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RESULTS ON BAR-CORE PARTITIONS, CORE SHIFTED

YOUNG DIAGRAMS, AND DOUBLED DISTINCT CORES

HYUNSOO CHO, JISUN HUH, HAYAN NAM, AND JAEBUM SOHN

Abstract. Simultaneous bar-cores, core shifted Young diagrams (or CSYDs),
and doubled distinct cores have been studied since Morris and Yaseen introduced
the concept of bar-cores. In this paper, our goal is to give a formula for the

number of these core partitions on (s, t)-cores and (s, s + d, s + 2d)-cores for
the remaining cases that are not covered yet. In order to achieve this goal, we
observe a characterization of s-core partitions to obtain characterizations of
doubled distinct s-core partitions and s-CSYDs. By using them, we construct
NE lattice path interpretations of these core partitions on (s, t)-cores. Also,
we give free Motzkin path interpretations of these core partitions on (s, s +
d, s+ 2d)-cores.

1. Introduction

A partition λ = (λ1, λ2, . . . , λℓ) of n is a non-increasing positive integer sequence
whose sum of the parts λi is n. We denote that λi ∈ λ and visualize a partition
λ with the Young diagram D(λ). For a partition λ, λ′ is called the conjugate
of λ if D(λ′) is the reflection of D(λ) across the main diagonal, and λ is called
self-conjugate if λ = λ′. An (i, j)-box of D(λ) is the box at the ith row from the
top and the jth column from the left. The hook length of an (i, j)-box, denoted by
hi,j(λ), is the total number of boxes on the right and the below of the (i, j)-box
and itself, and the hook set H(λ) of λ is the set of hook lengths of λ. We say that
a partition λ is an s-core if ks /∈ H(λ) for all k ∈ N and is an (s1, s2, . . . , sp)-core
if it is an si-core for all i = 1, 2, . . . , p. Figure 1 illustrates the Young diagram of a
partition and a hook length.

D(λ) =
9

Figure 1. The Young diagram of the partition λ = (7, 6, 3, 2) and
a hook length h1,2(λ) = 9.

There have been active research on the number of simultaneous core partitions
and self-conjugate simultaneous core partitions since Anderson [2] counted the
number of (s, t)-core partitions for coprime s and t. For more information, see
[1,6,12] for example. In this paper, we investigate the three different types of core
partitions, which are called bar-core partitions, core shifted Young diagrams, and
doubled distinct core partitions. Researchers have been studied them independently
but they are inevitably related to each other.
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We first give the definitions of the three objects that we only deal with under
the condition that the partition is strict, which means that each part is all distinct.

For a strict partition λ = (λ1, λ2, . . . , λℓ), an element of the set

{λi + λi+1, λi + λi+2, . . . , λi + λℓ} ∪ ({λi, λi − 1, . . . , 1} \ {λi − λi+1, . . . , λi − λℓ})

is called a bar length in the ith row. A strict partition λ is called an s-core
(s-bar-core) if s is not a bar length in any row in λ. For example, the sets of
bar lengths in every row of λ = (7, 6, 3, 2) are {13, 10, 9, 7, 6, 3, 2}, {9, 8, 6, 5, 2, 1},
{5, 3, 2}, and {2, 1}. Thus, λ is an s-core partition for s = 4, 11, 12, or s ≥ 14.

The shifted Young diagram S(λ) of a strict partition λ is obtained from D(λ) by
shifting the ith row to the right by i − 1 boxes for each i. The shifted hook length
h∗i,j(λ) of an (i, j)-box in S(λ) is the number of boxes on its right, below and itself,
and the boxes on the (j+1)st row if exists. For example, the left diagram in Figure
2 shows the shifted Young diagram of the partition (7, 6, 3, 2) with the shifted hook
lengths. The shifted hook set H∗(λ) is the set of shifted hook lengths in S(λ).
A shifted Young diagram S(λ) is called an s-core shifted Young diagram, shortly
s-CSYD, if none of the shifted hook lengths of S(λ) are divisible by s. Sometimes
we say that “λ is an s-CSYD” instead of “S(λ) is an s-CSYD”.

Given a strict partition λ = (λ1, λ2, . . . , λℓ), the doubled distinct partition of λ,
denoted by λλ, is a partition whose Young diagram D(λλ) is defined by adding λi
boxes to the (i− 1)st column of S(λ). In other words, the Frobenius symbol of the
doubled distinct partition λλ is given by

(

λ1 λ2 · · · λℓ
λ1 − 1 λ2 − 1 · · · λℓ − 1

)

.

The doubled distinct partition λλ is called a doubled distinct s-core if none of the
hook lengths are divisible by s. Note that the hook set of D(λλ) that is located on
the right of the main diagonal is the same as H∗(λ). Indeed, the hook lengths on
the (ℓ + 1)st column of D(λλ) are the parts of λ and the deletion of this column
from D(λλ) gives a self-conjugate partition. See Figure 2 for example.

S(λ) =
13 10 9 7 6 3 2

9 8 6 5 2 1

5 3 2

2 1

D(λλ) =
14 13 10 9 7 6 3 2

13 12 9 8 6 5 2 1

10 9 6 5 3 2

9 8 5 4 2 1

6 5 2 1

3 2

2 1

Figure 2. The shifted Young diagram S(λ) with the shifted hook
lengths and the doubled distinct partition λλ with the hook lengths
for the strict partition λ = (7, 6, 3, 2).

We extend the definition of simultaneous core partitions to bar-core partitions
and CSYDs. We use the following notations for the variety sets of core partitions,

SC(s1,s2,...,sp) : the set of self-conjugate (s1, s2, . . . , sp)-cores,

BC(s1,s2,...,sp) : the set of (s1, s2, . . . , sp)-cores,
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CS(s1,s2,...,sp) : the set of (s1, s2, . . . , sp)-CSYDs,

DD(s1,s2,...,sp) : the set of doubled distinct (s1, s2, . . . , sp)-cores.

There are a couple of results on counting the number of simultaneous core
partitions of the three objects, bar-cores, CSYDs, and doubled distinct cores.
Bessenrodt and Olsson [3] adopted the Yin-Yang diagram to count the number
of (s, t)-core partitions for odd numbers s and t, Wang and Yang [11] counted
the same object when s and t are in different parity, and Ding [5] counted the
number of (s, s+1)-CSYDs (as far as the authors know these are the only counting
results on the three objects known until now). Our main goal is to fill out all
the possible results we could get on (s, t)-cores and (s, s + d, s + 2d)-cores for the
three objects by constructing some bijections. Additionally, we hire a well-known
object so called self-conjugate core partitions to enumerate the number of such
core partitions. For instance, bar-core partitions and self-conjugate core partitions
are related to each other; Yang [14, Theorem 1.1] constructed a bijection between
the set of self-conjugate s-cores and that of s-cores for odd s; Gramain, Nath,
and Sellers [8, Theorem 4.12] gave a bijection between self-conjugate (s, t)-core
partitions and (s, t)-core partitions, where both s and t are coprime and odd.

The following theorems are the main results in this paper.

Theorem 1.1. For coprime positive integers s and t, the number of doubled distinct
(s, t)-core partitions is

|DD(s,t)| =

(

⌊(s− 1)/2⌋+ ⌊(t− 1)/2⌋

⌊(s− 1)/2⌋

)

,

and the number of (s, t)-CSYDs is

|CS(s,t)| =

(

⌊(s− 1)/2⌋+ ⌊t/2⌋ − 1

⌊(s− 1)/2⌋

)

+

(

⌊s/2⌋+ ⌊(t− 1)/2⌋ − 1

⌊(t− 1)/2⌋

)

.

Theorem 1.2. Let s and d be coprime positive integers.

(a) For odd s and even d,

|BC(s,s+d,s+2d)| = |CS(s,s+d,s+2d)| = |DD(s,s+d,s+2d)|

=

(s−1)/2
∑

i=0

(

(s+ d− 3)/2

⌊i/2⌋

)(

(s+ d− 1)/2− ⌊i/2⌋

(s− 1)/2− i

)

.

(b) For odd numbers s and d,

|BC(s,s+d,s+2d)| = |CS(s,s+d,s+2d)|

=

(s−1)/2
∑

i=0

(

(d− 1)/2 + i

⌊i/2⌋

)((

(s+ d− 2)/2

(d− 1)/2 + i

)

+

(

(s+ d− 4)/2

(d− 1)/2 + i

))

.

(c) For even s and odd d,

|BC(s,s+d,s+2d)| =

s/2
∑

i=0

(

(s+ d− 1)/2

⌊i/2⌋, ⌊(d+ i)/2⌋, s/2− i

)

,

|CS(s,s+d,s+2d)| =

(s−2)/2
∑

i=0

(

(s+ d− 3)/2

⌊i/2⌋

)(

(s+ d− 3)/2− ⌊i/2⌋

(s− 2)/2− i

)
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+

(s−2)/2
∑

i=0

(

(s+ d− 5)/2

⌊i/2⌋

)(

(s+ d− 1)/2− ⌊i/2⌋

(s− 2)/2− i

)

.

(d) For odd d,

|DD(s,s+d,s+2d)| =

⌊(s−1)/2⌋
∑

i=0

(

⌊(s+ d− 2)/2⌋

⌊i/2⌋, ⌊(d+ i)/2⌋, ⌊(s− 1)/2⌋ − i

)

.

This paper is organized as follows: In Section 2, we obtain useful propositions
involving the three objects which are used frequently throughout this paper.
Restricted those objects by the size of partitions, we get the generating functions
of s-cores and s-CSYDs for even s. Section 3 includes connections between
the sets of NE lattice paths and the three objects with the condition being
(s, t)-cores. We consider the Yin-Yang diagrams to find the number of doubled
distinct (s, t)-core partitions and the number of (s, t)-CSYDs by constructing each
bijection to a certain set of NE lattice paths. In Section 4, we describe the relations
between free Motzkin paths and the three objects under the condition of being
(s, s+ d, s+2d)-cores by using the (s+ d, d)-abacus diagram, the (s+ d, d)-abacus
function, and their properties. From the bijections we set up, we count the number
of each (s, s+ d, s+ 2d)-core partitions as a result of the number of corresponding
free Motzkin paths.

2. Properties and generating functions

We begin this section by showing a property which follows straightly from the
definition of the bar lengths and the shifted hook lengths.

Lemma 2.1. Let λ = (λ1, λ2, . . . , λℓ) be a strict partition. The set of bar lengths
in the ith row of λ is equal to the set of the shifted hook lengths in the ith row of
S(λ).

Proof. Let µ := (λ1− ℓ+1, λ2− ℓ+2, . . . , λℓ). By the definition of the shifted hook
lengths, we have

h∗i,j(λ) =

{

λi + λj+1 if i ≤ j ≤ ℓ− 1,

hi,j−ℓ+1(µ) if ℓ ≤ j ≤ λi.

We show that the statement is true for the first row. Assume, on the contrary,
that h∗1,j(λ) = h1,j−ℓ+1(µ) = λ1 − λk = h1,1(µ)− hk,1(µ) for some k. Then, by the
definition of hook lengths,

µ1 + µ′
j−ℓ+1 − (j − ℓ+ 1) = (µ1 + µ′

1 − 1)− (µk + µ′
1 − k),

which implies that µk + µ′
j−ℓ+1 − (k + j − ℓ) = hk,j−ℓ+1(µ) = 0. Since the hook

lengths are always nonzero, we get a contradiction. Similarly, this argument works
for the ith row in general. �

2.1. Characterizations. In the theory of core partitions, a partition λ is an s-core
if s /∈ H(λ) or, equivalently, if ms /∈ H(λ) for all m. In [9, p. 31], Morris and Yaseen
gave a corollary that λ is an s-core if and only if none of the bar lengths in the rows
of λ are divisible by s. However, Olsson [10, p. 27] pointed out that this corollary
is not true when s is even. In Figure 2, one can see that λ = (7, 6, 3, 2) is a 4-core
partition, but h∗2,3(λ) = 8. Later, Wang and Yang [11] gave a characterization of
s-core partitions.
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Proposition 2.2. [11] For a strict partition λ = (λ1, λ2, . . . , λℓ), λ is an s-core if
and only if all the following hold:

(a) s /∈ λ.
(b) If λi ∈ λ with λi > s, then λi − s ∈ λ.
(c) If λi, λj ∈ λ, then λi + λj 6≡ 0 (mod s) except when s is even and λi, λj ≡

s/2 (mod s).

We extend this characterization to doubled distinct s-core partitions and
s-CSYDs.

Proposition 2.3. For a strict partition λ = (λ1, λ2, . . . , λℓ), λλ is a doubled
distinct s-core partition if and only if all the following hold:

(a) λ is an s-core.
(b) s/2 /∈ λ for even s.

Proof. It is known by Lemma 2.1 and the definition of λλ that

H(λλ) = H∗(λ) ∪ {hi,i(λλ) = 2λi | i = 1, 2, . . . , ℓ}.

Therefore, for an s-core partition λ and even s, s/2 ∈ λ if and only if s ∈ H(λλ),
meaning that λλ is not a doubled distinct s-core. �

Proposition 2.4. For a strict partition λ = (λ1, λ2, . . . , λℓ), S(λ) is an s-CSYD if
and only if all the following hold:

(a) λ is an s-core.
(b) 3s/2 /∈ λ for even s.

Proof. Assume first that S(λ) is an s-CSYD. By Lemma 2.1, λ is an s-core. If
3s/2 ∈ λ, then s/2 ∈ λ by Proposition 2.2 (b). This implies that there is a bar
length of 2s in λ, which means that S(λ) is not an s-CSYD.

Conversely, suppose that two conditions (a) and (b) hold. If λ is an s-core but
S(λ) is not an s-CSYD, then there is a box (i, j) in S(λ) such that h∗i,j(λ) = sk
for some k ≥ 2. It follows from the definition of the bar lengths that there exist
λi, λj ∈ λ satisfying λi +λj = sk. Also, by Proposition 2.2 (c), we deduce that s is
even and λi, λj ≡ s/2 (mod s). Hence, when λi > λj , we can write λi = (2m+1)s/2
for some m ≥ 1, and therefore 3s/2 ∈ λ by Proposition 2.2 (b). It leads to a
contradiction. �

Remark 2.5. From the characterizations we observe that, for coprime odd integers
s1, s2, . . . , sp, we have

BC(s1,s2,...,sp) = CS(s1,s2,...,sp) = DD(s1,s2,...,sp).

2.2. Generating functions. In this subsection, we consider the generating
functions of the following numbers,

scs(n) : the number of self-conjugate s-core partitions of n,

bcs(n) : the number of s-core partitions of n,

css(n) : the number of s-CSYDs of n,

dds(n) : the number of doubled distinct s-core partitions of n.

Garvan, Kim, and Stanton [7] obtained the generating functions of the numbers
scs(n) and dds(n) by using the concept of the core and the quotient of a partition.
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As usual, we use the well-known q-product notation

(a; q)n =

n−1
∏

i=0

(1 − aqi) and (a; q)∞ = lim
n→∞

(a; q)n for |q| < 1.

Proposition 2.6. [7, Equations (7.1a), (7.1b), (8.1a), and (8.1b)] For a positive
integer s, we have

∞
∑

n=0

scs(n)q
n =











(−q; q2)∞(q2s; q2s)
(s−1)/2
∞

(−qs; q2s)∞
if s is odd,

(−q; q2)∞(q2s; q2s)s/2∞ if s is even,

∞
∑

n=0

dds(n)q
n =



















(−q2; q2)∞(q2s; q2s)
(s−1)/2
∞

(−q2s; q2s)∞
if s is odd,

(−q2; q2)∞(q2s; q2s)
(s−2)/2
∞

(−qs; qs)∞
if s is even.

The generating function of the numbers bcs(n) for odd s was found by Olsson [10].
Note that for odd s, it is clear that bcs(n) = css(n) as a partition λ is an s-core if
and only if it is an s-CSYD by Propositions 2.2 and 2.4.

Proposition 2.7. [10, Proposition (9.9)] For an odd integer s, we have
∞
∑

n=0

bcs(n)q
n =

∞
∑

n=0

css(n)q
n =

(−q; q)∞(qs; qs)
(s−1)/2
∞

(−qs; qs)∞
.

From Propositions 2.6 and 2.7, we also see that dds(2n) = bcs(n) when s is odd.
We now give generating functions of the numbers bcs(n) and css(n) for even s by
using Propositions 2.2, 2.3, and 2.4.

Proposition 2.8. For an even integer s, we have
∞
∑

n=0

bcs(n)q
n =

(−q; q)∞(qs; qs)
(s−2)/2
∞

(−qs/2; qs/2)∞

∑

n≥0

qsn
2/2.

Proof. Let s be a fixed even integer. From Propositions 2.2 and 2.3 we first see
that the number of s-core partitions λ of n for which s/2 /∈ λ is equal to dds(2n).
We also notice that for a positive integer i, the number of s-core partitions λ of
n for which (2i − 1)s/2 ∈ λ and (2i + 1)s/2 /∈ λ is equal to dds(2n − i2s) since
(2i− 1)s/2 ∈ λ implies (2i− 3)s/2, (2i− 5)s/2, . . . , s/2 ∈ λ by Proposition 2.2 (b).
Therefore, we have

bcs(n) = dds(2n) + dds(2n− s) + dds(2n− 4s) + · · · =
∑

i≥0

dds(2n− i2s),

which completes the proof from Proposition 2.6. �

Proposition 2.9. For an even integer s, we have
∞
∑

n=0

css(n)q
n =

(−q; q)∞(qs; qs)
(s−2)/2
∞

(−qs; qs/2)∞
.

Proof. Similar to the proof of Proposition 2.8, css(n) = dds(2n) + dds(2n− s) for
even s by Propositions 2.3 and 2.4. �



BAR-CORES, CSYDS, AND DOUBLED DISTINCT CORES 7

3. Enumeration on (s, t)-cores

A north-east (NE) lattice path from (0, 0) to (s, t) is a lattice path which consists
of steps N = (0, 1) and E = (1, 0). Let NE(s, t) denote the set of all NE lattice
paths from (0, 0) to (s, t). In this section, we give NE lattice path interpretations
for (s, t)-core related partitions and count such paths.

Combining the results on self-conjugate (s, t)-core partitions and (s, t)-core
partitions which are independently proved by Ford, Mai, and Sze [6, Theorem 1],
Bessenrodt and Olsson [3, Theorem 3.2], and Wang and Yang [11, Theorem 1.3],
we get the following theorem.

Theorem 3.1. [3,6,11] For coprime positive integers s and t,

|BC(s,t)| = |SC(s,t)| =

(

⌊s/2⌋+ ⌊t/2⌋

⌊s/2⌋

)

.

Also, Ding [5] examined the Hasse diagram of the poset structure of an (s, s +
1)-CSYD to count them.

Theorem 3.2. [5, Theorem 3.5] For any positive integer s ≥ 2,

|CS(s,s+1)| =

(

s− 1

⌊(s− 1)/2⌋

)

+

(

s− 2

⌊(s− 1)/2⌋

)

.

From now on, we count doubled distinct (s, t)-cores and (s, t)-CSYDs. When s
and t are both odd, the numbers of such partitions are already known by Remark
2.5. We focus on the case when s is even and t is odd.

For (s, t)-cores with coprime odd integers s and t such that 1 < s < t, Bessenrodt
and Olsson [3] defined the Yin-Yang diagram as an array A(s, t) = {Ai,j}, where

Ai,j := −
s+ 1

2
t+ js+ it for 1 ≤ i ≤

s− 1

2
and 1 ≤ j ≤

t− 1

2
.

The location of Ai,j is at the intersection of the ith row from the top and the jth
column from the left. For fixed s and t, they showed that the set of parts consisting
of all possible (s, t)-core partitions is equal to the set of absolute values of Ai,j in
A(s, t). They also gave a bijection φ between BC(s,t) and the set NE((t− 1)/2, (s−
1)/2) in the Yin-Yang diagram from the lower-left corner to the upper-right corner.
For an NE lattice path P in the Yin-Yang diagram A(s, t), let M(P ) denote the
set consisting of positive entries above P and the absolute values of negative entries
below P . According to the bijection φ, if λ is an (s, t)-core partition and P = φ(λ)
is the corresponding path in A(s, t), then M(P ) is equal to the set of parts in λ.

For (s, t)-cores with coprime even s and odd t, Wang and Yang [11] defined the
Yin-Yang diagram to be an array B(s, t), where

Bi,j := −
s+ 2

2
t+ js+ it for 1 ≤ i ≤

s

2
and 1 ≤ j ≤

t− 1

2
,

and gave a bijection ψ between the sets BC(s,t) and NE((t − 1)/2, s/2) in B(s, t)
from the lower-left corner to the upper-right corner. Again, the map ψ sends an
(s, t)-core λ to the path Q = ψ(λ) in B(s, t), where M(Q) is equal to the set of
parts in λ. See Figure 3 for example.

Now we give path interpretations for doubled distinct (s, t)-cores and
(s, t)-CSYDs for even s and odd t by using this Yin-Yang diagram B(s, t) together
with Propositions 2.3 and 2.4.
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-43 -34 -25 -16 -7 2
-30 -21 -12 -3 6 15
-17 -8 1 10 19 28
-4 5 14 23 32 41

A(9, 13)

-43 -34 -25 -16 -7 2
-30 -21 -12 -3 6 15
-17 -8 1 10 19 28
-4 5 14 23 32 41

P = NEENNEEEEN

-44 -36 -28 -20 -12 -4
-31 -23 -15 -7 1 9
-18 -10 -2 6 14 22
-5 3 11 19 27 35

B(8, 13)

-44 -36 -28 -20 -12 -4
-31 -23 -15 -7 1 9
-18 -10 -2 6 14 22
-5 3 11 19 27 35

Q = NEENNEEEEN

Figure 3. The Yin-Yang diagrams A(9, 13) and B(8, 13), and the
paths P = φ((12, 4, 3, 2)) and Q = ψ((15, 7, 5, 2)).

Theorem 3.3. For even s and odd t that are coprime, there is a bijection between
the sets DD(s,t) and NE((t− 1)/2, (s− 2)/2). In addition,

|DD(s,t)| =

(

(s− 2)/2 + (t− 1)/2

(s− 2)/2

)

.

Proof. Recall the bijection ψ between the sets BC(s,t) and NE((t − 1)/2, s/2) in
the Yin-Yang diagram B(s, t) from the lower-left corner to the upper-right corner.
To find the desired bijection, we restrict the domain of ψ under the set DD(s,t).
By Proposition 2.3 (b) and the fact that B1,(t−1)/2 = −s/2, we see that Q = ψ(λ)
corresponds to a partition λ such that λλ is a doubled distinct (s, t)-core if and only
if Q is a path in the set NE((t − 1)/2, s/2) in the Yin-Yang diagram B(s, t) that
ends with a north step N , equivalently NE((t−1)/2, (s−2)/2). Hence, the number
of doubled distinct (s, t)-core partitions is given by |NE((t− 1)/2, (s− 2)/2)|. �

Theorem 3.4. For even s and odd t that are coprime, there is a bijection between
the sets CS(s,t) and

NE((t− 1)/2, (s− 2)/2) ∪ NE((t− 3)/2, (s− 2)/2).

In addition,

|CS(s,t)| =

(

(s− 2)/2 + (t− 1)/2

(s− 2)/2

)

+

(

(s− 2)/2 + (t− 3)/2

(s− 2)/2

)

.

Proof. It follows from Propositions 2.2 and 2.4 that λ is an (s, t)-CSYD if and only
if λ is an (s, t)-core partitions and 3s/2 /∈ λ. We first note that λλ is a doubled
distinct (s, t)-core partition if and only if λ is an (s, t)-CSYD and s/2 /∈ λ. Indeed,
there is a bijection between the set of (s, t)-CSYDs λ with s/2 /∈ λ and the set
NE((t − 1)/2, (s − 2)/2) by Theorem 3.3. Therefore, it is sufficient to show that
there is a bijection between the set of (s, t)-CSYDs λ with s/2 ∈ λ and the set
NE((t− 3)/2, (s− 2)/2).

Note that for an (s, t)-CSYD λ such that s/2 ∈ λ, Q = ψ(λ) is a path in the
set NE((t− 1)/2, s/2) in the Yin-Yang diagram B(s, t) that must end with an east
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step preceded by a north step since B1,(t−1)/2 = −s/2 and B1,(t−3)/2 = −3s/2.
Then, we get a bijection between the set of (s, t)-CSYDs λ with s/2 ∈ λ and the
set NE((t− 3)/2, (s− 2)/2). Moreover, the number of (s, t)-CSYDs is obtained by
counting the corresponding lattice paths. �

Proof of Theorem 1.1. It is followed by Remark 2.5, Theorems 3.1, 3.3, and 3.4 �

4. Results on (s, s+ d, s+ 2d)-cores

A path P is called a free Motzkin path of type (s, t) if it is a path from (0, 0) to
(s, t) which consists of steps U = (1, 1), F = (1, 0), and D = (1,−1). Let F(s, t)
be the set of free Motzkin paths of type (s, t). For given sets A,B of sequences
of steps, we denote F(s, t ; A,B) the set of free Motzkin paths P of type (s, t),
where P does not start with the sequences in the set A and does not end with the
sequences in the set B.

Recently, Cho and Huh [4, Theorem 8] and Yan, Yan, and Zhou [13, Theorems
1.1 and 1.2] found a free Motzkin path interpretation of self-conjugate (s, s+ d, s+
2d)-core partitions and enumerated them independently.

Theorem 4.1. [4, 13] For coprime positive integers s and d, there is a bijection
between the sets SC(s,s+d,s+2d) and

(a) F ((s+ d− 1)/2,−d/2) if s is odd and d is even;
(b) F ((s+ d)/2,−(d+ 1)/2 ; ∅, {U}) if s is odd and d is odd;
(c) F ((s+ d+ 1)/2,−(d+ 1)/2 ; ∅, {U}) if s is even and d is odd.

In addition, the number of self-conjugate (s, s+ d, s+ 2d)-core partitions is

|SC(s,s+d,s+2d)| =



































⌊s/4⌋
∑

i=0

(

(s+ d− 1)/2

i, d/2 + i, (s− 1)/2− 2i

)

if d is even,

⌊s/2⌋
∑

i=0

(

⌊(s+ d− 1)/2⌋

⌊i/2⌋, ⌊(d+ i)/2⌋, ⌊s/2⌋ − i

)

if d is odd.

Similar to the construction in [4], we give an abacus construction and a path
interpretation for each set of (s, s+ d, s+ 2d)-core partitions, doubled distinct
(s, s+ d, s+ 2d)-core partitions, and (s, s+ d, s+ 2d)-CSYDs.

4.1. (s, s+ d, s+ 2d)-core partitions. For coprime positive integers s and d, let
the (s+ d, d)-abacus diagram be a diagram with infinitely many rows labeled by
i ∈ Z and ⌊(s+ d+ 2)/2⌋ columns labeled by j ∈ {0, 1, . . . , ⌊(s+ d)/2⌋} from
bottom to top and left to right whose position (i, j) is labeled by (s+ d)i + dj.

The following proposition guarantees that, for each positive integer h, there is
at least one position on the (s+ d, d)-abacus diagram labeled by either h or −h.

Proposition 4.2. Let s and d be coprime positive integers and h be a positive
integer. For a given (s+ d, d)-abacus diagram, we get the following properties.

(a) If h 6≡ 0, (s+ d)/2 (mod s+ d), then there exists a unique position labeled
by h or −h.

(b) If h ≡ 0 (mod s + d), then there are two positions labeled by h and −h,
respectively, in the first column.
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(c) If s+ d is even and h ≡ (s+ d)/2 (mod s+ d), then there are two positions
labeled by h and −h, respectively, in the last column.

Proof. In the (s+ d, d)-abacus diagram, the absolute values of the labels in column
j are congruent to dj or −dj modulo s + d. We claim that dj and −dj for j ∈
{0, 1, . . . , ⌊(s+ d)/2⌋} are all incongruent modulo s+ d except j = 0 or (s+ d)/2.
For 0 ≤ j1 < j2 ≤ ⌊(s+ d)/2⌋, it is clear that dj1 and dj2 are incongruent modulo
s+ d. Suppose dj1 ≡ −dj2 (mod s+ d) for some 0 ≤ j1, j2 ≤ ⌊(s+ d)/2⌋, it follows
that d(j1 + j2) is a multiple of s+ d. Since s and d are coprime, d(j1 + j2) is not a
multiple of s+ d except for j1 = j2 = 0 or j1 = j2 = (s+ d)/2, where both s and d
are odd. This completes the proof of the claim. The claim implies that, for every
positive integer h, there exists j ∈ {0, 1, . . . , ⌊(s+ d)/2⌋} such that h is congruent
to dj or −dj modulo s+ d. In addition, if h 6≡ 0, (s+ d)/2 (mod s+ d), then there
exists a unique position labeled by h or −h in the (s+ d, d)-abacus diagram, which
shows the statement (a). The statements (b) and (c) follows immediately. �

For a strict partition λ = (λ1, λ2, . . . ), the (s+ d, d)-abacus of λ is obtained
from the (s+ d, d)-abacus diagram by placing a bead on position labeled by λi if
exists. Otherwise, we place a bead on position labeled by −λi. A position without
bead is called a spacer. See Figure 4 for example. We use this (s+ d, d)-abacus

when we deal with (s, s+ d, s+ 2d)-core partitions. For the (s+ d, d)-abacus of an
(s, s+ d, s+ 2d)-core partition λ, let r(j) denote the row number such that position
(r(j), j) is labeled by a positive integer while position (r(j) − 1, j) is labeled by a
non-positive integer. The arrangement of beads on the diagram can be determined
by the following rules.

Lemma 4.3. Let λ be a strict partition. For coprime positive integers s and d, if
λ is an (s, s+ d, s+ 2d)-core, then the (s+ d, d)-abacus of λ satisfies the following.

(a) If a bead is placed on position (i, j) such that i > r(j), then a bead is also
placed on each of positions (i− 1, j), (i− 2, j), . . . , (r(j), j).

(b) If a bead is placed on position (i, j) such that i < r(j) − 1, then a bead is
also placed on each of positions (i+ 1, j), (i+ 2, j), . . . , (r(j) − 1, j).

(c) For each j, at most one bead is placed on positions (r(j), j) or (r(j)− 1, j).

Proof. (a) The fact that a bead is placed on position (i, j) with i > r(j) implies
that (s+ d)i + dj is a part in λ. Since λ is an (s+ d)-core, it follows from
Proposition 2.2 (b) that (s+ d)(i− 1) + dj is a part in λ. In a similar way,
we also have (s + d)(i − 2) + dj, . . . , (s + d)r(j) + dj ∈ λ so that a bead is
placed on each of positions (i− 1, j), (i− 2, j), . . . , (r(j), j).

(b) If a bead is placed on position (i, j) with i < r(j)−1, then −(s+d)i−dj is a
part in λ. Again, it follows from Proposition 2.2 (b) that −(s+d)(i+1)−dj
is a part in λ and so are −(s+d)(i+2)−dj, . . . ,−(s+d)(r(j)−1)−dj ∈ λ.
Thus, we place a bead on positions (i+ 1, j), (i+ 2, j), . . . , (r(j)− 1, j).

(c) Suppose that beads are placed on both positions (r(j), j) and (r(j) − 1, j)
labeled by (s+ d)r(j) + dj and (s+ d)(r(j)− 1)+ dj, respectively. One can
notice that (s + d)(r(j) − 1) + dj is a non-positive integer and the sum of
the absolute values of (s + d)r(j) + dj and (s + d)(r(j) − 1) + dj is s + d,
which contradicts to Proposition 2.2 (c). In particular, if one of them is
labeled by (s+ d)/2, then the other must be labeled by −(s+ d)/2, which

is also a contradiction to the definition of the (s+ d, d)-abacus.
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�

For an (s, s+ d, s+ 2d)-core partition λ, in order to explain the properties of the
(s+ d, d)-abacus of λ more simply, we define the (s+ d, d)-abacus function of λ

f : {0, 1, . . . , ⌊(s+ d)/2⌋} → Z

as follows: For each j ∈ {0, 1, . . . , ⌊(s + d)/2⌋}, if there is a bead labeled by a
positive integer in column j, let f(j) be the largest row number in column j, where
a bead is placed on. Otherwise, let f(j) be the largest row number in column j,
where position (f(j), j) is a spacer with a non-positive labeled number.

The following propositions give some basic properties of the (s+ d, d)-abacus
function of an (s, s+ d, s+ 2d)-core partition.

Proposition 4.4. Let s and d be coprime positive integers. If λ is an
(s, s+ d, s+ 2d)-core partition, then the (s+ d, d)-abacus function f of λ satisfies
the following.

(a) f(0) = 0 and f(1) = 0 or −1.
(b) f(j − 1) is equal to one of the three values f(j)− 1, f(j), and f(j) + 1 for

j = 1, 2, . . . , ⌊(s+ d)/2⌋.

Proof. We consider the (s+ d, d)-abacus of λ.

(a) Since positions (0, 0) and (1, 0) are labeled by 0 and s + d, respectively,
there is no bead in column 0. Hence, f(0) = 0. Similarly, since positions
(−1, 1), (0, 1), and (1, 1) are labeled by −s, d, and s+2d respectively, there
is at most one bead on position (0, 1) in column 1. Hence, f(1) = 0 or −1.

(b) For a fixed j, let f(j) = i. Suppose that a bead is placed on position
(i, j) which is labeled by a positive integer. If position (i − 1, j − 1)
is labeled by a positive integer, then a bead is placed on this position
by Proposition 2.2 (b). Otherwise, position (i − 1, j − 1) is a spacer by
Proposition 2.2 (c). In any case, it follows from the definition of f that
f(j−1) ≥ f(j)−1. Additionally, since position (i+1, j) is a spacer, position
(i+2, j− 1) is a spacer by Proposition 2.2 (b). Hence, f(j− 1) ≤ f(j)+ 1.

Next, suppose that position (i, j) is a spacer which is labeled by a
negative integer. Since position (i − 1, j − 1) is labeled by a negative
integer, it is a spacer, so f(j − 1) ≥ f(j) − 1. We now assume that
f(j − 1) ≥ i + 2. If position (i + 2, j − 1) is labeled by a positive integer,
then a bead is placed on this position by Lemma 4.3 (a). In this case,
position (i+ 1, j) either has with a bead labeled by a positive integer or is
a spacer labeled by a negative integer by Proposition 2.2 (b) and (c), which
contradicts to f(j) = i. Otherwise, if position (i + 2, j − 1) is labeled by
a negative integer, then it is a spacer. Therefore, position (i + 1, j) is a
spacer by Proposition 2.2 (b), which also contradicts to f(j) = i. Hence,
f(j − 1) ≤ f(j) + 1.

�

Proposition 4.5. Let s and d be coprime integers. For an (s, s+ d, s+ 2d)-core
partition λ, the (s+ d, d)-abacus function f of λ satisfies the following.

(a) If s is odd and d is even, then f( s+d−1
2 ) ∈ {− d+2

2 ,− d
2}.

(b) If s and d are both odd, then f( s+d
2 ) ∈ {− d+1

2 ,− d−1
2 }. In addition,

f( s+d−2
2 ) = − d+1

2 when f( s+d
2 ) = − d−1

2 .



12 HYUNSOO CHO, JISUN HUH, HAYAN NAM, AND JAEBUM SOHN

(c) If s is even and d is odd, then f( s+d−1
2 ) ∈ {− d+3

2 ,− d+1
2 ,− d−1

2 }.

Proof. Let position (a, b) denote position (−⌊d/2⌋, ⌊(s+ d)/2⌋).

(a) Positions (a − 1, b), (a, b), and (a + 1, b) are labeled by −s − 3d/2,−d/2,
and s+ d/2, respectively. First we show that s+ d/2 and s+ 3d/2 are not
parts of λ. If s+ d/2 ∈ λ, then d/2 ∈ λ by Proposition 2.2 (b). It gives a
contradiction by Proposition 2.2 (c) since (s+ d/2)+ d/2 = s+ d. One can
similarly show that s + 3d/2 /∈ λ. Hence, the only possibility of having a
bead in column b is putting it on position (a, b). Thus, f(b) = a− 1 or a.

(b) Positions (a−1, b), (a, b), and (a+1, b) are labeled by −(s+d)/2, (s+d)/2,
and (3s+3d)/2, respectively. We first claim that there is no bead on position
(a+1, b). If (3s+3d)/2 ∈ λ, then (s+d)/2, (s+3d)/2 ∈ λ by Proposition 2.2
(b), which contradicts to Proposition 2.2 (c) since (s+ d)/2+ (s+3d)/2 =
s + 2d. This completes a proof of the claim. Therefore, f(b) = a when
(s+ d)/2 ∈ λ and f(b) = a− 1 otherwise.

Furthermore, we would like to show that f(b − 1) = a − 1 assuming
that f(b) = a. Consider positions (a − 1, b − 1) and (a, b − 1) which are
labeled by −(s+ 3d)/2 and (s − d)/2, respectively. Position (a − 1, b− 1)
is a spacer by Proposition 2.2 (c) since (s + 3d)/2 + (s + d)/2 = s + 2d.
When s > d, position (a, b− 1) is also a spacer by Proposition 2.2 (c) since
(s − d)/2 + (s + d)/2 = s. Otherwise, (s − d)/2 is negative and a bead is
placed on position (a, b − 1) since (d − s)/2 = (s + d)/2 − s. In any case,
we conclude that f(b− 1) = a− 1.

(c) Positions (a − 2, b), (a − 1, b), (a, b), and (a + 1, b) are labeled by −(3s +
4d)/2,−(s+2d)/2, s/2 and (3s+2d)/2, respectively. If (3s+2d)/2 ∈ λ, then
s/2, (s+2d)/2 ∈ λ by Proposition 2.2 (b), which contradicts to Proposition
2.2 (c). Thus, (3s+2d)/2 /∈ λ and f(b) < a+1. Similarly, (3s+4d)/2 /∈ λ
which implies f(b) ≥ a− 2.

�

For coprime positive integers s and d, it is obvious that the map from the set
of (s, s+ d, s+ 2d)-core partitions to the set of functions satisfying the conditions
in Propositions 4.4 and 4.5 is well-defined and injective. The following proposition
shows that this map is surjective.

Proposition 4.6. For coprime positive integers s and d, let f be a function that
satisfies Propositions 4.4 and 4.5. If λ is a strict partition such that f is the
(s+ d, d)-abacus function of λ, then λ is an (s, s+ d, s+ 2d)-core partition.

Proof. We show that λ satisfies the conditions in Proposition 2.2 (a), (b), and (c).

(a) It follows from Proposition 4.4 (a) that s, s+ d, s+ 2d /∈ λ.
(b) Assume that h is a part in λ. If h > s+ d, then h− (s+ d) ∈ λ by Lemma

4.3. Consider the (s+ d, d)-abacus diagram and suppose that h > s, but
h−s /∈ λ to the contrary. Let position (i, j) be labeled by a such that |a| = h
which has a bead on. If a > 0, then we get j < ⌊(s+ d)/2⌋ or h = (s+d)/2
with s < d for odd numbers s and d by Proposition 4.5. First, assume that
j < ⌊(s+ d)/2⌋. Then, position (i − 1, j + 1) is a spacer labeled by h − s
which implies f(j) ≥ i and f(j + 1) < i − 1, so we get a contradiction to
Proposition 4.4 (b). Now, for odd numbers s and d, let h = (s+ d)/2 with
s < d. Then, we have a bead on position (−(d− 1)/2, (s+d− 2)/2) labeled
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by (s− d)/2 by Proposition 4.5 (b), which gives a contradiction. If a < 0,
then position (i+1, j − 1) labeled by −h+ s is a spacer. This implies that
f(j − 1) ≥ i+1 and f(j) < i, which contradicts to Proposition 4.4 (b). By
the similar argument, one can show that h > s+2d implies h−(s+2d) ∈ λ.

(c) By Lemma 4.3 (c) and the construction of f , it is sufficient to show that
there are no h1, h2 ∈ λ such that h1 6= h2 and h1+h2 ∈ {s, s+2d}. Assume
that there exist h1, h2 ∈ λ satisfying h1 + h2 = s. If h1, h2 6= (s + d)/2,
then there are positions (i, j) and (i − 1, j + 1) that are labeled by h1 and
−h2, respectively. In this case, we get f(j) ≥ i and f(j + 1) < i− 1, which
contradicts to Proposition 4.4 (b). If h2 = (s + d)/2 (so both s and d are
odd), then positions (i, (s+d−2)/2) and (i, (s+d)/2) are labeled by h1 and
h2, respectively, and we get a contradiction to Proposition 4.5 (b). Similar
argument works for the case when h1 + h2 6= s+ 2d.

�

2

1

0
−1

−2

−3

−4

i / j 0 1 2 3 4 5 6

22 26 30 34 38 42
11 15 19 23 27 31
0 4 8 12 16 20

−11 −7 −3 1 5 9
−22−18−14−10 −6 −2
−33−29−25−21−17−13
−44−40−36−32−28−24

...

...

I. (11, 4)-abacus of (8, 4, 2, 1)
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1

0
−1

−2

−3

−4

i / j 0 1 2 3 4 5 6

20 23 26 29 32 35
10 13 16 19 22 25
0 3 6 9 12 15

−10 −7 −4 −1 2 5
−20−17−14−11 −8 −5
−30−27−24−21−18−15
−40−37−34−31−28−25

...

...

II. (10, 3)-abacus of (8, 3, 1)
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0
−1

−2

−3

−4

i / j 0 1 2 3 4 5 6

20 23 26 29 32 35
10 13 16 19 22 25
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−10 −7 −4 −1 2 5
−20−17−14−11 −8 −5
−30−27−24−21−18−15
−40−37−34−31−28−25

...

...

III. (10, 3)-abacus of (5, 3, 1)

2

1

0
−1

−2

−3

−4

i / j 0 1 2 3 4 5 6

22 25 28 31 34 37
11 14 17 20 23 26
0 3 6 9 12 15

−11 −8 −5 −2 1 4
−22−19−16−13−10 −7
−33−30−27−24−21−18
−44−41−38−35−32−29

...

...

IV. (11, 3)-abacus of (7, 6, 3)

Figure 4. The (s+ d, d)-abaci of several partitions and the
corresponding free Motzkin paths

For given coprime integers s and d, let λ be an (s, s+ d, s+ 2d)-core partition.
For the (s+ d, d)-abacus function f of λ, we set f(⌊(s+ d+ 2)/2⌋) := −⌊(d+ 1)/2⌋
and define φ(λ) to be the path P = P1P2 · · ·P⌊(s+d+2)/2⌋, where the jth step is given
by Pj = (1, f(j)−f(j−1)) for each j. By Proposition 4.4 (b), Pj is one of the three
steps U = (1, 1), F = (1, 0), and D = (1,−1), so P is a free Motzkin path. From
this construction together with Proposition 4.5, we obtain a path interpretation of
an (s, s+ d, s+ 2d)-core partition as described in the following theorem.
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Theorem 4.7. For coprime positive integers s and d, there is a bijection between
the sets BC(s,s+d,s+2d) and

(a) F( s+d+1
2 ,− d

2 ; {U}, {D}) if s is odd and d is even;

(b) F( s+d+2
2 ,− d+1

2 ; {U}, {FD,DD,U}) if both s and d are odd;

(c) F( s+d+1
2 ,− d+1

2 ; {U}, ∅) if s is even and d is odd.

Proof. All the bijections come from Propositions 4.4, 4.5, and 4.6. By drawing line
segments that connects the positions (f(j), j) and (f(j + 1), j + 1) to obtain P =
P1P2 · · ·P⌊(s+d)/2⌋ in the (s+ d, d)-abacus, we have the one-to-one correspondences
between the sets BC(s,s+d,s+2d) and

(a) F

(

s+ d− 1

2
,−

d

2
; {U}, ∅

)

∪ F

(

s+ d− 1

2
,−

d+ 2

2
; {U}, ∅

)

;

(b) F

(

s+ d

2
,−

d+ 1

2
; {U}, ∅

)

∪ F

(

s+ d

2
,−

d− 1

2
; {U}, {F,D}

)

;

(c) F

(

s+ d− 1

2
,−

d− 1

2
; {U}, ∅

)

∪ F

(

s+ d− 1

2
,−

d+ 1

2
; {U}, ∅

)

∪ F

(

s+ d− 1

2
,−

d+ 3

2
; {U}, ∅

)

.

The addition of the last step gives free Motzkin paths of type (⌊(s + d +
2)/2⌋,−⌊(d+ 1)/2⌋) as we desired.

�

Example 4.8. For a (7, 11, 15)-core partition λ = (8, 4, 2, 1), Diagram I in Figure
4 illustrates the (11, 4)-abacus of λ. The (11, 4)-abacus function f of λ is given by

f(0) = 0, f(1) = 0, f(2) = 0, f(3) = −1, f(4) = −2, f(5) = −3, f(6) = −2,

and its corresponding path is P = φ(λ) = FFDDDU .

4.2. Doubled distinct (s, s+d, s+2d)-core partitions. Recall that for an s-core
partition λ with even s, λλ is a doubled distinct s-core if and only if s/2 /∈ λ.

Proposition 4.9. For a strict partition λ such that λλ is a doubled distinct (s, s+
d, s+ 2d)-core, the (s+ d, d)-abacus function f of λ satisfies the following.

(a) If s is odd and d is even, then f( s+d−1
2 ) ∈ {− d+2

2 ,− d
2}.

(b) If s and d are both odd, then f( s+d
2 ) = − d+1

2 .

(c) If s is even and d is odd, then f( s+d−1
2 ) = − d+1

2 .

Proof. (a) It follows from Proposition 4.5 (a) since we do not need to consider
the additional property of a doubled distinct core partition.

(b) Positions (−(d+1)/2, (s+ d)/2) and (−(d− 1)/2, (s+ d)/2) are labeled by
−(s+ d)/2 and (s+ d)/2, respectively. Since (s+ d)/2 /∈ λ by Proposition
2.3 (b), there is no bead in column (s+d)/2, and f((s+d)/2) = −(d+1)/2.

(c) Positions (−(d+1)/2, (s+d−1)/2) and (−(d−1)/2, (s+d−1)/2) are labeled
by −(s+2d)/2 and s/2, respectively. We know that s/2, (s+2d)/2 /∈ λ by
Proposition 2.3 (b), so f((s+ d− 1)/2) = −(d+ 1)/2.

�

Similar to the bar-core case considered in Section 4.1, there is a one-to-one
correspondence between the set of doubled distinct (s, s+ d, s+ 2d)-cores and the
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set of functions satisfying the conditions in Propositions 4.4 and 4.9. The following
proposition completes the existence of the bijection.

Proposition 4.10. For coprime positive integers s and d, let f be a function
that satisfies Propositions 4.4 and 4.9. If λ is a strict partition such that f is the
(s+ d, d)-abacus function of λ, then λλ is a doubled distinct (s, s+ d, s+ 2d)-core.

Proof. It is sufficient to show that λ satisfies Proposition 2.3 (b). We consider the
case according to the parity of s and d. For odd s and even d, all of s, s+ d, s+ 2d
are odd, so we no longer need to consider the additional property of λλ. For odds s
and d, there is no bead in column (s+ d)/2 by Proposition 4.9 (b). Since the only
column that has labels whose absolute values are (s+ d)/2 is the column (s+ d)/2,
it follows that (s+ d)/2 /∈ λ. If s is even and d is odd, then s and s+ 2d are even.
In a similar way, s/2, (s+ 2d)/2 /∈ λ by Proposition 4.9 (c). �

Now we give a path interpretation for the doubled distinct (s, s+d, s+2d)-cores.

Theorem 4.11. For coprime positive integers s and d, there is a bijection between
the sets DD(s,s+d,s+2d) and

(a) F( s+d+1
2 ,− d

2 ; {U}, {D}) if s is odd and d is even;

(b) F( s+d
2 ,− d+1

2 ; {U}, ∅) if both s and d are odd;

(c) F( s+d−1
2 ,− d+1

2 ; {U}, ∅) if s is even and d is odd.

Proof. Part (a) comes from Theorem 4.7 (a). Parts (b) and (c) are followed by
Propositions 4.4 and 4.9. Note that the length of the corresponding paths in parts
(b) and (c) are different than the original setting. Since parts (b) and (c) in
Proposition 4.9 give only one option for the value of f at the second last step,
we no longer need to extend the corresponding path to the end point.

�

4.3. (s, s + d, s + 2d)-CSYDs. We recall that for even s, λ is an s-CSYD if and
only if λ is an s-core and 3s/2 /∈ λ.

Proposition 4.12. For a strict partition λ such that S(λ) is an (s, s + d, s +
2d)-CSYD, the (s+ d, d)-abacus function f of λ satisfies the following.

(a) If s is odd and d is even, then f( s+d−1
2 ) ∈ {− d+2

2 ,− d
2}.

(b) If s and d are both odd, then f( s+d
2 ) ∈ {− d+1

2 ,− d−1
2 }. In addition,

f( s+d−2
2 ) = − d+1

2 when f( s+d
2 ) = − d−1

2 .

(c) If s is even and d is odd, then f( s+d−1
2 ), f( s+d−3

2 ) ∈ {− d+3
2 ,− d+1

2 ,− d−1
2 }.

Proof. (a) It also follows from Proposition 4.5 (a) since we do not need to
consider the additional property of an S(λ).

(b) From the proof of Proposition 4.5 (b), we have (3s + 3d)/2 /∈ λ for an

(s, s+ d, s+ 2d)-core partition λ. Therefore, λ is an (s, s+ d, s+ 2d)-core
partition if and only if S(λ) is an (s, s+ d, s+ 2d)-CSYD for odd numbers
s and d.

(c) Let (a, b) = (−(d+3)/2, (s+ d− 3)/2). By the proof of Proposition 4.5 (c)
we have f(b+ 1) = a, a+ 1, or a+ 2. Note that positions (a, b), (a+ 1, b),
(a+2, b), and (a+3, b) are labeled by −(3s+6d)/2, −(s+4d)/2, (s−2d)/2,
and 3s/2 respectively. Since 3s/2, (3s+ 6d)/2 /∈ λ by Proposition 2.4 (b),
there is at most one bead labeled by (s − 2d)/2 or −(s+ 4d)/2 in column
b. Hence, f(b) = a, a+ 1, or a+ 2.
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�

Again, we construct a bijection between the set of (s, s+ d, s+ 2d)-CSYDs and
the set of functions satisfying the conditions in Propositions 4.4 and 4.12.

Proposition 4.13. For coprime positive integers s and d, let f be a function that
satisfies Propositions 4.4 and 4.12. If λ is a strict partition such that f is the
(s+ d, d)-abacus function of λ, then S(λ) is an (s, s+ d, s+ 2d)-CSYD.

Proof. Similar to Proposition 4.10, it is sufficient to show that λ satisfies Proposition
2.4 (b). Also, we do not need to check the additional condition when s is odd and
d is even. If s and d are both odd, by Proposition 4.12 (b), there is at most
one bead labeled by (s + d)/2 in column (s + d)/2. Since no columns but the
column (s + d)/2 has labels whose absolute values are (3s+ 3d)/2, it follows that
(3s+ 3d)/2 /∈ λ. If s is even and d is odd, then only the column (s+ d− 3)/2 has
positions labeled by −(3s+ 6d)/2 and 3s/2. Since there is at most one bead being
labeled by (−s+ 4d)/2 or (s − 2d)/2 in column (s + d− 3)/2 by Proposition 4.12
(c), we have 3s/2, (3s+ 6d)/2 /∈ λ. It completes the proof. �

Similarly, we give a path interpretation for (s, s+ d, s+ 2d)-CSYDs.

Theorem 4.14. For coprime positive integers s and d, there is a bijection between
the sets CS(s,s+d,s+2d) and

(a) F( s+d+1
2 ,− d

2 ; {U}, {D}) if s is odd and d is even;

(b) F( s+d+2
2 ,− d+1

2 ; {U}, {FD,DD,U}) if both s and d are odd;

(c) F( s+d+1
2 ,− d+1

2 ; {U}, {UU,DD}) if s is even and d is odd.

Proof. Parts (a) and (b) follow from Theorem 4.7. Now we need to construct a
bijection for the set CS(s,s+d,s+2d) when s is even and d is odd. Until the second
last step of the corresponding free Motzkin paths, the paths should be in one of the
following sets:

F ((s+ d− 1)/2,−(d− 1)/2 ; {U}, {D}) ,

F ((s+ d− 1)/2,−(d+ 1)/2 ; {U}, ∅) ,

F ((s+ d− 1)/2,−(d+ 3)/2 ; {U}, {U}) .

By adding the end point of the free Motzkin path, we get the statements.
�

4.4. Enumerating (s, s + d, s + 2d)-core partitions. In this subsection we give
a proof of Theorem 1.2. We begin with a useful lemma.

Lemma 4.15. Let a and b be positive integers.

(a) The total number of free Motzkin paths of type (a+ b,−b) for which starts
with either a down or a flat step is given by

|F(a+ b,−b ; {U}, ∅)| =
a

∑

i=0

(

a+ b− 1

⌊i/2⌋, b+ ⌊(i− 1)/2⌋, a− i

)

.

(b) The total number of free Motzkin paths of type (a+ b,−b) for which starts
with either a down or a flat step and ends with either a up or a flat step is

|F(a+ b,−b ; {U}, {D})| =
a−1
∑

i=0

(

a+ b− 2

⌊i/2⌋

)(

a+ b− 1− ⌊i/2⌋

a− i− 1

)

.
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(c) The total number of free Motzkin paths of type (a+ b,−b) for which starts
with either a down or a flat step and ends with either a down or a flat step
is

|F(a+ b,−b ; {U}, {U})| =
a

∑

i=0

(

a+ b− 2

⌊i/2⌋

)(

a+ b− 1− ⌊i/2⌋

a− i

)

.

Proof. (a) The number of free Motzkin paths of type (a + b,−b) having k up
steps (so that it has b+k down steps and a− 2k flat steps) for which starts

with a down (resp. flat) step is
(

a+b−1
k,b+k−1,a−2k

)

(resp.
(

a+b−1
k,b+k,a−(2k+1)

)

).

Hence, the total number of free Motzkin paths of type (a+ b,−b) for which
starts with either a down or a flat step is

⌊a/2⌋
∑

k=0

(

a+ b− 1

k, b+ k − 1, a− 2k

)

+

⌊(a−1)/2⌋
∑

k=0

(

a+ b− 1

k, b+ k, a− (2k + 1)

)

,

which can be written as in the statement.
(b) Note that |F(a + b,−b ; {U}, {D})| is equal to the sum of the two values,

which are given by (a),

|F(a+ b− 1,−b ; {U}, ∅)| =
a−1
∑

i=0

(

a+ b− 2

⌊i/2⌋, b+ ⌊(i− 1)/2⌋, a− i− 1

)

,

|F(a+ b− 1,−b− 1 ; {U}, ∅)| =
a−2
∑

i=0

(

a+ b− 2

⌊i/2⌋, b+ ⌊(i+ 1)/2⌋, a− i− 2

)

.

Hence, |F(a+ b,−b ; {U}, {D})| is equal to

a−1
∑

i=0

(

a+ b − 2

⌊i/2⌋

)((

a+ b− 2− ⌊i/2⌋

a− i− 1

)

+

(

a+ b− 2− ⌊i/2⌋

a− i− 2

))

,

which can be written as in the statement.
(c) Similar to (b), the formula follows.

�

For coprime positive integers s and d, let sc, bc, cs, and dd denote the cardinalities
of the sets SC(s,s+d,s+2d), BC(s,s+d,s+2d), CS(s,s+d,s+2d), and DD(s,s+d,s+2d),
respectively.

Proof of Theorem 1.2. (a) Recall that for odd s and even d, the three sets
BC(s,s+d,s+2d), DD(s,s+d,s+2d), and CS(s,s+d,s+2d) are actually the same by
Remark 2.5. By Theorem 4.7 (a), the set BC(s,s+d,s+2d) is bijective with
F((s+ d+1)/2,−d/2 ; {U}, {D}). By setting a = (s+1)/2 and b = d/2 in
Lemma 4.15 (b), we obtain a desired formula.

(b) For odd numbers s and d, we have bc = cs by Theorems 4.7 (b) and 4.14
(b). By Lemma 4.15 (a), we get

∣

∣

∣

∣

F

(

s+ d

2
,−

d+ 1

2
; {U}, ∅

)∣

∣

∣

∣

=

(s−1)/2
∑

i=0

(

(s+ d− 2)/2

⌊i/2⌋, ⌊(d+ i)/2⌋, (s− 1)/2− i

)

,

∣

∣

∣

∣

F

(

s+ d

2
,−

d− 1

2
; {U}, {F,D}

)∣

∣

∣

∣

=

∣

∣

∣

∣

F

(

s+ d− 2

2
,−

d+ 1

2
; {U}, ∅

)∣

∣

∣

∣
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=

(s−3)/2
∑

i=0

(

(s+ d− 4)/2

⌊i/2⌋, ⌊(d+ i)/2⌋, (s− 3)/2− i

)

.

As in the proof of Theorem 4.7, bc is equal to the sum of these two terms,
which can be written as follows.

bc = cs =

(s−1)/2
∑

i=0

(

(d− 1)/2 + i

⌊i/2⌋

)((

(s+ d− 2)/2

(d− 1)/2 + i

)

+

(

(s+ d− 4)/2

(d− 1)/2 + i

))

.

(c) By Theorem 4.7 (c), the set BC(s,s+d,s+2d) is bijective with the set F((s+
d+ 1)/2,−(d+ 1)/2 ; {U}, ∅) for even s and odd d. By Lemma 4.15 (a),

bc =

s/2
∑

i=0

(

(s+ d− 1)/2

⌊i/2⌋, (d+ 1)/2 + ⌊(i− 1)/2⌋, s/2− i

)

.

Now we consider the set CS(s,s+d,s+2d). As in the proof of Theorem 4.14,
cs = |F1|+ |F2|+ |F3|, where

F1 := F

(

s+ d− 1

2
,−

d− 1

2
; {U}, {D}

)

,

F2 := F

(

s+ d− 1

2
,−

d+ 1

2
; {U}, ∅

)

,

F3 := F

(

s+ d− 1

2
,−

d+ 3

2
; {U}, {U}

)

.

From Lemma 4.15, we obtain that

|F2| =

(s−2)/2
∑

i=0

(

(s+ d− 3)/2

⌊i/2⌋

)(

(s+ d− 3)/2− ⌊i/2⌋

(s− 2)/2− i

)

,

|F1|+ |F3| =

(s−2)/2
∑

i=0

(

(s+ d− 5)/2

⌊i/2⌋

)(

(s+ d− 1)/2− ⌊i/2⌋

(s− 2)/2− i

)

,

which completes the proof.
(d) Theorem 4.11 (b) and (c), and Lemma 4.15 give an expression of dd

depending on the parity of s. By manipulating binomial terms, one can
combine two expressions into one.

�

Remark 4.16. From the path constructions, we compare the sizes among them.

(a) If s is odd and d is even, then sc < bc = cs = dd.
(b) If both s and d are odd, then sc = dd < bc = cs.
(c) If s is even and d is odd, then dd < cs < sc = bc.

Acknowledgments

Hyunsoo Cho was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (No.
2021R1C1C2007589) and the Ministry of Education (No. 2019R1A6A1A11051177).
JiSun Huh was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. 2020R1C1C1A01008524).



BAR-CORES, CSYDS, AND DOUBLED DISTINCT CORES 19

Jaebum Sohn was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-2020R1F1A1A01066216).

References

[1] T. Amdeberhan and E. S. Leven. Multi-cores, posets, and lattice paths. Adv. in Appl. Math.,
71:1–13, 2015.

[2] J. Anderson. Partitions which are simultaneously t1- and t2-core. Discrete Math.,
248(1-3):237–243, 2002.

[3] C. Bessenrodt and J. B. Olsson. Spin block inclusions. J. Algebra, 306(1):3–16, 2006.
[4] H. Cho and J. Huh. Self-conjugate (s, s + d, . . . , s + pd)-core partitions and free rational

Motzkin paths. arXiv preprint arXiv:2004.03208, 2020.
[5] J. Ding. T-core shifted Young diagrams. Discrete Math., 343(7):111874, 12, 2020.
[6] B. Ford, H. Mai, and L. Sze. Self-conjugate simultaneous p- and q-core partitions and blocks

of An. J. Number Theory, 129(4):858–865, 2009.
[7] F. Garvan, D. Kim, and D. Stanton. Cranks and t-cores. Invent. Math., 101(1):1–17, 1990.
[8] J.-B. Gramain, R. Nath, and J. A. Sellers. Simultaneous core partitions with nontrivial

common divisor. Ramanujan J., in press.
[9] A. O. Morris and A. K. Yaseen. Some combinatorial results involving shifted Young diagrams.

Math. Proc. Cambridge Philos. Soc., 99(1):23–31, 1986.
[10] J. B. Olsson. Combinatorics and representations of finite groups, volume 20 of Vorlesungen

aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics
at the University of Essen]. Universität Essen, Fachbereich Mathematik, Essen, 1993.

[11] J. L. P. Wang and J. Y. X. Yang. On the average size of an (s, t)-core partition. Taiwanese
J. Math., 23(5):1025–1040, 2019.

[12] V. Y. Wang. Simultaneous core partitions: parameterizations and sums. Electron. J. Combin.,
23(1):Paper 1.4, 34, 2016.

[13] S. H. F. Yan, D. Yan, and H. Zhou. Self-conjugate (s, s + d, s+ 2d)-core partitions and free
Motzkin paths. Discrete Math., 344(4):112304, 2021.

[14] J. Y. X. Yang. Bijections between bar-core and self-conjugate core partitions. Ramanujan J.,
50(2):305–322, 2019.

Hyunsoo Cho, Institute of Mathematical Sciences, Ewha Womans University,

Seoul, Republic of Korea

Email address: hyunsoo@ewha.ac.kr

JiSun Huh, Department of Mathematics, Ajou University, Suwon, Republic of

Korea

Email address: hyunyjia@ajou.ac.kr

Hayan Nam, Department of Mathematics, Duksung Women’s University, Seoul,

Republic of Korea

Email address: hnam@duksung.ac.kr

Jaebum Sohn, Department of Mathematics, Yonsei University, Seoul, Republic of

Korea

Email address: jsohn@yonsei.ac.kr


	1. Introduction
	2. Properties and generating functions
	2.1. Characterizations
	2.2. Generating functions

	3. Enumeration on (s,t)-cores
	4. Results on (s,s+d,s+2d)-cores
	4.1. (0-.5s -2.50,s+d,s+2d)-core partitions
	4.2. Doubled distinct (s,s+d,s+2d)-core partitions
	4.3. (s,s+d,s+2d)-CSYDs
	4.4. Enumerating (s,s+d,s+2d)-core partitions

	Acknowledgments
	References

