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Abstract

Given a graph G and a positive integer k, define the Gallai-Ramsey

number to be the minimum number of vertices n such that any k-edge
coloring of Kn contains either a rainbow (all different colored) triangle or
a monochromatic copy of G. In this paper, we obtain general upper and
lower bounds on the Gallai-Ramsey numbers for fans Fm = K1 + mK2

and prove the sharp result for m = 2 and for m = 3 with k even.

1 Introduction

In this work, we consider only edge-colorings of graphs. A coloring of a graph
is called rainbow if no two edges have the same color.

Edge colorings of complete graphs that contain no rainbow triangle have very
interesting and somewhat surprising structure. In 1967, Gallai [4] first examined
this structure under the guise of transitive orientations of graphs and it can also
be traced back to [1]. For this reason, colored complete graphs containing no
rainbow triangle are called Gallai colorings. Gallai’s result was restated in [6]
in the terminology of graphs. For the following statement, a trivial partition is
a partition into only one part.

Theorem 1 ([1, 4, 6]). In any coloring of a complete graph containing no
rainbow triangle, there exists a nontrivial partition of the vertices (called a Gallai
partition) such that there are at most two colors on the edges between the parts
and only one color on the edges between each pair of parts.
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The induced subgraph of a Gallai colored complete graph constructed by
selecting a single vertex from each part of a Gallai partition is called the reduced
graph. By Theorem 1, the reduced graph is a 2-colored complete graph.

Given two graphs G and H , let R(G,H) denote the 2-color Ramsey number
for finding a monochromatic G or H , that is, the minimum number of vertices
n needed so that every red-blue coloring of Kn contains either a red copy of
G or a blue copy of H . Although the reduced graph of a Gallai partition uses
only two colors, the original Gallai-colored complete graph could certainly use
more colors. With this in mind, we consider the following generalization of the
Ramsey numbers. Given two graphs G and H , the general k-colored Gallai-
Ramsey number grk(G : H) is defined to be the minimum integer m such that
every k-coloring of the complete graph on m vertices contains either a rainbow
copy of G or a monochromatic copy of H . With the additional restriction of
forbidding the rainbow copy of G, it is clear that grk(G : H) ≤ Rk(H) for any
G.

The Gallai-Ramsey numbers have been studied for a few choices of the rain-
bow graph G and a variety of choices of the monochromatic graph H . In light
of Theorem 1, many (perhaps most) of the results have involved a rainbow tri-
angle. Recent breakthroughs include the Gallai-Ramsey numbers for the K4,
the K5, and all odd cycles, as seen in the following results.

Theorem 2 ([9]). For k ≥ 1,

grk(K3 : K4) =

{

17k/2 + 1 if k is even,

3 · 17(k−1)/2 + 1 if k is odd.

Theorem 3 ([10]). Let R = R(K5,K5)− 1. For any integer k ≥ 2,

grk(K3 : K5) =

{

Rk/2 + 1 if k is even,

4 · R(k−1)/2 + 1 if k is odd

unless R = 42, in which case we have











grk(K3 : K5) = 43 if k = 2,

42k/2 + 1 ≤ grk(K3 : K5) ≤ 43k/2 + 1 if k ≥ 4 is even,

169 · 42(k−3)/2 + 1 ≤ grk(K3 : K5) ≤ 4 · 43(k−1)/2 + 1 if k ≥ 3 is odd.

Theorem 4 ([12, 13]). For integers ℓ ≥ 3 and k ≥ 1, we have

grk(K3 : C2ℓ+1) = ℓ · 2k + 1.

We refer the interested reader to the survey [2] for a catalog of results on
this subject with a dynamically updated version available at [3].

In keeping with the trend of studying monochromatic subgraphs in Gallai
colorings, we consider the fan graphs in this work. The fan graph with n

triangles is denoted by Fn, where Fn = K1 + nK2. Note that F1 = K3 and
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F2 is a graph obtained from two triangles by sharing one vertex, often called a
“bowtie”. The main results of this work, the precise result for F2, nearly sharp
bounds for F3, and general bounds for Fn, are contained in the following three
theorems. First our sharp result for F2.

Theorem 5.

grk(K3;F2) =



















9, if k = 2;

83
2 · 5

k−4

2 + 1
2 , if k is even, k ≥ 4;

4 · 5
k−1

2 + 1, if k is odd.

Next our general bounds (and sharp result for any even number of colors)
for F3.

Theorem 6. For k ≥ 2,



















grk(K3;F3) = 14 · 5
k−2

2 − 1, if k is even;

grk(K3;F3) = 33 · 5
k−3

2 , if k = 3, 5;

33 · 5
k−3

2 ≤ grk(K3;F3) ≤ 33 · 5
k−3

2 + 3
4 · 5

k−5

2 − 3
4 , if k is odd, k ≥ 7.

In particular, we conjecture the following, which claims that the lower bound
in Theorem 6 is the sharp result.

Conjecture 1. For k ≥ 2,

grk(K3;F3) =

{

14 · 5
k−2

2 − 1, if k is even;

33 · 5
k−3

2 , if k is odd.

Finally our general bound for all fans.

Theorem 7. For k ≥ 2,







4n · 5
k−2

2 + 1 ≤ grk(K3;Fn) ≤ 10n · 5
k−2

2 − 5
2n+ 1, if k is even;

2n · 5
k−1

2 + 1 ≤ grk(K3;Fn) ≤
9
2n · 5

k−1

2 − 5
2n+ 1, if k is odd.

In our proofs, we make heavy use of the following known results for the
2-color Ramsey numbers of fans.

Proposition 1 ([5, 7, 8, 11]).

(1) R(F2, F2) = 9;

(2) R(F3, F3) = 13;

(3) 4n+ 1 ≤ R(Fn, Fn) ≤ 6n.
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Given a coloring G of Kn, let k
′ = k′(G) be the number of colors inducing

a subgraph with maximum degree at least 2. Call each of these k′ colors useful
and call any remaining colors wasted. Define gr′k′(K3 : H) to be the minimum
integer n so that every coloring of Kn in which at most k′ colors are useful must
contain either a rainbow triangle or a monochromatic copy of H . We will use
the easy fact that for any positive integer k and graph H ,

grk(K3 : H) ≤ gr′k(K3 : H).

2 The case n = 2

In order to help prove Theorem 5, we first show the following.

Theorem 8. For all k′ ≥ 0, we have

gr′k′(K3 : F2) =

{

2 · 5
k
′

2 + 1 if k′ is even, or

4 · 5
k
′
−1

2 + 1 if k′ is odd.

Theorem 8 follows immediately from Lemmas 1 and 2 and implies the upper
bound for the odd case in Theorem 5. The upper bound for the even case in
Theorem 5 follows from Lemma 3. The lower bounds in Theorems 8 and 5 are
proven in the following lemma.

Lemma 1. For any i ≥ 1, there exists a Gallai coloring of the complete graph
on:

• 4 · 5i vertices using 2i + 1 colors which contains no monochromatic copy
of F2.

• 2 · 5i vertices with 2i useful colors which contains no monochromatic copy
of F2.

• 83
2 · 5

2i−4

2 − 1
2 vertices using 2i colors which contains no monochromatic

copy of F2.

Proof. For the first item in the statement, define G0 to be a monochromatic
copy of K4, say with color 1. Suppose that we have constructed Gi, a coloring
of a complete graph on 4 · 5i vertices using colors from [2i+1] with no rainbow
traingle and no monochromatic copy of F2. We construct Gi+1 by making 5
copies of Gi and inserting all edges between these copies to form a blow-up of
the unique 2-coloring of K5 with no monochromatic triangle using colors 2i+2
and 2i + 3. This is a Gallai coloring of the complete graph on 4 · 5i+1 vertices
using colors from [2i+ 3] with no monochromatic copy of F2.

For the second item in the statement, define G0 to be a monochromatic
copy of K2 with a wasted color, say color 0. Using this G0 in place of G0

in the previous construction, after i iterations, we obtain a Gallai coloring of
a complete graph Gi of order 2 · 5i with 2i useful colors which contains no
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monochromatic copy of F2. This construction makes heavy use of the wasted
color, color 0.

For the third item in the statement, we use the following inductive construc-
tion. Let G1 be a copy of K4 colored entirely by color 1 and let G2 be a copy
of K8 consisting of two copies of G1 joined by all edges of color 2. Now suppose
we have constructed a Gallai colored complete graph G2i−2 using 2i− 2 colors
which contains no monochromatic copy of F2. For k = 2i, we construct the
graph G2i by making five copies of G2i−2 and inserting edges of colors 2i and
2i− 1 between the copies to form a blow-up of the unique 2-coloring of K5 with
no monochromatic triangle. This coloring contains no rainbow triangle and no
monochromatic copy of F2. In this way, we construct G′

4, a colored complete
graph on 40 vertices.

For k = 2i ≥ 6, we then extend this construction as follows. Let A′
4 be a

complete graph of order 9 consisting of four copies of K2 with colors 1, 2, 3, 4,
and K1, and inserting edges of colors 1 and 2 between these copies to form a
blow-up of the unique 2-colored K5 containing no monochromatic triangle.

For j ≥ 5, let Aj be a complete graph of order 10 consisting of five copies
of K2 with colors 1, 2, 3, 4, and j, and inserting edges of colors 1 and 2 be-
tween these copies to form a blow-up of the unique 2-colored K5 containing no
monochromatic triangle. See Figure 1 for a diagram of this construction.

Within G′
4 as defined above, there are 5 copies of G2. We replace one of these

copies by A′
4 to create a new graph G4 with |G4| = 41. Within G6 as defined

above (using G4 in the construction), there are 5 copies of G4. We replace two
of the copies of A′

4 by A5 and A6 respectively. Note that these copies of A′
4 to

be replaced must be chosen from different copies of G4 from the construction
of G6 to avoid creating a monochromatic copy of F2. This replacement adds 2
vertices to G6 resulting in |G6| = 5× 41+ 2. In the induction step, it is easy to
see that the same replacement can always be made to replace two further copies
of A′

4 by A2i+1 and A2i+2 so

|G2i+2| = 5

(

41 · 5
2i−4

2 +
1

2
· 5

2i−4

2 −
1

2

)

+ 2 = 41 · 5
2i−2

2 +
1

2
· 5

2i−2

2 −
1

2
,

as claimed.
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Figure 1: The coloring Aj of K10

Lemma 2. For all k ≥ 3 and 0 ≤ k′ ≤ k, we have

gr′k′(K3 : F2) ≤

{

2 · 5
k

2 + 1 if k is even, or

4 · 5
k−1

2 + 1 if k is odd.

Proof. For k′ ≤ k, let

n = n(k′) =

{

2 · 5
k
′

2 + 1 if k′ is even, or

4 · 5
k
′
−1

2 + 1 if k′ is odd.

Consider a k-coloring G of Kn in which at most k′ colors are useful and suppose
for a contradiction that G contains no rainbow triangle and no monochromatic
copy of F2. By Theorem 1, there is a Gallai partition of G, say with t parts and
choose such a partition with t minimum. Let H1, H2, . . . , Ht be the parts of
this partition. Note that to avoid a rainbow triangle, at most one wasted color
can appear incident to each vertex, meaning that the wasted colors all together
induce a matching.

Claim 1. If one vertex has all red edges to a part A, then there is no red copy
of 2K2 as a subgraph of A. If at least two vertices have red edges to a part A,
then red appears on at most one edge in A.

Proof. First suppose u has all red edges to a part A and there is a red copy of
2K2 within A. Then u is the center of a red copy of F2 using the two disjoint
red edges within A. Otherwise let u and v be two vertices with red edges to a
part A and suppose a vertex w ∈ A has two incident red edges within A, say to
x and y. Then w is the center of a red copy of F2 with triangles wux and wvy,
a contradiction.

If k′ = 0, then any coloring of Kn with n ≥ 3 contains a rainbow triangle.
If k′ = 1, then the monochromatic K5 minus a (wasted) matching must contain
a monochromatic copy of F2.

Next suppose k′ = 2 so n = 11, say with red and blue being the useful
colors. Let p be the number of edges in wasted colors. If we contract the
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edges in wasted colors, we obtain a 2-colored graph of order 11− p so if p ≤ 2,
this graph immediately contains a monochromatic copy of F2 by Proposition 1.
Thus, we must have 3 ≤ p ≤ 5. With k′ = 2, there is a Gallai partition of V (G)
(not necessarily the same one as considered before) in which each wasted edge
is a part of order 2 and all other vertices are parts of order 1. It is this partition
that we will consider for the remainder of the analysis of the case k′ = 2.

If p = 5, then the reduced graph is a copy of K6 where 5 of the vertices
represent parts of order 2. In this reduced graph, there is a monochromatic
triangle, say in red. Since at least two of the parts used in this triangle must
have order 2, this produces a red copy of F2.

Next suppose p = 3 and let H1, H2, and H3 be the parts of order 2 formed
by these wasted edges. To avoid creating a monochromatic copy of F2, not
all edges between these parts can be the same color so suppose H2 is joined
by red edges to H1 ∪ H3 and the edges between H1 and H3 are blue. Let
R = V (G) \ (∪3

i=1V (H)i) and observe that no vertex in R has blue edges to
both H1 and H3 and no vertex in R has blue edges to both of either {H1, H2}
or {H2, H3}. Hence, every vertex in R has blue edges to H2, so by Claim 1,
there is at most one blue edge within R. This means that R induces a red K5

minus an edge, which contains a red copy of F2.
Finally suppose p = 4. Following the proof of the case p = 3 above by

defining the parts H1, H2, and H3 and the set R, we again see that R contains
at most one blue edge along with one wasted edge. This means that R induces
a red copy of K5 minus the two disjoint edges, which again contains a red copy
of F2, completing the proof in the case k′ = 2.

Thus, suppose for induction that k′ ≥ 3 and the result holds for smaller
values of k′. By the minimality of t, if t ≤ 3, then t = 2 so first suppose t = 2
say with red edges between the two parts. If both parts have order at least 2,
then by Claim 1, red is wasted within each part. Then by induction on k′, we
have

|G| = |H1|+ |H2| ≤ 2(n(k′ − 1)− 1) < n,

a contradiction. If one part has order 1, then by Claim 1, the other part A

contains no red copy of 2K2. By removing a single vertex from A, we can
remove all but at most one red edge from A, leaving red wasted within A. Then
apply induction within A (minus that one vertex) to arrive at a contradiction.
We may therefore assume t ≥ 4 and there are two colors, say red and blue, that
are both connected in the reduced graph.

Certainly t ≤ 8 by Proposition 1 so 4 ≤ t ≤ 8. If t ≥ 6, then there exists
a monochromatic triangle in the reduced graph of G. To avoid a copy of F2,
at least two of the parts represented in this monochromatic triangle must have
order 1. Thus, if t ≥ 6, then at most 4 parts have order at least 2, and red and
blue are both wasted (possibly after the removal of one vertex) so we may apply
induction on k′ within these parts to arrive at a contradiction.

Finally suppose t = 5. If all parts have order at least 2, then red and blue
are both wasted within all the parts. If a part has order 1, then by removing at
most one vertex from all other parts, red and blue are both wasted within the
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remaining parts. In either case, we have

|G| =
t

∑

i=1

|Hi| ≤ 5(n(k′ − 2)− 1) + 5 < n(k′),

a contradiction, completing the proof of Lemma 2.

Lemma 3. For all k ≥ 2, we have

grk(K3 : F2) ≤ nk =











9 if k = 2, or
83
2 · 5

k−4

2 + 1
2 if k ≥ 4 is even, or

4 · 5
k−1

2 + 1 if k is odd, k ≥ 5.

Proof. The case where k = 2 follows from the 2-color Ramsey number and the
case where k is odd follows from Lemma 2 so suppose k ≥ 4 is even. Let G be
a Gallai coloring of the complete graph of order

n = nk =











9 if k = 2, or
83
2 · 5

k−4

2 + 1
2 if k ≥ 4 is even, or

4 · 5
k−1

2 + 1 if k is odd, k ≥ 5.

which contains no monochromatic copy of F2. Consider a Gallai partition, say
with t parts where the partition is chosen so that t is minimum. Let red and
blue be the colors used between parts of the partition. Then certainly 2 ≤ t ≤ 8
since R(F2, F2) = 9. Suppose the parts of this partition are Hi for 1 ≤ i ≤ t

and that |Hi| ≥ |Hi+1| for all i.
First suppose k = 4, so n = 42. If t ≤ 3, then by the minimality of t, we may

assume t = 2, say with all red edges in between the two parts. If |H2| ≥ 2, then
by Claim 1, there is at most one red edge within either H1 or H2, meaning that
the removal of at most one vertex leaves both parts with no red edges inside.
This implies that

|G| = |H1|+ |H2| ≤ 2(nk−1 − 1) + 1 = 2nk−1 − 1 < n,

a contradiction. On the other hand, if |H2| = 1, then there is no red copy of
2K2 within H1 so the removal of at most 2 vertices within H1 destroys all red
edges within H1. This implies that

|G| = |H1|+ 1 ≤ [(nk−1 − 1) + 2] + 1 < n,

again a contradiction. We may therefore assume that t ≥ 4. Since R(F2, F2) =
9, we have 4 ≤ t ≤ 8. Let r be the number of “large” parts with order at least 2.
To avoid creating a monochromatic copy of F2, there can be no monochromatic
triangle within the reduced graph corresponding to these large parts so this
immediately means that r ≤ 5.

Next we show a claim that will be helpful in the remainder of the proof.
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Claim 2. If G is a Gallai coloring of K10 containing at most one edge in
each of two colors and all remaining edges in two other colors, then G contains
a monochromatic copy of F2. If G is a Gallai coloring of K9 containing at
most one edge in one color and all remaining edges in two other colors, then G

contains a monochromatic copy of F2.

Proof. For the first statement, contract one of the two edges with a color that
appears on only that edge to arrive in the situation of the second statement.
For the second statement, let G be a Gallai coloring of K9 in which there is at
most one edge in one color (say green) and all remaining edges are either red or
blue. Since R(F2, F2) = 9, there must exist such a green edge, say uv. Let A be
the set of vertices with red edges to u and v and let B be the set of vertices with
blue edges to u and v, and suppose, without loss of generality, that |A| ≥ |B|.
By Claim 1, there is at most one red edge in A and at most one blue edge in B.

If |A| ≥ 5, then A contains a blue copy of K5 minus at most one edge, which
contains a blue copy of F2, for a contradiction. This means we may assume that
|A| = 4 and |B| = 3, say with A = {a1, a2, a3, a4} and B = {b1, b2, b3}. Since B

contains at most one blue edge, suppose b3 has red edges to {b1, b2}.
First suppose A contains no red edge. Then no vertex in B has two blue

edges to A to avoid creating a blue copy of F2. In particular, b3 has at least 3
red edges to A. Then b1 and b2 each have at least two red neighbors in common
with b3, creating a red copy of F2 centered at b3. We may therefore assume that
A contains a red edge, say a1a2, so all other edges within A are blue.

Next suppose B contains no blue edge. Then no vertex in B can have red
edges to both a1 and a2, meaning that one of a1 or a2 (suppose a1) has two blue
edges to B, say to b1 and b2. To avoid creating a blue copy of F2, this means
that b1 and b2 must both have all red edges to {a3, a4}. Then to avoid a red
copy of F2, the vertex b3 must have blue edges to {a3, a4}, meaning that b3 must
have red edges to both a1 and a2, making a red copy of F2 for a contradiction.
This means that B must contain a blue edge, say b1b2.

If b3 has a red edge to either a1 or a2 (say a1), then to avoid a red copy of
F2, a1 has blue edges to both b1 and b2, creating a blue copy of F2 centered at
a1. Thus, b3 must have blue edges to both a1 and a2. To avoid a blue copy of
F2, this also implies that b3 has red edges to {a3, a4}.

If b1 has red edges to both a3 and a4, then to avoid a red copy of F2 centered
at b3, we see that b2 must have blue edges to {a3, a4}. This forms a blue copy
of F2 centered at b2, for a contradiction. This means that b1, and similarly b2,
must have exactly one red edge to {a3, a4} and to avoid a red copy of F2, these
edges must go to the same vertex, say a3. Both b1 and b2 must then have blue
edges to a4, forming a blue copy of F2 centered at a4, a contradiction completing
the proof of Claim 2

We consider cases based on the value of r. Since n > 9, we certainly have
r ≥ 1.

Case 1. r = 5.
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In this case, we must also have t = 5 since otherwise there must be a
monochromatic triangle in the reduced graph which contains at least two ver-
tices corresponding to parts of order at least 2, making a monochromatic copy
of F2 in G. Then the reduced graph must be the unique 2-coloring of K5 with
no monochromatic triangle. By Claim 1, there is at most one red edge and at
most one blue edge within each part Hi. If there is a red (or blue) edge in a
part Hi, then to avoid a red (respectively blue) copy of F2, there can be no red
(respectively blue) edge in any other part. Thus, at most one part can have one
edge in each of red and blue and all other parts have at most one such edge. By
Claim 2, we have

|G| =
t

∑

i=1

|Hi| ≤ 9 + 4 · 8 = 41 < n,

a contradiction.

Case 2. r = 4.

To avoid a monochromatic copy of F2 among the large parts, each of these
parts must have red edges to some other large part and blue edges to some other
large part. By Claim 1, this means that each part has at most one red and at
most one blue edge. By Claim 2, this means that each part has order at most
9 so with at most 4 other parts (of order 1 each), we have

|G| =
t

∑

i=1

|Hi| ≤ 4 · 9 + 4 = 40 < n,

a contradiction.

Case 3. r = 3.

To avoid a monochromatic copy of F2, the subgraph of the reduced graph
induced on the vertices corresponding to the three large parts must not be a
monochromatic triangle. Without loss of generality, suppose all edges from H2

to H3 are blue while all edges from H1 to H2 ∪H3 are red. By Claim 1, each of
H2 and H3 contains at most one red and at most one blue edge so by Claim 2,
we have |H2|, |H3| ≤ 9.

By the minimality of t, there is at least one part of order 1 with blue edges
to H1, so by Claim 1, H1 contains at most one red edge and no blue copy of
2K2. By removing at most one vertex from H1, we can obtain a subgraph with
at most one blue edge, meaning that |H1| ≤ 10. With at most 5 other parts (of
order 1 each), this means that

|G| =
t

∑

i=1

|Hi| ≤ 2 · 9 + 10 + 5 = 33 < n,

a contradiction.

Case 4. r = 2.

10



Suppose the edges between H1 and H2 are red, so by Claim 1, each of H1

and H2 contains at most one red edge. By the minimality of t, there exists
at least one part of order 1 with blue edges to H1 (and similarly to H2). By
removing at most one vertex from H1, we can obtain a subgraph with at most
one blue edge, meaning that |H1| ≤ 10 and similarly |H2| ≤ 10. With at most
6 other parts (of order 1 each), this means that

|G| =
t

∑

i=1

|Hi| ≤ 2 · 10 + 6 = 26 < n,

a contradiction.

Case 5. r = 1.

By the minimality of t, there is at least one part of order 1 with red edges
to H1 and at least one part of order 1 with blue edges to H1. By Claim 1, there
is no red or blue copy of 2K2 within H1 so by removing at most 2 vertices from
H1, we can obtain a subgraph with at most one red and at most one blue edge.
By Claim 2, this means that |H1| ≤ 9 + 2 = 11. With at most 7 other parts (of
order 1 each), this means that

|G| =
t

∑

i=1

|Hi| ≤ 11 + 7 = 18 < n,

a contradiction.
This completes the proof of the situation where k = 4. We may therefore

assume that k ≥ 6 for the remainder of the proof.

First suppose t ≤ 3, so we may assume t = 2 by the minimality of t, say with
parts H1 and H2 with all red edges in between them. Assume, for a moment,
that |Hi| ≥ 2 for each i ∈ {1, 2}. Then within H1 and H2, there can be a total
of at most one red edge to avoid creating a red copy of F2. Then by removing a
single vertex from G, this red edge can be destroyed, leaving behind two parts
each with no red edges. This means that

|G| = |H1|+ |H2| ≤ 2(nk−1 − 1) + 1 = 2
(

4 · 5
k−2

2

)

< nk,

a contradiction. On the other hand, if |H1| = 1, then H2 contains no red copy
of 2K2 so by deleting at most two vertices from H2, we can destroy all red edges
from within H2. This means that

|G| = |H1|+ |H2| ≤ 1 + (nk−1 − 1) + 2 = 4 · 5
k−2

2 + 3 < nk,

again a contradiction. This means we may assume 4 ≤ t ≤ 8.
Let r be the number of parts of the Gallai partition with order at least 2 and

so |Hr| ≥ 2 while |Hr+1| = 1. Certainly any monochromatic triangle among
the parts of order at least 2 would create a monochromatic copy of F2 so this
means that r ≤ 5. At the other extreme, if r = 0, then G is simply a 2-coloring
so this is the case k = 2. We consider cases based on the value of r.
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Case 1. r = 5.

In this case, we must also have t = 5 since otherwise there must be a
monochromatic triangle in the reduced graph which contains at least two ver-
tices corresponding to parts of order at least 2, making a monochromatic copy of
F2 in G. Then the subgraph of the reduced graph induced on the parts of order
at least 2 must be the unique 2-coloring of K5 containing no monochromatic
triangle. Inside the parts H1, H2, . . . , H5, by Claim 1, there is a total of at most
one red edge and at most one blue edge. Then by removing a total of at most
two vertices, all red and blue edges can be removed from within the parts. By
induction on k, this means that

|G| =

5
∑

i=1

|Hi|

≤ 5(nk−2 − 1) + 2

= 5

(

83

2
· 5

k−6

2 −
1

2

)

+ 2

=
83

2
· 5

k−4

2 −
1

2
< n,

a contradiction.

Case 2. r = 4.

Within the reduced graph restricted to the parts of order at least 2, each
vertex must have at least one incident red edge and at least one incident blue
edge. By claim 1, inside the parts H1, H2, H3, H4, there can be a total of at
most two red edges and at most two blue edges and the two cannot be adjacent.
This means that by removing at most 4 vertices, all red and blue edges can be
removed from within Hi for i ≤ 4. With t ≤ 8, this means

|G| =

t
∑

i=1

|Hi|

≤ 4(nk−2 − 1) + 4 + 4

= 4

(

83

2
· 5

k−6

2 −
1

2

)

+ 8

< n,

a contradiction.

Case 3. r = 3.

Certainly all edges between the three parts of order at least 2 cannot have
the same color to avoid a monochromatic copy of F2. Without loss of general-
ity (since we may safely disregard the relative orders among these large sets),
suppose all edges from H1 to H2 ∪H3 are red while all edges between H2 and

12



H3 are blue. Then by Claim 1, there is at most one red edge in either H1 or
in H2 ∪H3 so the removal of at most one vertex can destroy all red edges from
within the parts. Similarly, there is also at most one blue edge within either
H2 or H3 so the removal of at most one vertex can destroy all blue edges from
within the parts H2 and H3.

By the minimality of t, there is a part (clearly of order 1 by the assumed
structure) with blue edges to H1. By Claim 1, this means that H1 contains no
blue copy of 2K2, so the removal of at most two vertices can destroy all blue
edges from within H1.

Together, the removal of at most 4 vertices can destroy all red and blue
edges from within the parts. Since t ≤ 8, there are at most 5 vertices in
G \ (H1 ∪H2 ∪H3), meaning that

|G| =

t
∑

i=1

|Hi|

≤ [3(nk−2 − 1) + 4] + 5

= 3

(

83

2
· 5

k−6

2 −
1

2

)

+ 9

< n,

a contradiction.

Case 4. r = 2.

Suppose red is the color of all edges between H1 and H2. By Claim 1, there
can be at most one red edge within either H1 or H2 so the removal of a single
vertex can destroy all red edges from within these parts. By the minimality of t,
there is at least one part (single vertex) with all blue edges to H1 and similarly
at least one part with all blue edges to H2. By Claim 1, there can be no blue
copy of 2K2 within Hi for any i ≤ 2 so that means the removal of at most 2
vertices from within each part Hi can destroy all blue edges within these parts.
Finally, since t ≤ 8, there can be at most 6 additional vertices in G \ (H1 ∪H2)
so this means that

|G| ≤ |H1|+ |H2|+ 6 ≤ [2(nk−2 − 1) + 5] + 6 < n,

a contradiction.

Case 5. r = 1.

Much like the arguments in the previous case, by the minimality of t, there
is at least one part (single vertex) with all red edges to H1 and at least one part
with all blue edges to H1. By Claim 1, this means that the removal of a total
of at most 4 vertices can destroy all red and blue edges from within H1. This
yields

|G| ≤ |H1|+ 7 ≤ [(nk−2 − 1) + 4] + 7 < n,

a contradiction, completing the proof of Lemma 3.
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3 The case n = 3

We first prove a lower bound in the following lemma.

Lemma 4.

grk(K3, F3) ≥







14× 5
k−2

2 − 1, if k is even;

33× 5
k−3

2 , if k is odd.

Proof. We prove this result by inductively constructing a k-colored copy of Kn

where

n =







14× 5
k−2

2 − 2, if k is even;

33× 5
k−3

2 − 1, if k is odd,

which contains no rainbow triangle and no monochromatic copy of F3. For the
base of this induction, let G1 be a 1-colored copy of K6, which clearly contains
no monochromatic copy of F3, say using color 1. Let G2 be a 2-colored copy
of K12, constructed by making 2 copies of G1 and inserting all edges of colors
2 in between the two copies. Let G3

3 be a 3-colored copy of K8 consisting of
a monochromatic copy of C5 in color 2, a monochromatic triangle in color 3,
and all remaining edges in color 1. Then let G3 be a 3-colored copy of K32

constructed by taking the union of G3
3 with 4 disjoint copies of G1 and inserting

all edges of colors 2 and 3 in between these copies to form a blow-up of the
unique 2-colored K5 containing no monochromatic triangle. Despite the extra
edges of colors 2 and 3 within the copy of G3

3, it can be easily verified that G3

contains no monochromatic copy of F3 and certainly no rainbow triangle. See
Figure 2 for a diagram of G3 where solid edges are color 2, dashed edges are
color 3, and all edges not pictured are color 1.

G3
3

Figure 2: The coloring G3

Let G1
4 be a 3-colored copy of K14 constructed by taking a copy of G1 and

a copy of G3
3 and inserting all edges of color 2 in between the two graphs. Let

G4
3 be a 3-colored copy of K8 constructed by replacing the edges of color 3

in G3
3 with edges of color 4. Let G2

4 be a 3-colored copy of K14 constructed

14



by taking a copy of G1 and copy of G4
3 and inserting all edges of colors 2 in

between the two graphs. Finally let G4 be a 4-colored copy of K68 constructed
by making 2 copies of G1

4, 2 copies of G2
4, and one copy of G2 and inserting

edges of colors 3 and 4 between the five graphs to form the unique 2-colored K5

with no monochromatic triangle. It can be easily verified that G4 is a 4-coloring
of K68 containing no monochromatic copy of F3 and no rainbow triangle.

For i ∈ {4, 5}, let Gi
4 be a colored copy of K34 constructed by taking a copy

of G3 and replacing one of its copies of G1, one with edges of color 2 to the
copy of G3

3, with a copy of K8 containing a monochromatic copy of C5 in color
i, a monochromatic triangle in color 3, and all remaining edges in color 1. Note
that if a copy of G1 with edges of color 3 to the copy of G3

3 was replaced, then a
monochromatic copy of F3 would be created in the process (see Figure 3 where
all edges pictured have color 3, the thicker ones producing the copy of F3). The
graphG5, a copy ofK164 using colors {1, 2, 3, 4, 5}, is then constructed by taking
one copy of G4

4, one copy of G5
4, and 3 copies of G3 and inserting edges of colors

4 and 5 between these 5 graphs to form a blow-up of the unique 2-colored K5

with no monochromatic triangle. It is not difficult to verify that G5 contains
no monochromatic copy of F3 and no rainbow triangle.

Figure 3: A copy of F3 appearing in color 3

In fact, the argument above using Figure 3 yields the following easy fact.

Fact 1. If X and Y are two parts of a Gallai partition with all red edges in
between, each with at least 3 vertices, then if there is a vertex in X with at least
two incident red edges inside X, then Y contains no red edges. Similarly, X

cannot contain a vertex with 3 incident red edges.

Another similar argument yields yet another easy fact to be used later.

Fact 2. If X and Y are two parts of a Gallai partition with all red edges in
between and there are two disjoint red edges inside X, then Y contains no red
edges.

First suppose k is even and suppose we have constructed a coloring G2i−2

of a complete graph where i is a positive integer and 2 ≤ 2i − 2 < k, using
the 2i− 2 colors {1, 2, . . . , 2i− 2} and having order n2i−2 = 14× 5i−2 − 2 such
that G2i−2 contains no rainbow triangle and no monochromatic copy of F3.
For j ∈ {2i− 1, 2i}, let Gj

2i−1 be a graph constructed from G2i−2 by changing
one copy of G1 used in the construction of G2 (as part of the construction of
G2i−2) into a colored copy of K8 containing a monochromatic C5 in color 2 and
a triangle in color j and all other edges in color 1. We then construct G2i by
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taking 2 copies of G2i−1
2i−1, 2 copies of G2i

2i−1, and a copy of G2i−2, and inserting
all edges of colors 2i − 1 and 2i between the five graphs to form a blow-up of
the unique 2-colored K5 with no monochromatic triangle in such a way that the
copies of G2i−1

2i−1 are connected by edges of color 2i and the copies of G2i
2i−1 are

connected by edges of color 2i − 1. Then G2i is a colored complete graph of
order

n2i = 2
(

14× 5i−2
)

+ 2
(

14× 5i−2
)

+
(

14× 5i−2 − 2
)

= 14× 5i−1 − 2

containing no rainbow triangle and no monochromatic copy of F3, as desired.

Finally suppose k is odd and again suppose we have constructed a coloring
G2i−1 of a complete graph where i is a positive integer and 3 ≤ 2i−1 < k, using
the 2i− 1 colors {1, 2, . . . , 2i− 1} and having order n2i−1 = 33× 5i−2 − 1 such
that G2i−1 contains no rainbow triangle and no monochromatic copy of F3. For
j ∈ {2i, 2i+1}, let Gj

2i be a graph constructed from G2i−1 by changing one copy
of G1 used in the construction of G2i−1 into a colored copy of K8 containing
a monochromatic C5 in color 2 and a triangle in color j and all other edges in
color 1. We then construct G2i+1 by taking a copy of G2i+1

2i , a copy of G2i
2i, and

3 copies of G2i−1, and inserting all edges of colors 2i and 2i+1 between the five
graphs to form a blow-up of the unique 2-colored K5 with no monochromatic
triangle. Then G2i+1 is a colored complete graph of order

n2i+1 =
(

33× 5i−2 + 1
)

+
(

33× 5i−2 + 1
)

+ 3
(

33× 5i−2 − 1
)

= 33× 5i−1 − 1

containing no rainbow triangle and no monochromatic copy of F3, as desired.

Lemma 5. For k ≥ 3,

grk(K3;F3) ≤



















14× 5
k−2

2 − 1, if k is even;

33× 5
k−3

2 , if k = 3, 5;

33× 5
k−3

2 + 3
4 × 5

k−5

2 − 3
4 , if k is odd, k ≥ 7.

The proof of this lemma is similar (albeit more tiresome) to the proof of the
upper bound presented in Lemma 3. We therefore omit the proof and provide
it in an appendix for the interested reader.

4 For General Fn

First an easy lemma.

Lemma 6. If G is a Gallai colored complete graph of order at least 4n − 3 in
which all parts of a Gallai partition have order at most n − 1 and all edges in
between the parts of G have one color, say red, then G contains a red copy of
Fn.
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Proof. Let H1, H2, . . . , Ht be the parts of the assumed partition, so since |G| ≥
4n − 3, we see that t ≥ 5. Since |Hi| ≤ n − 1, there exists an integer r

and corresponding set of parts H2, H3, . . . , Hr such that n ≤ |H2 ∪ H3 ∪ · · · ∪
Hr| ≤ 2n− 2. This, in turn, implies that |Hr+1 ∪Hr+2 ∪ · · · ∪Ht| ≥ n. Then
a single vertex from H1 along with n red edges from H2 ∪ H3 ∪ · · · ∪ Hr to
Hr+1 ∪Hr+2 ∪ · · · ∪Ht produces a red copy of Fn.

Theorem 7 is proven by the following two lemmas, one for the upper bound
and one for the lower bound.

Lemma 7. For k ≥ 2,

grk(K3 : Fn) ≤







10n× 5
k−2

2 − 5
2n+ 1, if k is even;

9
2n× 5

k−1

2 − 5
2n+ 1, if k is odd.

Proof. From Proposition 1, we have 4n + 1 ≤ R(Fn, Fn) ≤ 6n, and hence the
result is true for k = 2. We therefore suppose k ≥ 3 and let G be a coloring of
Km where

m = m(k, n) =







10n× 5
k−2

2 − 5
2n+ 1, if k is even;

9
2n× 5

k−1

2 − 5
2n+ 1, if k is odd.

Since G is a G-coloring, it follows from Theorem 1 that there is a Gallai
partition of V (G). Suppose that the two colors appearing in the Gallai partition
are red and blue. Let t be the number of parts in this partition and choose such a
partition where t is minimized. Let H1, H2, . . . , Ht be the parts of this partition,
say with |H1| ≥ |H2| ≥ · · · ≥ |Ht|. When the context is clear, we also abuse
notation and let Hi denote the vertex of the reduced graph corresponding to
the part Hi.

If 2 ≤ t ≤ 3, then by the minimality of t, we may assume t = 2. Let H1 and
H2 be the corresponding parts. Suppose all edges from H1 to H2 are red. To
avoid creating a red copy of Fn, there are at most n − 1 disjoint red edges in
each Hi with i = 1, 2. Delete all the vertices of these maximum red matchings
within H1 and H2 to create graphsH ′

1 and H ′
2, leaving no red edge within either

H ′
i. This means that

|G| = |H1|+ |H2| ≤ 2(m(k − 1, n)− 1) + (2n− 2) < m,

a contradiction.
Let r be the number of parts of the Gallai partition with order at least n

and call these parts “large” while other parts are called “small”. Then |Hr| ≥ n

and |Hr+1| ≤ n − 1. To avoid a monochromatic copy of Fn, there can be no
monochromatic triangle within the reduced graph restricted to these r large
parts, leading to the following immediate fact.

Fact 3. r ≤ 5.
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The remainder of the proof is broken into cases based on the value of r.

Case 1. r = 0.

Let A be the set of parts with blue edges to H1, and B be the set of parts
with red edges to H1. Note that by minimality of t, we have A 6= ∅ and B 6= ∅.
To avoid a blue copy of Fn, there are at most n − 1 disjoint blue edges within
A and similarly at most n − 1 disjoint red edges within B. By removing at
most 2n− 2 vertices from A (and at most 2n− 2 vertices from B), we remove
all blue edges from A (respectively all red edges from B). Denote the resulting
subgraphs by A′ and B′. Then all the edges in between the parts of the Gallai
partition of G that are contained in A′ are red and all the edges in between
the respective parts of B′ are blue. From Lemma 6, we have |A′| ≤ 4n− 4 and
|B′| ≤ 4n− 4. Then

|G| ≤ |A′|+ |B′|+ |H1|+ 2(2n− 2) ≤ 8n− 8 + n− 1 + 4n− 4 = 13n− 13 < m,

a contradiction.

Case 2. r = 1.

Let A be the set of parts with blue edges toH1, and B be the set of parts with
red edges to H1. By the same argument as in Case 1, we may remove at most
2n− 2 vertices from each of A and B to produce sets A′ and B′ with containing
no blue or red edges respectively, where |A′| ≤ 4n− 4 and |B′| ≤ 4n− 4. Since
A 6= ∅ and B 6= ∅ and to avoid a monochromatic copy of Fn, there are at most
n − 1 disjoint red edges and at most n − 1 disjoint blue edges within H1. By
removing at most 4n− 4 vertices from H1, we eliminate all red and blue edges
from H1, leaving a new subgraph H ′

1. This means that |H ′
1| ≤ m(k − 2, n)− 1

so

|G| ≤ [|A′|+ |B′|+(4n−4)]+[|H ′
1|+(4n−4)] ≤ 16n−17+[m(k−2, n)−1]< m,

a contradiction.

Case 3. r = 2.

Suppose all edges fromH1 toH2 are red. To avoid creating a monochromatic
copy of Fn, there is no part outside H1 and H2 with red edges to all of H1∪H2.
Also since neither H1 nor H2 can contain more than n− 1 disjoint red edges or
more than n− 1 disjoint blue edges, we have |Hi| ≤ m(k − 2, n)− 1 + (4n− 4),
for i = 1, 2. Now a claim about parts other than H1 and H2.

Claim 3. There exists a part, say H3, such that the edges between H1 and H3

have a different color from the edges between H2 and H3.

Proof. Assume, to the contrary, that for each part Hi (3 ≤ i ≤ t), such that the
edges between H1 and H3 and the edges between H2 and H3 receive same color
(and therefore blue). Then we can regard H1∪H2 as one part, and the union of
other parts as another part, of a new Gallai partition with only 2 parts, which
contradicts the assumption that t is minimum and t ≥ 4.
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By Claim 3, there exists a small part, say H3, such that the edges between
H1 and H3 receive different colors from the edges between H2 and H3. Let A

be the set of parts with blue edges to H3, and B be the set of parts with red
edges to H3. Without loss of generality, we assume that A contains H1 and B

contains H2. There are at most n− 1 disjoint blue edges within A and at most
n− 1 disjoint red edges within B. Let A′ be the vertex set from A obtained by
deleting at most 2n− 2 vertices from A \H1 on this blue matching, and let B′

be the vertex set from B by deleting at most 2n−2 vertices from B \H2 on this
red matching. All edges in between the parts within A′ are red and all edges in
between the parts within B′ are blue. Then we have the following claim.

Claim 4. |A′| − |H1| ≤ 2n− 2.

Proof. Assume, to the contrary, that |A′|−|H1| ≥ 2n−1. Then there are at least
3 small parts in A′−H1. Choose one of them, say X , and let Y = A′−H1−X .
Clearly |X | ≤ n− 1, |H1| ≥ n, and |Y | ≥ n. The edges between H1 and X , the
edges between H1 and Y , the edges between X and Y are all red, and hence
there is a blue Fn centered at a vertex of X , a contradiction.

From Claim 4, we have |A′|− |H1| ≤ 2n− 2 and symmetrically |B′|− |H2| ≤
2n− 2, so

|A|+ |B| ≤ |A′|+ |B′|+ (4n− 4)

≤ |H1|+ |H2|+ 8n− 8

≤ 2m(k − 2, n) + 2(4n− 4) + 8n− 8

≤ 2m(k − 2, n) + 16n− 16.

Since |H3| ≤ n− 1, it follows that

|G| ≤ 17n− 17 + 2m(k − 2, n)− 1] < m,

a contradiction.

Case 4. r = 5.

In this case, t = 5 since otherwise any monochromatic triangle in the reduced
graph restricted to H1, H2, . . . , H6 would yield a monochromatic copy of Fn. To
avoid the same construction, the reduced graph on the parts H1, H2, H3, H4, H5

must be the unique 2-coloring of K5 with no monochromatic triangle, say with
H1H2H3H4H5H1 and H1H3H5H2H4H1 making two monochromatic cycles in
red and blue respectively. In order to avoid a red copy of Fn with center vertex
in H1, it must be the case that H2 ∪ H5 contains at most n − 1 disjoint red
edges. Similarly H1 ∪H3, H2 ∪H4, H3 ∪H5, and H4 ∪H1 each contain at most
n− 1 disjoint red edges. Putting these together, there are at most 5n−5

2 disjoint
red edges within the parts H1, H2, . . . , H5. Thus, by deleting at most 5n − 5
vertices, the resulting graph can be devoid of red edges and symmetrically, by
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deleting at most another 5n− 5 vertices, the resulting graph can also be devoid
of blue edges. This means that

|G| ≤ 10n− 10 + 5[m(k − 2, n)− 1] < m,

a contradiction.

Case 5. r = 4.

To avoid monochromatic triangle in K4, the four large parts must form one
of two structures:

• Type 1: There is a red cycleH1H2H3H4H1 and a blue 2-matching {H1H3,

H2H4} in the reduced graph, or

• Type 2: There is a red path H2H1H4H3 and a blue path H1H3H2H4 in
the reduced graph.

For Type 1, we first have the following claim.

Claim 5. There is no small part outside {H1, H2, H3, H4}.

Proof. Assume, to the contrary, that there exists a small part H5 in G. This
proof focuses on the reduced graph. Since H1H3 is blue, it follows that to avoid
a blue triangle in the reduced graph and thereby a blue copy of Fn in G, at least
one of H1H5 and H3H5 must be red, say H1H5 is red. Since H1H2 and H1H4

are red, it follows that H2H5 and H4H5 must be blue, and hence H2H4H5H2

is a blue triangle, a contradiction.

By Claim 5, there are only four parts in G and they are large. Recall that
H1H2H3H4H1 is a red cycle and {H1H3, H2H4} is a blue 2-matching. We can
then regard H1 ∪ H3 and H2 ∪H4 as two parts of a Gallai partition of G and
the edges between these parts are all red, which contradicts the minimality of t.

For Type 2, we first consider the case where t ≥ 5. Outside {H1, H2, H3, H4},
there are small parts H5, H6, . . . , Ht. For each such part Hi with 5 ≤ i ≤ t,
since H2H3 is blue, to avoid a blue triangle of the form H2H4HiH2, at least one
of the edges H2Hi and H3Hi must be red.

First suppose one is red, say H2Hi is red and H3Hi is blue. Since H1H2

and H2Hi are red, it follows that H1Hi must be blue, and hence H1H3HiH1 is
a blue triangle, a contradiction.

We may therefore assume that for all Hi with 5 ≤ i ≤ t, we have that the
edges H2Hi and H3Hi are red. To avoid a red triangle, the edges H1Hi and
H4Hi are blue. By minimality of t, we have t = 5 since all parts Hi for i ≥ 5
have the same color on edges to Hj for j ≤ 4. Clearly, H1H2H5H3H4H1 is a
red cycle and H1H5H4H2H3H1 is a blue cycle. We may then apply the same
arguments as in Case 4 to arrive at a contradiction.

We may therefore assume that t = r = 4. Since the edges H1H2 and H1H4

are red, there are at most n − 1 independent red edges within H2 ∪H4, so by
deleting 2n− 2 vertices in H2 ∪H4, there are no red edges remaining in H2 and
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no red edges in H4. Similarly, by deleting 2n− 2 vertices in H1 ∪H3, there are
no red edges remaining in H2 and no red edges remaining in H4. Symmetrically,
if we delete 4n− 4 vertices in H1 ∪H2 ∪H3 ∪H4, there are no blue edges in Hi

for 1 ≤ i ≤ 4. This means that

|G| ≤ 4[m(k − 2, n)− 1] + 8n− 8 < m,

a contradiction.

Case 6. r = 3.

The triangle in the reduced graph cannot be monochromatic so without loss
of generality, suppose all edges from H1 to H2 ∪H3 are red, and H2H3 is blue.
To avoid a red or blue triangle, any remaining parts are partitioned into the
following sets.

• Let A be the set of parts outside H1, H2, H3 each with all blue edges to
H1, H3 and all red edges to H2,

• Let B be the set of parts outside H1, H2, H3 each with all red edges to
H2, H3 and all blue edges to H1,

• Let C be the set of parts outside H1, H2, H3 each with all blue edges to
H1, H2 and all red edges to H3.

Note that |G| = |A|+ |B|+ |C|+ |H1|+ |H2|+ |H3| (see Figure 4).

H2

H1

H3

A B C

Figure 4: Structure of G

We first consider the subcase B 6= ∅. Then we have the following claims.

Claim 6. |A|+ |C| ≤ 2n− 2.

Proof. Assume, to the contrary, that |A| + |C| ≥ 2n − 1 and let v ∈ B. Note
that each edge from B to A ∪C is either red or blue. If there is a vertex v ∈ B

with at least n red edges to A ∪ C, then these edges along with the red edges
from H3 to B ∪ C and the red edges from H2 to B ∪ A form a red copy of
Fn. This means that v must have at least n blue edges to A ∪ C. Then these
edges along with the blue edges from H1 to A∪C form a blue copy of Fn for a
contradiction.
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Claim 7. |B| ≤ 2n− 2.

Proof. Assume, for a contradiction, that |B| ≥ 2n− 1. Then each edge from B

to A∪C is red or blue. If A∪C 6= ∅, let v ∈ A∪C. By the same argument as in
the proof of Claim 6, there is a monochromatic copy of Fn, so we may assume
A∪C = ∅. By minimality of t, we have that B must be a single (small) part of
the partition, and so |B| ≤ n− 1, a contradiction.

By Claims 6 and 7, we have |A|+ |C| ≤ 2n− 2 and |B| ≤ 2n− 2. Since all
edges from H1 to H2 ∪H3 are red, there can be at most n− 1 disjoint red edges
within H2 ∪H3. It follows that by deleting at most 2n− 2 vertices in H2 ∪H3,
there will be no red edges remaining in H2 ∪H3. Similarly, by deleting at most
2n− 2 vertices in each of H2 and H3, there will be no blue edges remaining in
H2 or H3. Also, by deleting at most 4n− 4 vertices from H1, there will be no
red edges or blue edges remaining in H1. Putting these together, by deleting
at most 10n− 10 vertices from H1 ∪H2 ∪H3, there are no red and blue edges
remaining in any of H1, H2 or H3. This means that

|G| = |A|+ |B|+ |C|+ |H1|+ |H2|+ |H3|

≤ (4n− 4) + (10n− 10) + 3[m(k − 2, n)− 1]

< m,

a contradiction.

Finally, we consider the subcase B = ∅. First two claims about A and C.

Claim 8. |A ∪ C| ≤ 6n− 6.

Proof. Since H1 has all blue edges to A∪C, there are at most n−1 disjoint blue
edges within A∪C. Deleting 2n−2 vertices from A∪C produces a new subgraph,
say D, with no blue edges. The Gallai partition of G restricted to D must
therefore have all small parts and red edges in between the parts so by Lemma 6,
|D| ≤ 4n−4. This, in turn, means that |A∪C| ≤ (4n−4)+(2n−2) = 6n−6.

Claim 9. A 6= ∅ and C 6= ∅.

Proof. First suppose that both A = ∅ and C = ∅. Then G = H1∪H2∪H3. With
only 3 parts, this Gallai partition can be reduced down to 2 parts, contradicting
the assumptions of this case.

Then suppose, without loss of generality, that C = ∅ and A 6= ∅. With
exactly 4 parts in the partition, we may apply the same argument as the last
part of Case 5.

We may delete at most 2n− 2 vertices in H1 and at most 2n− 2 vertices in
H2∪H3 and leave behind no red edges within H1 or within H2∪H3. Also since
Claim 9 gives A 6= ∅ and C 6= ∅, by deleting at most 2n− 2 vertices in H1 ∪H3

and at most 2n− 2 vertices in H1 ∪H3, there must be no blue edges remaining
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in either H1 ∪H2 or H1 ∪H3. This comes to a total of 8n− 8 removed vertices,
meaning that

|G| = |A|+ |C|+ |H1|+ |H2|+ |H3|

≤ (6n− 6) + (8n− 8) + 3[grk−2(K3 : Fn)− 1]

< m,

a contradiction, completing the proof of Lemma 7.

Finally the lower bound lemma.

Lemma 8. For k ≥ 2,

grk(K3;Fn) ≥







4n× 5
k−2

2 + 1, if k is even,

2n× 5
k−1

2 + 1, if k is odd.

Proof. We prove this result by inductively constructing a coloring of Kn where

n =







4n× 5
k−2

2 , if k is even,

2n× 5
k−1

2 , if k is odd,

which contains no rainbow triangle and no monochromatic copy of F3. Let G1

be a 1-colored complete graph on 2n vertices, most notably too small to contain
a copy of Fn. Without loss of generality, suppose this coloring uses color 1.

Suppose we have constructed a coloring of G2i−1 where i is a positive integer
and i ≥ 2, with 2i − 1 < k, using the 2i − 1 colors 1, 2, . . . , 2i − 1 and having
order n2i−1 = 2n × 5i−1 such that G2i−1 contains no rainbow triangle and no
monochromatic copy of Fn.

If k = 2i, we constructG2i = Gk by making two copies ofG2i−1 and inserting
all edges in between the copies in color k. This coloring clearly contains no
rainbow triangle and no monochromatic copy of Fn and has order

n = 2 · 2n · 5
k−2

2 = 4n× 5
k−2

2 ,

as claimed.
Otherwise, suppose k ≥ 2i + 1. We construct G2i+1 by making five copies

of G2i−1 and inserting edges of colors 2i and 2i+ 1 between the copies to form
a blow-up of the unique 2-colored K5 with no monochromatic triangle. This
coloring clearly contains no rainbow triangle and there is no monochromatic
triangle in either of the two new colors so there can be no monochromatic copy
of Fn in G2i+1. With

|G2i+1| = 5 · 2n · 5i−1 = 2n× 5
k−1

2 ,

as claimed, completing the proof.
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Appendix A Proof of Lemma 5

Proof. Define the function

g(k) =



















14× 5
k−2

2 − 1, if k is even;

33× 5
k−3

2 , if k = 3, 5;

33× 5
k−3

2 + a× 5
k−5

2 − a, if k is odd, k ≥ 7,

where a > 3
4 .

The goal of this lemma is to show that

grk(K3 : F3) ≤ g(k).

We prove this upper bound by induction on k. The case k = 1 is trivial and the
case k = 2 is precisely R(F3, F3) = 13. We therefore suppose k ≥ 3 and let G

be a coloring of Kn where n = g(k).
Since G is a Gallai coloring, it follows from Theorem 1 there is a Gallai

partition of V (G). Suppose red and blue are the two colors appearing on edges
between parts in the Gallai partition. Let t be the number of parts in the
partition and choose such a partition where t is minimized. Since R(F3, F3) =
13, the reduced graph must have at most 12 vertices so t ≤ 12. Let r be
the number of parts of the Gallai partition with order at least 3. Let Hi be
the parts of this Gallai partition and, without loss of generality, suppose that
|Hi| ≥ |Hi+1| for all i. This means that |Hr| ≥ 3 and |Hr+1| ≤ 2.

First an easy fact that will be used throughout the proof.

Fact 4. If X and Y are two (non-empty) parts of a Gallai partition, say with all
red edges in between them, then the subgraph of Y (and similarly X) containing
precisely the red edges contains no monochromatic copy of 3K2. This means
that the removal of at most 4 vertices from Y yields a subgraph with no red
edges.

Indeed, otherwise there would be a red copy of F3 centered in X .
We first consider the case k = 3, so n = 33. If 2 ≤ t ≤ 3, then by the

minimality of t, we may assume t = 2, say with corresponding parts H1 and H2.
Without loss of generality, suppose all edges between H1 and H2 are blue. Since
n ≥ 33, we must have |H1| ≥ 17. By Fact 4, the subgraph of H1 containing
precisely the blue edges contains no copy of 3K2. We may therefore delete at
most 4 vertices from H1 so that H1 no longer contains any blue edges. This
yields a 2-colored K13, but since R(F3, F3) = 13, it follows that there is a
monochromatic F3 within H1, a contradiction. This implies that t ≥ 4.

If r ≥ 5 and t ≥ 6, then any choice of 6 parts containing the 5 parts
H = {H1, . . . , H5} will contain a monochromatic triangle in the corresponding
reduced graph. Such a triangle must contain at least 2 parts from H . The
corresponding subgraph of G must therefore contain a monochromatic copy of
F3, a contradiction. Thus, we may assume that either 4 ≤ t ≤ 5 or r ≤ 4.
Furthermore, we have the following easy tools.
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Claim 10. If t ≥ 9, then there are at most 7 parts of order at least 2.

Proof. Suppose that there are at least 8 parts of order at least 2, say H =
{H1, H2, . . . , H8}. Then any choice 9 parts containing H will contain a mono-
chromatic copy of F2 in the reduced graph. Note that such a copy of F2 must
contain at least 4 vertices corresponding to parts from H . This means that
the corresponding subgraph of G must contain a monochromatic copy of F3, a
contradiction.

Claim 11. If X and Y are two parts of a Gallai partition of a graph with no
monochromatic copy of F3, say with all red edges in between them, and |X | ≥ 3,
then the subgraph of Y containing precisely the red edges is a subgraph of C4,
C5, or 2K3.

Proof. Then in order to avoid creating a red copy of F3 centered in Y using the
red edges to X as in Figure 5, the subgraph of Y containing precisely the red
edges has maximum degree at most 2. By Fact 4, this red subgraph of Y also
contains no copy of 3K2. Thus, the subgraph induced by the red edges within
Y must be a subgraph of C4, C5, or 2K3.

X Y

Figure 5: A red copy of F3

This also leads to another related claim.

Claim 12. In any Gallai 3-colored K9 using colors 1, 2, 3 in which the subgraph
containing precisely those edges of color 1 and the subgraph containing precisely
those edges of color 2 each are subgraphs of C4, C5, or 2K3, there must be a
monochromatic copy of F3 in color 3.

Proof. Let G be a 3-coloring of K9, say using red (color 1), blue (color 2),
and green (color 3). Let GR, GB, and GG be the subgraphs of G containing
precisely the red, blue, and green edges respectively and suppose each of GR

and GB are subgraphs of C4, C5, or 2K3. Then since ∆(GR),∆(GB) ≤ 2, we
have δ(GG) ≥ 4.

First suppose |GR ∪ GB| ≤ 8 so there is at least one vertex w ∈ G with no
incident red or blue edges and let H = GG \ w. If H is 2-connected, then the
circumference of H is at least min{2δ(H), |H |} ≥ 6 so H contains a copy of
3K2. This along with w forms a green copy of F3 for a contradiction, so H is
not 2-connected. Then GR and GB cannot be subgraphs of C4, C5, or 2K3.

Next suppose |GR ∪ GB| = 9 so ∆(GG) ≤ 7. If there is a vertex v with
degree 2 in one of red or blue (say blue) and degree at least 1 in the other
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color in {red, blue} (so red), then to avoid a rainbow triangle, either red and
blue must be a subgraph of the unique 2-coloring of K5 with no monochromatic
triangle or GB must be a C4 and a chord of this C4 must be red. The former
case contradicts |GR ∪GB | = 9 so GB must be a copy of C4. With one red edge
as a chord of the blue C4 and the remaining red edges disconnected from this
red edge, the remaining red edges must induce a graph on at most 3 vertices,
again contradicting the assumption that |GR ∪GB | = 9. This means there can
be no vertex with red (or blue) degree 2 and blue (respectively red) degree 1.

If there is a vertex v′ with one incident edge in each of red and blue, then
to avoid a rainbow triangle, the edge between those neighbors must be either
red or blue. Since the maximum degree of red and blue is at most 2 and to
avoid a vertex v as above, these three vertices can have no more incident red
or blue edges. This means that GR ∪GB must be disconnected. With so many
restrictions, the only way for |GR ∪ GB| = 9 is if the red (or blue) graph is a
spanning subgraph of C4 and the blue (respectively red) graph is a spanning
subgraph of C5 and these are disjoint. Such a coloring of K9 clearly contains a
green copy of F3 to complete the proof of Claim 12.

When only two colors are present, we get even more by a similar argument.

Fact 5. In any Gallai 2-colored K7 using colors 1, 2 in which the subgraph
containing precisely those edges of color 1 is a subgraph of C4, C5, or 2K3,
there must be a monochromatic copy of F3 in color 2.

We consider cases based on the value of r. If r = 0, then since n = 33, there
are at least 17 > R(F3, F3) parts, a contradiction. If r = 1, then by Claim 10,
there are at most 6 parts of order 2. With a total of t ≤ 12 parts, there can
be at most 11 parts of order at most 2. Since n = 33, we have |H1| ≥ 16 and
H1 has incident edges to other parts in both red and blue. Thus, by Fact 4, H1

contains no 3K2 in blue or red. By deleting at most 8 vertices from H1, what
remains of H1 contains no blue edges and no red edges. This yields a 1-colored
copy of K8, which contains a monochromatic F3, a contradiction.

We may therefore assume that 2 ≤ r ≤ 5. We distinguish the following cases
to complete the proof.

Case 1. r = 2.

Suppose that blue is the color of the edges between H1 and H2. By Claim 10,
there cannot be many vertices in small parts, so |H1| + |H2| ≥ 18. To avoid a
blue F3, there is no part outside H1 and H2 with blue edges to H1 ∪H2.

If there is a part in G \ (H1 ∪H2) with all red edges to H1 ∪H2, then the
subgraph induced by red edges in H1∪H2 contains no 3K2. Since |H1|+ |H2| ≥
18, deleting at most 4 vertices in H1 ∪ H2 results in a 2-colored of order at
least 14. This contains a monochromatic copy of F3 since R(F3, F3) = 13, a
contradiction. Thus, each part other than H1 and H2 has both red and blue
edges to H1 ∪H2.

Let A be the set of parts with red edges to H1 and blue edges to H2 and
let B be the set of parts with blue edges to H1 and red edges to H2. By the
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minimality of t, we must have A 6= ∅ and B 6= ∅. Since |H1| + |H2| ≥ 18, we
must have |H1| ≥ 9. Next suppose that |A| ≥ 3. Then by Claims 11 and 12,
H1 contains a monochromatic copy of F3, a contradiction. We may therefore
assume that |A| ≤ 2.

Next suppose that |B| ≤ 10, so |A| + |B| ≤ 12 and |H1| + |H2| ≥ 21. Since
the subgraph induced by the red edges within each of H1 and H2 contains no
copy of 3K2, we may delete at most 8 vertices from H1 ∪H2 (at most 4 vertices
from each of H1 and H2) so that what remains of H1∪H2 contains no red edges.
This yields a 2-colored K13, which contains a monochromatic copy of F3 since
R(F3, F3) = 13. We may therefore assume that |B| ≥ 11.

Furthermore, with |B| ≥ 11, by the same argument as above (applying
Claim 12), we must have |H2| ≤ 8. This, in turn, means that |H1| ≥ 10 so
|H1 ∪ B| ≥ 21. Since A 6= ∅, we may remove at most 8 vertices from H1 ∪ B

(at most 4 from each of H1 and B) to obtain a subgraph of order at least
13 containing no red edges. Since R(F3, F3) = 13, this subgraph contains a
monochromatic copy of F3 for a contradiction, completing the proof of Case 1.

Case 2. r = 3.

Disregarding the relative orders of the parts H1, H2, and H3 for this case,
we may suppose without loss of generality, that the edges from H2 to H3 are
red and all edges from H1 to H2 ∪H3 are blue since a monochromatic triangle
among these large parts would produce a monochromatic copy of F3. We first
claim that there is no part outside H1, H2, and H3 with blue edges to H1 so
suppose, to the contrary, that there is such a part, say H ′, with blue edges to
H1. To avoid a blue triangle in the reduced graph, all edges from H ′ to H2∪H3

must be red. Then H ′ together with H2 and H3 yields a red triangle in the
reduced graph, yielding a red F3 in G, a contradiction. There can therefore be
no such part H ′ with blue edges to H1.

Thus all vertices outside H1 ∪H2 ∪H3 have red edges to H1. Let A be the
set of parts with blue edges to H2 and with red edges to H3. Let B be the set of
parts with red edges to H2 and with blue edges to H3. Let C be the set of parts
with blue edges to H2 ∪H3. Suppose, for a contradiction, that |H2 ∪H3| ≥ 17.
Since the subgraph induced by blue edges within H2 ∪ H3 contains no 3K2,
by deleting at most 4 vertices from H2 ∪H3 we obtain a subgraph of H2 ∪H3

containing no blue edges. This yields a 2-colored copy of K13, a contradiction
since R(F3, F3) = 13. This means |H2 ∪H3| ≤ 16.

First we consider the case when C 6= ∅. We claim that each vertex of C has at
most 2 incident edges in each of red and blue to A∪B. Otherwise suppose that
there is a vertex, say u ∈ C, with 3 incident edges in either red or blue, say in
red, to A∪B. Then these 3 edges along with H1 yields a red copy of F3 centered
at u, a contradiction. This means that |A| + |B| ≤ 4, and symmetrically, that
|C| ≤ 4. Then |H1|+ |H2|+ |H3| ≥ 25. Since |H2|+ |H3| ≤ 16, we have |H1| ≥ 9.
If |A|+ |B|+ |C| ≥ 3, then by the same arguments used above, the subgraphs of
H1 induced by red and blue edges must be subgraphs of C5 so by Claim 12, there
exists a monochromatic copy of F3. On the other hand, if |A| + |B|+ |C| ≤ 2,
then |H1| ≥ 15. Since the subgraphs of H1 induced by red edges and blue edges
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each contain no monochromatic copy 2K2, by deleting at most 8 vertices from
H1 to remove all red and blue edges, we obtain a monochromatic K7 and so a
monochromatic copy of F3, a contradiction.

We may therefore suppose C = ∅. By minimality of t, we also have A 6= ∅
and B 6= ∅. We first prove a claim.

Claim 13. |A| ≤ 5 and |B| ≤ 5.

Proof. We focus on A but the same argument holds for B. Suppose, for a
contradiction, that |A| ≥ 6 and let v be a vertex in a smallest part H0

A within
A. Since A consists only of parts of order 1 or 2, there are at least 3 parts within
A. If |A| ≥ 7, then there are at least 5 vertices in A \ H0

A so v has at least 3
incident edges in either red or blue. Then using the red or blue edges to H1

or respectively to H2, v is the center of a red or blue copy of F3. This means
that we may assume that |A| = 6 and that A consists of exactly 3 parts each
of order 2. At least one of these three parts, say H1

A, has all one color, red or
blue, to the other two parts by the definition of the Gallai partition. Then for
any vertex v ∈ H1

A, using the red or blue edges to H1 or respectively to H2, v
is again the center of a red or blue copy of F3, for a contradiction.

Next suppose |A ∪ B| ≤ 4. Since n = 33, we have |H1| + |H2|+ |H3| ≥ 29.
Additionally since |H2|+ |H3| ≤ 16, we also have |H1| ≥ 13. Since A ∪ B 6= ∅,
by Fact 4, the subgraph of H1 containing precisely the red edges contains no
3K2 and by Claim 11, the subgraph of H1 containing precisely the blue edges
has order at most 5 and maximum degree at most 2. We can therefore delete at
most 4 vertices from H1 such that what remains of H1 contains no red edges.
By Claim 12, the resulting 2-colored copy of K9 must contain a monochromatic
F3, a contradiction.

Thus we may assume that |A ∪ B| ≥ 5. Then at least one of A or B has
order at least 3, say |A| ≥ 3. To avoid a red or blue copy of F3, by Claim 11,
for each i with 1 ≤ i ≤ 3, the subgraph of Hi containing precisely the red (or
similarly blue) edges is a subgraph of C4, C5, or 2K3. By Claim 12, we know
that |Hi| ≤ 8 so |H1|+ |H2|+ |H3| ≤ 24, meaning that |A ∪B| ≥ 9 so one of A
or B has order 5. On the other hand, since n = 33 and |A ∪ B| ≤ 10, we must
have |H1 ∪H2 ∪H3| ≥ 23 so 7 ≤ |Hi| ≤ 8 for all i. Without loss of generality,
suppose |A| = 5 so A consists of at least 3 parts of the Gallai partition, each of
order at most 2. By Claim 11, there is no vertex in A with red or blue degree
at least 3 so the only possible configuration is for A to be the unique 2-colored
K5 with no monochromatic K3 using red and blue. To avoid creating a blue
copy of F3 centered in H2, H1 must have no blue edges and by Claim 11, any
red edges in H1 must be a subgraph of C4, C5, or 2K2. Since H1 is a 2-colored
complete graph of order at least 7 where the subgraph containing precisely the
red edges is a subgraph of C4, C5, or 2K3, we see that H1 contains a green copy
of F3, completing the proof of Case 2.

Case 3. r = 4.
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For the proof of this case, we disregard the relative ordersof the parts |Hi|
for i ≤ 4. In order to avoid a monochromatic triangle within the reduced graph
restricted to the 4 largest parts, up to symmetry, we may assume that either

1. all edges from H1∪H2 to H3∪H4 are red with all remaining edges between
the parts being blue, or

2. all edges from Hi to Hi+1 are red for 1 ≤ i ≤ 3 and all remaining edges
between the parts are blue.

In either coloring, by Claims 11 and 12, we have |Hi| ≤ 8 for all i. Let A be the
set of vertices outside ∪iHi.

For the first coloring, any vertex of A must form a monochromatic triangle
with at least one pair of parts Hi and Hj , producing a monochromatic copy of
F3, so A must be empty. Then

|G| =
4

∑

i=1

|Hi| ≤ 4 · 8 = 32,

a contradiction.
For the second coloring, every vertex of A must have red edges to H1 and

H4 and blue edges to H2 and H3. By minimality of t, the set A must be a single
part of the Gallai partition with |A| ≤ 2 and by the same calculation as above,
A 6= ∅, meaning that

|A|+
4

∑

i=1

|Hi| ≤ 2 + 4 · 8 = 34.

This implies that 1 ≤ |A| ≤ 2 and |Hi| = 8 for all i except at most one, for
which |Hi| = 7.

By Facts 1 and 2, if H1 contains two blue edges, then H3 ∪H4 must contain
no blue edges. Then H3∪H4 is a 2-colored copy of a complete graph on at least
15 vertices, which must contain a monochromatic copy of F3 for a contradiction.
We may therefore assume that H1 and similarly H4 each contain at most one
blue edge and symmetrically, H2 and H3 each contain at most one red edge.

Suppose H1 contains a blue edge. If H4 also contains a blue edge, then by
Fact 2, H2 and H3 each contain at most one blue edge. Then there exist two
vertices in H2 ∪H3 whose removal yields a 2-colored complete graph on at least
15 − 2 = 13 vertices, which must contain a monochromatic copy of F3, for a
contradiction. This means H4 contains no blue edge. Then there exists a vertex
in H3 ∪H4 (more specifically in H3) whose removal yields a 2-colored complete
graph on at least 15 − 1 = 14 vertices, which again contains a monochromatic
copy of F3. This means that H1, and similarly H4, contains no blue edges and
symmetrically, H2 and H3 each contain no red edges.

Finally since H1 contains no blue edges and, by Claim 11, the subgraph
of H1 containing precisely the red edges is contained in C4, C5, or 2K3, H1

contains a green copy of F3, a contradiction to complete the proof of Case 3.
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Case 4. r = 5.

Certainly t = 5 and to avoid a monochromatic triangle in the reduced graph,
and the reduced graph must be the unique 2-coloredK5 consisting of a blue cycle
say H1H2H3H4H5H1 and a complementary red cycle. By Claims 11 and 12, we
have |Hi| ≤ 8 for all i. If H1 contains a blue edge, then H2∪H5 contains at most
one blue edge by Facts 1 and 2. Then by deleting one vertex from H2 ∪H5, we
can obtain a 2-colored complete graph, meaning that |H2 ∪ H5| ≤ 13 to avoid
making a monochromatic copy of F3. By symmetry, this same fact holds for
other parts and for red as well.

Suppose first that H1 contains at least one edge in both red and blue. Then
H2 ∪H5 contains at most one blue edge and |H2 ∪H5| ≤ 13. Similarly H3 ∪H4

contains at most one red edge and |H3 ∪H4| so |G| =
∑

|Hi| ≤ 8 + 2 · 13 = 34.
By Claim 11, the subgraph of Hi consisting of the red (respectively blue) edges
is a subgraph of C4, C5, or 2K3 for all i with 1 ≤ i ≤ 5.

If H1 contains both a red 2K2 and a blue 2K2, then each Hi (for 2 ≤
i ≤ 5) is missing either red or blue edges, so by Fact 5, |Hi| ≤ 6. Then

|G| = |H1| +
∑5

i=2 |Hi| = 8 + 6 · 4 = 32, a contradiction. We may therefore
assume that no part Hi contains both a red 2K2 and a blue 2K2. This means
that for every part Hi, either the red or the blue edges are a subgraph of P3.
Since every 3-coloring of K8 in which the subgraph containing the edges of one
color is a subgraph of P3 and the subgraph containing edges of a second color
is a subgraph of C4, C5, or 2K3 must contain a monochromatic copy of F3, this
means that |Hi| ≤ 7 for all i.

Then we get the following claim.

Claim 14. We have |Hi| = 7 for at most 2 values of i with 1 ≤ i ≤ 5.

Proof. Assume, to the contrary, that there are three such values of i. In partic-
ular, note that by Fact 5, each such part Hi must contain at least one red and
at least one blue edge. Up to symmetry, there are two possible cases:

(i) |H1| = |H2| = |H3| = 7, and

(ii) |H1| = |H2| = |H4| = 7.

First suppose |H1| = |H2| = |H3| = 7. Then considering H1 and H3 as one
part with all blue edges to H2, Fact 2 yields a monochromatic (blue) copy of
F3.

Thus suppose |H1| = |H2| = |H4| = 7. Then considering H1 and H2 as one
part with all red edges to H4, Fact 2 again yields a monochromatic (red) copy
of F3.

From Claim 14, we have |G| ≤ 3 · 6 + 2 · 7 = 32, a contradiction, completing
the proof of Case 4 and the case when k = 3.

Before getting into the case where k ≥ 4, we prove a useful claim.
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Claim 15. In any Gallai 4-colored copy of K33 using colors 1, 2, 3, 4 in which
the subgraph containing precisely those edges of color 4 is a subgraph of K3,
there is a monochromatic copy of F3.

Proof. Since G is a Gallai coloring, it follows from Theorem 1 there is a Gallai
partition of V (G). Suppose colors 1 and 2 are the two colors appearing on
edges between parts in the Gallai partition. Let t be the number of parts in the
partition and choose such a partition where t is minimized. Since R(F3, F3) =
13, the reduced graph must have at most 12 vertices so t ≤ 12. Let r be the
number of “large” parts of the Gallai partition with order at least 3. Let Hi be
the parts of this Gallai partition and, without loss of generality, suppose that
|Hi| ≥ |Hi+1| for all i. This means that |Hr| ≥ 3 and |Hr+1| ≤ 2.

If 2 ≤ t ≤ 3, then by the minimality of t, we may assume t = 2, say with
corresponding parts H1 and H2. Without loss of generality, suppose all edges
between H1 and H2 are color 1. Since n = 33, we must have |H1| ≥ 17. If
|H2| ≥ 13, then H2 contains at least one edge that is not color 2 or 3, so either
an edge with color 1 or a subgraph of a triangle with color 4. If H2 contains
an edge with color 1, then H1 contains a subgraph of a triangle with color 4
and does not contain a copy of 2K2 with color 1. Then by deleting at most 4
vertices, we can remove all edges of color 1 and 4 from H1, leaving behind a
2-colored subgraph of order at least 13, and hence there is a monochromatic F3.
If H2 contains at least one edge with color 4, then H1 contains no edge of color
4 and no copy of 3K2 in color 1. Then, by deleting at most 4 vertices from H1,
we can obtain a subgraph of order at least 13 containing no edges of color 1 or
4, and hence there is a monochromatic F3. If |H2| ≤ 12, then |H1| ≥ 21. Since
H2 6= ∅, H1 does not contain a copy of 3K2 with color 1 and also H1 contains
at most a triangle with color 4. Thus, by removing at most 6 vertices, we can
produce a subgraph of H1 of order at least 15 with no edges of 1 and 4, and
hence there is a monochromatic F3. We may therefore assume that t ≥ 4.

If r ≥ 5 and t ≥ 6, then any choice of 6 parts containing the 5 parts
H = {H1, . . . , H5} will contain a monochromatic triangle in the corresponding
reduced graph. Such a triangle must contain at least 2 parts from H . The
corresponding subgraph of G must therefore contain a monochromatic copy of
F3, a contradiction. Thus, we may assume that either 4 ≤ t ≤ 5 or r ≤ 4.

If r = 0, then there are at least 17 small parts. Since R(F3, F3) = 13, it
follows that there is a monochromatic F3.

If r = 1, then let A be the set of parts with edges with color 1 to H1 and
B be the set of parts with edges with color 2 to H1. Without loss of generality,
suppose |A| ≥ |B|. If |A| ≥ 11, then A contains no copy of 3K2 in color 2 so by
deleting at most 4 vertices, we can obtain a subgraph of order at least 7 within
A in which there is no edge with color 2. Since all parts within A have order
at most 2 and the edges in between the parts in A all have color 3, it follows
that there is a monochromatic copy of F3 in color 3 within A. This means that
|B| ≤ |A| ≤ 10 and so |H1| ≥ 13. By Fact 4, there is no copy of 3K2 in either
color 1 or color 2 within H1. This means that if |H1| ≥ 15, then removing 8
vertices from H1 to destroy all edges of colors 1 and 2 would yield a subgraph
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colored entirely in color 3 except for a subgraph of a triangle colored in color
4, clearly containing a copy of F3. This means that |H1| ≤ 14 so |A| = 10 and
9 ≤ |B| ≤ 10. Furthermore, if we could remove all edges of colors 1 and 2 from
H1 by deleting at most 6 vertices, what remains would easily contain a copy of
F3 in color 3, we must remove at least 7 vertices from H1 to destroy all edges
of colors 1 and 2 from H1. There must therefore be a copy of 2K2 in one of
color 1 or 2 and at least an edge in the other color within H1. In particular,
there is at least one edge in color 1 within H1. This means that there can be
at most one edge in color 1 within A. Since A is made up of parts of the Gallai
partition of order at most 2, this means that the edges of color 2 within A form
a complete graph minus a matching and with |A| = 10, there is a copy of F3 in
color 2 within A.

If r = 5, then t = 5 and to avoid a monochromatic triangle in the reduced
graph, and the reduced graph must be the unique 2-colored K5 consisting of a
cycle say H1H2H3H4H5H1 with color 1 and a complementary cycle with color
2. Without loss of generality, suppose that if there is any edge of color 4, it
appears within H1, meaning that Hi contains no edge of color 4 for 2 ≤ i ≤ 5.
By Claim 11, within each part Hi the edges of colors 1 and 2 are each subgraphs
of either C4, C5, or 2K3. By Claim 12, we have |Hi| ≤ 8 for 2 ≤ i ≤ 5. Since
n = 33, either there are three parts of order at least 7 or one part of order 8
and another part of order at least 7. First suppose there is a part of order 8,
say H1, and another part of order at least 7, say H2. By Fact 5, there can be
no vertex v ∈ H1 such that H1 \ {v} has no edges of color i where i is either of
1 or 2. This means that H1 contains either a triangle or a copy of 2K2 in each
of colors 1 and 2. By Facts 1 and 2, H2 must have no edges of color 1, and so
by Fact 5, H2 contains a monochromatic copy of F3. We may therefore assume
there is no part of order 8, so there are at least 3 parts of order 7. Finally
suppose three parts have order 7, say |H1| = |H2| = |H3| = 7. By Fact 5, each
part Hi contains at least one edge of color 1 and one edge of color 2. By Facts 1
and 2, since H2 has at least one edge in color 1, each of H1 and H3 must have
at most one edge in color 1, meaning that they each have exactly one edge in
color 1. Similarly, since each of H1 and H3 has at least one edge of color 2, they
must each also have at most one edge of color 2, so H1 and H3 must each have
exactly one edge of color 1 and one edge of color 2. Merging these two edges
into a single color and applying Fact 5, we obtain a monochromatic copy of F3

for a contradiction.
If r = 4, then in order to avoid a monochromatic triangle within the reduced

graph restricted to the 4 largest parts, up to symmetry, we may assume that all
edges fromHi toHi+1 have color 1 for 1 ≤ i ≤ 3 and all remaining edges between
the parts have color 2. Since n = 33 and |Hi| ≤ 8 (by Claim 12) for 1 ≤ i ≤ 4,
it follows that t ≥ 5. Let A be the set of vertices in G \ (H1 ∪H2 ∪H3 ∪H4).
In order to avoid creating a monochromatic triangle in the reduced graph using
two large parts, all vertices in A have all edges in color 1 to H1 and H4 and
all vertices in A have all edges in color 2 to H2 and H3. If |A| ≤ 8, then we
may treat A as one part of the Gallai partition and apply the arguments in the
above case when r = 5. We may therefore assume |A| ≥ 9. Since A is made up

33



entirely of parts from the Gallai partition of order at most 2, each vertex has at

least |A|−2
2 ≥ 3 incident edges in either color 1 or 2. Then again treating A as

a single part of the Gallai partition, Fact 1 yields a monochromatic copy of F3.

If r = 3, then we assume that the edges from H1 to H2∪H3 have color 1 and
the edges from H2 to H3 have color 2. By Claim 12, |H2|, |H3| ≤ 8. If there is a
part Hi with i ≥ 4 with edges of color 1 to H1, then to avoid creating a copy of
F3 in color 1, all edges from Hi to H2 ∪H3 must have color 2, making a copy of
F3 in color 2. This means that all parts Hi with i ≥ 4 must have edges of color
2 to H1. If |H2| ≥ 7 and |H3| ≥ 7, then by Fact 5, each of H2 and H3 contains
at least one edge of color 1 and one edge of color 2. To avoid creating a copy of
F3 in color 1 (centered at a vertex in H1), each of H2 and H3 contains exactly
one edge in color 1. By Fact 1, each of H2 and H3 contains exactly one edge
in color 2. Then as in the case r = 5 above, we may merge colors 1 anr 2 into
a single color and apply Fact 5 to obtain a monochromatic copy of F3. Then
|H2| ≤ 6 or |H3| ≤ 6 so without loss of generality, suppose |H2| ≤ 6. Let A be
the set of vertices not in large parts, so A = {Hi | 4 ≤ i ≤ t}. If |A| ≥ 3, then
|H1| ≤ 8 (by Claim 12) and so |A| ≥ 11. By deleting at most 4 vertices from A,
we can remove all edges of color 2, leaving behind a subgraph of A of order at
least 7 consisting of parts of the Gallai partition each of order at most 2. Since
all edges between these parts have color 1, there is a copy of F3 in color 1. We
may therefore assume that |A| ≤ 2 so |H1| ≥ 17. Since H1 contains no copy of
3K2 in either color 1 or color 2, we may remove at most 8 vertices from H1 to
leave behind a subgraph with no edges of colors 1 or 2. This is a copy of K9 in
which color 4 is a subgraph of a triangle and all remaining edges have color 3,
clearly producing a copy of F3 in color 3.

If r = 2, then we assume that the edges from H1 to H2 have color 1. First
suppose |H1| ≥ 14. Then by removing at most 4 vertices, we obtain a subgraph
of H1 with no edges of color 2 and by removing at most an additional 2 vertices,
we obtain a subgraph of H1 in which the edges of color 1 induce a subgraph
of 2K2. In this remaining subgraph of H1, a colored copy of K8, any edges of
color 1 induce a subgraph of 2K2 and any edges of color 4 induce a subgraph of
K3 and all remaining edges have color 3, yielding a copy of F3 in color 3. We
may therefore assume that |H1| ≤ 13 and similarly |H2| ≤ 13. Let A be the set
of vertices not in large parts, so A = {Hi | 3 ≤ i ≤ t}. Note that |A| ≥ 7 since
n = 33. Let B be the set of vertices in A with edges of color 1 to H1 and let C
be the set of vertices in A with edges of color 2 to H1 so C = A \B. Note that
all edges from B to H2 must have color 2 to avoid creating a copy of F3 in color
1. If |C| ≥ 3, then by Claim 12, |H1| ≤ 8 and similarly if |B| ≥ 3, then |H2| ≤ 8.
Since |A| ≥ 7, at least one of B or C has order at least 3 so at least one of H1 or
H2 has order at most 8. First suppose |C| ≤ 2 so 5 ≤ |B| ≤ 8, and 3 ≤ |H2| ≤ 8.
With |H1| ≤ 13, this means |G| ≤ 31 which is a contradiction. Next suppose
|B| ≤ 2 so |C| ≥ 5 and 3 ≤ |H1| ≤ 8. With |H2| ≤ 13, this means |C| ≥ 10.
Furthermore, by removing at most 2 vertices from H2, we obtain a subgraph of
H2 with no edges of color 4 and in which colors 1 and 2 both satisfy Claim 11.
By Claim 12, this means that |H2| ≤ 8 + 2 = 10. This implies that |C| ≥ 13.
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By Claim 11, we may remove at most 4 vertices from C to obtain a subgraph of
C of order at least 9 with no edges of color 2. Since C is made up of only parts
of the Gallai partition of order at most 2 and all edges between these parts in
the aforementioned subgraph of C have color 2, this clearly produces a copy of
F3 in color 2. We may therefore assume that |B|, |C| ≥ 3 so |H1|, |H2| ≤ 8. As
in the proof of the case r = 3, one of B or H2 has at most 6 vertices so this
means |C| ≥ 11. By Claim 11, the removal of at most 2 vertices from C leaves a
subgraph in which the edges of color 2 form a subgraph of 2K2. This subgraph
is a complete graph of order at least 9 where all except a matching has color 1,
which contains a copy of F3 in color 1, to complete the proof of Claim 15.

For the remainder of this proof, we suppose k ≥ 4. Since G is a Gallai
coloring, it follows from Theorem 1 that there is a Gallai partition of V (G).
Suppose that the two colors appearing on edges in between the parts of the
Gallai partition are red and blue. Let t be the number of parts in this partition
and choose such a partition where t is minimized. Let H1, H2, . . . , Ht be the
parts of this partition, say with |H1| ≥ |H2| ≥ · · · ≥ |Ht|.

If 2 ≤ t ≤ 3, then by the minimality of t, we may assume that t = 2. Let
H1 and H2 be the corresponding parts and suppose all edges from H1 to H2

are red. If |H2| ≤ 2, then by Fact 4, H1 contains no red 3K2 and by deleting 4
vertices, we can obtain a subgraph of H1 with no red edges. This means that

|G| = |H1|+ |H2| ≤ [g(k − 1)− 1] + 4 + 2 < n,

a contradiction. If |H1| ≥ 3 (and |H2| ≥ 3), then by deleting at most 8 vertices
in total, we can obtain subgraphs of H1 and H2 with no red edges inside. This
means that

|G| = |H1|+ |H2| ≤ 2[g(k − 1)− 1] + 8 < n,

a contradiction when k ≥ 5. Hence, we may assume that k = 4 so n = 69.
By Claim 11, we can remove at most 4 vertices from each part Hi for i = 1, 2
to obtain subgraphs in which there are no red edges. This means that |Hi| ≤
[g(3)− 1]+ 4 = 36, implying that |Hi| ≥ 69− 36 = 33 for i = 1, 2. Suppose now
that by deleting qi vertices from Hi, we can obtain a subgraph in which there
are no red edges for i = 1, 2. If q1 + q2 ≤ 4, then

69 = |H1|+ |H2| ≤ 2 · 32 + 4 = 68 < 69,

a contradiction. Hence, we may assume that q1 + q2 ≥ 5, say with 3 ≤ q1 ≤ 4,
also meaning that 1 ≤ q2 ≤ 4. Hence, H1 contains a red copy of 2K2 and H2

contains a red edge. Since |H1| ≥ 33 > 5, there is a red copy of F3 using these
red edges and the red edges between H1 and H2, a contradiction. We may
therefore assume that t ≥ 4.

Since R(F3, F3) = 13, it follows that 4 ≤ t ≤ 12. Let r be the number
of “large” parts of the Gallai partition with order at least 3. As before, we
disregard the relative orders of the parts Hi for i ≤ r. By Fact 4, we can remove
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at most 8 vertices from each part Hi for i ≤ r to obtain subgraphs with no red
or blue edges. If 0 ≤ r ≤ 4, then we get

|G| =

r
∑

i=1

|Hi|+
t

∑

i=r+1

|Hi|

≤ r[g(k − 2)− 1] + 8r + 2(t− r)

< g(k),

a contradiction when k ≥ 5 or k = 4 and 0 ≤ r ≤ 2. Hence, we assume, for a
moment, that k = 4 and 3 ≤ r ≤ 4.

In order to avoid a monochromatic triangle within the reduced graph re-
stricted to the r large parts, we may assume that each large part is adjacent
in red to another large part. By Claim 11, the red edges in each of these parts
form a subgraph of C4, C5, or 2K2. By Fact 4 (and the minimality of t which
guarantees that each part has blue edges to some other part), we may remove
at most 4 vertices from each large part to obtain subgraphs with no blue edges.
By Claim 12 applied within these subgraphs, we see that |Hi| ≤ 8 + 4 = 12 for
each i with 1 ≤ i ≤ r. This means that

g(4) = 69 =

r
∑

i=1

|Hi|+
t

∑

i=r+1

|Hi| ≤ r · 12 + 2(t− r) ≤ 64,

a contradiction.
In order to avoid a monochromatic triangle within the reduced graph re-

stricted to the r large parts, we must have r ≤ 5. Since the cases with r ≤ 4
have already been considered, we may therefore assume, for the remainder of
the proof, that r = 5.

Certainly t = 5 and to avoid a monochromatic triangle in the reduced graph
restricted to the 5 large parts, the reduced graph must be the unique 2-colored
copy ofK5 consisting of a blue cycle sayH1H2H3H4H5H1 and a complementary
red cycle. First some helpful claims.

Claim 16. If one part, say H1, contains a blue (or red) copy of 2K2, then there
are no blue (respectively red) edges in H2 ∪H3 ∪H4 ∪H5.

Proof. Suppose H1 contains a blue copy of 2K2. By Fact 2, the parts H2 and H5

each contain no blue edges. Then treating H1 ∪H3 (or symmetrically H1 ∪H4)
as one part, if H3 (respectively H4) contains a blue edge, then H2 along with
H1 ∪H3 (respectively H5 along with H1 ∪H4) violates Fact 4.

Claim 17. There is no blue (or red) copy of 4K2 in H1 ∪H2 ∪H3 ∪H4 ∪H5

as a disjoint union of subgraphs, not including the edges between the parts.

Before proving this claim, we would like to note that it is possible for H1 ∪
H2∪H3∪H4∪H5 to contain a blue (or symmetrically red) 3K2. Indeed, placing
one blue edge in each of H1, H2, and H4 does not produce a blue copy of F3.
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Proof. If there is a red copy of 4K2 in H1∪H2∪H3∪H4∪H5 as a disjoint union
of subgraphs, then there are only three possible cases that do not immediately
violate Fact 4 or Claim 16. In each of these cases, there is only one part that
does not have a blue edge so there must be three parts in a row, say H1, H2,
and H3 that each contain a blue edge. Then by considering H1 ∪H3 as a single
part, this structure violates Fact 2.

Finally we claim that the red and blue edges can be completely destroyed
from within all parts Hi by the removal of a total of at most 8 vertices.

Claim 18. There exists a set of at most 4 vertices V0 such that Hi \ (V0 ∩Hi)
contains no blue (or similarly red) edges for all i with 1 ≤ i ≤ 5.

Proof. If all blue edges within parts Hi are disjoint, then the claim follows by
Claim 17 (in fact with only 3 vertices) so suppose there is a pair of adjacent
blue edges, say in H1. Also if H1 contains a blue copy of 2K2, then the claim
follows from Claim 16 so by Claim 11, we may assume that the blue edges in H1

are contained in a triangle. Then by Fact 1, H2 and H5 contain no blue edges.
Similarly, if H3 (or H4) contains two adjacent blue edges, then by Fact 1, H4

(respectively H3) contains no blue edges. Otherwise H3 and H4 each contain at
most one blue edge. In either case, the removal of at most 4 vertices (two from
H1 and either two from H3 or one from each of H3 and H4) destroys all blue
edges within the parts.

By Claim 18, the removal of at most 8 vertices destroys all red and blue
edges within the parts Hi. This means that, to avoid a monochromatic copy of
F3, we have

|G| =
5

∑

i=1

|Hi| ≤ 5[g(k − 2)− 1] + 8.

If k is even, this means that

|G| ≤ 5[g(k − 2)− 1] + 8

= 5
[

14× 5
k−4

2 − 2
]

+ 8

= 14× 5
k−2

2 − 2

< 14× 5
k−2

2 − 1 = |G|,

a contradiction.
If k is odd and k ≥ 7, this means that

|G| ≤ 5[g(k − 2)− 1] + 8

= 5
[

33× 5
k−5

2 + a× 5
k−7

2 − a− 1
]

+ 8

< 33× 5
k−3

2 + a× 5
k−5

2 − a = |G|,

a contradiction.
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We may therefore assume that k = 5 and so n = 33 · 5 = 165, say with red
and blue being colors 4 and 5 respectively. Then by Claim 11, the subgraphs
induced by red or blue within each part {H1, H2, H3, H4, H5} are contained in
C5 or C4 or 2C3.

Without loss of generality, suppose that |H1| ≥ |H2| ≥ |H3| ≥ |H4| ≥ |H5|.
If |H1| ≥ |H2| ≥ |H3| ≥ 33, then it follows from Claim 15, that for each i with
i ∈ {1, 2, 3}, Hi contains 2K2 in either red or blue. Then there is a pair of parts
in {H1, H2, H3} that violates either Fact 2 or 4.

Next suppose that |H2| ≥ 33 but |H3| ≤ 32. Then |H1| ≥ 35 and say red is
the color of the edges between H1 andH2. Since the reduced graph is the unique
2-coloring of K5 with no monochromatic triangle, there is another part, say H3,
with all blue edges to H1 ∪ H2. By Claim 11, the blue subgraph of H1 ∪ H2

is contained in C4, C5, or 2K3. Similarly using Facts 2 or 4, for i ∈ {1, 2}, if
Hi contains a vertex with red degree 2, then H3−i contains no red edges. If H2

contains either no red edges and a subgraph of K3 in blue or no blue edges and
a subgraph of K3 in red, then we may apply Claim 15 within H2 to complete
the proof. This means that H2 contains two independent edges (a copy of 2K2)
that are either both red, or both blue, or one red and one blue. If both edges
are red, then H1 contains no red edges. If both edges are blue, then H1 contains
no blue edges. If H2 contains at least one red and at least one blue edge, then
the red and blue subgraphs of H1 are both subgraphs of K3. In any of these
cases, the removal of at most two vertices from H1 leaves behind a subgraph of
H1 of order at least 33 in which one of red or blue is absent and the other is a
subgraph of K3. It is on this subgraph that we may apply Claim 15 to complete
the proof in this case.

Finally, we may assume that |H2| ≤ 32 so since n = 165, we have |H1| ≥ 37.
Since we have shown that gr3(K3 : F3) = 33, it is safe to assume that for
2 ≤ i ≤ 5, the parts Hi all have order exactly 32 and contain no red and no
blue edges, so we assume, for the remainder of the proof, that |H1| = 37.

As above, if there is a subgraph of H1 of order at least 33 in which one of
red or blue is absent and the other is a subgraph of K3, then we may apply
Claim 15 to complete the proof, so suppose this is not the case. By Claim 11,
the red and blue subgraphs of H1 are each a subgraph of C4, C5, or 2K3, so
the only possible remaining possible cases for red and blue subgraphs of H1 are
precisely as follows:

• a red copy of C5 and a blue copy of C5,

• a red copy of C5 and a blue copy of 2K3 (or symmetrically a red copy of
2K3 and a blue copy of C5), or

• a red copy of 2K3 and a blue copy of 2K3 (possibly missing at most one
edge from exactly copy).

Since H1 contains no rainbow triangle, Theorem 1 gives a partition of V (H1),
say into partsX1, X2, . . . , Xa. Suppose green and purple (colors 2 and 3) are the
colors that appear between parts of this partition and choose such a partition
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so that a is minimized. Since R(F3, F3) = 13, we see that a ≤ 12. Let b be the
number of “large” parts Xi of order at least 3 in this partition and call all other
parts “small”.

If 2 ≤ a ≤ 3, then by the minimality of a, we may assume a = 2. Let X1

and X2 be the two parts of this partition and suppose all edges from X1 to X2

have color 3. If |X1| ≥ 25, then by deleting at most 12 vertices, we can obtain
a subgraph of X1 in which there are no edges of colors 3, 4, 5. This subgraph
is a 2-coloring of a complete graph of order at least 13, which must contain a
monochromatic copy of F3, a contradiction. If |X1| = 25 − i for some i with
1 ≤ i ≤ 6, then |X2| = 12+ i. In order to avoid creating a monochromatic copy
of F3, X2 contains at least i disjoint edges with colors in {3, 4, 5}. By Fact 2
and the assumptions on H1, each of these edges in X2 precludes one such edge
from appearing within X1. The result is that we can remove at most 12 − 2i
vertices from X1 to obtain a subgraph of X1 in which there are no edges with
any color in {3, 4, 5}. Such a subgraph is a 2-colored complete graph of order
at least 25− i− (12− 2i) = 13 + i, so this subgraph contains a monochromatic
copy of F3, completing the proof in the case a ≤ 3.

Therefore, suppose 4 ≤ a ≤ 12. In order to avoid a monochromatic triangle
within the reduced graph restricted to the large parts, we have b ≤ 5. Since we
know that H1 satisfies one of the cases listed above concerning the presence of
red and blue edges, it is clear that b ≥ 1. We consider cases based on the value
of b.

First a small claim that will be used within the cases.

Claim 19. |X1| ≤ 12.

Proof. If |X1| ≥ 13, then applying Claim 11, by deleting at most 4 vertices, there
is a subgraph of X1 in which no edges with colors 2 or 3 appear. Since |X1|−4 ≥
9, it follows from Claim 12 that this subgraph contains a monochromatic copy
of F3, a contradiction.

Case 1. b = 1.

Let A be the set of parts with edges with color 2 to X1 and B be the set
of parts with edges with color 3 to X1. By Claim 19, we have |X1| ≤ 12, so
|A| ≥ 13 or |B| ≥ 13. Without loss of generality, let |A| ≥ 13. By deleting at
most 4 vertices from A, there is a subgraph of A of order at least 9 with no
edges of color 2. Since each part within A has order at most 2 and all edges
between these parts have color 3, A clearly contains a copy of F3 in color 3, a
contradiction.

Case 2. b = 2.

Assume that the edges from X1 to X2 have color 2. By Claim 19, we know
that |X1| ≤ 12 and |X2| ≤ 12. Let Y be the set of parts with edges with color
2 to X1 and Z be the set of parts with edges with color 3 to X1. Let Y ′ be
the set of parts with edges with color 2 to X2 and Z ′ be the set of parts with
edges with color 3 to X2. If |Z| ≥ 11, then by deleting at most 4 vertices from

39



Z, we obtain a subgraph of Z in which there are no edges with color 3. Since Z

contains only small parts and all edges in between these parts have color 2, Z
contains a copy of F3 with color 2, a contradiction. This means that |Z| ≤ 10
and symmetrically, |Y |, |Y ′|, |Z ′| ≤ 10. Since |X1|+ |X2| ≤ 24, this also means
that |Y | ≥ 3, |Z| ≥ 3, |Y ′| ≥ 3 and |Z ′| ≥ 3.

Claim 20. If |Y | ≥ 3, |Z| ≥ 3, |Y ′| ≥ 3 and |Z ′| ≥ 3, then |X1| ≤ 10 and
|X2| ≤ 10.

Proof. Assume, to the contrary, that |X1| ≥ 11. The subgraph of X1 induced
by the edges with each color i for 2 ≤ i ≤ 5 is a subgraph of one of C5 or C4 or
2C3. Since X1 contains no rainbow triangle, there is a Gallai partition of the
vertices of X1 in which all edges between the parts have color 1. Recall that
the subgraphs of H1 of colors 4 and 5 are each subgraphs of C5 or 2K3 and by
Claim 11, the subgraphs of X1 of colors 2 and 3 are each subgraphs of either
C5, C4, or 2K3. To avoid a rainbow triangle, these must either share vertices
(for example, two complementary copies of K5) or be vertex disjoint with all
edges of color 1 in between. Therefore, each part of this partition has order at
most 5, meaning that there are at least 3 parts. Hence, there is a copy of F3 in
color 1, a contradiction.

We may therefore assume that |X1|, |X2| ≤ 10. Indeed, in the proof above,
if |X1| ∈ {9, 10}, then the subgraphs of X1 in color i with 2 ≤ i ≤ 5 are very
restricted to avoid having 3 parts in the Gallai partition (with all edges of color
1 in between the parts. This observation is used in the following proof.

Claim 21. If |X1| ≥ 9, then |X2| ≤ 6.

Proof. Assume, to the contrary, that |X2| ≥ 7. If |X1| = 10, then by the argu-
ments in the proof of Claim 20, the subgraph of X1 in each of the colors 2, 3, 4, 5
must be a copy of C5, forming two copies of K5, each consisting of complemen-
tary monochromatic copies of C5 in pairs of these colors. By Claim 11, since
there is a part in G with all edges of color 4 to X1 ∪X2 and a part in G with
all edges in color 5 to X1 ∪ X2, there can be no edges of color 4 or 5 within
X2. By Fact 2, there can be no edge with color 2 in X2. Even if there are
edges of color 3 within X2, by Claim 11, these must form a subgraph of C4,
C5, or 2K3. Then by Fact 5, there is a copy of F3 in color 1 within X2, for
a contradiction. Similarly, if |X1| = 9, then again using the arguments from
the proof of Claim 20, X1 must contain two (complementary) 5-cycles using
two colors from 2, 3, 4, 5, and a complete graph on 4 vertices colored with the
remaining colors from {2, 3, 4, 5}, and hence there are again no edges with a
color in {2, 4, 5} in X2 and the edges of color 3 are restricted to subgraphs of
C4, C5, and 2K3. By Fact 5, there is again a copy of F3 in color 1 as a subgraph
of X2, a contradiction.

From Claim 21, we have |X1| + |X2| ≤ 16 so this means that |Y | ≥ 11 or
|Z| ≥ 11, say |Y | ≥ 11. By deleting at most 4 vertices from Y , we obtain a
subgraph of Y with no edges of color 2. Since Y consists of small parts of the
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Gallai partition of H1 and all edges between the parts in this subgraph of Y
have color 3, this subgraph contains a copy of F3 in color 3, a contradiction.

Case 3. b = 3.

In order to avoid a monochromatic triangle in the reduced graph restricted to
the large parts, we assume that the edges fromX1 toX2∪X3 have color 2 and the
edges from X2 to X3 have color 3. In order to avoid a monochromatic triangle
in the reduced graph using two large parts, for each part Xi with 4 ≤ i ≤ a, the
edges from Xi to X1 have color 3. Let X =

⋃a
i=4 Xi. By Claim 21 (note that

Claims 20 and 21 can be applied to any pair of the parts X1, X2, X3 here), we
have |X1|+ |X2|+ |X3| ≤ 24. This means |X | ≥ 13. By Claim 11, we can delete
at most 4 vertices from X to obtain a subgraph of X with no edges of color 3.
Since X consists entirely of small parts of the partition and the edges between
these parts within the aforementioned subgraph are colored entirely with color
2, this subgraph of X contains a copy of F3 in color 2.

Case 4. b = 4.

In order to avoid a monochromatic triangle within the reduced graph re-
stricted to the 4 largest parts, up to symmetry, we may assume that all edges
from Xi to Xi+1 have color 2 for 1 ≤ i ≤ 3 and all remaining edges between
these large parts have color 3. By Claim 20, we have |Xi| ≤ 10 for 1 ≤ i ≤ 4.
In order to avoid creating a monochromatic triangle in the reduced graph using
two of the large parts, all small parts must have edges of color 2 to X1∪X4 and
edges of color 3 to X2 ∪X3. Thus, by the minimality of a, we may assume that
4 ≤ a ≤ 5 so there is at most one small part. If there exists some Xj such that
|Xj| ≥ 9, then |Xi| ≤ 6 for 1 ≤ i 6= j ≤ a. In this case,

|H1| =
a

∑

i=1

|Xi| ≤ 10 + 3 · 6 + 2 = 30 < 37,

a contradiction. On the other hand, if |Xi| ≤ 8 for all 1 ≤ i ≤ 4, then

|H1| =
a
∑

i=1

|Xi| ≤ 4 · 8 + 2 = 34 < 37,

again a contradiction.

Case 5. b = 5.

Then a = 5 with all large parts and in order to avoid a monochromatic
triangle in the reduced graph, the reduced graph must be the unique 2-colored
K5 consisting of a cycle sayX1X2X3X4X5X1 with color 2 and a complementary
cycle with color 3. From Claim 20, |Xi| ≤ 10 for all 1 ≤ i ≤ 5. If there exists
some part Xj with |Xj | ≥ 9, then |Xi| ≤ 6 for 1 ≤ i 6= j ≤ 5, and hence

|H1| =
a

∑

i=1

|Xi| ≤ 10 + 4 · 6 = 34 < 37,
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a contradiction. Thus, we may assume that |Xi| ≤ 8 for 1 ≤ i ≤ 5, say with
|X1| ≥ |X2| ≥ |X3| ≥ |X4| ≥ 7. For 1 ≤ i ≤ 4, by the arguments leading
up to Fact 5, in order to avoid a copy of F3 in color 1 within Xi, each part
Xi contains at least 3 disjoint edges of colors from {2, 3, 4, 5} for a total of at
least 12 such edges. Since there are at most 8 such edges (two for each of these
colors), this is a contradiction, completing the proof of this last case and the
proof of Lemma 5.
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