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Fermat’s Last Theorem, Schur’s Theorem (in Ramsey
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Abstract

Alpoge and Granville (separately) gave novel proofs that the primes are infinite

that use Ramsey Theory. In particular, they use Van der Waerden’s Theorem

and some number theory. We prove the primes are infinite using an easier the-

orem from Ramsey Theory, namely Schur’s Theorem, and some number theory

(Elsholtz independently obtained the same proof that the primes were infinite).

In particular, we use the n = 3 case of Fermat’s last theorem. We also apply

our method to show other domains have an infinite number of irreducibles.
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1. Introduction

Notation 1.1. We take N to be {0, 1, 2, 3, . . .}.

Def 1.2. Let a ∈ N and D be a domain.

1. FLTa holds in D means that the equation

xa + ya = za

has no solution in D− {0}.
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2. FLTa means FLTa holds in Z.

In 1770 Euler proved FLT3 (see the texts of Ireland & Rosen [8] or Hardy &

Wright [7] for a modern treatment of Euler’s proof). In 1916 Schur proved a the-

orem in Ramsey Theory (which we will state later) that is referred to as Schur’s

Theorem (in Ramsey Theory) (see the texts of Graham-Rothschild-Spencer [5]

or Landman & Robertson [9] for a modern treatment of Schur’s proof). In this

paper we use these two theorems to prove the primes are infinite. (Elsholtz [4]

independently obtained the same proof that the primes were infinite.) While

there are of course easier proofs, we think it is of interest that it can be derived

from Schur’s Theorem and FLT3.

Alpoge [2] proved the primes were infinite using elementary number theory

and Van der Warden’s theorem. Granville [6] proved that the primes were

infinite from the fact that that there can never be four squares in arithmetic

progression (attributed to Fermat) and Van der Warden’s theorem. Our proof

compares to their proofs as follows:

• Our proof uses easier Ramsey Theory then Alpoge’s or Granville’s proof.

• Our proof uses harder number theory than Alpoge’s proof.

• Our proof uses about the same level of number theory as Granville’s proof.

• We prove a general theorem that allows us to show other domains have

an infinite number of irreducibles.

In Section 2 we present Schur’s Theorem and definitions from number theory.

In Section 3 we present a condition on an integral domains D that implies D has

an infinite number of irreducibles. That condition easily applies to Z. Hence we

obtain that Z has an infinite number of irreducibles. Since in Z, every irreducible

is a prime, we also get that there are an infinite number of primes. In Section 5

we use our results to show that, for all d ∈ N, Z[
√
−d] has an infinite number

of irreducibles. In Section 6 we use our results, together with a widely believed

conjecture, to show that many domains have an infinite number of irreducibles.

In Section 7 we present an open problem.
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2. Preliminaries

The following is Schur’s Theorem (from Ramsey theory). It can be proven

from Ramsey’s Theorem.

Lemma 2.1. For all c, for all c-colorings COL : N − {0} → [c], there exist

x, y, z ∈ N− {0} with x+ y = z such that

COL(x) = COL(y) = COL(z).

The following definitions are standard.

Def 2.2. Let D be an integral domain.

1. A unit is a u ∈ D such that there exists v ∈ D with uv = 1. We let U be

the set of units if the domain is understood.

2. An irreducible is a p ∈ D − U such that if p = ab then either a ∈ U or

b ∈ U. We let I be the set of irreducibles if the domain is understood.

3. A prime is a p ∈ D such that if p divides ab then either p divides a or

p divides b. In any integral domain all primes are irreducible. There are

integral domains with irreducibles that are not primes. The set

{a+b
√
−5 : a, b ∈ Z} is one such example: (a) The element 2 is irreducible,

yet (b) 2 is not prime since 2 divides (1 +
√
−5)(1−

√
−5) = 6 but 2 does

not divide either 1 +
√
−5 or 1 +

√
−5.

4. We impose an equivalence relation on I: p and q are equivalent if there

exists u ∈ U such that p = uq. We say I is infinite up to units if the

number of equivalence classes is infinite. In this paper infinite will mean

infinite up to units.

5. An Atomic Integral Domain is an integral domain such that every element

of D − (U ∪ {0}) can be written (not necessarily uniquely) as px1

1 · · · pxm

m

where the pi’s are irreducible. The domains Z and Z[
√
d] are known to be

atomic by using norms. The set of algebraic integers (complex numbers

that satisfy monic polynomials over Z[x]) is an integral domain that is

not atomic for a funny reason: there are no irreducibles. If a is a nonzero
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nonunit algebraic integer then
√
a is a nonzero nonunit algebraic integer,

and a =
√
a×√

a, so a is not irreducible.

3. A Condition for a Domain to Have an Infinite Number of Irre-

ducibles

Theorem 3.1 says that if an integral domain D has a finite number of irre-

ducibles then an equation similar to that in FLT has a solution. We will use

Theorem 3.1 to derive conditions on D that imply it has an infinite number of

irreducibles.

The coloring in the proof of Theorem 3.1 is similar to the one used by

Alpoge [2], Granville [6], and Elsholtz [4].

Theorem 3.1. Let D be an atomic integral domain that contains N. Assume

there exists an n ≥ 2 such that the following equation has no solution:

uxX
n + uyY

n = uzZ
n

where ux, uy, uz ∈ U and X,Y, Z ∈ D− {0}. Then D has an infinite number of

irreducibles.

Proof: Assume the premise is true. Assume, by way of contradiction, that

I is finite. Let I = {p1, . . . , pm} be formed by taking an irreducible from each

equivalence class.

Since D is atomic, every x ∈ D − {0} can be written as upx1

1 · · · pxm

m where

u ∈ U and x1, . . . , xm ∈ N (an xi can be 0). This need not be unique; however,

for the sake of definiteness, we will take (x1, . . . , xm) to be the lexicographically

least tuple.

Recall that N ⊆ D. Let n be as in the premise. We define a coloring COL

of N− {0} as follows: Color x = upx1

1 · · · pxm

m by the vector

(x1 mod n, . . . , xm mod n).

There are nm colors, which is finite. By Lemma 2.1 there exists (x, y, z), and a

color (e1, . . . , em), such that
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COL(x) = COL(y) = COL(z) = (e1, . . . , em).

and

x+ y = z.

We now reason about x but the same logic applies to y, z. Note that there

exist u ∈ U and k1, . . . , km ∈ N such that

x = upk1n+e1
1 · · · pkmn+em

m

hence

xpn−e1
1 · · · pn−em

m = up
(k1+1)n
1 · · · p(km+1)n

m = uXn

where X = p
(k1+1)
1 · · · p(km+1)

m ∈ D.

Since the same logic applies to y, z we have that there exist X,Y, Z ∈ D and

ux, uy, uz ∈ U such that

xpn−e1
1 · · · pn−em

m = uxX
n

ypn−e1
1 · · · pn−em

m = uyY
n

zpn−e1
1 · · · pn−em

m = uzZ
n.

Note that the following hold:

• uxX
n + uyY

n = uzZ
n.

• ux, uy, uz ∈ U.

• X,Y, Z ∈ D− {0}.

This contradicts the premise of the theorem.

Theorem 3.2. Let D be an atomic integral domain.

1. Assume that there is an n0 ∈ N, n0 ≥ 2, such that the following hold:

• For all u ∈ U, there is v ∈ D such that vn0 = u.
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• FLTn0
holds for D.

Then D has an infinite number of irreducibles.

2. Assume that there is an n0 ∈ N, n0 ≥ 2, such that the following hold:

• For all u ∈ U, un0 = u.

• FLTn0
holds for D.

Then D has an infinite number of irreducibles. (This follows from Part

1.)

Proof:

Assume, by way of contradiction, that D has a finite number of irreducibles.

By Theorem 3.1, for all n ∈ N there exist ux, uy, uz ∈ U and X,Y, Z ∈ D− {0}
such that the following holds:

uxX
n + uyY

n = uzZ
n.

Take n = n0. By the first premise, there exists vx, vy, vz such that vn0

x = ux,

vn0

y = uy, v
n0

z = uz. Hence

(vxX)n0 + (vyY )n0 = (vzZ)n0 .

By the second premise, that FLTn0
holds for D, this is a contradiction.

Corollary 3.3.

1. Z has an infinite number of irreducibles.

2. Z has an infinite number of primes.

Proof:

1) Let n = 3. The only units in Z are {−1, 1}. Note that (a) all u ∈ {−1, 1}
satisfy u3 = u, and (b) FLT3 holds for Z. Hence, by Theorem 3.2.2, Z has an

infinite number of irreducibles.

2) In Z all irreducibles are primes. Hence Z has an infinite number of primes.
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4. A Sanity Check

As a sanity check on Theorem 3.1 we look at two integral domains that have

a finite number of irreducibles.

1. Consider Q. Note that U = Q − {0}, so there are no irreducibles. Fix

n ≥ 3. The premise of Theorem 3.1 does not hold. For all n there is a

solution to

uxX
n + uyY

n = uzZ
n

with ux, uy, uz ∈ U, namely ux = uy = 1
2 , uz = 1, X = Y = Z = 1.

2. In this example the variables a, b, c, d are always in Z. Let D be the domain

with set

{

a

b
: b ≡ 1 (mod 2)

}

.

Clearly

U =

{

a

b
: a, b ≡ 1 (mod 2)

}

.

We show that I = {2}. Recall that what we really mean is that all irre-

ducibles are of the form 2u where u ∈ U.

The nonzero elements that are not in U are in one of the following sets.

(a) { 2c
b

: c ≡ 1 (mod 2), b ≡ 1 (mod 2)}. Since c
b
∈ U, these elements

are irreducibles in the same equivalence class as 2.

(b) { 2dc
b

: d ≥ 2, c ≡ 1 (mod 2), b ≡ 1 (mod 2)}. These elements are

reducible since 2dc
b

= 2× 2d−1c
b

and, since d ≥ 2, 2d−1c
b

is not a unit.

We must now see how D violates the premise of Theorem 3.1. We need to

show that, for all n ∈ N, there is a solution to

uxX
n + uyY

n = uzZ
n

with ux, uy, uz ∈ U.

For n = 1 we can take ux = uy = uz = X = Y = 1 and Z = 2. For n ≥ 2

we can take ux = 2n−1 − 1, uy = 2n−1 + 1, X = Y = 1, Z = 2.
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5. The Domain Z[
√

−d] Has an Infinite Number of Irreducibles

Lemma 5.1. Let d ∈ N.

1. If d = 1 then the only units in Z[
√
−d] are {−1, 1,−i, i}

2. If d ≥ 2 then the only units in Z[
√
−d] are {−1, 1}

3. If d ∈ N and u is a unit of Z[
√
−d] then u9 = u (This follows from Part

1 and 2. It is also the case that u5 = u; however, 9 is useful to us and,

alas, 5 is not)

Proof:

Let N be the standard norm

N(a+ b
√
−d) = (a+ b

√
−d)(a− b

√
−d) = a2 + b2d.

It is well known and easy to verify that N(xy) = N(x)N(y).

If a1 + b1
√
−d is a unit then there exist a2, b2 such that

(a1 + b1
√
−d)(a2 + b2

√
−d) = 1

Take the norm of both sides to get

(a21 + b21d)(a
2
2 + b22d) = 1

Since squares are positive we have that a21 + b21d = 1.

If d = 1 then we have a21 + b21 = 1, so (a1, b1) is either (1, 0), (−1, 0), (0, 1),

or (0,−1). This yields units {−1, 1,−i, i}
If d ≥ 2 then b1 = 0 so the only units are −1, 1.

Aigner [1] proved the following (see also Ribenbiom [10]).

Lemma 5.2. For all d ∈ Z, FLT6 and FLT9 hold in Q(
√
−d) and hence in

Z[
√
−d]. (We will only use FLT9.)

Note The following counterexamples show why Lemma 5.2 does not work for

FLT3, FLT4, or FLT6k±1. As far as we know it is an open problem as to whether

Lemma 5.2 is true for 8.
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• In Q(
√
2): (18 + 17

√
2)3 + (18− 17

√
2)3 = 423.

• In Q(
√
−7): (1 +

√
−7)4 + (1−

√
−7)4 = 24.

• In Q(
√
−3): (1 +

√
−3)6k±1 + (1−

√
−3)6k±1 = 26k±1.

Theorem 5.3. Let d ≥ 1. Then there are an infinite number of irreducibles in

Z[
√
−d].

Proof: Let D = Z[
√
−d]. One can show that D is atomic using norms.

Let n0 = 9. By Lemma 5.1, for all u ∈ U, un0 = u. By Lemma 5.2 FLTn0

holds for D. By Theorem 3.2.2 with n0 = 9, D has an infinite number of

irreducibles.

6. Conjecturally, Some D Have an Infinite Number of Irreducibles

Debarre-Klassen [3] stated the following conjecture:

Conjecture 6.1. Let K be a number field of degree d over Q. Let n ≥ d + 2.

Then FLTn holds for K.

Theorem 6.2. Assume Conjecture 6.1 is true. Let K be a number field of finite

degree over Q. Let D be an atomic subdomain of K with a finite number of units.

Then D has an infinite number of irreducibles.

Proof: Let K and D be as in the premise.

Since D has a finite number of units, for each unit u, there exists nu such

that unu = 1. Let nU be the lcm of all the nu. Note that, for all units u,

unU = 1. Hence, for all n ≡ 1 (mod nU ), u
n = u.

Let n0 be such that n0 ≡ 1 (mod nU ) and n0 ≥ d + 2. Then (1) FLTn0

holds in D, and (2) for all u ∈ U, un0 = u. By Theorem 3.2.2, D has an infinite

number of irreducibles.
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7. Open Problem

Find other domains to apply Theorem 3.1 to. This might involve proving,

for fixed n, variants of FLTn that allow units as coefficients.
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