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Abstract

Let D be a digraph. We define the minimum semi-degree of D
as 6°(D) := min{6(D),6~(D)}. Let k be a positive integer, and let
S ={s}and T = {t1,...,tx} be any two disjoint subsets of V(D). A
set of k internally disjoint paths joining source set S and sink set T
that cover all vertices D are called a one-to-many k-disjoint directed
path cover (k-DDPC for short) of D. A digraph D is semicomplete if
for every pair x,y of vertices of it, there is at least one arc between z
and y.

In this paper, we prove that every semicomplete digraph D of suf-
ficiently large order n with 6°(D) > [(n + k — 1)/2] has a one-to-
many k-DDPC joining any disjoint source set S and sink set 71", where
S={s}, T=A{t1,...,tx}.
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1. Introduction

For terminology and notation not defined here, we refer to [I] and [2]. In
this paper, a path always means a directed path. An -y path is a directed
path which is from z to y for two vertices x,y € V(D). For two vertices z
and y on a path P satisfying x precedes y, let Py denote the subpath of P
from x to y. A digraph D is strongly connected, or strong for short, if there
exists an z-y path and a y-z path, for every pair x, y of distinct vertices in
D.

Let D = (V(D), A(D)) be a digraph, and let Dy and Dy be two disjoint
subdigraphs of D satisfying V(D) U V(Dg) = V(D). For x € V(D;), let
Ngi(aj) ={y € V(D;) \z: zy € A(D)}. Np () is defined similarly. Let
4, (@) = N5, ()], dp, () = [N, (2)] and Np, (2) == N, () U Np, (2).

A k-disjoint path cover of an undirected graph G is a set of k internally
disjoint paths connecting given disjoint source set and sink set such that all
vertices of GG is covered by the path set. The k-disjoint path cover problem
(k-DPC for short) has been studied by many researchers, see [7, [8, 10, 1T
12], 13), 14 [16l [17]. The problem of k-disjoint path cover can be classified
into three types according to the number of elements in the source set and
the sink set: one-to-one, one-to-many and many-to-many. The one-to-one
type considers disjoint path covers joining a single pair of source s and sink
t [4, [16), 17], and the one-to-many type is about disjoint path covers which
join a single source s and a set of k distinct sinks 1, to, ..., ¢, [12, [18]. The
many-to-many type considers disjoint path covers between a set of k sources
S1,89,...,8 and another set of k sinks ¢, o, ...t [7, R 111 [13] [14].

Let k be a positive integer, let S = {s} and T' = {t1,...,tx} be two
disjoint subsets of V(D). A set of disjoint path {P;,..., P} of D is a
k-disjoint directed path cover (one-to-many k-DDPC for short) of D, if
UL, V(P) = V(D) and V(P) NV (P;) = {s} for all i # j, where P is
a path from s to ;.

A digraph D is semicomplete if for every pair x,y of vertices of it, there
is at least one arc between x and y. In this paper, we study the problem
of one-to-many k-DDPC in semicomplete digraphs and prove the following
main result. Note that our argument is inspired by that of [9],

Theorem 1. Let D be a semicomplete digraph of order n > (9k)°, where k
(> 2) is an integer. If 8°(D) > [(n +k — 1)/2], then D has a one-to-many
k-DDPC for any disjoint source set S and sink set T, where S = {s},T =
{t1,.. ., tr}.



2. Preliminaries

We now introduce two results concerning the existence of a Hamiltonian
path (cycle) in semicomplete digraphs.

Theorem 2. [15] Every semicomplete digraph contains a Hamiltonian path.

Theorem 3. [3] Every strong semicomplete digraph on n > 3 vertices has
a Hamiltonian cycle.

The following is the definition of H -subdivision.

Definition 1. [5] Let H be a (multi)digraph and D be a digraph. Let P(D)
denote the set of paths in D. An H-subdivision in D is a pair of mappings
f:V(H) = V(D) and g: A(H) — P(D) such that:

(a) f(u) # f(v) for all disjoint u,v € V(H) and

(b) for every uwv € A(H), g(uv) is an f(u)-f(v) path in D, and disjoint
arcs map into internally disjoint paths in D.

A digraph D is H-linked if every injective mapping f: V(H) — V(D)
can be extended to an H-subdivision in D. A digraph D is one-to-many
k-linked if it has a set of k paths {Py, ..., Py} for any disjoint vertex subsets
S ={s}and T = {t1,...,t;} such that every path P; is from s to ¢; and
V(B)NV(P,) = {s} for i # .

Ferrara, Jacobson and Pfender [6] gave a sufficient condition for a digraph
D to be H-linked. By this result, Zhou [18] found a specific digraph H and
got the following corollary.

Corollary 4. [18] Let k (> 2) be an integer, and let D be a digraph with
order n > 80k. If 6°(D) > [(n+k —1)/2], then D is one-to-many k-linked.

3. Proof of Theorem 1

In the rest of this paper, let D be a semicomplete digraph which satisfies
the assumption of Theorem [Il Let S = {s} and T" = {t1,...,tx} be any
two disjoint subsets of D. An S-T path in D is a set of k-disjoint paths
Pi,..., Py, where every path P; is from s to t; and V(P;) N V(P;) = {s}
for all @ # j. By Corollary Ml D contains at least one S-T' path. Let L be
a maximum S-T path, that is, it covers the most vertices of D among all
S-T paths. Suppose that L is not a one-to-many k-DDPC (this implies that
Ule V(P;) S V(D)). We aim to obtain a larger S-T' path from L and hence
this produces a contradiction.



Let H be the subdigraph of D induced by V(D) \ V(L). Since D is
semicomplete, both L and H are semicomplete. Let F':= {x € V(L): Jy €
V(H) such that yr € A(D)}, R :={z € V(L): 3y € V(H) such that zy €
A(D)}. Let Fp, := F\ R and R,, := R\ F. Since D is semicomplete, for
every vertex h € V(H) and every vertex z € R,,, there is an arc from z to h.
Similarly, for every vertex y € F),, there is an arc from h to y. For a vertex
v e V(P)\ {s}, its predecessor is denoted by v~ € V(F;) \ {¢;}. Similarly,
for a vertex v € V(B;) \ {t;}, its successor is denoted by vt € V(B;) \ {s}.
Let F~ :== {z7:x € F\ S} and RT := {#":2 € R\ T}. Similarly,
let F,, .= {2z :2 € F,\ S} and R} := {#t: 2 € R,, \ T}. To prove
Theorem 1, we need more preliminary results, including several lemmas and
corollaries.

Lemma 5. The following assertions hold:
(a) dy(z)+df(y) > |H| -1 for every pair of vertices z,y € V(H).
(b) H is strong with |H| < L"‘Tkﬂj -1

Proof. For any vertex x € V(H), we have dy(z) + dj;(z) > |H| — 1 since
H is semicomplete. The case that |H| =1 is trivial, so now we assume that
|H| > 2.

We first consider the case that |[H| = 2, say V(H) = {z,y}. There is at
least one arc, say xy € A(H), between x and y since H is semicomplete. We
claim that d (z)+d} (y) < |L|+k. Suppose that d; (z)+df (y) > |L|+k+1.
Let X = N; (z) and Y = {v: vt € N} (y)}. If s € N; (y), then s~ does not
exist. For each path P;, if sT € Nz'(y), then there is only one s satisfying
s € Y. Therefore, we have Y| > d} (y) — k and

IXNY| = [X|+|Y|—|XUY| > df (2)+d} (y)—k—|L| > |L|+k+1—k—|L| = 1.

This implies that there are two vertices v € N (z) and v™ € N (y). By
replacing the arc vv™ with the path vzyv™, we obtain a larger S-T" path, a
contradiction. Therefore, d; (z) +dj (y) < |L| + k and

n+k-—1

(@) + dfy ) > 2[5

1= (Ll +k) = [H -1=1,
which satisfies the degree condition in Lemma [l Hence, yz € A(H) and so
H is strong in this case.

When |H| > 3, from the argument above, any two vertices z1,y; € V(H)
with z1y; € A(D) satisfy the degree condition in Lemma[l If y121 ¢ A(H),
then y1 ¢ Ny (z1) and 21 ¢ N (y1). Consequently, [Ny (1) U N7 (y1)| <

4



[H| = 2, and so [Nj (1) 0 Njj(y)l = INg(@)| + INji(n)| — [Nj(e1) U
N (y1)| > dg(x1) +df(y1) — (|H| — 2) > 1. This implies that H contains a
y1-z1 path of length 2. Therefore, when x1y; € A(H), either y121 € A(H)
or there is a y1-z1 path of length 2 in H. For any vertex x € V(H), we have
|Nu(z)| = [Ny (z) UN#(2)| = |H| — 1 since H is semicomplete. According
to the argument above, there are two paths of both directions between x
and every vertex in Ny(z). For any two vertices =,z € V(H), note that
z € Npy(x) since H is semicomplete, and this implies that there are two
paths of both directions between x and z. Hence, H is also strong in this
case.

For every pair of vertices =,y € V(H), there is an z-y path, say P, since
H is strong. With a similar argument to that of the case |H| = 2, we can
get d7 (z) +dj (y) < |L| + k, and for every pair of vertices x,y € V(H),

dy(w) +dg(y) > [H| - 1. (1)

In particular, when V(H) = {h}, d5;(h) + dj;(h) = |H| — 1 = 0 (satisfying
the above degree condition).

We now prove the upper bound for |H|. Note that R* N F = 0. If
v € R"NF, then v~ € R. There are two vertices uj,us € V(H) such
that v~ uy, ugv € A(D). Since H is strong, H contains a uj-ug path P. By
replacing the arc v~ v with the path v~ Pv, we obtain a larger S-T' path,
a contradiction. This implies that there is a vertex v € V(L) such that
Np(v) € Lor Ny(v) C L. Thus |[L| —1 > 6%(D) > [(n+ k —1)/2], and
then |[H| < |(n —k+1)/2| — 1. O

According to the proof above, we have RTNE = (). Similarly, RNF~ = (),
so the following corollary holds.

Corollary 6. For any u € R, u™ ¢ F. Similarly, for anyv € F, v~ ¢ R.
Lemma 7. The following assertions hold:
(a) |[FUR|=|L| and |FNR| < k.

(b) For any path P;, if x1 precedes xo in P;, then there are no distinct
vertices y1,y2 € V(H) such that x1y1,ysx2 € A(D).

Proof. For any vertex € V(L) and any vertex y € V(H), there is at least
one arc between x and y since H is semicomplete. Observe that = € F, or
x € R (or both) for any vertex x € L, so |FUR| = |L|.

For each path P;, we claim that (RN F)NV(F;)| < 1. Suppose that
u,v € RN F are two distinct vertices in P; and u precedes v. Let ()1 denote



the set of all vertices between u and v. For any path P;, if z ¢ F, thenz € R
since |FFU R| = |L|. By Corollary [, u* ¢ F, for any u € R. Therefore,
ut € R and V(utPit;) C R. As v~ € V(uTPit;), we get that v~ € R.
By the assumption, v € F, so there are two vertices hy,hy € V(H) such
that v=hy, hov € A(D). By Lemma 5] H is strong and hence contains an
hi-hs path P. By replacing v~ v with v~ Pv, we obtain a larger S-T" path,
a contradiction. Particularly, when Q1 = 0, u € R and v = «* € F by the
assumption. Similar to the argument above, we still can find a larger S-T'
path, this also produces a contradiction. Consequently, |(RNF)NV(F;)| <1
for each path P;, which implies that |[R N F| < k.

Now we prove the assertion (b). Assume that such y;,ys exist. There-
fore, z1 € R and 2 € F in P;. Similar to the proof above, let Q2 denote the
set of all vertices between 1 and x9. For any path P;, if x ¢ F', then x € R
since |F U R| = |L|. By Corollary [6, u* ¢ F, for any v € R. Therefore,
r] € R, V(2] Pit;) C R and z; € R. Together with the fact zo € F, we can
find a larger S-T path, a contradiction. Particularly, if Qo = (), then 21 € R
and a9 = xf € F by the assumption. Similar to the argument above, we
still find a larger S-T' path, and hence this also produces a contradiction.
Consequently, for any path P;, if z; precedes xo in P;, then there are no
distinct vertices y1,y2 € H such that xiy;,yaxe € A(D). This implies xg
always precedes x1 for any 1 € R,x9 € F' in each path P;. O

The proof of the following lemma is similar to that of Lemma 13 in [9],
but we still need to give the proof below.

Lemma 8. |F|, |[R| > (n+ k+1)/2 — |H|. Furthermore, |Fy|, |Rmy| >
(n—k+1)/2—|H| and |F,, UR,,| > |L| — k.

Proof. For every vertex z € V(H), d (z) > §°(D) — (|H| — 1) > (n +
k+1)/2 — |H|, and so |R| > (n+ k + 1)/2 — |H|. The inequality |F| >
(n+k+1)/2 — |H| can be proved similarly. By Lemmal[7 |[RN F| < k,
so |[Rm| =|R|—|RNF|>Mn+k+1)/2—-|H -k=(n—-k+1)/2—|H]|.
Similarly, we can prove the inequality |F,,| > (n —k+1)/2 — |H|.

By Lemmal7, |[FUR| = |L| and |[FFNR| < k. Together with the definition
of F, and Ry, |FUR| = |Fo|+|Rim|+|FNR|, s0 |RnUFy| = |Fn|+|Rm| =
IFUR| — |[FNR|> |L| - k. O

We rewrite Theorem [I] and give the proof now:

Theorem 1. Let D be a semicomplete digraph of order n > (9k)>, where k
(> 2) is an integer. If §°(D) > [(n + k — 1)/2], then D has a one-to-many



k-DDPC for any disjoint source set S and sink set T, where S = {s},T =
{tl, ... ,tk}.

Proof. Recall that at the beginning of Section 3, we supposed that L is not
a one-to-many k-DDPC. It suffices to find a larger S-T path more than L,
and then this produces a contradiction and thus we prove Theorem [Il Our
argument is divided into the following three cases.

Case 1. |H| = 1.

Let V(H) = {h}. Since |H| = 1, we have d (h) = |R|, d] (h) = |F| and
df(h) + dj (h) = df(h) + dp(h). According to whether n + k is even, we
distinguish the following two subcases.

Case 1.1. n + k is even.

When n + k is even, we have [E=1] = 2k and df (n) + dj (h) >
269(D) > n + k. Consequently, |F|+ |R| > n + k. By Lemma[l, |[RU F| =
|L| = n—1. Therefore, |[RNF| = |R|+|F|—|RUF| > (n+k)—(n—1) = k+1,
which implies that there exists a path P; such that u,v € RN F. Without
loss of generality, assume that u precedes v. Arguing similarly as in the
proof of Lemma[7] we can find a larger S-T path, say L*, which contains h.
Consequently, L* is a one-to-many k-DDPC in D, a contradiction.

Case 1.2. n + k is odd.

When n + k is odd, we have [(n+k —1)/2] = (n+ k —1)/2. Therefore,
df(h) = d5(h) > (n+k —1)/2, d; (h) = dp(h) > (n+k —1)/2, and
di (k) +dy (h) >26°(D) > n+ k — 1. Consequently, |R|+ |F| > n+k — 1.
Since |L| =n—1, |[RNF| =|R|+ |F|-|RUF| > (n+k—-1)—(n—
1) = k. By Lemma[ll |RNF| < k, so |[RNF| = k. According to the
argument in Lemma Bl dj (k) + d; (h) < |L| +k = n+ k — 1. Therefore,
di (k) +d; (h) =n+k—1, and then df (h) = d; (h) = (n+ k — 1)/2. Thus
we get |F| = df(h) = (n+k—1)/2, |R| = d;(h) = (n+k —1)/2 and
|Rp| = |Fin|=(n+k—-1)/2—k=(n—k—1)/2 by Lemma[8l

Note that each y € F), satisfies d;gm (y) > 6%(D)— (JF|—1) = 1, so there
is at least one vertex z1 € R,, such that yz; € A(D). By Lemma [7 we
have s € F,,,, so there exists a vertex x1; € R, in P; such that sx; € A(D).
As ([RNF)NV(P)| <1 and |RN F| = k, there is a vertex sj € Fin
P;. Together with the fact that 2 € R, there exists an xl_—sj path whose
inner vertex is h. Let P’ := sz P;t; and P;‘ = sPZ-xl_hsijtj. Therefore,
we obtain a larger S-T' path, say L*, which contains h. Consequently, L* is
a one-to-many k-DDPC in D, this produces a contradiction (see Figure [I]).
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Case 2. 2 < |H| < n/2—n/(50k).

By Lemma8 |R,,| > (n — k+1)/2 — |H| > n/(53k), so there exists a
path P; which contains at least n/(53k?) vertices from R,,. Without loss
of generality, assume that j = 1. Let A be the set of vertices belonging to
R,, in P;. We use A; (Asg, respectively) to denote the subpath of A which
contains the first (last, respectively) n/(110k?) inner vertices of A.

The first vertex of A is denoted by t. For any vertex a € V(¢ Pit1),
Lemma [0 implies that ¢ € R and N,(a) € V(L). By Lemma 8, |F| >
(n+k+1)/2—|H| and so

dp(a) = 8(D) = (n+k—1)/2 > n+k — [H| - |F| = |L| - |F| + k. (2)

Case 2.1. There are two vertices a1 € A; and ag € Ay such that ajas €
A(D).

By inequality (2)), we have d; (af) > |L| — |F| + k and

IN (a) N F™] = [Ny (ap)| + [F7| = [N (af ) U F|
> dp(af) + (IF| = k) — (IL] = 1)
> L = [Fl+k+(F=k) - (L] -1) =1

(By the definition of F~, we have F~ NT = (). Corollary [ implies that
F NR=0anda ¢ F~, thus [N; (a] )UF~| <|L|—1. If s € F, then s~
does not exist. For each P, if s;r € F, then there is only one s satisfying
s € F~. Therefore, |F~| > |F|—k). This implies that there are two vertices
w € Nj (a7 )N F~ and wt € F. Lemma [ implies that FF NV (¢tTPity) = 0,
sowt € V(stPit) or wt € V(P \ {s}) (i #1). Therefore, w € V(sP;it™)
or w € V(p; \ {t;}) (i # 1). By Lemma [ H is strong. When |H| > 3,
by Theorem [, we get that H contains a Hamiltonian cycle, say C. For a



vertex x on C, its predecessor on C' is denoted by z~ and its successor on
C is denoted by z+. When |H| > 3, there exists a vertex u € V(H) such
that uw™ € A(D) since wt € F. As a; € R, there is an arc from a;
to u™. Note that there is a Hamiltonian path from u™ to u in H. When
|H| =2, let V(H) = {u,v}. There exists a vertex, say v € V(H), such that
vwt € A(D) since w € F. As a; € Ry, there is an arc from a; to u.
Note that uv,vu € A(H) since H is strong.

If w € V(sPit™), then according to the argument above, there ex-
ists a path a; Qiw™, where Qp contains all vertices in H. Let Py :=
sPlwafPlaz_QlerPlalagPltl. Now we obtain a larger S-1" path L* which is
a one-to-many k-DDPC in D. This produces a contradiction (see Figure [2)).

Figure 2

If we V(P \ {t;}) (i # 1), then according to the argument above, we
can also find a path a; Qow™, where Q2 contains all vertices in H. Let
Pf := sPiajasPity and P} := sPiwafPlaz_ngJrPiti. Therefore, we obtain
a larger S-T path L* which is a one-to-many k-DDPC in D. This produces
a contradiction (see Figure [3).

> >O
as 1

>,
w wt

Figure 3



Case 2.2. Case 2.1 does not hold.

By the definition of F,, F,, NV (tPit1) = (. For any vertex a € As,
Lemma [7 implies that N, (a) € V(L). By the assumption, N, (a) C V(L) \
V(A;). By Lemmal |F,,| > (n —k+1)/2 — |H|. Similar to the argument
in @), we get that d;_, (a) > (D) > (n+k—1)/2>n—|H| - |F,| >
|L — A1| + |A1] = |F,,| — k (recall that |[F~| > |F|—k, so |F| < |F~|+k and
|Fon| < |F..| + k). By the definition of F,,, F,, NV (A;) =0, and so

INp_a, (@) N Fo| > |L = Ay + [Ay] = B[ — K+ || — |L— Ay
= |A;| — k = (n — 110K%)/(110K?).

Let I := sPit and I; := P; \ {t;} (i # 1). We use G; to denote the
auxiliary bipartite graph whose vertex sets are V(As) and V(I;) N F,, (i =
1,...,k). For any a € V(Az) and w € V(I;) N F,,, if wa € A(D), then
there is an edge between a and w in each G;. As F,, NV (tPit1) =0, F,, C
V(I;)U---UV(I;) and the edges of G1 U--- UGy, are equivalent to the arcs
which are from F;, to A2 in D. Since [Ny, (a)NF,,| > (n—110k3)/(110k?),
there exists a G; satisfying

|Aa|(n — 110k3)
11043

n(n — 110k3)
12100k5

v

e(G;) > > 3n > 3]Gyl
This implies that Gj; is not planar, so there are vertices aj, as € V(Az) and
wy, we € V(I;) N F,, such that the edges wyay, weag cross in Gj.

We first consider the case that ¢ = 1, and then w;, wy € V(sPit) N F,,
and w}, wy € F,,. Together with the fact that a], a; € R, we can
find disjoint paths aj_ij;f (j = 1,2), where the vertices of Q; lie in H
and |Q1 U Q2] > 2. Particularly, when |H| = 2, say V(H) = {u,v},
we have Q1 = w and @2 = v, or 1 = v and @2 = u. Let P :=
sP1w1a1Plaz_ng;Plal_QlwalwgagPltl. Thus we obtain a larger S-T
path L* which contains at least |L| + 2 vertices, this produces a contradic-
tion (see Figure []).

We now consider the case that i # 1, without loss of generality, assume
that i = 2. Consequently, wy, we € V(P2 \ {t2}) N F,; and wi, wy € Fp,.
According to the argument above, wia; and woas cross in Go. Without
loss of generality, assume that a; precedes as in P; and ws precedes wy in
P,. By Theorem 2] H has a Hamiltonian path. Suppose that there is a
Hamiltonian path from v to v in H. Since a, € R, and w;' € F,,, we
have ayu, vwy € A(D), which implies that there exists a path ay Qwj,
where ) contains all vertices in H. Let P[ := sPwsasPit; and Py :=
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sPray Qw; Psts. Therefore, we obtain a larger S-T' path L* which is a one-
to-many k-DDPC in D. This produces a contradiction (see Figure [).

Case 3. n/2 —n/(50k) < |H| < [(n—k)/2] -1=|(n—k+1)/2] — 1.

By Lemma 8 |R,,| > (n — k+1)/2 — |H| > 1. Similarly, |F,,| > 1.
By Lemma [@ [RUF| = |L|, |[RNF| < k and |L| —k < |Rp, U F,| =
|Rp| + |Fn| < |L|. Since [(n+k —1)/2] +1 < |L| < n/2+ n/(50k), we
deduce that [(n —k+1)/2] <|Rpm| + |Fin| < n/2+n/(50k).

Note that each h € V(H) satisfies

dp(h) =26~ (D) = ([H|=1) > [(n+ k= 1)/2] = [(n = k)/2] + 1 +1
>n+k—-1)2-n—-k+1)/2+2=k+1
and so |R| > k + 1. Similarly, df (h) > §7(D) — (|H| — 1) > k + 1, so
|F| > k+ 1. For any vertex x € R,,, Lemmal[7limplies that N, (z) C V(L).
Furthermore,

IL| — 6~ (D) < n/2 +n/(50k) — (n + k — 1)/2 < n/(50k),
so for every vertex x € R, and a vertex set Z; C V(L) satisfying |Z;| >
n/(50k), there exists a vertex a; € Z; such that a;x € A(D). Similarly, for
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every vertex y € Fy, and a vertex set Zo C V(L) satisfying |Z2| > n/(50k),
there exists a vertex as € Zs such that yas € A(D).

Case 3.1. 1 < |R,,| < k.

By Lemmal[7 |[(RNF)NV(P;)| < 1. Together with the fact that |R| >
k+1, we deduce that there exists a path P; such that z; € R and :Eii— € R,.
Observe that |F,,| > [(n — k +1)/2] — k > n/3 since |R,,| < k, and so
one of the k paths of L, say Pj, contains at least n/(3k) vertices from Fj,.
Thus there is a subpath y; Pjy2 on path P; such that V(y1 Pjy2) € Fy;, and
31 Pyl =/ (20k).

We first consider the case that j # ¢, without loss of generality, assume
that i = 1 and j = 2. There is a vertex a1 € V(y1 P2y, ) such that almf €
A(D) since z{ € Ry, and |y Pay, | > n/(50k). As 1 € R, there exists
a vertex hy € V(H) such that x1h; € A(D). According to the argument
in Case 2.1, we deduce that H has a Hamiltonian cycle. As af € F,
hiaf € A(D). Note that there is a Hamiltonian path from hy to k] in H.
This implies that there exists a path lelaf, where ()1 contains all vertices
in H. Let P := ngalwaltl and Py = slelQlangtg. Now we obtain a
larger S-T path L* which is a one-to-many k-DDPC in D. This produces a
contradiction (see Figure []).

Figure 6

We next consider the case that j = ¢, without loss of generality, assume
that j = ¢ = 1. Let I} := y1Piys, Io = y;'P1y4, I3 := yj Pys, and
Iy := yd Prys, where |I1| = n/(240k), |Io| = n/(240k), |I3| = n/(48k), and
|I;] = n/(48k). According to the argument at the beginning of Case 3,
there is a vertex az € V(I3) such that agz] € A(D) since 2] € R,, and
|I3] > n/(50k). Similarly, there are two vertices a; € I; and a4 € Iy such
that ayjaq € A(D) (since a1 € F,, and |I4] > n/(50k)). As z1 € R, there
exists a vertex hy € V(H) such that z1hy € A(D). For a vertex as € I, we
have ag € Fy,, so hi ag € A(D). According to the argument in Case 2.1, we

12



deduce that H contains a Hamiltonian cycle, and so there is a Hamiltonian
path from hq to hy in H. This implies that there exists a path x1(2a2, where
Q2 contains all vertices in H. Let P| := 3P1a1a4P1x1angPlagfoltl.
Thus we obtain a larger S-T" path L* which contains at least |H| — |I1| —
|Is| — |I3| — |14] > n/2 —n/(50k) — n/(20k) > O vertices more than L. This
produces a contradiction (see Figure [7]).

Q2

w@

Figure 7

Case 3.2. |F,| = 1.

In this case, n—kis odd, |H| = (n—k+1)/2—1 and |L| = (n+k—1)/2+1
by Lemma B Recall that |F| > k + 1 at the beginning of Case 3. By
Lemma[d, [RNF| <k and |(RNF)NV(P;)| < 1. Therefore, s € F,, and
there exists exactly a vertex s;r in each P; such that s;r € RNF by Lemmal[7l
As |Ry| + |Fnl = [(n —k+1)/2], |[Rp| > [(n —k+1)/2] — 1 > n/3.
Consequently, one of the k paths of L, say P;, contains at least n/(3k)
vertices from R,,. There is a subpath z1P;ze on P; such that V(x1Pxy) C
R, and |z Pizo| = n/(20k).

Without loss of generality, assume that ¢ = 1. There are two vertices
s € Fy, and s;r € RNFin P,. According to the argument at the beginning of
Case 3, there is a vertex aj € V(:L"IFPlxg) such that sa; € A(D) since s € F,
and |z Piwa| > n/(50k). As s3 € F, there exists a vertex hy € V/(H) such
that hlsgr € A(D). By the assumption, a; € Ry, so there is an arc from aj
to hf. According to the argument in Case 2.1, we deduce that H contains
a Hamiltonian cycle. Note that there is a Hamiltonian path from hf to hy
in H. This implies that there exists a path af@séF , where @) contains all
vertices in H. Let P| := sa; Pty and Py = sPlal_Qs;Pgtg. Thus we obtain
a larger S-T path L* which is a one-to-many k-DDPC in D. This produces
a contradiction (see Figure []]).

Case 3.3. |F,| > 2 and |R,,| > k + 1.

13
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Since |R,,| > k + 1, there is a path P; such that z1,29 € R,,, and x;
precedes 5. Similarly, as |F,| > 2, there is a path P; such that yi,y2 € Fp,
and y; precedes ¥s.

Case 3.3.1. There exists a subpath z1P;xz9 on P, such that |xiPxe| >
n/(20k).

We first consider the case that j # ¢, without loss of generality, assume
that ¢ = 1, j = 2, and y; = y,. Lemma [7] implies that V(x;Piza) C
Rp. Let Ay := z1Pias and Ay = x3 Pizy, where |A;| = n/(48k) and
|As| = n/(48k). According to the argument at the beginning of Case 3,
there is a vertex a; € Aj such that ajze € A(D) since xo € R, and
|Ai| > n/(50k). Similarly, as y, € F,, and |As] > n/(50k), there exists a
vertex ag € A such that y; ag € A(D). By Theorem[2] H has a Hamiltonian
path. Suppose that there is a Hamiltonian path from u to v in H. Since
x5 € Ry, and yo € Fyyy, x5 u, vy2 € A(D). This implies that there exists a
path x5 Q1y2, where 1 contains all vertices in H. Let P := sPiajx2Pity
and Py := sPyy, aaP1x, Q1y2Pta. Thus we obtain a larger S-T" path L*
which contains at least |H| — |V (a1Piag)| > n/2 —n/(50k) — n/(24k) > 0
vertices more than L. This produces a contradiction (see Figure [3]).

We next consider the case that j = ¢, without loss of generality, assume
that j =¢ =1 and y; = y, . The argument for the case that j = ¢ is similar
to that of the case j # i, so there exists a path =5 Q2y2, where ()2 contains
all vertices in H. Let P| := sPyy, aa P15 Q2y2Prajz2Pit. Thus we obtain
a larger S-T path L* which contains at least |H| — |V (a1 Piaz)| > n/2 —
n/(50k) —n/(24k) > 0 vertices more than L. This produces a contradiction
(see Figure [10).

Case 3.3.2. Case 3.3.1 does not hold.
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Figure 9
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Figure 10

There is not a subpath z1P;xs in each path P; such that |xiPxs| >
n/(20k), so |Ry| < n/(20). Recall that |Ry,|+ |Fn| > [(n—k+1)/2] at the
beginning of Case 3, so |Fy,| > [(n—k+1)/2] —n/(20) > n/3. One of the k
paths of L, say P;, contains at least n/(3k) vertices from F,,. Without loss
of generality, assume that j = 2. We can find a subpath y; Poy2 such that
V(y1Pyy2) C Fy, and |V (y1Pay2)| > n/(20k). There is a path P; such that
x1,T9 € Ry, and x1 precedes xg since |Ry,| >k + 1.

We first consider the case that j # ¢, without loss of generality, assume
that i =1, j =2, and x5 = xf Let Ay := y3Poy2 and Ay := ys Py, , where
|A2| = n/(48k) and |A1| = n/(48k). According to the argument at the
beginning of Case 3, there is a vertex as € Ag such that yjag € A(D) since
y1 € Fy, and |As| > n/(50k). Similarly, as ] € Ry, and |A;| > n/(50k),
there exists a vertex a; € Aj such that alwf € A(D). By Theorem 2 H
has a Hamiltonian path. Assume that there is a Hamiltonian path from u
to v in H. Since z1 € Ry, and y; € F,, x1u, vy € A(D). This implies
that there exists a path lelyf, where Q1 contains all vertices in H. Let
Pl = sPllelyferl:EfPltl and Py := sPyyjasPsts. Thus we obtain
a larger S-T path L* which contains at least |H| — |V (a1 P2ag)| > n/2 —
n/(50k) —n/(24k) > 0 vertices more than L. This produces a contradiction
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(see Figure [IT]).

+
T Ly tl
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Figure 11

We next consider the case that ¢ = j = 2, without loss of generality,
assume that 7o = z{. Arguing similarly as that of the case i # j, we get
that there exists a path :Engyf, where Qs contains all vertices in H. Let
Py = sP2y1anglegnygalwagtg. Thus we obtain a larger S-T path L*
which contains at least |H| — |V (a1 Pyaz)| > n/2 —n/(50k) — n/(24k) > 0
vertices more than L. This produces a contradiction (see Figure [12).

Q2

Figure 12
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