A minimum semi-degree sufficient condition for one-to-many disjoint path covers in semicomplete digraphs

Ansong Ma^{1}, Yuefang Sun ${ }^{2, *}$, Xiaoyan Zhang ${ }^{3}$

${ }^{1}$ School of Mathematics and Statistics, Ningbo University
Zhejiang 315211, China, mas0710@163.com
2^{2} School of Mathematics and Statistics, Ningbo University
Zhejiang 315211, China, sunyuefang@nbu.edu.cn
${ }^{3}$ School of Mathematical Science \& Institute of Mathematics, Nanjing Normal University, Jiangsu 210023, China, zhangxiaoyan@njnu.edu.cn

Abstract

Let D be a digraph. We define the minimum semi-degree of D as $\delta^{0}(D):=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. Let k be a positive integer, and let $S=\{s\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ be any two disjoint subsets of $V(D)$. A set of k internally disjoint paths joining source set S and sink set T that cover all vertices D are called a one-to-many k-disjoint directed path cover (k-DDPC for short) of D. A digraph D is semicomplete if for every pair x, y of vertices of it, there is at least one arc between x and y.

In this paper, we prove that every semicomplete digraph D of sufficiently large order n with $\delta^{0}(D) \geq\lceil(n+k-1) / 2\rceil$ has a one-tomany k-DDPC joining any disjoint source set S and sink set T, where $S=\{s\}, T=\left\{t_{1}, \ldots, t_{k}\right\}$.

Keywords: Semicomplete digraph; Minimun semi-degree; Disjoint path cover

AMS subject classification (2020): 05C07, 05C20, 05C35, 05C70.

[^0]
1. Introduction

For terminology and notation not defined here, we refer to [1] and [2]. In this paper, a path always means a directed path. An $x-y$ path is a directed path which is from x to y for two vertices $x, y \in V(D)$. For two vertices x and y on a path P satisfying x precedes y, let $x P y$ denote the subpath of P from x to y. A digraph D is strongly connected, or strong for short, if there exists an $x-y$ path and a y - x path, for every pair x, y of distinct vertices in D.

Let $D=(V(D), A(D))$ be a digraph, and let D_{1} and D_{2} be two disjoint subdigraphs of D satisfying $V\left(D_{1}\right) \cup V\left(D_{2}\right)=V(D)$. For $x \in V\left(D_{i}\right)$, let $N_{D_{i}}^{+}(x):=\left\{y \in V\left(D_{i}\right) \backslash x: x y \in A(D)\right\} . N_{D_{i}}^{-}(x)$ is defined similarly. Let $d_{D_{i}}^{+}(x):=\left|N_{D_{i}}^{+}(x)\right|, d_{D_{i}}^{-}(x):=\left|N_{D_{i}}^{-}(x)\right|$ and $N_{D_{i}}(x):=N_{D_{i}}^{+}(x) \cup N_{D_{i}}^{-}(x)$.

A k-disjoint path cover of an undirected graph G is a set of k internally disjoint paths connecting given disjoint source set and sink set such that all vertices of G is covered by the path set. The k-disjoint path cover problem (k-DPC for short) has been studied by many researchers, see [7, 8, 10, 11, 12, 13, 14, 16, 17. The problem of k-disjoint path cover can be classified into three types according to the number of elements in the source set and the sink set: one-to-one, one-to-many and many-to-many. The one-to-one type considers disjoint path covers joining a single pair of source s and sink t [4, 16, 17], and the one-to-many type is about disjoint path covers which join a single source s and a set of k distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$ [12, 18]. The many-to-many type considers disjoint path covers between a set of k sources $s_{1}, s_{2}, \ldots, s_{k}$ and another set of k sinks $t_{1}, t_{2}, \ldots, t_{k}$ [7, 8, 11, 13, 14].

Let k be a positive integer, let $S=\{s\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ be two disjoint subsets of $V(D)$. A set of disjoint path $\left\{P_{1}, \ldots, P_{k}\right\}$ of D is a k-disjoint directed path cover (one-to-many k-DDPC for short) of D, if $\bigcup_{i=1}^{k} V\left(P_{i}\right)=V(D)$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{s\}$ for all $i \neq j$, where P_{i} is a path from s to t_{i}.

A digraph D is semicomplete if for every pair x, y of vertices of it, there is at least one arc between x and y. In this paper, we study the problem of one-to-many k-DDPC in semicomplete digraphs and prove the following main result. Note that our argument is inspired by that of 9],

Theorem 1. Let D be a semicomplete digraph of order $n \geq(9 k)^{5}$, where k (≥ 2) is an integer. If $\delta^{0}(D) \geq\lceil(n+k-1) / 2\rceil$, then D has a one-to-many k-DDPC for any disjoint source set S and sink set T, where $S=\{s\}, T=$ $\left\{t_{1}, \ldots, t_{k}\right\}$.

2. Preliminaries

We now introduce two results concerning the existence of a Hamiltonian path (cycle) in semicomplete digraphs.

Theorem 2. [15] Every semicomplete digraph contains a Hamiltonian path.
Theorem 3. [3] Every strong semicomplete digraph on $n \geq 3$ vertices has a Hamiltonian cycle.

The following is the definition of H-subdivision.
Definition 1. [5] Let H be a (multi)digraph and D be a digraph. Let $\mathcal{P}(D)$ denote the set of paths in D. An H-subdivision in D is a pair of mappings $f: V(H) \rightarrow V(D)$ and $g: A(H) \rightarrow \mathcal{P}(D)$ such that:
(a) $f(u) \neq f(v)$ for all disjoint $u, v \in V(H)$ and
(b) for every $u v \in A(H), g(u v)$ is an $f(u)-f(v)$ path in D, and disjoint arcs map into internally disjoint paths in D.

A digraph D is H-linked if every injective mapping $f: V(H) \rightarrow V(D)$ can be extended to an H-subdivision in D. A digraph D is one-to-many k-linked if it has a set of k paths $\left\{P_{1}, \ldots, P_{k}\right\}$ for any disjoint vertex subsets $S=\{s\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ such that every path P_{i} is from s to t_{i} and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{s\}$ for $i \neq j$.

Ferrara, Jacobson and Pfender [6] gave a sufficient condition for a digraph D to be H-linked. By this result, Zhou [18] found a specific digraph H and got the following corollary.

Corollary 4. [18] Let $k(\geq 2)$ be an integer, and let D be a digraph with order $n \geq 80 k$. If $\delta^{0}(D) \geq\lceil(n+k-1) / 2\rceil$, then D is one-to-many k-linked.

3. Proof of Theorem 1

In the rest of this paper, let D be a semicomplete digraph which satisfies the assumption of Theorem [1. Let $S=\{s\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ be any two disjoint subsets of D. An S-T path in D is a set of k-disjoint paths P_{1}, \ldots, P_{k}, where every path P_{i} is from s to t_{i} and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{s\}$ for all $i \neq j$. By Corollary 4, D contains at least one $S-T$ path. Let L be a maximum $S-T$ path, that is, it covers the most vertices of D among all S-T paths. Suppose that L is not a one-to-many k-DDPC (this implies that $\bigcup_{i=1}^{k} V\left(P_{i}\right) \varsubsetneqq V(D)$). We aim to obtain a larger S - T path from L and hence this produces a contradiction.

Let H be the subdigraph of D induced by $V(D) \backslash V(L)$. Since D is semicomplete, both L and H are semicomplete. Let $F:=\{x \in V(L): \exists y \in$ $V(H)$ such that $y x \in A(D)\}, R:=\{x \in V(L): \exists y \in V(H)$ such that $x y \in$ $A(D)\}$. Let $F_{m}:=F \backslash R$ and $R_{m}:=R \backslash F$. Since D is semicomplete, for every vertex $h \in V(H)$ and every vertex $x \in R_{m}$, there is an arc from x to h. Similarly, for every vertex $y \in F_{m}$, there is an arc from h to y. For a vertex $v \in V\left(P_{i}\right) \backslash\{s\}$, its predecessor is denoted by $v^{-} \in V\left(P_{i}\right) \backslash\left\{t_{i}\right\}$. Similarly, for a vertex $v \in V\left(P_{i}\right) \backslash\left\{t_{i}\right\}$, its successor is denoted by $v^{+} \in V\left(P_{i}\right) \backslash\{s\}$. Let $F^{-}:=\left\{x^{-}: x \in F \backslash S\right\}$ and $R^{+}:=\left\{x^{+}: x \in R \backslash T\right\}$. Similarly, let $F_{m}^{-}:=\left\{x^{-}: x \in F_{m} \backslash S\right\}$ and $R_{m}^{+}:=\left\{x^{+}: x \in R_{m} \backslash T\right\}$. To prove Theorem 1, we need more preliminary results, including several lemmas and corollaries.

Lemma 5. The following assertions hold:
(a) $d_{H}^{-}(x)+d_{H}^{+}(y) \geq|H|-1$ for every pair of vertices $x, y \in V(H)$.
(b) H is strong with $|H| \leq\left\lfloor\frac{n-k+1}{2}\right\rfloor-1$.

Proof. For any vertex $x \in V(H)$, we have $d_{H}^{-}(x)+d_{H}^{+}(x) \geq|H|-1$ since H is semicomplete. The case that $|H|=1$ is trivial, so now we assume that $|H| \geq 2$.

We first consider the case that $|H|=2$, say $V(H)=\{x, y\}$. There is at least one arc, say $x y \in A(H)$, between x and y since H is semicomplete. We claim that $d_{L}^{-}(x)+d_{L}^{+}(y) \leq|L|+k$. Suppose that $d_{L}^{-}(x)+d_{L}^{+}(y) \geq|L|+k+1$. Let $X=N_{L}^{-}(x)$ and $Y=\left\{v: v^{+} \in N_{L}^{+}(y)\right\}$. If $s \in N_{L}^{+}(y)$, then s^{-}does not exist. For each path P_{i}, if $s^{+} \in N_{L}^{+}(y)$, then there is only one s satisfying $s \in Y$. Therefore, we have $|Y| \geq d_{L}^{+}(y)-k$ and

$$
|X \cap Y|=|X|+|Y|-|X \cup Y| \geq d_{L}^{-}(x)+d_{L}^{+}(y)-k-|L| \geq|L|+k+1-k-|L|=1
$$

This implies that there are two vertices $v \in N_{L}^{-}(x)$ and $v^{+} \in N_{L}^{+}(y)$. By replacing the arc $v v^{+}$with the path $v x y v^{+}$, we obtain a larger $S-T$ path, a contradiction. Therefore, $d_{L}^{-}(x)+d_{L}^{+}(y) \leq|L|+k$ and

$$
d_{H}^{-}(x)+d_{H}^{+}(y) \geq 2\left\lceil\frac{n+k-1}{2}\right\rceil-(|L|+k) \geq|H|-1=1
$$

which satisfies the degree condition in Lemma 5. Hence, $y x \in A(H)$ and so H is strong in this case.

When $|H| \geq 3$, from the argument above, any two vertices $x_{1}, y_{1} \in V(H)$ with $x_{1} y_{1} \in A(D)$ satisfy the degree condition in Lemma 5. If $y_{1} x_{1} \notin A(H)$, then $y_{1} \notin N_{H}^{-}\left(x_{1}\right)$ and $x_{1} \notin N_{H}^{+}\left(y_{1}\right)$. Consequently, $\left|N_{H}^{-}\left(x_{1}\right) \cup N_{H}^{+}\left(y_{1}\right)\right| \leq$
$|H|-2$, and so $\left|N_{H}^{-}\left(x_{1}\right) \cap N_{H}^{+}\left(y_{1}\right)\right|=\left|N_{H}^{-}\left(x_{1}\right)\right|+\left|N_{H}^{+}\left(y_{1}\right)\right|-\mid N_{H}^{-}\left(x_{1}\right) \cup$ $N_{H}^{+}\left(y_{1}\right) \mid \geq d_{H}^{-}\left(x_{1}\right)+d_{H}^{+}\left(y_{1}\right)-(|H|-2) \geq 1$. This implies that H contains a $y_{1}-x_{1}$ path of length 2 . Therefore, when $x_{1} y_{1} \in A(H)$, either $y_{1} x_{1} \in A(H)$ or there is a $y_{1}-x_{1}$ path of length 2 in H. For any vertex $x \in V(H)$, we have $\left|N_{H}(x)\right|=\left|N_{H}^{-}(x) \cup N_{H}^{+}(x)\right|=|H|-1$ since H is semicomplete. According to the argument above, there are two paths of both directions between x and every vertex in $N_{H}(x)$. For any two vertices $x, z \in V(H)$, note that $z \in N_{H}(x)$ since H is semicomplete, and this implies that there are two paths of both directions between x and z. Hence, H is also strong in this case.

For every pair of vertices $x, y \in V(H)$, there is an $x-y$ path, say P, since H is strong. With a similar argument to that of the case $|H|=2$, we can get $d_{L}^{-}(x)+d_{L}^{+}(y) \leq|L|+k$, and for every pair of vertices $x, y \in V(H)$,

$$
\begin{equation*}
d_{H}^{-}(x)+d_{H}^{+}(y) \geq|H|-1 \tag{1}
\end{equation*}
$$

In particular, when $V(H)=\{h\}, d_{H}^{-}(h)+d_{H}^{+}(h)=|H|-1=0$ (satisfying the above degree condition).

We now prove the upper bound for $|H|$. Note that $R^{+} \cap F=\emptyset$. If $v \in R^{+} \cap F$, then $v^{-} \in R$. There are two vertices $u_{1}, u_{2} \in V(H)$ such that $v^{-} u_{1}, u_{2} v \in A(D)$. Since H is strong, H contains a $u_{1}-u_{2}$ path P. By replacing the arc $v^{-} v$ with the path $v^{-} P v$, we obtain a larger $S-T$ path, a contradiction. This implies that there is a vertex $v \in V(L)$ such that $N_{D}^{+}(v) \subseteq L$ or $N_{D}^{-}(v) \subseteq L$. Thus $|L|-1 \geq \delta^{0}(D) \geq\lceil(n+k-1) / 2\rceil$, and then $|H| \leq\lfloor(n-k+1) / 2\rfloor-1$.

According to the proof above, we have $R^{+} \cap F=\emptyset$. Similarly, $R \cap F^{-}=\emptyset$, so the following corollary holds.

Corollary 6. For any $u \in R, u^{+} \notin F$. Similarly, for any $v \in F, v^{-} \notin R$.
Lemma 7. The following assertions hold:
(a) $|F \cup R|=|L|$ and $|F \cap R| \leq k$.
(b) For any path P_{i}, if x_{1} precedes x_{2} in P_{i}, then there are no distinct vertices $y_{1}, y_{2} \in V(H)$ such that $x_{1} y_{1}, y_{2} x_{2} \in A(D)$.

Proof. For any vertex $x \in V(L)$ and any vertex $y \in V(H)$, there is at least one arc between x and y since H is semicomplete. Observe that $x \in F$, or $x \in R$ (or both) for any vertex $x \in L$, so $|F \cup R|=|L|$.

For each path P_{i}, we claim that $\left|(R \cap F) \cap V\left(P_{i}\right)\right| \leq 1$. Suppose that $u, v \in R \cap F$ are two distinct vertices in P_{i} and u precedes v. Let Q_{1} denote
the set of all vertices between u and v. For any path P_{i}, if $x \notin F$, then $x \in R$ since $|F \cup R|=|L|$. By Corollary 6, $u^{+} \notin F$, for any $u \in R$. Therefore, $u^{+} \in R$ and $V\left(u^{+} P_{i} t_{i}\right) \subseteq R$. As $v^{-} \in V\left(u^{+} P_{i} t_{i}\right)$, we get that $v^{-} \in R$. By the assumption, $v \in F$, so there are two vertices $h_{1}, h_{2} \in V(H)$ such that $v^{-} h_{1}, h_{2} v \in A(D)$. By Lemma 5, H is strong and hence contains an $h_{1}-h_{2}$ path P. By replacing $v^{-} v$ with $v^{-} P v$, we obtain a larger $S-T$ path, a contradiction. Particularly, when $Q_{1}=\emptyset, u \in R$ and $v=u^{+} \in F$ by the assumption. Similar to the argument above, we still can find a larger $S-T$ path, this also produces a contradiction. Consequently, $\left|(R \cap F) \cap V\left(P_{i}\right)\right| \leq 1$ for each path P_{i}, which implies that $|R \cap F| \leq k$.

Now we prove the assertion (b). Assume that such y_{1}, y_{2} exist. Therefore, $x_{1} \in R$ and $x_{2} \in F$ in P_{i}. Similar to the proof above, let Q_{2} denote the set of all vertices between x_{1} and x_{2}. For any path P_{i}, if $x \notin F$, then $x \in R$ since $|F \cup R|=|L|$. By Corollary 6, $u^{+} \notin F$, for any $u \in R$. Therefore, $x_{1}^{+} \in R, V\left(x_{1}^{+} P_{i} t_{i}\right) \subseteq R$ and $x_{2}^{-} \in R$. Together with the fact $x_{2} \in F$, we can find a larger $S-T$ path, a contradiction. Particularly, if $Q_{2}=\emptyset$, then $x_{1} \in R$ and $x_{2}=x_{1}^{+} \in F$ by the assumption. Similar to the argument above, we still find a larger $S-T$ path, and hence this also produces a contradiction. Consequently, for any path P_{i}, if x_{1} precedes x_{2} in P_{i}, then there are no distinct vertices $y_{1}, y_{2} \in H$ such that $x_{1} y_{1}, y_{2} x_{2} \in A(D)$. This implies x_{2} always precedes x_{1} for any $x_{1} \in R, x_{2} \in F$ in each path P_{i}.

The proof of the following lemma is similar to that of Lemma 13 in [9, but we still need to give the proof below.

Lemma 8. $|F|,|R| \geq(n+k+1) / 2-|H|$. Furthermore, $\left|F_{m}\right|,\left|R_{m}\right| \geq$ $(n-k+1) / 2-|H|$ and $\left|F_{m} \cup R_{m}\right| \geq|L|-k$.

Proof. For every vertex $x \in V(H), d_{L}^{-}(x) \geq \delta^{0}(D)-(|H|-1) \geq(n+$ $k+1) / 2-|H|$, and so $|R| \geq(n+k+1) / 2-|H|$. The inequality $|F| \geq$ $(n+k+1) / 2-|H|$ can be proved similarly. By Lemma $7,|R \cap F| \leq k$, so $\left|R_{m}\right|=|R|-|R \cap F| \geq(n+k+1) / 2-|H|-k=(n-k+1) / 2-|H|$. Similarly, we can prove the inequality $\left|F_{m}\right| \geq(n-k+1) / 2-|H|$.

By Lemma $\mathbf{7}^{\prime}|F \cup R|=|L|$ and $|F \cap R| \leq k$. Together with the definition of F_{m} and $R_{m},|F \cup R|=\left|F_{m}\right|+\left|R_{m}\right|+|F \cap R|$, so $\left|R_{m} \cup F_{m}\right|=\left|F_{m}\right|+\left|R_{m}\right|=$ $|F \cup R|-|F \cap R| \geq|L|-k$.

We rewrite Theorem 1 and give the proof now:
Theorem 1. Let D be a semicomplete digraph of order $n \geq(9 k)^{5}$, where k (≥ 2) is an integer. If $\delta^{0}(D) \geq\lceil(n+k-1) / 2\rceil$, then D has a one-to-many
$k-D D P C$ for any disjoint source set S and sink set T, where $S=\{s\}, T=$ $\left\{t_{1}, \ldots, t_{k}\right\}$.

Proof. Recall that at the beginning of Section 3, we supposed that L is not a one-to-many k-DDPC. It suffices to find a larger $S-T$ path more than L, and then this produces a contradiction and thus we prove Theorem 1, Our argument is divided into the following three cases.
Case 1. $|H|=1$.
Let $V(H)=\{h\}$. Since $|H|=1$, we have $d_{L}^{-}(h)=|R|, d_{L}^{+}(h)=|F|$ and $d_{L}^{+}(h)+d_{L}^{-}(h)=d_{D}^{+}(h)+d_{D}^{-}(h)$. According to whether $n+k$ is even, we distinguish the following two subcases.

Case 1.1. $n+k$ is even.
When $n+k$ is even, we have $\left\lceil\frac{n+k-1}{2}\right\rceil=\frac{n+k}{2}$ and $d_{L}^{+}(h)+d_{L}^{-}(h) \geq$ $2 \delta^{0}(D) \geq n+k$. Consequently, $|F|+|R| \geq n+k$. By Lemma [7, $|R \cup F|=$ $|L|=n-1$. Therefore, $|R \cap F|=|R|+|F|-|R \cup F| \geq(n+k)-(n-1)=k+1$, which implies that there exists a path P_{i} such that $u, v \in R \cap F$. Without loss of generality, assume that u precedes v. Arguing similarly as in the proof of Lemma 7, we can find a larger $S-T$ path, say L^{*}, which contains h. Consequently, L^{*} is a one-to-many k-DDPC in D, a contradiction.

Case 1.2. $n+k$ is odd.
When $n+k$ is odd, we have $\lceil(n+k-1) / 2\rceil=(n+k-1) / 2$. Therefore, $d_{L}^{+}(h)=d_{D}^{+}(h) \geq(n+k-1) / 2, d_{L}^{-}(h)=d_{D}^{-}(h) \geq(n+k-1) / 2$, and $d_{L}^{+}(h)+d_{L}^{-}(h) \geq 2 \delta^{0}(D) \geq n+k-1$. Consequently, $|R|+|F| \geq n+k-1$. Since $|L|=n-1,|R \cap F|=|R|+|F|-|R \cup F| \geq(n+k-1)-(n-$ $1)=k$. By Lemma $7,|R \cap F| \leq k$, so $|R \cap F|=k$. According to the argument in Lemma 5, $d_{L}^{+}(h)+d_{L}^{-}(h) \leq|L|+k=n+k-1$. Therefore, $d_{L}^{+}(h)+d_{L}^{-}(h)=n+k-1$, and then $d_{L}^{+}(h)=d_{L}^{-}(h)=(n+k-1) / 2$. Thus we get $|F|=d_{L}^{+}(h)=(n+k-1) / 2,|R|=d_{L}^{-}(h)=(n+k-1) / 2$ and $\left|R_{m}\right|=\left|F_{m}\right|=(n+k-1) / 2-k=(n-k-1) / 2$ by Lemma 8 .

Note that each $y \in F_{m}$ satisfies $d_{R_{m}}^{+}(y) \geq \delta^{0}(D)-(|F|-1)=1$, so there is at least one vertex $x_{1} \in R_{m}$ such that $y x_{1} \in A(D)$. By Lemma 7 , we have $s \in F_{m}$, so there exists a vertex $x_{1} \in R_{m}$ in P_{i} such that $s x_{1} \in A(D)$. As $\left|(R \cap F) \cap V\left(P_{i}\right)\right| \leq 1$ and $|R \cap F|=k$, there is a vertex $s_{j}^{+} \in F$ in P_{j}. Together with the fact that $x_{1}^{-} \in R$, there exists an $x_{1}^{-}-s_{j}^{+}$path whose inner vertex is h. Let $P_{i}^{*}:=s x_{1} P_{i} t_{i}$ and $P_{j}^{*}:=s P_{i} x_{1}^{-} h s_{j}^{+} P_{j} t_{j}$. Therefore, we obtain a larger $S-T$ path, say L^{*}, which contains h. Consequently, L^{*} is a one-to-many k-DDPC in D, this produces a contradiction (see Figure 1).

Figure 1
Case 2. $2 \leq|H| \leq n / 2-n /(50 k)$.
By Lemma 8, $\left|R_{m}\right| \geq(n-k+1) / 2-|H| \geq n /(53 k)$, so there exists a path P_{j} which contains at least $n /\left(53 k^{2}\right)$ vertices from R_{m}. Without loss of generality, assume that $j=1$. Let A be the set of vertices belonging to R_{m} in P_{1}. We use $A_{1}\left(A_{2}\right.$, respectively) to denote the subpath of A which contains the first (last, respectively) $n /\left(110 k^{2}\right)$ inner vertices of A.

The first vertex of A is denoted by t. For any vertex $a \in V\left(t^{+} P_{1} t_{1}\right)$, Lemma 7 implies that $a \in R$ and $N_{D}^{-}(a) \subseteq V(L)$. By Lemma 8, $|F| \geq$ $(n+k+1) / 2-|H|$ and so

$$
\begin{equation*}
d_{L}^{-}(a) \geq \delta^{0}(D) \geq(n+k-1) / 2 \geq n+k-|H|-|F|=|L|-|F|+k . \tag{2}
\end{equation*}
$$

Case 2.1. There are two vertices $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ such that $a_{1} a_{2} \in$ $A(D)$.

By inequality (2), we have $d_{L}^{-}\left(a_{1}^{+}\right) \geq|L|-|F|+k$ and

$$
\begin{aligned}
\left|N_{L}^{-}\left(a_{1}^{+}\right) \cap F^{-}\right| & =\left|N_{L}^{-}\left(a_{1}^{+}\right)\right|+\left|F^{-}\right|-\left|N_{L}^{-}\left(a_{1}^{+}\right) \cup F^{-}\right| \\
& \geq d_{L}^{-}\left(a_{1}^{+}\right)+(|F|-k)-(|L|-1) \\
& \geq|L|-|F|+k+(|F|-k)-(|L|-1)=1
\end{aligned}
$$

(By the definition of F^{-}, we have $F^{-} \cap T=\emptyset$. Corollary 6 implies that $F^{-} \cap R=\emptyset$ and $a_{1}^{+} \notin F^{-}$, thus $\left|N_{L}^{-}\left(a_{1}^{+}\right) \cup F^{-}\right| \leq|L|-1$. If $s \in F$, then s^{-} does not exist. For each P_{i}, if $s_{i}^{+} \in F$, then there is only one s satisfying $s \in F^{-}$. Therefore, $\left.\left|F^{-}\right| \geq|F|-k\right)$. This implies that there are two vertices $w \in N_{L}^{-}\left(a_{1}^{+}\right) \cap F^{-}$and $w^{+} \in F$. Lemma 7 implies that $F \cap V\left(t^{+} P_{1} t_{1}\right)=\emptyset$, so $w^{+} \in V\left(s^{+} P_{1} t\right)$ or $w^{+} \in V\left(P_{i} \backslash\{s\}\right)(i \neq 1)$. Therefore, $w \in V\left(s P_{i} t^{-}\right)$ or $w \in V\left(p_{i} \backslash\left\{t_{i}\right\}\right)(i \neq 1)$. By Lemma 5, H is strong. When $|H| \geq 3$, by Theorem 3, we get that H contains a Hamiltonian cycle, say C. For a
vertex x on C, its predecessor on C is denoted by x^{-}and its successor on C is denoted by x^{+}. When $|H| \geq 3$, there exists a vertex $u \in V(H)$ such that $u w^{+} \in A(D)$ since $w^{+} \in F$. As $a_{2}^{-} \in R_{m}$, there is an arc from a_{2}^{-} to u^{+}. Note that there is a Hamiltonian path from u^{+}to u in H. When $|H|=2$, let $V(H)=\{u, v\}$. There exists a vertex, say $v \in V(H)$, such that $v w^{+} \in A(D)$ since $w^{+} \in F$. As $a_{2}^{-} \in R_{m}$, there is an arc from a_{2}^{-}to u. Note that $u v, v u \in A(H)$ since H is strong.

If $w \in V\left(s P_{1} t^{-}\right)$, then according to the argument above, there exists a path $a_{2}^{-} Q_{1} w^{+}$, where Q_{1} contains all vertices in H. Let P_{1}^{*} := $s P_{1} w a_{1}^{+} P_{1} a_{2}^{-} Q_{1} w^{+} P_{1} a_{1} a_{2} P_{1} t_{1}$. Now we obtain a larger $S-T$ path L^{*} which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 2).

Figure 2

If $w \in V\left(P_{i} \backslash\left\{t_{i}\right\}\right)(i \neq 1)$, then according to the argument above, we can also find a path $a_{2}^{-} Q_{2} w^{+}$, where Q_{2} contains all vertices in H. Let $P_{1}^{*}:=s P_{1} a_{1} a_{2} P_{1} t_{1}$ and $P_{i}^{*}:=s P_{i} w a_{1}^{+} P_{1} a_{2}^{-} Q_{2} w^{+} P_{i} t_{i}$. Therefore, we obtain a larger S - T path L^{*} which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure (3).

Figure 3

Case 2.2. Case 2.1 does not hold.
By the definition of $F_{m}^{-}, F_{m}^{-} \cap V\left(t P_{1} t_{1}\right)=\emptyset$. For any vertex $a \in A_{2}$, Lemma 7 implies that $N_{D}^{-}(a) \subseteq V(L)$. By the assumption, $N_{D}^{-}(a) \subseteq V(L) \backslash$ $V\left(A_{1}\right)$. By Lemma 园, $\left|F_{m}\right| \geq(n-k+1) / 2-|H|$. Similar to the argument in (2), we get that $d_{L-A_{1}}^{-}(a) \geq \delta^{0}(D) \geq(n+k-1) / 2 \geq n-|H|-\left|F_{m}\right| \geq$ $\left|L-A_{1}\right|+\left|A_{1}\right|-\left|F_{m}^{-}\right|-k$ (recall that $\left|F^{-}\right| \geq|F|-k$, so $|F| \leq\left|F^{-}\right|+k$ and $\left.\left|F_{m}\right| \leq\left|F_{m}^{-}\right|+k\right)$. By the definition of $F_{m}^{-}, F_{m}^{-} \cap V\left(A_{1}\right)=\emptyset$, and so

$$
\begin{align*}
\left|N_{L-A_{1}}^{-}(a) \cap F_{m}^{-}\right| & \geq\left|L-A_{1}\right|+\left|A_{1}\right|-\left|F_{m}^{-}\right|-k+\left|F_{m}^{-}\right|-\left|L-A_{1}\right| \\
& =\left|A_{1}\right|-k=\left(n-110 k^{3}\right) /\left(110 k^{2}\right) . \tag{3}
\end{align*}
$$

Let $I_{1}:=s P_{1} t$ and $I_{i}:=P_{i} \backslash\left\{t_{i}\right\}(i \neq 1)$. We use G_{i} to denote the auxiliary bipartite graph whose vertex sets are $V\left(A_{2}\right)$ and $V\left(I_{i}\right) \cap F_{m}^{-}(i=$ $1, \ldots, k)$. For any $a \in V\left(A_{2}\right)$ and $w \in V\left(I_{i}\right) \cap F_{m}^{-}$, if $w a \in A(D)$, then there is an edge between a and w in each G_{i}. As $F_{m}^{-} \cap V\left(t P_{1} t_{1}\right)=\emptyset, F_{m}^{-} \subseteq$ $V\left(I_{1}\right) \cup \cdots \cup V\left(I_{k}\right)$ and the edges of $G_{1} \cup \cdots \cup G_{k}$ are equivalent to the arcs which are from F_{m}^{-}to A_{2} in D. Since $\left|N_{L-A_{1}}^{-}(a) \cap F_{m}^{-}\right| \geq\left(n-110 k^{3}\right) /\left(110 k^{2}\right)$, there exists a G_{i} satisfying

$$
e\left(G_{i}\right) \geq \frac{\left|A_{2}\right|\left(n-110 k^{3}\right)}{110 k^{3}} \geq \frac{n\left(n-110 k^{3}\right)}{12100 k^{5}} \geq 3 n \geq 3\left|G_{i}\right| .
$$

This implies that G_{i} is not planar, so there are vertices $a_{1}, a_{2} \in V\left(A_{2}\right)$ and $w_{1}, w_{2} \in V\left(I_{i}\right) \cap F_{m}^{-}$such that the edges $w_{1} a_{1}, w_{2} a_{2}$ cross in G_{i}.

We first consider the case that $i=1$, and then $w_{1}, w_{2} \in V\left(s P_{1} t\right) \cap F_{m}^{-}$ and $w_{1}^{+}, w_{2}^{+} \in F_{m}$. Together with the fact that $a_{1}^{-}, a_{2}^{-} \in R_{m}$, we can find disjoint paths $a_{j}^{-} Q_{j} w_{j}^{+}(j=1,2)$, where the vertices of Q_{j} lie in H and $\left|Q_{1} \cup Q_{2}\right| \geq 2$. Particularly, when $|H|=2$, say $V(H)=\{u, v\}$, we have $Q_{1}=u$ and $Q_{2}=v$, or $Q_{1}=v$ and $Q_{2}=u$. Let $P_{1}^{*}:=$ ${ }_{s P_{1}} w_{1} a_{1} P_{1} a_{2}^{-} Q_{2} w_{2}^{+} P_{1} a_{1}^{-} Q_{1} w_{1}^{+} P_{1} w_{2} a_{2} P_{1} t_{1}$. Thus we obtain a larger S - T path L^{*} which contains at least $|L|+2$ vertices, this produces a contradiction (see Figure 4).

We now consider the case that $i \neq 1$, without loss of generality, assume that $i=2$. Consequently, $w_{1}, w_{2} \in V\left(P_{2} \backslash\left\{t_{2}\right\}\right) \cap F_{m}^{-}$and $w_{1}^{+}, w_{2}^{+} \in F_{m}$. According to the argument above, $w_{1} a_{1}$ and $w_{2} a_{2}$ cross in G_{2}. Without loss of generality, assume that a_{1} precedes a_{2} in P_{1} and w_{2} precedes w_{1} in P_{2}. By Theorem 2, H has a Hamiltonian path. Suppose that there is a Hamiltonian path from u to v in H. Since $a_{2}^{-} \in R_{m}$ and $w_{2}^{+} \in F_{m}$, we have $a_{2}^{-} u$, $v w_{2}^{+} \in A(D)$, which implies that there exists a path $a_{2}^{-} Q w_{2}^{+}$, where Q contains all vertices in H. Let $P_{1}^{*}:=s P_{2} w_{2} a_{2} P_{1} t_{1}$ and $P_{2}^{*}:=$

Figure 4

Figure 5
$s P_{1} a_{2}^{-} Q w_{2}^{+} P_{2} t_{2}$. Therefore, we obtain a larger $S-T$ path L^{*} which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 5).

Case 3. $n / 2-n /(50 k) \leq|H| \leq\lceil(n-k) / 2\rceil-1=\lfloor(n-k+1) / 2\rfloor-1$.
By Lemma 8 , $\left|R_{m}\right| \geq(n-k+1) / 2-|H| \geq 1$. Similarly, $\left|F_{m}\right| \geq 1$. By Lemma 7, $|R \cup F|=|L|,|R \cap F| \leq k$ and $|L|-k \leq\left|R_{m} \cup F_{m}\right|=$ $\left|R_{m}\right|+\left|F_{m}\right| \leq|L|$. Since $\lceil(n+k-1) / 2\rceil+1 \leq|L| \leq n / 2+n /(50 k)$, we deduce that $\lceil(n-k+1) / 2\rceil \leq\left|R_{m}\right|+\left|F_{m}\right| \leq n / 2+n /(50 k)$.

Note that each $h \in V(H)$ satisfies

$$
\begin{aligned}
d_{L}^{-}(h) \geq \delta^{-}(D)-(|H|-1) & \geq\lceil(n+k-1) / 2\rceil-\lceil(n-k) / 2\rceil+1+1 \\
& \geq(n+k-1) / 2-(n-k+1) / 2+2=k+1
\end{aligned}
$$

and so $|R| \geq k+1$. Similarly, $d_{L}^{+}(h) \geq \delta^{+}(D)-(|H|-1) \geq k+1$, so $|F| \geq k+1$. For any vertex $x \in R_{m}$, Lemma 7 implies that $N_{D}^{-}(x) \subseteq V(L)$. Furthermore,

$$
|L|-\delta^{-}(D) \leq n / 2+n /(50 k)-(n+k-1) / 2<n /(50 k),
$$

so for every vertex $x \in R_{m}$ and a vertex set $Z_{1} \subseteq V(L)$ satisfying $\left|Z_{1}\right| \geq$ $n /(50 k)$, there exists a vertex $a_{1} \in Z_{1}$ such that $a_{1} x \in A(D)$. Similarly, for
every vertex $y \in F_{m}$ and a vertex set $Z_{2} \subseteq V(L)$ satisfying $\left|Z_{2}\right| \geq n /(50 k)$, there exists a vertex $a_{2} \in Z_{2}$ such that $y a_{2} \in A(D)$.
Case 3.1. $1 \leq\left|R_{m}\right| \leq k$.
By Lemma团, $\left|(R \cap F) \cap V\left(P_{i}\right)\right| \leq 1$. Together with the fact that $|R| \geq$ $k+1$, we deduce that there exists a path P_{i} such that $x_{1} \in R$ and $x_{1}^{+} \in R_{m}$. Observe that $\left|F_{m}\right| \geq\lceil(n-k+1) / 2\rceil-k \geq n / 3$ since $\left|R_{m}\right| \leq k$, and so one of the k paths of L, say P_{j}, contains at least $n /(3 k)$ vertices from F_{m}. Thus there is a subpath $y_{1} P_{j} y_{2}$ on path P_{j} such that $V\left(y_{1} P_{j} y_{2}\right) \subseteq F_{m}$ and $\left|y_{1} P_{j} y_{2}\right|=n /(20 k)$.

We first consider the case that $j \neq i$, without loss of generality, assume that $i=1$ and $j=2$. There is a vertex $a_{1} \in V\left(y_{1} P_{2} y_{2}^{-}\right)$such that $a_{1} x_{1}^{+} \in$ $A(D)$ since $x_{1}^{+} \in R_{m}$ and $\left|y_{1} P_{2} y_{2}^{-}\right| \geq n /(50 k)$. As $x_{1} \in R$, there exists a vertex $h_{1} \in V(H)$ such that $x_{1} h_{1} \in A(D)$. According to the argument in Case 2.1, we deduce that H has a Hamiltonian cycle. As $a_{1}^{+} \in F_{m}$, $h_{1}^{-} a_{1}^{+} \in A(D)$. Note that there is a Hamiltonian path from h_{1} to h_{1}^{-}in H. This implies that there exists a path $x_{1} Q_{1} a_{1}^{+}$, where Q_{1} contains all vertices in H. Let $P_{1}^{*}:=s P_{2} a_{1} x_{1}^{+} P_{1} t_{1}$ and $P_{2}^{*}:=s P_{1} x_{1} Q_{1} a_{1}^{+} P_{2} t_{2}$. Now we obtain a larger S - T path L^{*} which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure (6).

Figure 6
We next consider the case that $j=i$, without loss of generality, assume that $j=i=1$. Let $I_{1}:=y_{1} P_{1} y_{3}, I_{2}:=y_{3}^{+} P_{1} y_{4}, I_{3}:=y_{4}^{+} P_{1} y_{5}$, and $I_{4}:=y_{5}^{+} P_{1} y_{2}$, where $\left|I_{1}\right|=n /(240 k),\left|I_{2}\right|=n /(240 k),\left|I_{3}\right|=n /(48 k)$, and $\left|I_{4}\right|=n /(48 k)$. According to the argument at the beginning of Case 3, there is a vertex $a_{3} \in V\left(I_{3}\right)$ such that $a_{3} x_{1}^{+} \in A(D)$ since $x_{1}^{+} \in R_{m}$ and $\left|I_{3}\right|>n /(50 k)$. Similarly, there are two vertices $a_{1} \in I_{1}$ and $a_{4} \in I_{4}$ such that $a_{1} a_{4} \in A(D)$ (since $a_{1} \in F_{m}$ and $\left|I_{4}\right|>n /(50 k)$). As $x_{1} \in R$, there exists a vertex $h_{1} \in V(H)$ such that $x_{1} h_{1} \in A(D)$. For a vertex $a_{2} \in I_{2}$, we have $a_{2} \in F_{m}$, so $h_{1}^{-} a_{2} \in A(D)$. According to the argument in Case 2.1, we
deduce that H contains a Hamiltonian cycle, and so there is a Hamiltonian path from h_{1} to h_{1}^{-}in H. This implies that there exists a path $x_{1} Q_{2} a_{2}$, where Q_{2} contains all vertices in H. Let $P_{1}^{*}:=s P_{1} a_{1} a_{4} P_{1} x_{1} Q_{2} a_{2} P_{1} a_{3} x_{1}^{+} P_{1} t_{1}$. Thus we obtain a larger $S-T$ path L^{*} which contains at least $|H|-\left|I_{1}\right|-$ $\left|I_{2}\right|-\left|I_{3}\right|-\left|I_{4}\right| \geq n / 2-n /(50 k)-n /(20 k)>0$ vertices more than L. This produces a contradiction (see Figure (7).

Figure 7

Case 3.2. $\left|F_{m}\right|=1$.
In this case, $n-k$ is odd, $|H|=(n-k+1) / 2-1$ and $|L|=(n+k-1) / 2+1$ by Lemma 8, Recall that $|F| \geq k+1$ at the beginning of Case 3. By Lemma 7. $|R \cap F| \leq k$ and $\left|(R \cap F) \cap V\left(P_{j}\right)\right| \leq 1$. Therefore, $s \in F_{m}$ and there exists exactly a vertex s_{j}^{+}in each P_{j} such that $s_{j}^{+} \in R \cap F$ by Lemma 7 . As $\left|R_{m}\right|+\left|F_{m}\right| \geq\lceil(n-k+1) / 2\rceil,\left|R_{m}\right| \geq\lceil(n-k+1) / 2\rceil-1 \geq n / 3$. Consequently, one of the k paths of L, say P_{i}, contains at least $n /(3 k)$ vertices from R_{m}. There is a subpath $x_{1} P_{i} x_{2}$ on P_{i} such that $V\left(x_{1} P_{i} x_{2}\right) \subseteq$ R_{m} and $\left|x_{1} P_{i} x_{2}\right|=n /(20 k)$.

Without loss of generality, assume that $i=1$. There are two vertices $s \in F_{m}$ and $s_{2}^{+} \in R \cap F$ in P_{2}. According to the argument at the beginning of Case 3, there is a vertex $a_{1} \in V\left(x_{1}^{+} P_{1} x_{2}\right)$ such that $s a_{1} \in A(D)$ since $s \in F_{m}$ and $\left|x_{1}^{+} P_{1} x_{2}\right|>n /(50 k)$. As $s_{2}^{+} \in F$, there exists a vertex $h_{1} \in V(H)$ such that $h_{1} s_{2}^{+} \in A(D)$. By the assumption, $a_{1}^{-} \in R_{m}$, so there is an arc from a_{1}^{-} to h_{1}^{+}. According to the argument in Case 2.1, we deduce that H contains a Hamiltonian cycle. Note that there is a Hamiltonian path from h_{1}^{+}to h_{1} in H. This implies that there exists a path $a_{1}^{-} Q s_{2}^{+}$, where Q contains all vertices in H. Let $P_{1}^{*}:=s a_{1} P_{1} t_{1}$ and $P_{2}^{*}:=s P_{1} a_{1}^{-} Q s_{2}^{+} P_{2} t_{2}$. Thus we obtain a larger S - T path L^{*} which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 8).

Case 3.3. $\left|F_{m}\right| \geq 2$ and $\left|R_{m}\right| \geq k+1$.

Figure 8

Since $\left|R_{m}\right| \geq k+1$, there is a path P_{i} such that $x_{1}, x_{2} \in R_{m}$, and x_{1} precedes x_{2}. Similarly, as $\left|F_{m}\right| \geq 2$, there is a path P_{j} such that $y_{1}, y_{2} \in F_{m}$, and y_{1} precedes y_{2}.
Case 3.3.1. There exists a subpath $x_{1} P_{i} x_{2}$ on P_{i} such that $\left|x_{1} P_{i} x_{2}\right| \geq$ $n /(20 k)$.

We first consider the case that $j \neq i$, without loss of generality, assume that $i=1, j=2$, and $y_{1}=y_{2}^{-}$. Lemma 7 implies that $V\left(x_{1} P_{i} x_{2}\right) \subseteq$ R_{m}. Let $A_{1}:=x_{1} P_{1} x_{3}$ and $A_{2}:=x_{3}^{+} P_{1} x_{4}$, where $\left|A_{1}\right|=n /(48 k)$ and $\left|A_{2}\right|=n /(48 k)$. According to the argument at the beginning of Case 3, there is a vertex $a_{1} \in A_{1}$ such that $a_{1} x_{2} \in A(D)$ since $x_{2} \in R_{m}$ and $\left|A_{1}\right|>n /(50 k)$. Similarly, as $y_{2}^{-} \in F_{m}$ and $\left|A_{2}\right|>n /(50 k)$, there exists a vertex $a_{2} \in A_{2}$ such that $y_{2}^{-} a_{2} \in A(D)$. By Theorem 2, H has a Hamiltonian path. Suppose that there is a Hamiltonian path from u to v in H. Since $x_{2}^{-} \in R_{m}$ and $y_{2} \in F_{m}, x_{2}^{-} u, v y_{2} \in A(D)$. This implies that there exists a path $x_{2}^{-} Q_{1} y_{2}$, where Q_{1} contains all vertices in H. Let $P_{1}^{*}:=s P_{1} a_{1} x_{2} P_{1} t_{1}$ and $P_{2}^{*}:=s P_{2} y_{2}^{-} a_{2} P_{1} x_{2}^{-} Q_{1} y_{2} P_{2} t_{2}$. Thus we obtain a larger $S-T$ path L^{*} which contains at least $|H|-\left|V\left(a_{1} P_{1} a_{2}\right)\right| \geq n / 2-n /(50 k)-n /(24 k)>0$ vertices more than L. This produces a contradiction (see Figure (9).

We next consider the case that $j=i$, without loss of generality, assume that $j=i=1$ and $y_{1}=y_{2}^{-}$. The argument for the case that $j=i$ is similar to that of the case $j \neq i$, so there exists a path $x_{2}^{-} Q_{2} y_{2}$, where Q_{2} contains all vertices in H. Let $P_{1}^{*}:=s P_{1} y_{2}^{-} a_{2} P_{1} x_{2}^{-} Q_{2} y_{2} P_{1} a_{1} x_{2} P_{1} t_{1}$. Thus we obtain a larger S - T path L^{*} which contains at least $|H|-\left|V\left(a_{1} P_{1} a_{2}\right)\right| \geq n / 2-$ $n /(50 k)-n /(24 k)>0$ vertices more than L. This produces a contradiction (see Figure 10).

Case 3.3.2 . Case 3.3.1 does not hold.

Figure 9

Figure 10

There is not a subpath $x_{1} P_{i} x_{2}$ in each path P_{i} such that $\left|x_{1} P_{i} x_{2}\right| \geq$ $n /(20 k)$, so $\left|R_{m}\right|<n /(20)$. Recall that $\left|R_{m}\right|+\left|F_{m}\right| \geq\lceil(n-k+1) / 2\rceil$ at the beginning of Case 3 , so $\left|F_{m}\right| \geq\lceil(n-k+1) / 2\rceil-n /(20) \geq n / 3$. One of the k paths of L, say P_{j}, contains at least $n /(3 k)$ vertices from F_{m}. Without loss of generality, assume that $j=2$. We can find a subpath $y_{1} P_{2} y_{2}$ such that $V\left(y_{1} P_{2} y_{2}\right) \subseteq F_{m}$ and $\left|V\left(y_{1} P_{2} y_{2}\right)\right| \geq n /(20 k)$. There is a path P_{i} such that $x_{1}, x_{2} \in R_{m}$ and x_{1} precedes x_{2} since $\left|R_{m}\right| \geq k+1$.

We first consider the case that $j \neq i$, without loss of generality, assume that $i=1, j=2$, and $x_{2}=x_{1}^{+}$. Let $A_{2}:=y_{3} P_{2} y_{2}$ and $A_{1}:=y_{4} P_{2} y_{3}^{-}$, where $\left|A_{2}\right|=n /(48 k)$ and $\left|A_{1}\right|=n /(48 k)$. According to the argument at the beginning of Case 3 , there is a vertex $a_{2} \in A_{2}$ such that $y_{1} a_{2} \in A(D)$ since $y_{1} \in F_{m}$ and $\left|A_{2}\right|>n /(50 k)$. Similarly, as $x_{1}^{+} \in R_{m}$ and $\left|A_{1}\right|>n /(50 k)$, there exists a vertex $a_{1} \in A_{1}$ such that $a_{1} x_{1}^{+} \in A(D)$. By Theorem 2, H has a Hamiltonian path. Assume that there is a Hamiltonian path from u to v in H. Since $x_{1} \in R_{m}$ and $y_{1}^{+} \in F_{m}, x_{1} u, v y_{1}^{+} \in A(D)$. This implies that there exists a path $x_{1} Q_{1} y_{1}^{+}$, where Q_{1} contains all vertices in H. Let $P_{1}^{*}:=s P_{1} x_{1} Q_{1} y_{1}^{+} P_{2} a_{1} x_{1}^{+} P_{1} t_{1}$ and $P_{2}^{*}:=s P_{2} y_{1} a_{2} P_{2} t_{2}$. Thus we obtain a larger S - T path L^{*} which contains at least $|H|-\left|V\left(a_{1} P_{2} a_{2}\right)\right| \geq n / 2-$ $n /(50 k)-n /(24 k)>0$ vertices more than L. This produces a contradiction
(see Figure 11).

Figure 11
We next consider the case that $i=j=2$, without loss of generality, assume that $x_{2}=x_{1}^{+}$. Arguing similarly as that of the case $i \neq j$, we get that there exists a path $x_{1} Q_{2} y_{1}^{+}$, where Q_{2} contains all vertices in H. Let $P_{2}^{*}:=s P_{2} y_{1} a_{2} P_{2} x_{1} Q_{2} y_{1}^{+} P_{2} a_{1} x_{1}^{+} P_{2} t_{2}$. Thus we obtain a larger S - T path L^{*} which contains at least $|H|-\left|V\left(a_{1} P_{2} a_{2}\right)\right| \geq n / 2-n /(50 k)-n /(24 k)>0$ vertices more than L. This produces a contradiction (see Figure (12).

Figure 12

Acknowledgement. Yuefang Sun was supported by Yongjiang Talent Introduction Programme of Ningbo under Grant No. 2021B-011-G and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY20A010013. Xiaoyan Zhang was supported by NSFC under Grant No. 11871280.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2008.
[2] J. Bang-Jensen, G. Gutin, Classes of Directed Graphs, Springer, 2018.
[3] P. Camion. Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris, 249 (1959) 2151-2152.
[4] H. Cao, B. Zhang, Z. Zhou, one-to-one disjoint path covers in digraphs, Theoretical Computer Science, 714 (2018) 27-35.
[5] M. Ferrara, R. Gould, G. Tansey and T. Whalen, On H-linked Graphs, Graphs and Combinatorics, 22 (2006) 217-224.
[6] M. Ferrara, M. Jacobson, F, Pfender, Degree conditions for H-linked digraphs, Combinatorics, Probability and Computing, 22 (5) (2013) 684-699.
[7] S. Jo, J. H. Park, K. Y. Chwa. Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs, Information Sciences, 242 (2013) 103-112.
[8] S. Jo, J. H. Park, K. Y. Chwa, Paired many-to-many disjoint path covers in faulty hypercubes, Theoretical Computer Science 513 (1) (2013) 1-24.
[9] D. Kühn, D. Osthus, A. Young, k-ordered hamilton cycles in digraphs, Journal of Combinatorial Theory, Series B, 98 (6) (2008) 1165-1180.
[10] H. S. Lim, H. C. Kim, J. H. Park, Ore-type degree conditions for disjoint path covers in simple graphs, Discrete Mathematics 339 (2) (2016) 770-779.
[11] D. Liu, J. Li, Many-to-many n-disjoint path covers in n-dimensional hypercubes, Information Processing Letters 110 (1415) (2010) 580-584.
[12] J. H. Park. One-to-many disjoint path covers in a graph with faulty elements, International Computing and Combinatorics Conference, Springer, Berlin, Heidelberg, (2004) 392-401.
[13] J. H. Park, H. C. Kim, H. S. Lim. Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE

Transactions on Parallel and Distributed Systems, 17 (3) (2006) 227240.
[14] J. H. Park, H. C. Kim, H. S. Lim. Many-to-many disjoint path covers in the presence of faulty elements, IEEE Transactions on Computers, 58 (4) (2008) 528-540.
[15] L. Redei, Ein kombinatorischer Satz, Acta Litt, Szeged, 7 (1934) 39-43.
[16] Y. K. Shih, S. S. Kao, One-to-one disjoint path covers on k-ary n-cubes, Theoretical Computer Science 412 (35) (2011) 4513-4530.
[17] L. You, J. Fan, Y. Han, X. Jia, One-to-one disjoint path covers on alternating group graphs, Theoretical Computer Science 562 (2015) 146-164.
[18] Z. Zhou, Semi-degree conditions for one-to-many disjoint path covers in digraph, submitted.

[^0]: *Corresponding author.

