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ON DELANNOY PATHS WITHOUT PEAKS AND VALLEYS

SEUNGHYUN SEO AND HEESUNG SHIN†

Abstract. A lattice path is called Delannoy if each of its steps belongs to {N,E,D},
where N = (0, 1), E = (1, 0), and D = (1, 1) steps. Peak, valley, and deep valley are
denoted by NE, EN , and EENN on the lattice path, respectively.

In this paper, we find a bijection between Pn,m(NE,EN) and a specific subset of
Pn,m(D,EENN), where Pn,m(NE,EN) is the set of Delannoy paths from the origin to
(n,m) without peaks and valleys, and Pn,m(D,EENN) is the set of Delannoy lattice
paths from the origin to (n,m) without diagonal steps and deep valleys. We also enu-
merate the number of Delannoy paths without peaks and valleys on the restricted region
{

(x, y) ∈ Z
2 : y ≥ kx

}

for a positive integer k.

1. Introduction

For two lattice points A and B, a lattice path from A to B is a sequence of lattice points

(v1, v2, . . . , vk)

of Z2 with v1 = A and vk = B. For each i = 1, . . . , k − 1, a consecutive difference si =
vi+1−vi of (v1, v2, . . . , vk) is called a step of the lattice path. Conventionally, a lattice path
can be represented as a word s1s2 . . . sk−1 with starting point v1.

A (0, 1) step is called a north step, denoted by N ; a (1, 0) step is called an east step,
denoted by E; a (1, 1) step is called a diagonal step, denoted by D. A lattice path is called
Delannoy if each of its steps belongs to {N,E,D} .

Let n and m be nonnegative integers. Let Pn,m be the set of Delannoy paths from the
origin to (n,m). It is well-known [Com74, p. 81] that

#Pn,m =
n

∑

d=0

(

n+m− d

n− d,m− d, d

)

=
n

∑

j=0

(

n

j

)(

m

j

)

2j.

If a pair NE (resp. EN) appears consecutively on the lattice path, it is called a peak
(resp. valley). If a quadruple EENN appears consecutively on the lattice path, it is called
a deep valley.

The collection of Delannoy paths that avoid all specific patterns ω1, . . . , ωk is denoted as

Pn,m(ω1, . . . , ωk) = {P ∈ Pn,m : There are no patterns ω1, . . . , ωk in P} .
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Let Pn,m(NE,EN) be the set of Delannoy paths without peaks and valleys in Pn,m. To
calculate the number of reduced alignments between two DNA sequences in Bioinformatics,
Andrade et al. [AANT14] found that the cardinality of Pn,m(NE,EN) is

∑

i≥0

(−1)i
[(

n+m− 3i

n− 2i,m− 2i, i

)

−
(

(n− 1) + (m− 1)− 3i

(n− 1)− 2i, (m− 1)− 2i, i

)]

, (1)

which is given by entry A047080 in the OEIS [Slo18].
In this paper, given a lattice path P = (v1, v2, . . . , vk), with v0 and vk+1 satisfying

v1 − v0 = E and vk+1 − vk = N,

P+ = (v0, v1, . . . , vk+1) is called an augmented path of P , and P− = (v2, . . . , vk−1) is called
a diminished path of P . Given a set S of lattice paths, S+ and S− are defined by

S+ =
{

P+ : P ∈ S
}

and S− =
{

P− : P ∈ S
}

.

Let Pn,m
+(D,EENN)

−
be the set of Delannoy paths from the origin to (n,m) whose

augmented path does not include diagonal steps or deep valleys.
We construct two bijections δ from Pn,m(NE,EN) to Pn,m

+(D,EENN)
−

and π from

Pn,m
+(D,EENN)

−
to Pn,m(NE,EN).

Pn,m Pn,m

Pn,m(NE,EN) Pn,m
+(D,EENN)

−

∪

δ

∪

π

Let k be a positive integer. Let P(k)
n,kn be the set of Delannoy paths P ∈ Pn,kn on the

half-plane y ≥ kx. Song [Son05] introduced a k-Schröder path P of size n if P ∈ P(k)
n,kn for

nonnegative integers n, where the cardinality of P(k)
n,kn equals

#P(k)
n,kn =

n
∑

d=0

1

kn− d+ 1

(

kn + n− d

kn− d, n− d, d

)

=
1

n

n
∑

j=1

(

kn

j − 1

)(

n

j

)

2j.

It is known [Slo18, A086581] that the number of Delannoy paths without diagonal steps
and deep valleys from (0, 0) to (n, n) on the half-plane y ≥ x is as follows:

#P(1)
n,n(D,EENN) =

∑

m≥0

1

m+ 1

(

2m

m

)(

n+m

3m

)

.
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In this paper, we prove that P(k)
n,kn(NE,EN) and P(k)

n,kn(D,EENN) are equinumerous
via two bijections δ and π.

Pn,kn(NE,EN) Pn,kn
+(D,EENN)

−

P(k)
n,kn(NE,EN) P(k)

n,kn(D,EENN)

δ

π

∪

δ

∪

π

For k = 1 or 2, we find the numbers of Delannoy paths without peaks and valleys from
(0, 0) to (n, kn) on the half-plane y ≥ kx as follows:

#P(1)
n,n(NE,EN) =

∑

m≥0

1

m+ 1

(

2m

m

)(

n +m

3m

)

,

#P(2)
n,2n(NE,EN) =

∑

m≥0

(−1)n−m

m+ 1

(

3m+ 1

m

)(

m+ 1

n−m

)

.

The remainder of this paper is organized as follows. In Section 2, we review previous
studies and analyze the number of Delannoy paths without peaks and valleys. In Section 3,
we construct two bijections δ and π between Pn,m(NE,EN) and Pn,m

+(D,EENN)
−
. In

Section 4, we address Delannoy paths without peaks and valleys on the half-plane y ≥ kx.

In Section 5, we enumerate the cardinalities of P(1)
n,n(NE,EN) and P(2)

n,2n(NE,EN). We
also present Conjecture 5, which is about Catalan paths avoiding symmetric peaks [Eli21],
and Conjecture 7, which is about inversion sequences avoiding the pattern 102 [MS15].

2. Delannoy Paths

Let n and m be nonnegative integers. Let h(n,m) be the cardinality of Pn,m(NE,EN).
Andrade et al. [AANT14] mentioned that h(n,m) satisfies the recurrence

h(n,m) = h(n− 1, m) + h(n,m− 1)− h(n− 2, m− 2) (2)

for n ≥ 2 and m ≥ 2. With initial conditions h(n, 0) = h(0, m) = 1, they deduced the
generating function of h(n,m) and found Formula (1) for h(n,m).

Because their process of finding (1) was algebraic, we want to find a combinatorial
interpretation of h(n,m). It is natural to consider the set Pn,m(D,EENN) of Delannoy
paths P in Pn,m without diagonal steps and deep valleys as a combinatorial object satisfying
the recurrence (2), letting b(n,m) be the cardinality of Pn,m(D,EENN). By considering
the last pattern of the paths, b(n,m) also satisfies

b(n,m) =

{

b(n− 1, m) + b(n,m− 1)− b(n− 2, m− 2) if (n,m) 6= (0, 0),

1 if (n,m) = (0, 0).
(3)
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Conventionally, b(n,m) = 0 for n < 0 or m < 0. Using the principle of inclusion and
exclusion, we obtain

b(n,m) =
∑

i≥0

(−1)i
(

n +m− 3i

n− 2i,m− 2i, i

)

, (4)

where i keeps track the number of deep valleys, which is not in the OEIS [Slo18].
Comparing (1) with (4), we observe that

h(n,m) = b(n,m)− b(n− 1, m− 1). (5)

Now, we introduce another combinatorial object whose cardinality is the right-hand side
of (5). Recall that Pn,m

+(D,EENN)
−

is the set of Delannoy paths P in Pn,m, where the
augmented lattice path P+ does not have a diagonal step D or a deep valley EENN . Let
a(n,m) be the cardinality of Pn,m

+(D,EENN)
−
. We show a combinatorial proof of

a(n,m) = b(n,m)− b(n− 1, m− 1). (6)

Consider a mapping

τ : Pn,m(D,EENN) \ Pn,m
+(D,EENN)

− → Pn−1,m−1(D,EENN)

with two rules:

αEEN 7→ Eα,

ENNβ 7→ Nβ.

According to these rules, for a given ENNγEEN in Pn,m(D,EENN)\Pn,m
+(D,EENN)

−
,

we have two candidates EENNγ and NγEEN as τ(ENNγEEN). Because the first can-
didate EENNγ includes a deep valley, it does not belong to Pn−1,m−1(D,EENN). As a
result, ENNγEEN should correspond to NγEEN in Pn−1,m−1(D,EENN).

In addition, the inverse mapping of τ is well-defined, and τ is bijective. Therefore, we
immediately obtain the equation

b(n,m)− a(n,m) = b(n− 1, m− 1),

which is equivalent to (6).
Remark. The generating function FB(x, y) of b(n,m) is induced from (3) as follows:

FB(x, y) =
∑

n,m≥0

b(n,m)xnym =
1

1− x− y + x2y2
. (7)

When the generating function of a(n,m) is defined by

FA(x, y) =
∑

n,m≥0

a(n,m)xnym,

Equation (6) yields

FB(x, y)− FA(x, y) = xyFB(x, y).
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π

δ

Figure 1. Example under mappings π and δ

Thus, we have the generating function of a(n,m)

FA(x, y) =
1− xy

1− x− y + x2y2
,

which is also the generating function of h(n,m).

3. Two Mappings

A North-East lattice path is a lattice path in Z
2 with steps in {N,E}. Let Pn,m(D) be

the set of North-East lattice paths from the origin to (n,m). Let Pn,m(NE) be the set of
Delannoy paths without peaks in Pn,m.

Given P ∈ Pn,m(D), a mapping π changes each peak of P to a diagonal step. Evidently,
π is well-defined and π(P ) ∈ Pn,m(NE). Considering a reverse of π, given Q ∈ Pn,m(NE),
a mapping δ changes each diagonal step of Q to a peak. Evidently, δ is well-defined and
δ(Q) ∈ Pn,m(D).

For example, as shown in Figure 1, we have

π(ENNEENNNENEEN) = ENDENNDDEN,

δ(ENDENNDDEN) = ENNEENNNENEEN.

Theorem 1. Mappings π and δ are bijections between Pn,m(NE) and Pn,m(D).

Pn,m Pn,m

Pn,m(D) Pn,m(NE)

∪

π

∪

δ

Proof. δ(π(P )) = P holds for P ∈ Pn,m(D) and π(δ(Q)) = Q for Q ∈ Pn,m(NE). �
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From the previous section, the two sets Pn,m
+(D,EENN)

−
and Pn,m(NE,EN) are

known to be equinumerous, that is,

a(n,m) = h(n,m). (8)

Here, we provide a bijective proof of (8) under π and δ.

Theorem 2. Mappings π and δ between Pn,m
+(D,EENN)

−
and Pn,m(NE,EN) are bi-

jections.

Pn,m(D) Pn,m(NE)

Pn,m
+(D,EENN)

− Pn,m(NE,EN)

π

δ

∪

π

∪

δ

Proof. It is sufficient to show that

P ∈ Pn,m
+(D,EENN)

−
=⇒ π(P ) ∈ Pn,m(NE,EN)

Q ∈ Pn,m(NE,EN) =⇒ δ(Q) ∈ Pn,m
+(D,EENN)

−
.

(a) For a given P ∈ Pn,m
+(D,EENN)

−
, we have P ∈ Pn,m(D) and π(P ) ∈ Pn,m(NE).

Thus, π(P ) avoids peaks NE.

Because P ∈ Pn,m
+(D,EENN)

−
and P+ do not include a deep valley EENN , only

two possibilities exist for each valley EN in P :
(i) If a valley EN follows N in P+, then NEN should be changed to DN .
(ii) If a valley EN preceds E in P+, then ENE should be changed to ED.

Hence, π(P ) avoids peaks EN , and we have π(P ) ∈ Pn,m(NE,EN).
(b) For a given Q ∈ Pn,m(NE,EN), we have Q ∈ Pn,m(NE) and δ(Q) ∈ Pn,m(D). Thus,

δ(Q)+ avoids diagonal steps D.

Suppose δ(Q)+ includes a deep valley EENN . Then, the path π(δ(Q)+)
−

includes
a valley EN . Because

π(δ(Q)+)
−
= Q,

Q includes a valley EN , which contradicts Q ∈ Pn,m(NE,EN). Hence, δ(Q)+ avoids

deep valleys EENN , and we have δ(Q) ∈ Pn,m
+(D,EENN)

−
.

�

We complete a combinatorial proof of (1) because (4) is proved by the principle of
inclusion and exclusion, (6) is proved bijectively by τ , and (8) is proved bijectively by π

and δ.

4. k-Schröder paths

Let k be a positive integer. Define a region Z
2(k) by

Z
2(k) =

{

(x, y) ∈ Z
2 : y ≥ kx

}

.
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Let P(k)
n,m be the set of Delannoy paths P ∈ Pn,m, whose vertices lie on the region Z

2(k).

Song [Son05] introduced a k-Schröder path P of size n if P ∈ P(k)
n,kn for nonnegative integers

n, where the cardinality of P(k)
n,kn equals

#P(k)
n,kn =

n
∑

d=0

1

kn− d+ 1

(

kn + n− d

kn− d, n− d, d

)

=
1

n

n
∑

j=1

(

kn

j − 1

)(

n

j

)

2j.

Recently, Yang and Jiang [YJ21] showed that the cardinality of P(k)
n,m equals

#P(k)
n,m =

n
∑

d=0

m− kn+ 1

m− d+ 1

(

m+ n− d

m− d, n− d, d

)

=
m− kn+ 1

n

n
∑

j=1

(

m

j − 1

)(

n

j

)

2j,

with #P(k)
n,m = 0 if m < kn.

Let P(k)
n,m

+
(D,EENN)

−

be the set of North-East lattice paths P in P(k)
n,m, where the

augmented lattice path P+ does not have a deep valley EENN , and let P(k)
n,m(NE,EN)

be the set of Delannoy paths without peaks and valleys in P(k)
n,m.

Corollary 3. Mappings π from P(k)
n,m

+
(D,EENN)

−

to P(k)
n,m(NE,EN) and δ from

P(k)
n,m(NE,EN) to P(k)

n,m

+
(D,EENN)

−

are bijections.

Pn,m
+(D,EENN)

− Pn,m(NE,EN)

P(k)
n,m

+
(D,EENN)

−

P(k)
n,m(NE,EN)

π

δ

∪

π

∪

δ

Proof. Because, for any lattice point (x, y), if (x, y) ∈ Z
2(k) and (x+1, y+1) ∈ Z

2(k) then
(x, y + 1) ∈ Z

2(k), we know that

P ∈ P(k)
n,m

+
(D,EENN)

−

=⇒ π(P ) ∈ P(k)
n,m(NE,EN)

Q ∈ P(k)
n,m(NE,EN) =⇒ δ(Q) ∈ P(k)

n,m

+
(D,EENN)

−

,

which completes the proof. �

5. k-Schröder paths without peaks and valleys

Because every k-Schröder path should begin with N and end with E, for a k-Schröder
path P without deep valleys, P+ does not have deep valleys. Thus, we have

P(k)
n,kn(D,EENN) = P(k)

n,kn

+
(D,EENN)

−

.

From Corollary 3, we obtain

#P(k)
n,kn(D,EENN) = #P(k)

n,kn(NE,EN).
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Let us divide P(k)
n,kn(NE,EN) by the last step. Define DP(k)

n,kn(NE,EN) as the set of

P ∈ P(k)
n,kn(NE,EN) ending with diagonal step D. In addition, define EP(k)

n,kn(NE,EN) as

the set of P ∈ P(k)
n,kn(NE,EN) ending with east step E. By definition, it holds that

#P(k)
n,kn(NE,EN) = δn,0 +#DP(k)

n,kn(NE,EN) + #EP(k)
n,kn(NE,EN).

Define three generating functions F , FD, and FE as

F = F (k)(x) =
∑

n≥0

#P(k)
n,kn(NE,EN)xn,

FD = F
(k)
D (x) =

∑

n≥1

#DP(k)
n,kn(NE,EN)xn,

FE = F
(k)
E (x) =

∑

n≥1

#EP(k)
n,kn(NE,EN)xn.

These satisfy the identity

F = 1 + FD + FE.

On the left of Figure 2, every path P ∈ DP(k)
n,kn(NE,EN) can be decomposed into k

subpaths as follows. For j = 1, . . . , k − 1, let Nj be the last north steps between lines
y = kx + (j − 1) and y = kx + j. Consider k subpaths P1, . . . , Pk by removing (k − 1)
north steps N1, . . . , Nk−1 and the last diagonal step D. Because P avoids peaks and valleys,
subpaths P1, . . . , Pk−1 are unable to end with an east step E, but Pk does not have this
restriction. This decomposition yields the identity

FD = (1 + FD)
k−1Fx. (9)

On the right in Figure 2, every path P ∈ EP(k)
n,kn(NE,EN) can be decomposed into

(k + 1) parts as follows. For j = 1, . . . , k, let Nj be the last north steps between lines
y = kx + (j − 1) and y = kx + j. Consider k subpaths P1, . . . , Pk+1 by removing k north
steps N1, . . . , Nk and the last diagonal step E. Because P avoids peaks and valleys, subpaths
P1, . . . , Pk are unable to end with an east step E, but Pk+1 should not be a path of length
0. This decomposition yields the identity

FE = (1 + FD)
k(F − 1)x. (10)

Mutiplying (9) by (1 + FD) and subtracting this by (10), FE is expressed by FD as
follows:

FE = (1 + FD)FD − x(1 + FD)
k. (11)

Substituting FE in (10) by (11) and simplifying, we have

FD = x(1 + FD)
k+1 − x2(1 + FD)

2k−1. (12)

Because the right-hand sides of (9) and (12) are the same, F is expressed by FD as follows:

F = (1 + FD)
2 − x(1 + FD)

k. (13)
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F

1 + FD

1 + FD

x

F − 1

1 + FD

1 + FD

x

1 + FD

(n, 3n) (n, 3n)

(n − 1, 3n − 1)

(n − 1, 3n)

N1 N1

N2 N2

N3

Figure 2. Decomposition of 3-Schröder paths

To obtain all generating functions, calculating FD from (12) is sufficient.

Enumerations of P(1)
n,n(D,EENN) and P(1)

n,n(NE,EN). For k = 1, we have

F (1)(x) =
(1− x)2 −

√

(1− x)4 − 4x2(1− x)

2x2

= 1 + x+ 2x2 + 5x3 + 13x4 + 35x5 + 97x6 + 275x7 + · · · ,

F
(1)
D (x) =

(1− x)2 −
√

(1− x)4 − 4x2(1− x)

2x
= x+ x2 + 2x3 + 5x4 + 13x5 + 35x6 + 97x7 + · · · ,

F
(1)
E (x) =

(1− x)3 − (1− x)
√

(1− x)4 − 4x2(1− x)

2x2
− 1

= x2 + 3x3 + 8x4 + 22x5 + 62x6 + 178x7 + · · · ,
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where the sequence of the coefficients in F (1)(x) and F
(1)
E (x) are given by entries A086581

and A188464 in the OEIS [Slo18].

Theorem 4. For k = 1, the coefficients of xn of F , FD, and FE are as follows:

[xn]F (1)(x) =
∑

m≥0

1

m+ 1

(

2m

m

)(

n+m

3m

)

,

[xn]F
(1)
D (x) =

∑

m≥0

1

m+ 1

(

2m

m

)(

n+m− 1

3m

)

,

[xn]F
(1)
E (x) =

∑

m≥1

1

m+ 1

(

2m

m

)(

n+m− 1

3m− 1

)

.

Proof. Let

C(x) =
1−

√
1− 4x

2x
=

∑

n≥0

1

n + 1

(

2n

n

)

.

It is well-known that C(x) satisfies

C(x) = 1 + xC(x)2.

Suppose H(x) satisfies the equation

a(x)H(x) = 1 + b(x)H(x)2,

where a(0) 6= 0 and b(0) = 0. Evidently, H(x) is expressed with C(x), a(x), and b(x) by

H(x) =
1

a(x)
C

(

b(x)

a(x)2

)

. (14)

From (9) and (12), we obtain

FD = x(1 + FD)
2 − x2(1 + FD) and FD = xF

and, eliminating FD,

(1− x)F = 1 +
x2

1− x
F 2.

According to (14), F = F (1)(x) is expressed by

F (1)(x) =
1

1− x
C

(

x2

(1− x)3

)

=
∑

m≥0

1

m+ 1

(

2m

m

)

x2m

(1− x)3m+1

and the two identities

F
(1)
D (x) = xF (1)(x) and F

(1)
E (x) = (1− x)F (1)(x)− 1,

completing the proof. �
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The concept of symmetric peaks was presented by Flórez and Rodríguez [FR20] as fol-
lows. Every peak can be extended to a unique maximal subsequence of the form N iEj

for i, j ≥ 1, which we call the maximal mountain of the peak. A peak is symmetric if its
maximal mountain N iEj satisfies i = j, and it is asymmetric otherwise. Elizalde [Eli21,
Theorem 2.1] found the generating function Csp,ap(t, r, z) for Dyck paths with respect to
the number of symmetric peaks and asymmetric peaks. We found that the equation

Csp,ap(0, 1, x) = 1 + xF
(1)
E (x)

holds true.

Conjecture 5. For a positive integer n, there exists a bijection between the following two
sets:

(i) the set EP(1)
n,n(NE,EN) of Delannoy paths from (0, 0) to (n, n) consisting of north-

steps N = (0, 1), east-steps E = (1, 0), and diagonal-steps D = (1, 1) that avoid
patterns NE and EN , end with east step E, and are not below y = x

(ii) the set of Catalan paths of size n + 1 avoiding symmetric peaks.

Enumerations of P(2)
n,2n(D,EENN) and P(2)

n,2n(NE,EN). For k = 2, from the next
theorem, the series F , FD, and FE begins with

F (2)(x) = 1 + x+ 3x2 + 11x3 + 44x4 + 186x5 + 818x6 + 3706x7 + · · · ,
F

(2)
D (x) = x+ 2x2 + 6x3 + 22x4 + 89x5 + 381x6 + 1694x7 + · · · ,

F
(2)
E (x) = x2 + 5x3 + 22x4 + 97x5 + 437x6 + 2012x7 + · · · ,

where the sequence of the coefficients in F
(2)
D (x) is given by entry A200753 in the OEIS

[Slo18]. However, the sequence

1, 1, 3, 11, 44, 186, 818, 3706, 17182, 81136, . . .

of the coefficients in F (2)(x) is not in the OEIS [Slo18].

Theorem 6. For k = 2, the coefficients of xn of F and FD are as follows:

[xn]F (2)(x) =
∑

m≥0

(−1)n−m

m+ 1

(

3m+ 1

m

)(

m+ 1

n−m

)

,

[xn]F
(2)
D (x) =

∑

m≥1

(−1)n−m

m

(

3m

m− 1

)(

m

n−m

)

.

Proof. Setting k = 2 in (12), we obtain

F
(2)
D (x) = (x− x2)(1 + F

(2)
D (x))3

and, letting t = x− x2,

A(t) = t(1 + A(t))3,
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where the power series A(t) satisfies A(x− x2) = F
(2)
D (x). Setting k = 2 in (9), we obtain

F
(2)
D (x) =

xF (2)(x)

1− xF (2)(x)
.

Substituting F
(2)
D (x) in (12) with it, we obtain

xF (2)(x) = (x− x2)

(

1

1− xF (2)(x)

)2

and, letting t = x− x2,

B(t) = t

(

1

1− B(t)

)2

,

where the power series B(t) satisfies B(x− x2) = xF (2)(x).
Using the Lagrange inversion formula, we obtain the coefficients of tn in A(t) and B(t).

Replacing t with x− x2, we obtain the coefficients of xn in F
(2)
D (x) and xF (2)(x). �

The function F
(2)
D (x) is mentioned in [MS15, Theorem 3.7]. It is shown here that F

(2)
D (x)

is the same as the generating function of ISn(102). In the remark of [MS15, p.168], they
were unable to find other combinatorial interpretations in the literature.

Conjecture 7. For a positive integer n, there exists a bijection between the following two
sets:

(i) the set DP(2)
n,2n(NE,EN) of Delannoy paths from (0, 0) to (n, 2n) consisting of north-

steps N = (0, 1), east-steps E = (1, 0), and diagonal-steps D = (1, 1) that avoid the
patterns NE and EN , end with diagonal step D, and are not below y = 2x and

(ii) the set ISn(102) of inversion sequences of length n avoiding the pattern 102.

Enumerations of P(3)
n,3n(D,EENN) and P(3)

n,3n(NE,EN). From Equation (12) for k = 3,
we obtain

FD = x(1 + FD)
4 − x2(1 + FD)

5.

According to a computer program, we find that the series F , FD, and FE begins with

F (3)(x) = 1 + x+ 4x2 + 20x3 + 111x4 + 657x5 + 4065x6 + 25981x7 + · · · ,
F

(3)
D (x) = x+ 3x2 + 13x3 + 67x4 + 380x5 + 2288x6 + 14351x7 + · · · ,

F
(3)
E (x) = x2 + 7x3 + 44x4 + 277x5 + 1777x6 + 11630x7 + · · · ,

where the sequence of the coefficients in F
(3)
D (x) is given by entry A200754 in the OEIS

[Slo18].
Note that, for k ≥ 3, we were unable to find a solution for (12).
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