by
Faudree et al. [17]). They also pointed out that the upper bound in the conjecture is sharp. However, this
conjecture is far away to be completely resolved until now.

Let G be a graph with sufficiently large maximum degree ∆ . As 2∆2 − 2∆ + 1 is a trivial greedy upper
bound for χ′s(G), finding the biggest constant ε such that sχ′(G) ≤ (2 − ε)∆2 is interesting. The extremal
graph of Erdős and Nešetřil [17] implied ε ≤ 0.75. In 1997, Molloy and Reed [30] proved that ε ≥ 0.002,
and thus χ′s(G) ≤ 1.998∆2. This was the first breakthrough result beating the trivial greedy upper bound
for χ′s(G). The next improvement was due to Bruhn and Joos [12], who proved in 2018 that ε ≥ 0.07. Soon
after, Bonamy, Perrett, and Postle [9] improved this by showing that ε ≥ 0.165. Very recently (actually
in 2021), Hurley, de Verclos, and Kang [24] came to the best known result that ε ≥ 0.228. This implies
χ′s(G) ≤ 1.772∆2.

Let H be a hypergraph and denote B(H) = (Ṽ , Ẽ). Since ∆(B(H)) = %(H) = max{r(H),∆(H)}, we
combine the first equality of (1.1) with the result of Hurley, de Verclos, and Kang to obtain

χI(H) ≤ 1.772%(H)2 (1.2)

for every hypergraphH with sufficiently large %(H). On the other hand, since
∣∣∣{e′ ∈ Ẽ | 1 ≤ distB(H)(e, e′) ≤

2}
∣∣∣ ≤ (∆(H) − 1)r(H) + (r(H) − 1)∆(H) = 2r(H)∆(H) − r(H) − ∆(H) < 2r(H)∆(H) for each e ∈ Ẽ,

χ(L(B(H))2) ≤ ∆(L(B(H))2) + 1 ≤ 2r(H)∆(H), and thus

χI(H) ≤ 2r(H)∆(H). (1.3)

for every hypergraphH by the second equality of (1.1).
The first goal of this paper is to break the 1.772 barrier of (1.2) or the 2 barrier of (1.3). This seems

extremely challenging yet alternatively it is natural to consider the same problem for restricted hyper-
graphs. Maybe the first one special hypergraph class in our mind is the class of linear hypergraphs, which
are well studied in the literature [22]. To go a step further, we introduce a new notion generalizing linear
hypergraphs.

A hypergraphH = (X, S ) is a t-quasi-linear hypergraph if

• |s ∩ s′| ≤ t for every two distinct edges s, s′ ∈ S ;

•
∣∣∣{s ∈ S | {x, x′} ⊆ s}

∣∣∣ ≤ t for every two distinct vertices x, x′ ∈ X.

Clearly, linear hypergraphs are exactly 1-quasi-linear hypergraphs.
In the next sections we devote to proving the following theorem. A more detailed form of the result

will be presented in Section 4 by Theorem 4.3.

Theorem 1.1. LetH be a t-quasi-linear hypergraph with t << r(H). If ∆(H) is sufficiently large, then

χI(H) ≤
(4
3

+ o(1)
)
r(H)∆(H).
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Another special hypergraph class we investigate in this paper is the class of α-acyclic hypergraphs.
Note that the α-acyclicity is an important notion in database theory [5]. Many NP-hard problems concern-
ing databases can be solved in polynomial time when restricted to instances for which the corresponding
hypergraphs are α-acyclic [2, 35].

Specifically, Graham [19], and independently, Yu and Öszoyoglu [37] defined the α-acyclicity of a
hypergraph through a property of reducibility to the empty hypergraph via a certain “reduction” process
called GYO-reduction. Given a hypergraph H , the GYO-reduction applies the following operations re-
peatedly toH until none can be applied anymore: (i) eliminate a vertex in only one edge; (ii) eliminate an
edge contained in another; and (iii) eliminate an edge containing no vertex. A hypergraph is α-acyclic if
GYO-reduction on it results in an empty hypergraph.

An interesting phenomenon pointed out by Simon and Wojtczak [33] for the α-acyclicity is that a sub-
hypergraph of an α-acyclic hypergraph may not be α-acyclic. In other words, α-acyclic is not a hereditary
property for hypergraphs. Surprisingly, α-acyclic is definitely a hereditary property for linear hypergraphs.
We will show the reason for this in Section 6 and then apply this property to prove the following.

Theorem 1.2. If H is an α-acyclic linear hypergraph, then χI(H) ≤ ∆(H) + r(H) − 1. In particular, if
we further assumeH is k-uniform, then χI(H) = ∆(H) + k − 1.

2 Properties of quasi-linear hypergraphs

A bipartite graph G with bipartition A and B is (a, b)-bipartite if ∆(A) = a and ∆(B) = b, and is (a, b)-
regular if each vertex of A has degree a and each vertex of B has degree b. A graph G is H-free if G does
not contain H as a subgraph.

Proposition 2.1. IfH is a k-uniform ∆(H)-regular t-quasi-linear hypergraph, then B(H) is a K2,t+1-free
(k,∆(H))-regular bipartite graph.

Proof. LetH = (X, S ) and ∆ = ∆(H). SinceH is k-uniform and ∆-regular, B := B(H) is a (k,∆)-regular
bipartite graph with bipartition X and S , where every vertex of X has degree ∆ and every vertex of S has
degree k in B.

Suppose for a contradiction that B contains a copy of K2,t+1 as a subgraph. We distinguish two asym-
metric cases. If there are two vertices x1, x2 ∈ X and t+1 vertices s1, . . . , st+1 ∈ S of B such that xis j ∈ E(B)
(thus xi ∈ s j ∈ S in H) for each 1 ≤ i ≤ 2 and 1 ≤ j ≤ t + 1, then {x1, x2} ⊆

⋂t+1
j=1 s j. If there are two

vertices s1, s2 ∈ S and t + 1 vertices x1, . . . , xt+1 ∈ X of B such that xis j ∈ E(B) (thus xi ∈ s j ∈ S in H)
for each 1 ≤ i ≤ t + 1 and 1 ≤ j ≤ 2, then {x1, . . . , xt+1} ⊆ s1 ∩ s2. Each of the above two conclusions
contradicts the definition of the t-quasi-linearity. �

Proposition 2.2. If H is a t-quasi-linear hypergraph, then there exists an r(H)-uniform ∆(H)-regular
t-quasi-linear hypergraphH∗ containingH as a subhypergraph.
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Proof. Let k = r(H) and ∆ = ∆(H). We construct the desired hypergraph by following two steps.
Step 1. Construct a k-uniform t-quasi-linear hypergraphH ′ such that ∆(H ′) = ∆ andH ⊆ H ′.
LetH = (X, S ) and let S 0 = {s ∈ S | |s| < k}. If S 0 = ∅, then letH ′ = H ; otherwise let S 0 = {s1, . . . , s`}

(` ≥ 1). Let di = k − |si| (i = 1, . . . , `). Into each si with 1 ≤ i ≤ `, we import a set zi of di new vertices
in such a way that zi ∩ X = ∅ (1 ≤ i ≤ `) and zi ∩ z j = ∅ (1 ≤ i , j ≤ `). Now let H ′ = (X′, S ′),
where X′ = X ∪

⋃`
i=1 zi and S ′ = (S \ S 0) ∪

⋃`
i=1(si ∪ zi). One can easily check that H ′ is k-uniform and

t-quasi-linear, ∆(H ′) = ∆(H) = ∆, andH ⊆ H ′.
Let δ = δ(H ′). If δ = ∆, then H ′ is ∆-regular and let H∗ = H ′, as desired; otherwise we turn to Step

2.
Step 2. Construct a k-uniform t-quasi-linear hypergraph H ′′ such that ∆(H ′′) = ∆, H ′ ⊆ H ′′, and

δ(H ′′) > δ(H ′).
Let Y ′ = {x ∈ X′ | degH ′(x) < ∆}. As we are in this step, δ < ∆ and thus Y ′ , ∅. So we may assume

Y ′ = {x1, . . . , xp} (p ≥ 1) and denote X′ = Y ′ ∪ {xp+1, . . . , xn}. Make k vertex-disjoint copiesH ′1, . . . ,H ′k
of H ′ and denote H ′i = (X′i , S

′
i) (1 ≤ i ≤ k), where X′i =

⋃n
j=1{x

i
j} is the vertex set of each copy H ′i

homomorphic to the vertex set X′ =
⋃n

j=1{x j} of the original hypergraph H ′. Now let H ′′ = (X′′, S ′′),
where X′′ =

⋃k
i=1 X′i and S ′′ =

⋃k
i=1 S ′i ∪

⋃p
j=1{x

1
j , . . . , x

k
j}. One can immediately check that H ′′ is k-

uniform and t-quasi-linear and H ′ ⊆ H ′′. Moreover, ∆(H ′′) = ∆(H ′) = ∆ and δ(H ′′) = δ(H ′) + 1, as
desired.

If δ(H ′′) = ∆, then H ′′ is ∆-regular and let H∗ = H ′, as desired; otherwise we return back to Step 2
by lettingH ′ := H ′′. This iteration would stop with a desired hypergraphH∗ after we have visited Step 2
∆ − δ times. �

The idea of proving Theorem 1.1 is to bound χI(H) above by χI(H∗) asH ⊆ H∗, whereH∗ is the hy-
pergraph obtained fromH by Proposition 2.2. Since ∆(H∗) = ∆(H), B(H∗) is a K2,t+1-free (r(H),∆(H))-
regular bipartite graph by Proposition 2.1. Since χI(H∗) = χ′s(B(H∗)) by (1.1), it is sufficient to prove an
upper bound for the strong chromatic index of birugular bipartite graphs, or exactly, (r(H),∆(H))-regular
bipartite graphs.

3 The sparsity of biregular bipartite graphs

In a graph G = (V, E), we let NG(v) = {u ∈ V | uv ∈ E} and EG(v) = {e ∈ E | v ∈ e}. For each edge e ∈ E, let

D2(e) = {e′ ∈ E \ {e} | distG(e, e′) ≤ 2}.

For every edge e′ ∈ D2(e), let
ζ(e′, e) = |D2(e′) ∩ D2(e)|.

Lemma 3.1. If G is a K2,t+1-free (a, b)-regular bipartite graph (U,V; E), then for each edge e ∈ E,∑
e′∈D2(e)

ζ(e′, e) ≤ (4a − 3)tb2 + o(b2).
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Proof. Assume by symmetry that degG(u) = a for every u ∈ U and degG(v) = b for every v ∈ V . Denote
e by uv (u ∈ U and v ∈ V). Let NG(v) \ {u} = {u1, u2, . . . , ub−1} and NG(u) \ {v} = {v1, v2, . . . , va−1}. Denote
u0 = u and v0 = v. Since G is bipartite, (NG(v) \ {u}) ∩ (NG(u) \ {v}) = ∅. Let

S 1 = {vui | 1 ≤ i ≤ b − 1},

S 2 = {uvi | 1 ≤ i ≤ a − 1},

S 3 = {uiw | 1 ≤ i ≤ b − 1, w ∈ NG(ui) \ {v}}, and

S 4 = {viw | 1 ≤ i ≤ a − 1, w ∈ NG(vi) \ {u}}.

Clearly,

D2(e) = S 1 ∪ S 2 ∪ S 3 ∪ S 4 (3.1)

For any edge e′ = vui ∈ S 1 (1 ≤ i ≤ b − 1),

D2(e′) ∩ (S 1 ∪ S 2) = (S 1 ∪ S 2) \ {e′} and D2(e′) ∩ S 3 = S 3 (3.2)

If there is one edge e′′ ∈ D2(e′) ∩ (S 4 \ S 3), then e′′ = v jw for some 1 ≤ j ≤ a − 1 and w , u, and we
further have v j ∈ NG(ui) and EG(v j) \ {uv j, uiv j} ⊆ D2(e′) ∩ (S 4 \ S 3). This implies

D2(e′) ∩ (S 4 \ S 3) =
⋃

v j∈NG(ui)

EG(v j) \ {uv j, uiv j}. (3.3)

Since G is K2,t+1-free,

|NG(ui) ∩ {v1, . . . , va−1}| ≤ t − 1. (3.4)

Hence by (3.1), (3.2), and (3.3), we conclude

D2(e′) ∩ D2(e) ⊆ (D2(e′) ∩ (S 1 ∪ S 2)) ∪ (D2(e′) ∩ S 3) ∪ (D2(e′) ∩ (S 4 \ S 3)

= (S 1 ∪ S 2 ∪ S 3) \ {e′} ∪
⋃

v j∈NG(ui)

EG(v j) \ {uv j, uiv j}.

Thus

ζ(e′, e) ≤ |S 1 ∪ S 2 ∪ S 3| − 1 + (t − 1)(b − 2)

≤ (b − 1) + (a − 1) + (b − 1)(a − 1) − 1 + (t − 1)(b − 2)

= (a + t − 1)b − 2t.

by (3.4), and ∑
e′∈S 1

ζ(e′, e) ≤ (b − 1)
(
(a + t − 1)b − 2t

)
(3.5)
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and by symmetry we further have∑
e′∈S 2

ζ(e′, e) ≤ (a − 1)
(
(b + t − 1)a − 2t

)
. (3.6)

For any edge e′ = uiw ∈ S 3 (1 ≤ i ≤ b − 1, w ∈ NG(ui) \ {v}),

D2(e′) ∩ S 1 = S 1. (3.7)

Let A = NG(v) ∩ NG(w) and Ã = NG(v) \ A. Note that ui ∈ A and thus ui < Ã. Now( ⋃
u j∈A

EG(u j) \ {vu j}

)
\ {e′} ⊆ D2(e′). (3.8)

Since G is K2,t+1-free, |A| ≤ t. Hence∣∣∣∣∣D2(e′) ∩
( ⋃

u j∈A

EG(u j) \ {vu j}

)∣∣∣∣∣ ≤ ∣∣∣∣∣ ⋃
u j∈A

EG(u j) \ {vu j}

∣∣∣∣∣ − 1 ≤ t(a − 1) − 1 (3.9)

by (3.8).
If there is one edge e′′ ∈ D2(e′) ∩ (S 2 ∪ S 3) incidence with some vertex in Ã, then e′′ = u jw

′ for some
u j ∈ Ã (0 ≤ j ≤ b − 1) and w′ , v, w, and we further have uiw

′ ∈ E, i.e., w′ ∈ NG(ui) \ {v, w}. Hence

D2(e′) ∩
( ⋃

u j∈Ã

EG(u j) \ {vu j}

)
=

{
u jw

′ | u j ∈ Ã, w′ ∈ NG(ui) \ {v, w}
}

=
{
u jw

′ | u j ∈ NG(v) ∩ NG(w′) ∩ Ã, w′ ∈ NG(ui) \ {v, w}
}

(3.10)

Since G is K2,t+1-free, |NG(v)∩NG(w′)∩ Ã| ≤ t − 1 for every w′ ∈ NG(ui) \ {v, w} (recall that ui < Ã). Hence∣∣∣∣∣D2(e′) ∩
( ⋃

u j∈Ã

EG(u j) \ {vu j}

)∣∣∣∣∣ ≤ (t − 1)(a − 2) (3.11)

by (3.10).
Combining (3.15) and (3.11), we conclude

|D2(e′) ∩ (S 2 ∪ S 3)| =
∣∣∣∣∣D2(e′) ∩

( ⋃
u j∈A

EG(u j) \ {vu j}

)∣∣∣∣∣ +

∣∣∣∣∣D2(e′) ∩
( ⋃

u j∈Ã

EG(u j) \ {vu j}

)∣∣∣∣∣
≤ (2a − 3)t − a + 1. (3.12)

Let B = NG(u) ∩ NG(ui) \ {v} and B̃ = NG(u) \ (B ∪ {v}). Now⋃
v j∈B

EG(v j) \ {uv j, uiv j} ⊆ D2(e′) \ (S 2 ∪ S 3). (3.13)

7



Since G is K2,t+1-free, |B| ≤ t − 1. Hence∣∣∣∣∣D2(e′) ∩ S 4 ∩

(⋃
v j∈B

EG(v j) \ {uv j}

)∣∣∣∣∣ ≤ ∣∣∣∣∣D2(e′) ∩
(⋃
v j∈B

EG(v j) \ {uv j, uiv j}

)∣∣∣∣∣
=

∣∣∣∣∣⋃
v j∈B

EG(v j) \ {uv j, uiv j}

∣∣∣∣∣ ≤ (t − 1)(b − 2). (3.14)

by (3.13).
If there is one edge e′′ ∈ D2(e′) ∩ S 4 incidence with some vertex in B̃, then e′′ = v jw

′ for some v j ∈ B̃
(1 ≤ j ≤ a − 1) and w′ , u, ui, and we further have ww′ ∈ E, i.e., w′ ∈ NG(v j) ∩ NG(w). Hence

D2(e′) ∩ S 4 ∩

(⋃
v j∈B̃

EG(v j) \ {uv j}

)
=

{
v jw

′ | v j ∈ B̃, w′ ∈ NG(v j) ∩ NG(w)
}

=
{
v jw

′ | v j ∈ NG(u) \ (B ∪ {v}), w′ ∈ NG(v j) ∩ NG(w)
}

(3.15)

Since G is K2,t+1-free, |NG(v j) ∩ NG(w)| ≤ t for every v j ∈ NG(u) \ (B ∪ {v}). Hence∣∣∣∣∣D2(e′) ∩ S 4 ∩

(⋃
v j∈B̃

EG(v j) \ {uv j}

)∣∣∣∣∣ ≤ t(a − 1) (3.16)

by (3.15). According to (3.11) and (3.16), we conclude

|D2(e′) ∩ S 4| =

∣∣∣∣∣D2(e′) ∩ S 4 ∩

(⋃
v j∈B

EG(v j) \ {uv j}

)∣∣∣∣∣ +

∣∣∣∣∣D2(e′) ∩ S 4 ∩

(⋃
v j∈B̃

EG(v j) \ {uv j}

)∣∣∣∣∣
≤ (a + b − 3)t − b + 2. (3.17)

Combining (3.7), (3.12), and (3.17) together, we obtain

ζ(e′, e) = |D2(e′) ∩ D2(e)| = |D2(e′) ∩ S 1| + |D2(e′) ∩ (S 2 ∪ S 3)| + |D2(e′) ∩ S 4|

= |S 1| + |D2(e′) ∩ (S 2 ∪ S 3)| + |D2(e′) ∩ S 4|

≤ (b − 1) + (2a − 3)t − a + 1 + (a + b − 3)t − b + 2

= (3t − 1)(a − 2) + bt

for every e′ ∈ S 3 by (3.1). It follows∑
e′∈S 3

ζ(e′, e) ≤ (a − 1)(b − 1)
(
(3t − 1)(a − 2) + bt

)
(3.18)

and by symmetry we further have∑
e′∈S 4

ζ(e′, e) ≤ (a − 1)(b − 1)
(
(3t − 1)(b − 2) + at

)
. (3.19)
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Finally, we combine (3.5), (3.6), (3.18), and (3.19) together and then obtain∑
e′∈D2(e)

ζ(e′, e) =

4∑
i=1

∑
e′∈S i

ζ(e′, e)

= (b − 1)
(
(a + t − 1)b − 2t

)
+ (a − 1)

(
(b + t − 1)a − 2t

)
+ (a − 1)(b − 1)

(
(3t − 1)(a − 2) + bt

)
+ (a − 1)(b − 1)

(
(3t − 1)(b − 2) + at

)
= (4k − 3)tb2 +

(
4ta2 − (20t − 4)a + 13t − 4

)
b −

(
3ta2 − (13t − 4)a + 8t − 4

)
= (4k − 3)tb2 + o(b2)

as desired. �

A graph G is σ-sparse if for every vertex v of G, the graph induced by NG(v) has at most (1 − σ)
(
∆(G)

2

)
edges.

Theorem 3.2. Let G be a K2,t+1-free (a, b)-regular bipartite graph with t < a. For each number ε3.2 > 0,
there exists an integer B3.2 such that if b ≥ B3.2 then L(G)2 is(

1 −
(4a − 3)t
(2a − 1)2 − ε3.2

)
-sparse.

Proof. Since G is an (a, b)-regular bipartite graph, ∆(L(G)2) = (b− 1)a + (a− 1)b = 2ab− a− b. For each
vertex ve of L(G)2, the graph induced by NL(G)2(ve) has at most 1

2 f (a, b, t) edges by Lemma 3.1.
Let

f (a, b, t) = (4a − 3)tb2 + o(b2),

g(a, b, t) = 2
(
2ab − a − b

2

)
= (2a − 1)2b2 − (4a2 − 1)b + a(a + 1).

Observe g(a, b, t) = (2a − 1)2b2 + o(b2), so

lim
b→+∞

f (a, b, t)
g(a, b, t)

=
(4a − 3)tb2 + o(b2)
(2a − 1)2b2 + o(b2)

=
(4a − 3)t
(2a − 1)2 ,

For any small number ε3.2 > 0, there exists an integer B3.2 such that if b ≥ B3.2 then∣∣∣∣∣ f (a, b, t)
g(a, b, t)

−
(4a − 3)t
(2a − 1)2

∣∣∣∣∣ < ε3.2.

This follows
1
2

f (a, b, t) <
1
2

( (4a − 3)t
(2a − 1)2 + ε3.2

)
g(a, b, t)

=

( (4a − 3)t
(2a − 1)2 + ε3.2

)(2ab − a − b
2

)
=

( (4a − 3)t
(2a − 1)2 + ε3.2

)(
∆(L(G)2)

2

)
and thus L(G)2 is

(
1 − (4a−3)t

(2a−1)2 − ε3.2

)
-sparse. �
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Remark: For a K2,t+1-free (a, b)-regular bipartite graph G, we would assume t < a or t < b, for otherwise
G does not contain a subgraph isomorphic to K2,t+1 and thus the condition of K2,t+1-free would be vacuous,
and what is worse, G is possible to be the complete bipartite graph Ka,b and then L(G)2 cannot be σ-sparse
for any σ < 1. This is indeed the reason why we assume t < a in the statement of Lemma 3.2.

4 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1.

Lemma 4.1. [24] For each ε4.1 > 0 and 0 ≤ σ ≤ 1, there exists an integer B4.1 such that

χ(G) ≤ (1 − σ/2 + σ3/2/6 + ε4.1)∆(G)

for any σ-sparse graph G with ∆(G) ≥ B4.1.

Lemma 4.2. Let G be a K2,t+1-free (a, b)-regular bipartite graph with t < a. For each ε4.2 > 0, there exists
an integer B4.2 such that if b ≥ B4.2 then

χ(L(G)2) ≤ (Z(a, t) + ε4.2)∆(L(G)2),

where

Z(a, t) =
1
2

(
1 +

(4a − 3)t
(2a − 1)2

)
+

1
6

(
1 −

(4a − 3)t
(2a − 1)2

)3/2

.

Proof. Let

σ = 1 −
(4a − 3)t
(2a − 1)2 − ε4.2

Now 1 − σ/2 + σ3/2/6 ≤ Z(a, t) + ε4.2/2.
Let B3.2 and B4.1 be the integers satisfying Lemmas 3.2 and 4.1 where we input ε3.2 and ε4.1 by ε4.2 and

1
2ε4.2, respectively. Let B4.2 = max{B3.2, B4.1 + 1} and assume b > B4.2.

Since b > B4.2 ≥ B3.2, L(G)2 is σ-sparse by Lemma 3.2. Since ∆(L(G)2) = 2ab − a − b ≥ b − 1 >

B4.2 − 1 ≥ B4.1,

χ(L(G)2) ≤ (1 − σ/2 + σ3/2/6 + ε4.2/2)∆(L(G)2)

≤ (Z(a, t) + ε4.2/2 + ε4.2/2)∆(L(G)2)

= (Z(a, t) + ε4.2)∆(L(G)2)

by Lemma 4.1. �

We are now ready to complete the proof of Theorem 1.1 by the following theorem.
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Theorem 4.3. LetH be a t-quasi-linear hypergraph with t < r(H) = k. If ∆(H) is sufficiently large, then

χI(H) ≤ W(k, t)r(H)∆(H),

where

W(k, t) =

(
1 +

(4k − 3)t
(2k − 1)2

)
+

1
3

(
1 −

(4k − 3)t
(2k − 1)2

)3/2

.

In particular,

χI(H) ≤
(4
3

+ o(1)
)
r(H)∆(H).

if t << r(H).

Proof. By Propositions 2.1 and 2.2, there exists a t-quasi-linear hypergraphH∗ containingH as a subhy-
pergraph such that B(H∗) is a K2,t+1-free (k,∆(H))-regular bipartite graph. Therefore,

χI(H) ≤ χI(H∗) = χ(L(B(H∗))2)

≤ (Z(k, t) + o(1))∆(L(B(H∗))2)

= (Z(k, t) + o(1))(2k∆(H) − k − ∆(H))

≤ 2Z(k, t)k∆(H)

= W(k, t)r(H)∆(H)

by (1.1) and by Lemma 4.2.
It is easy to check that

W(k, t)
k→+∞
−−−−→
t=o(k)

4
3
.

Hence if t << r(H), then

χI(H) ≤
(4
3

+ o(1)
)
r(H)∆(H),

as desired. �

5 Discussions on Theorem 1.1

Since linear hypergraphs are exactly 1-quasi linear hypergraphs, we deduce the following from Theorem
4.3.

Corollary 5.1. LetH be a linear hypergraph. If ∆(H) is sufficiently large, then

χI(H) ≤ f (r(H))∆(H),

where f (r(H)) = W(r(H), 1)r(H).
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We naturally assume r(H) ≥ 3 in Corollary 5.1. Since W(r(H), 1) is a deceasing function of r(H),

f (r(H)) ≤ W(3, 1)r(H) ≤ 1.531r(H).

We write down this result as a corollary.

Corollary 5.2. LetH be a linear hypergraph with r(H) ≥ 3. If ∆(H) is sufficiently large, then

χI(H) ≤ 1.531r(H)∆(H).

Mahdian [28] showed χ′s(G) ≤ (2 + o(1))∆(G)2/ log ∆(G) for K2,2-free bipartite graphs G with suffi-
ciently large ∆(G), and the bound is asymptotically best possible. This can be used to give another upper
bound for the incidence chromatic number of linear hypergraphs.

Let H be a linear hypergraph. One can easily check that B(H) is a K2,2-free bipartite graph. Hence
applying (1.1) we obtain the following.

Corollary 5.3. LetH be a linear hypergraph. If %(H) := max{r(H),∆(H)} is sufficiently large, then

χI(H) ≤ (2 + o(1))%(H)2/ log %(H).

Comparing Corollary 5.2 with 5.3, one can see that the bound given by Corollary 5.2 is better than the
one given by Corollary 5.3 provided r(H) ≤ 1.3∆(H)/ log ∆(H).

In 1990, Faudree, Gyárfás, Schelp, and Tuza [18] conjectured χ′s(G) ≤ ∆(G)2 for every bipartite graph
G. In 1993, Brualdi and Quinn Massey [11] refined it and put forward the following

Conjecture 5.4. χ′s(G) ≤ ab for every (a, b)-bipartite graph.

Nakprasit [31] confirmed it for a = 2. Huang, Yu, and Zhou [23] verified it for a = 3 (there were some
earlier partial results: Steger and Yu [34] proved it for a = b = 3, and Bensmail, Lagoutte, and Valicov [4]
proved χ′s(G) ≤ 4b for every (3, b)-bipartite graph G). To our knowledge, whether Conjecture 5.4 holds
for a = 4 is unknown.

Applying Theorem 1.1 (or its detailed form Theorem 4.3), we obtain the following result towards
Conjecture 5.4.

Theorem 5.5. If G is a K2,t+1-free (a, b)-bipartite graph with t << a ≤ b, then

χ′s(G) ≤
(4
3

+ o(1)
)
ab

Proof. Let A and B be the bipartition of G with ∆(A) = a and ∆(B) = b. Let H be a hypergraph (X, S )
such that X = B and S = {NG(u) | u ∈ A}. One can see that r(H) = a, ∆(H) = b, and G = B(H). Since G
is K2,t+1-free,H is t-quasi-linear. Hence by (1.1) and by Theorem 1.1 (or Theorem 4.3), χ′s(G) = χI(H) ≤( 4

3 + o(1)
)
ab. �

We can also apply Theorem 4.3 to obtain certain results in the following example form:

χ′s(G) ≤ 6b for every K2,2-free (4, b)-bipartite graph with sufficiently large b.

We leave the contents and proofs of them to the interested readers.
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6 α-Acyclic hypergraphs

The minimizationM(H) of a hypergraph H = (X, S ) is a hypergraph (X′, S ′) with X′ = X and S ′ = {e ∈
S | ∀ f ∈ S , e 1 f }. To begin with, we introduce results of Brault-Baron [10] and Fagin [16].

Lemma 6.1. [10] A hypergraph H = (X, S ) is α-acyclic if and only if there is no set X′ ⊆ X such that
either M(H[X′]) is a usual graph cycle (i.e., a connected 2-regular 2-uniform hypergraph) or the edge
set ofM(H[X′]) is {X′ \ {x} | x ∈ X′}.

Lemma 6.2. [16] IfH is a hypergraph such that B(H) is a forest, thenH is α-acyclic.

Lemma 6.3. IfH is an α-acyclic linear hypergraph, then B(H) is a forest.

Proof. Let H = (X, S ) and B(H) = (V1,V2; E) where V1 = X,V2 = S and E = {xs | x ∈ X, s ∈ S , x ∈ s}.
Suppose, for a contradiction, that B(H) contains a cycle. We choose C be the shortest cycle of B(H) and
denote C by s1x1 · · · sqxqs1 (q ≥ 2, s1 ∈ S ).

If q = 2, then {x1, x2} ⊆ s1 ∩ s2, contradicting the linearity ofH . If q ≥ 3, then let X′ = {x1, x2, . . . , xq}.
For each 1 ≤ i ≤ q, si is the unique edge containing {xi−1, xi} (here we denote x0 by xq) by the linearity of
H . Hence by the minimum of q, M(H[X′]) is a usual graph cycle, contradicting Lemma 6.1. �

The following is an immediate corollary of Lemmas 6.2 and 6.3.

Corollary 6.4. IfH is a linear hypergraph, thenH is α-acyclic if and only if B(H) is a forest.

Lemma 6.5. If H is an α-acyclic linear hypergraph and H ′ ⊆ H , then H ′ is also an α-acyclic linear
hypergraph.

Proof. SinceH is α-acyclic and linear, B(H) is a forest by Corollary 6.4. SinceH ′ ⊆ H , B(H ′) ⊆ B(H)
and thus B(H ′) is a forest. It is clear thatH ′ is linear, and therefore it is α-acyclic by Corollary 6.4. �

Lemma 6.5 is a key point of proving Theorem 1.2 by induction. To accomplish the proof of Theorem
1.2, we need one more lemma as follows.

Given a strong edge coloring φ of a graph G, we use φ[v] denote the set of colors that are assigned to
the edges incident with v.

Lemma 6.6. Let T be a rooted tree with root v and let NT (v) = {u1, . . . , us} such that degT (ui) ≥ degT (u j)
whenever i ≥ j. We can modify any strong edge coloring of T by permuting the labels of the colors into a
strong edge coloring ϕ so that

ϕ[ui] \ ϕ(vui) ⊇ ϕ[ui+1] \ ϕ(vui+1)

for each 1 ≤ i ≤ s − 1.
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Proof. Given a strong edge coloring φ of T , let j be the largest integer such that 1 ≤ j ≤ s and φ can be
modified by permuting the labels of the colors into a strong edge coloring ϕ so that

ϕ[u1] \ ϕ(vu1) ⊇ · · · ⊇ ϕ[u j] \ ϕ(vu j). (6.1)

If j = s, then there is nothing to prove. We thus assume j ≤ s − 1.
We fix a ϕ satisfying (6.1) so that Zϕ :=

(
ϕ[u j+1]\ϕ(vu j+1)

)
\
(
ϕ[u j]\ϕ(vu j)

)
is as minimum as possible.

By the choice of j, Zϕ , ∅. Let
α ∈ Zϕ.

Since degT (u j) ≥ degT (u j+1) and ϕ[u j]\ϕ(vu j) + ϕ[u j+1]\ϕ(vu j+1),
(
ϕ[u j]\ϕ(vu j)

)
\
(
ϕ[u j+1]\ϕ(vu j+1)

)
is non-empty, and thus we let

β ∈
(
ϕ[u j] \ ϕ(vu j)

)
\
(
ϕ[u j+1] \ ϕ(vu j+1)

)
.

Since ϕ is a strong edge coloring, ϕ[v] ∩ {α, β} = ∅. It guarantees that exchanging the colors of α and
β in the colored subtree Tu j+1 induced by u j+1 and its descendants would result in a strong edge coloring ϕ′

of T such that
ϕ′[u1] \ ϕ′(vu1) ⊇ · · · ⊇ ϕ′[u j] \ ϕ′(vu j),

and either

(a) 1 ≤ |Zϕ′ | < |Zϕ|, or

(b) ϕ′[u j] \ ϕ′(vu j) ⊇ ϕ′[u j+1] \ ϕ′(vu j+1).

Note that (a) contradicts the choice of ϕ and (b) contradicts the choice of j. This completes the proof. �

Now we are ready to prove Theorem 1.2 by the following two separating theorems.

Theorem 6.7. IfH is an α-acyclic linear hypergraph and ∆, k are fixed integers such that ∆(H) ≤ ∆ and
r(H) ≤ k, then χI(H) ≤ ∆ + k − 1.

Proof. We proceed induction on the sum of the number of vertices and edges of H . Let H1, . . . ,Hs

(s ≥ 1) be components ofH . If s ≥ 2, then by Lemma 6.5 and then by induction, χI(H j) ≤ ∆ + k − 1 for
1 ≤ j ≤ s, and thus χI(H) = max1≤ j≤s χI(H j) ≤ ∆ + k − 1. So we assume s = 1 below.

Since H is connected and α-acyclic, B(H) is a tree by Lemma 6.3. Denote this tree by T and root
it at a leaf r. For every vertex u of T , let Tu be the subtree of T induced by u and its descendants. Let
NTr (r) = {z} and NTz(z) = {u1, u2, . . . , us}. Assume, without loss of generality, that degTz

(ui) ≥ degTz
(ui+1)

for each 1 ≤ i ≤ s − 1. LetH ′ be the graph derived fromH by removing r. Now Tz = B(H ′).
Note that r is a vertex of T , representing either an edge or a vertex of H . If r represents an edge

(resp. a vertex) of H , then z is the unique vertex contained in (resp. edge containing) r in H , and ui’s are
edges containing (resp. vertices contained in) z. It follows degT (z) ≤ ∆(H) ≤ ∆ and degT (ui) ≤ k for each
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1 ≤ i ≤ s (resp. deg(z,T ) ≤ k and degT (ui) ≤ ∆(H) ≤ ∆ for each 1 ≤ i ≤ s). By Lemma 6.5 and then
by induction, H ′ has a proper incidence (∆ + k − 1)-coloring, which can be translated into a strong edge
(∆ + k − 1)-coloring φ of T` by Observation 1.1.

We permute by Lemma 6.6 the labels of the colors of φ so that the resulting coloring ϕ of T` satisfies
that ϕ[ui] \ ϕ(vui) ⊇ ϕ[ui+1] \ ϕ(vui+1) for each 1 ≤ i ≤ s − 1. Now we can finish a strong edge (∆ + k − 1)-
coloring of T by coloring the last uncolored edge r` of T with a color not in ϕ[`] ∪ ϕ[u1]. This is possible
since |ϕ[`]∪ϕ[u1]| ≤ ∆+ k−2 no matter r represents an edge or a vertex ofH . Again, by Observation 1.1,
the strong edge (∆ + k − 1)-coloring of T can be translated back to a proper incidence (∆ + k − 1)-coloring
ofH . Hence χI(H) ≤ ∆ + k − 1. �

Theorem 6.8. IfH is an α-acyclic k-uniform linear hypergraph, then χI(H) = ∆(H) + k − 1.

Proof. There is nothing to be proved if k = 1, so we assume k ≥ 2. Let x0 be a vertex of H such that
degH (x0) = ∆(H). Let s1, . . . , s∆(H) be the edges incident with x0 and let s1 = {x0, x1, x2, . . . , xk−1}. Since
the ∆(H)+k−1 incidences (x0, s1), . . . , (x0, s∆(H)), (x1, s1), . . . , (xk−1, s1) are pairwise adjacent, they cannot
be colored the same. This implies χI(H) ≥ ∆(H) + k − 1 and thus the equality holds by Theorem 6.7. �
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