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Abstract

Let D be a digraph. We define the minimum semi-degree of D
as δ0(D) := min{δ+(D), δ−(D)}. Let k be a positive integer, and let
S = {s} and T = {t1, . . . , tk} be any two disjoint subsets of V (D). A
set of k internally disjoint paths joining source set S and sink set T
that cover all vertices D are called a one-to-many k-disjoint directed
path cover (k-DDPC for short) of D. A digraph D is semicomplete if
for every pair x, y of vertices of it, there is at least one arc between x
and y.

In this paper, we prove that every semicomplete digraph D of suf-
ficiently large order n with δ0(D) ≥ ⌈(n + k − 1)/2⌉ has a one-to-
many k-DDPC joining any disjoint source set S and sink set T , where
S = {s}, T = {t1, . . . , tk}.
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1. Introduction

For terminology and notation not defined here, we refer to [1] and [2]. In
this paper, a path always means a directed path. An x-y path is a directed
path which is from x to y for two vertices x, y ∈ V (D). For two vertices x
and y on a path P satisfying x precedes y, let xPy denote the subpath of P
from x to y. A digraph D is strongly connected, or strong for short, if there
exists an x-y path and a y-x path, for every pair x, y of distinct vertices in
D.

Let D = (V (D), A(D)) be a digraph, and let D1 and D2 be two disjoint
subdigraphs of D satisfying V (D1) ∪ V (D2) = V (D). For x ∈ V (Di), let
N+

Di
(x) := {y ∈ V (Di) \ x : xy ∈ A(D)}. N−

Di
(x) is defined similarly. Let

d+Di
(x) := |N+

Di
(x)|, d−Di

(x) := |N−

Di
(x)| and NDi

(x) := N+

Di
(x) ∪N−

Di
(x).

A k-disjoint path cover of an undirected graph G is a set of k internally
disjoint paths connecting given disjoint source set and sink set such that all
vertices of G is covered by the path set. The k-disjoint path cover problem
(k-DPC for short) has been studied by many researchers, see [7, 8, 10, 11,
12, 13, 14, 16, 17]. The problem of k-disjoint path cover can be classified
into three types according to the number of elements in the source set and
the sink set: one-to-one, one-to-many and many-to-many. The one-to-one
type considers disjoint path covers joining a single pair of source s and sink
t [4, 16, 17], and the one-to-many type is about disjoint path covers which
join a single source s and a set of k distinct sinks t1, t2, . . . , tk [12, 18]. The
many-to-many type considers disjoint path covers between a set of k sources
s1, s2, . . . , sk and another set of k sinks t1, t2, . . . , tk [7, 8, 11, 13, 14].

Let k be a positive integer, let S = {s} and T = {t1, . . . , tk} be two
disjoint subsets of V (D). A set of disjoint path {P1, . . . , Pk} of D is a
k-disjoint directed path cover (one-to-many k-DDPC for short) of D, if⋃k

i=1
V (Pi) = V (D) and V (Pi) ∩ V (Pj) = {s} for all i 6= j, where Pi is

a path from s to ti.
A digraph D is semicomplete if for every pair x, y of vertices of it, there

is at least one arc between x and y. In this paper, we study the problem
of one-to-many k-DDPC in semicomplete digraphs and prove the following
main result. Note that our argument is inspired by that of [9],

Theorem 1. Let D be a semicomplete digraph of order n ≥ (9k)5, where k
(≥ 2) is an integer. If δ0(D) ≥ ⌈(n + k − 1)/2⌉, then D has a one-to-many
k-DDPC for any disjoint source set S and sink set T , where S = {s}, T =
{t1, . . . , tk}.
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2. Preliminaries

We now introduce two results concerning the existence of a Hamiltonian
path (cycle) in semicomplete digraphs.

Theorem 2. [15] Every semicomplete digraph contains a Hamiltonian path.

Theorem 3. [3] Every strong semicomplete digraph on n ≥ 3 vertices has
a Hamiltonian cycle.

The following is the definition of H-subdivision.

Definition 1. [5] Let H be a (multi)digraph and D be a digraph. Let P(D)
denote the set of paths in D. An H-subdivision in D is a pair of mappings
f : V (H) → V (D) and g : A(H) → P(D) such that:

(a) f(u) 6= f(v) for all disjoint u, v ∈ V (H) and
(b) for every uv ∈ A(H), g(uv) is an f(u)-f(v) path in D, and disjoint

arcs map into internally disjoint paths in D.

A digraph D is H-linked if every injective mapping f : V (H) → V (D)
can be extended to an H-subdivision in D. A digraph D is one-to-many
k-linked if it has a set of k paths {P1, . . . , Pk} for any disjoint vertex subsets
S = {s} and T = {t1, . . . , tk} such that every path Pi is from s to ti and
V (Pi) ∩ V (Pj) = {s} for i 6= j.

Ferrara, Jacobson and Pfender [6] gave a sufficient condition for a digraph
D to be H-linked. By this result, Zhou [18] found a specific digraph H and
got the following corollary.

Corollary 4. [18] Let k (≥ 2) be an integer, and let D be a digraph with
order n ≥ 80k. If δ0(D) ≥ ⌈(n+ k− 1)/2⌉, then D is one-to-many k-linked.

3. Proof of Theorem 1

In the rest of this paper, let D be a semicomplete digraph which satisfies
the assumption of Theorem 1. Let S = {s} and T = {t1, . . . , tk} be any
two disjoint subsets of D. An S-T path in D is a set of k-disjoint paths
P1, . . . , Pk, where every path Pi is from s to ti and V (Pi) ∩ V (Pj) = {s}
for all i 6= j. By Corollary 4, D contains at least one S-T path. Let L be
a maximum S-T path, that is, it covers the most vertices of D among all
S-T paths. Suppose that L is not a one-to-many k-DDPC (this implies that⋃k

i=1
V (Pi) $ V (D)). We aim to obtain a larger S-T path from L and hence

this produces a contradiction.
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Let H be the subdigraph of D induced by V (D) \ V (L). Since D is
semicomplete, both L and H are semicomplete. Let F := {x ∈ V (L) : ∃y ∈
V (H) such that yx ∈ A(D)}, R := {x ∈ V (L) : ∃y ∈ V (H) such that xy ∈
A(D)}. Let Fm := F \ R and Rm := R \ F . Since D is semicomplete, for
every vertex h ∈ V (H) and every vertex x ∈ Rm, there is an arc from x to h.
Similarly, for every vertex y ∈ Fm, there is an arc from h to y. For a vertex
v ∈ V (Pi) \ {s}, its predecessor is denoted by v− ∈ V (Pi) \ {ti}. Similarly,
for a vertex v ∈ V (Pi) \ {ti}, its successor is denoted by v+ ∈ V (Pi) \ {s}.
Let F− := {x− : x ∈ F \ S} and R+ := {x+ : x ∈ R \ T}. Similarly,
let F−

m := {x− : x ∈ Fm \ S} and R+
m := {x+ : x ∈ Rm \ T}. To prove

Theorem 1, we need more preliminary results, including several lemmas and
corollaries.

Lemma 5. The following assertions hold:

(a) d−H(x) + d+H(y) ≥ |H| − 1 for every pair of vertices x, y ∈ V (H).

(b) H is strong with |H| ≤ ⌊n−k+1

2
⌋ − 1.

Proof. For any vertex x ∈ V (H), we have d−H(x) + d+H(x) ≥ |H| − 1 since
H is semicomplete. The case that |H| = 1 is trivial, so now we assume that
|H| ≥ 2.

We first consider the case that |H| = 2, say V (H) = {x, y}. There is at
least one arc, say xy ∈ A(H), between x and y since H is semicomplete. We
claim that d−L (x)+d+L (y) ≤ |L|+k. Suppose that d−L (x)+d+L (y) ≥ |L|+k+1.
Let X = N−

L (x) and Y = {v : v+ ∈ N+

L (y)}. If s ∈ N+

L (y), then s− does not
exist. For each path Pi, if s

+ ∈ N+

L (y), then there is only one s satisfying
s ∈ Y . Therefore, we have |Y | ≥ d+L (y)− k and

|X∩Y | = |X|+|Y |−|X∪Y | ≥ d−L (x)+d+L (y)−k−|L| ≥ |L|+k+1−k−|L| = 1.

This implies that there are two vertices v ∈ N−

L (x) and v+ ∈ N+

L (y). By
replacing the arc vv+ with the path vxyv+, we obtain a larger S-T path, a
contradiction. Therefore, d−L (x) + d+L (y) ≤ |L|+ k and

d−H(x) + d+H(y) ≥ 2⌈
n + k − 1

2
⌉ − (|L|+ k) ≥ |H| − 1 = 1,

which satisfies the degree condition in Lemma 5. Hence, yx ∈ A(H) and so
H is strong in this case.

When |H| ≥ 3, from the argument above, any two vertices x1, y1 ∈ V (H)
with x1y1 ∈ A(D) satisfy the degree condition in Lemma 5. If y1x1 /∈ A(H),
then y1 /∈ N−

H (x1) and x1 /∈ N+

H (y1). Consequently, |N−

H (x1) ∪ N+

H (y1)| ≤
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|H| − 2, and so |N−

H (x1) ∩ N+

H (y1)| = |N−

H (x1)| + |N+

H (y1)| − |N−

H (x1) ∪
N+

H (y1)| ≥ d−H(x1)+ d+H(y1)− (|H| − 2) ≥ 1. This implies that H contains a
y1-x1 path of length 2. Therefore, when x1y1 ∈ A(H), either y1x1 ∈ A(H)
or there is a y1-x1 path of length 2 in H. For any vertex x ∈ V (H), we have
|NH(x)| = |N−

H (x) ∪N+

H (x)| = |H| − 1 since H is semicomplete. According
to the argument above, there are two paths of both directions between x
and every vertex in NH(x). For any two vertices x, z ∈ V (H), note that
z ∈ NH(x) since H is semicomplete, and this implies that there are two
paths of both directions between x and z. Hence, H is also strong in this
case.

For every pair of vertices x, y ∈ V (H), there is an x-y path, say P , since
H is strong. With a similar argument to that of the case |H| = 2, we can
get d−L (x) + d+L (y) ≤ |L|+ k, and for every pair of vertices x, y ∈ V (H),

d−H(x) + d+H(y) ≥ |H| − 1. (1)

In particular, when V (H) = {h}, d−H(h) + d+H(h) = |H| − 1 = 0 (satisfying
the above degree condition).

We now prove the upper bound for |H|. Note that R+ ∩ F = ∅. If
v ∈ R+ ∩ F , then v− ∈ R. There are two vertices u1, u2 ∈ V (H) such
that v−u1, u2v ∈ A(D). Since H is strong, H contains a u1-u2 path P . By
replacing the arc v−v with the path v−Pv, we obtain a larger S-T path,
a contradiction. This implies that there is a vertex v ∈ V (L) such that
N+

D (v) ⊆ L or N−

D (v) ⊆ L. Thus |L| − 1 ≥ δ0(D) ≥ ⌈(n + k − 1)/2⌉, and
then |H| ≤ ⌊(n − k + 1)/2⌋ − 1.

According to the proof above, we have R+∩F = ∅. Similarly, R∩F− = ∅,
so the following corollary holds.

Corollary 6. For any u ∈ R, u+ /∈ F . Similarly, for any v ∈ F , v− /∈ R.

Lemma 7. The following assertions hold:

(a) |F ∪R| = |L| and |F ∩R| ≤ k.

(b) For any path Pi, if x1 precedes x2 in Pi, then there are no distinct
vertices y1, y2 ∈ V (H) such that x1y1, y2x2 ∈ A(D).

Proof. For any vertex x ∈ V (L) and any vertex y ∈ V (H), there is at least
one arc between x and y since H is semicomplete. Observe that x ∈ F , or
x ∈ R (or both) for any vertex x ∈ L, so |F ∪R| = |L|.

For each path Pi, we claim that |(R ∩ F ) ∩ V (Pi)| ≤ 1. Suppose that
u, v ∈ R∩F are two distinct vertices in Pi and u precedes v. Let Q1 denote
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the set of all vertices between u and v. For any path Pi, if x /∈ F , then x ∈ R
since |F ∪ R| = |L|. By Corollary 6, u+ /∈ F , for any u ∈ R. Therefore,
u+ ∈ R and V (u+Piti) ⊆ R. As v− ∈ V (u+Piti), we get that v− ∈ R.
By the assumption, v ∈ F , so there are two vertices h1, h2 ∈ V (H) such
that v−h1, h2v ∈ A(D). By Lemma 5, H is strong and hence contains an
h1-h2 path P . By replacing v−v with v−Pv, we obtain a larger S-T path,
a contradiction. Particularly, when Q1 = ∅, u ∈ R and v = u+ ∈ F by the
assumption. Similar to the argument above, we still can find a larger S-T
path, this also produces a contradiction. Consequently, |(R∩F )∩V (Pi)| ≤ 1
for each path Pi, which implies that |R ∩ F | ≤ k.

Now we prove the assertion (b). Assume that such y1, y2 exist. There-
fore, x1 ∈ R and x2 ∈ F in Pi. Similar to the proof above, let Q2 denote the
set of all vertices between x1 and x2. For any path Pi, if x /∈ F , then x ∈ R
since |F ∪ R| = |L|. By Corollary 6, u+ /∈ F , for any u ∈ R. Therefore,
x+
1
∈ R, V (x+

1
Piti) ⊆ R and x−

2
∈ R. Together with the fact x2 ∈ F , we can

find a larger S-T path, a contradiction. Particularly, if Q2 = ∅, then x1 ∈ R
and x2 = x+

1
∈ F by the assumption. Similar to the argument above, we

still find a larger S-T path, and hence this also produces a contradiction.
Consequently, for any path Pi, if x1 precedes x2 in Pi, then there are no
distinct vertices y1, y2 ∈ H such that x1y1, y2x2 ∈ A(D). This implies x2
always precedes x1 for any x1 ∈ R,x2 ∈ F in each path Pi.

The proof of the following lemma is similar to that of Lemma 13 in [9],
but we still need to give the proof below.

Lemma 8. |F |, |R| ≥ (n + k + 1)/2 − |H|. Furthermore, |Fm|, |Rm| ≥
(n− k + 1)/2 − |H| and |Fm ∪Rm| ≥ |L| − k.

Proof. For every vertex x ∈ V (H), d−L (x) ≥ δ0(D) − (|H| − 1) ≥ (n +
k + 1)/2 − |H|, and so |R| ≥ (n + k + 1)/2 − |H|. The inequality |F | ≥
(n + k + 1)/2 − |H| can be proved similarly. By Lemma 7, |R ∩ F | ≤ k,
so |Rm| = |R| − |R ∩ F | ≥ (n + k + 1)/2 − |H| − k = (n − k + 1)/2 − |H|.
Similarly, we can prove the inequality |Fm| ≥ (n− k + 1)/2 − |H|.

By Lemma 7, |F ∪R| = |L| and |F ∩R| ≤ k. Together with the definition
of Fm and Rm, |F ∪R| = |Fm|+|Rm|+|F ∩R|, so |Rm∪Fm| = |Fm|+|Rm| =
|F ∪R| − |F ∩R| ≥ |L| − k.

We rewrite Theorem 1 and give the proof now:

Theorem 1. Let D be a semicomplete digraph of order n ≥ (9k)5, where k
(≥ 2) is an integer. If δ0(D) ≥ ⌈(n + k − 1)/2⌉, then D has a one-to-many
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k-DDPC for any disjoint source set S and sink set T , where S = {s}, T =
{t1, . . . , tk}.

Proof. Recall that at the beginning of Section 3, we supposed that L is not
a one-to-many k-DDPC. It suffices to find a larger S-T path more than L,
and then this produces a contradiction and thus we prove Theorem 1. Our
argument is divided into the following three cases.

Case 1. |H| = 1.

Let V (H) = {h}. Since |H| = 1, we have d−L (h) = |R|, d+L (h) = |F | and
d+L (h) + d−L (h) = d+D(h) + d−D(h). According to whether n + k is even, we
distinguish the following two subcases.

Case 1.1. n+ k is even.

When n + k is even, we have ⌈n+k−1

2
⌉ = n+k

2
and d+L (h) + d−L (h) ≥

2δ0(D) ≥ n+ k. Consequently, |F |+ |R| ≥ n + k. By Lemma 7, |R ∪ F | =
|L| = n−1. Therefore, |R∩F | = |R|+|F |−|R∪F | ≥ (n+k)−(n−1) = k+1,
which implies that there exists a path Pi such that u, v ∈ R ∩ F . Without
loss of generality, assume that u precedes v. Arguing similarly as in the
proof of Lemma 7, we can find a larger S-T path, say L∗, which contains h.
Consequently, L∗ is a one-to-many k-DDPC in D, a contradiction.

Case 1.2. n+ k is odd.

When n+ k is odd, we have ⌈(n+ k− 1)/2⌉ = (n+ k− 1)/2. Therefore,
d+L (h) = d+D(h) ≥ (n + k − 1)/2, d−L (h) = d−D(h) ≥ (n + k − 1)/2, and
d+L (h) + d−L (h) ≥ 2δ0(D) ≥ n+ k − 1. Consequently, |R|+ |F | ≥ n+ k − 1.
Since |L| = n − 1, |R ∩ F | = |R| + |F | − |R ∪ F | ≥ (n + k − 1) − (n −
1) = k. By Lemma 7, |R ∩ F | ≤ k, so |R ∩ F | = k. According to the
argument in Lemma 5, d+L (h) + d−L (h) ≤ |L| + k = n + k − 1. Therefore,
d+L (h) + d−L (h) = n+ k − 1, and then d+L (h) = d−L (h) = (n+ k − 1)/2. Thus
we get |F | = d+L (h) = (n + k − 1)/2, |R| = d−L (h) = (n + k − 1)/2 and
|Rm| = |Fm| = (n + k − 1)/2 − k = (n− k − 1)/2 by Lemma 8.

Note that each y ∈ Fm satisfies d+Rm
(y) ≥ δ0(D)− (|F |−1) = 1, so there

is at least one vertex x1 ∈ Rm such that yx1 ∈ A(D). By Lemma 7, we
have s ∈ Fm, so there exists a vertex x1 ∈ Rm in Pi such that sx1 ∈ A(D).
As |(R ∩ F ) ∩ V (Pi)| ≤ 1 and |R ∩ F | = k, there is a vertex s+j ∈ F in

Pj . Together with the fact that x−
1
∈ R, there exists an x−

1
-s+j path whose

inner vertex is h. Let P ∗

i := sx1Piti and P ∗

j := sPix
−

1
hs+j Pjtj. Therefore,

we obtain a larger S-T path, say L∗, which contains h. Consequently, L∗ is
a one-to-many k-DDPC in D, this produces a contradiction (see Figure 1).

7



s

x−
1

x1
ti

s+j
tj

h

Figure 1

Case 2. 2 ≤ |H| ≤ n/2− n/(50k).

By Lemma 8, |Rm| ≥ (n − k + 1)/2 − |H| ≥ n/(53k), so there exists a
path Pj which contains at least n/(53k2) vertices from Rm. Without loss
of generality, assume that j = 1. Let A be the set of vertices belonging to
Rm in P1. We use A1 (A2, respectively) to denote the subpath of A which
contains the first (last, respectively) n/(110k2) inner vertices of A.

The first vertex of A is denoted by t. For any vertex a ∈ V (t+P1t1),
Lemma 7 implies that a ∈ R and N−

D (a) ⊆ V (L). By Lemma 8, |F | ≥
(n+ k + 1)/2 − |H| and so

d−L (a) ≥ δ0(D) ≥ (n+ k − 1)/2 ≥ n+ k − |H| − |F | = |L| − |F |+ k. (2)

Case 2.1. There are two vertices a1 ∈ A1 and a2 ∈ A2 such that a1a2 ∈
A(D).

By inequality (2), we have d−L (a
+
1
) ≥ |L| − |F |+ k and

|N−

L (a+
1
) ∩ F−| = |N−

L (a+
1
)|+ |F−| − |N−

L (a+
1
) ∪ F−|

≥ d−L (a
+
1
) + (|F | − k)− (|L| − 1)

≥ |L| − |F |+ k + (|F | − k)− (|L| − 1) = 1

(By the definition of F−, we have F− ∩ T = ∅. Corollary 6 implies that
F− ∩R = ∅ and a+

1
/∈ F−, thus |N−

L (a+
1
)∪F−| ≤ |L| − 1. If s ∈ F , then s−

does not exist. For each Pi, if s
+

i ∈ F , then there is only one s satisfying
s ∈ F−. Therefore, |F−| ≥ |F |−k). This implies that there are two vertices
w ∈ N−

L (a+
1
) ∩ F− and w+ ∈ F . Lemma 7 implies that F ∩ V (t+P1t1) = ∅,

so w+ ∈ V (s+P1t) or w+ ∈ V (Pi \ {s}) (i 6= 1). Therefore, w ∈ V (sPit
−)

or w ∈ V (pi \ {ti}) (i 6= 1). By Lemma 5, H is strong. When |H| ≥ 3,
by Theorem 3, we get that H contains a Hamiltonian cycle, say C. For a

8



vertex x on C, its predecessor on C is denoted by x− and its successor on
C is denoted by x+. When |H| ≥ 3, there exists a vertex u ∈ V (H) such
that uw+ ∈ A(D) since w+ ∈ F . As a−

2
∈ Rm, there is an arc from a−

2

to u+. Note that there is a Hamiltonian path from u+ to u in H. When
|H| = 2, let V (H) = {u, v}. There exists a vertex, say v ∈ V (H), such that
vw+ ∈ A(D) since w+ ∈ F . As a−

2
∈ Rm, there is an arc from a−

2
to u.

Note that uv, vu ∈ A(H) since H is strong.
If w ∈ V (sP1t

−), then according to the argument above, there ex-
ists a path a−

2
Q1w

+, where Q1 contains all vertices in H. Let P ∗

1 :=
sP1wa

+
1
P1a

−

2
Q1w

+P1a1a2P1t1. Now we obtain a larger S-T path L∗ which is
a one-to-many k-DDPC in D. This produces a contradiction (see Figure 2).

s
w

w+

a1 a+
1

a−
2

a2
t1

Q1

Figure 2

If w ∈ V (Pi \ {ti}) (i 6= 1), then according to the argument above, we
can also find a path a−

2
Q2w

+, where Q2 contains all vertices in H. Let
P ∗

1 := sP1a1a2P1t1 and P ∗

i := sPiwa
+
1
P1a

−

2
Q2w

+Piti. Therefore, we obtain
a larger S-T path L∗ which is a one-to-many k-DDPC in D. This produces
a contradiction (see Figure 3).

s

a1

a+
1

a−
2

a2
t1

w w+
ti

Q2

Figure 3
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Case 2.2. Case 2.1 does not hold.

By the definition of F−

m , F−

m ∩ V (tP1t1) = ∅. For any vertex a ∈ A2,
Lemma 7 implies that N−

D (a) ⊆ V (L). By the assumption, N−

D (a) ⊆ V (L) \
V (A1). By Lemma 8, |Fm| ≥ (n− k + 1)/2 − |H|. Similar to the argument
in (2), we get that d−L−A1

(a) ≥ δ0(D) ≥ (n + k − 1)/2 ≥ n − |H| − |Fm| ≥
|L−A1|+ |A1| − |F−

m | − k (recall that |F−| ≥ |F | − k, so |F | ≤ |F−|+ k and
|Fm| ≤ |F−

m |+ k). By the definition of F−

m , F−

m ∩ V (A1) = ∅, and so

|N−

L−A1
(a) ∩ F−

m | ≥ |L−A1|+ |A1| − |F−

m | − k + |F−

m | − |L−A1|

= |A1| − k = (n− 110k3)/(110k2).
(3)

Let I1 := sP1t and Ii := Pi \ {ti} (i 6= 1). We use Gi to denote the
auxiliary bipartite graph whose vertex sets are V (A2) and V (Ii) ∩ F−

m (i =
1, . . . , k). For any a ∈ V (A2) and w ∈ V (Ii) ∩ F−

m , if wa ∈ A(D), then
there is an edge between a and w in each Gi. As F

−

m ∩ V (tP1t1) = ∅, F−

m ⊆
V (I1)∪ · · · ∪ V (Ik) and the edges of G1 ∪ · · · ∪Gk are equivalent to the arcs
which are from F−

m to A2 inD. Since |N−

L−A1
(a)∩F−

m | ≥ (n−110k3)/(110k2),
there exists a Gi satisfying

e(Gi) ≥
|A2|(n− 110k3)

110k3
≥

n(n− 110k3)

12100k5
≥ 3n ≥ 3|Gi|.

This implies that Gi is not planar, so there are vertices a1, a2 ∈ V (A2) and
w1, w2 ∈ V (Ii) ∩ F−

m such that the edges w1a1, w2a2 cross in Gi.
We first consider the case that i = 1, and then w1, w2 ∈ V (sP1t) ∩ F−

m

and w+

1
, w+

2
∈ Fm. Together with the fact that a−

1
, a−

2
∈ Rm, we can

find disjoint paths a−j Qjw
+

j (j = 1, 2), where the vertices of Qj lie in H
and |Q1 ∪ Q2| ≥ 2. Particularly, when |H| = 2, say V (H) = {u, v},
we have Q1 = u and Q2 = v, or Q1 = v and Q2 = u. Let P ∗

1 :=
sP1w1a1P1a

−

2
Q2w

+
2
P1a

−

1
Q1w

+
1
P1w2a2P1t1. Thus we obtain a larger S-T

path L∗ which contains at least |L|+ 2 vertices, this produces a contradic-
tion (see Figure 4).

We now consider the case that i 6= 1, without loss of generality, assume
that i = 2. Consequently, w1, w2 ∈ V (P2 \ {t2}) ∩ F−

m and w+
1
, w+

2
∈ Fm.

According to the argument above, w1a1 and w2a2 cross in G2. Without
loss of generality, assume that a1 precedes a2 in P1 and w2 precedes w1 in
P2. By Theorem 2, H has a Hamiltonian path. Suppose that there is a
Hamiltonian path from u to v in H. Since a−

2
∈ Rm and w+

2
∈ Fm, we

have a−
2
u, vw+

2
∈ A(D), which implies that there exists a path a−

2
Qw+

2
,

where Q contains all vertices in H. Let P ∗

1 := sP2w2a2P1t1 and P ∗

2 :=

10



s
w1

w+
1

w2

w+
2

a−
1

a1

a−
2

a2
t1

Q1 Q2

Figure 4

s

a−
2 a2 t1

w2 w+
2

t2

Q

Figure 5

sP1a
−

2
Qw+

2
P2t2. Therefore, we obtain a larger S-T path L∗ which is a one-

to-many k-DDPC in D. This produces a contradiction (see Figure 5).

Case 3. n/2− n/(50k) ≤ |H| ≤ ⌈(n− k)/2⌉ − 1 = ⌊(n− k + 1)/2⌋ − 1.

By Lemma 8, |Rm| ≥ (n − k + 1)/2 − |H| ≥ 1. Similarly, |Fm| ≥ 1.
By Lemma 7, |R ∪ F | = |L|, |R ∩ F | ≤ k and |L| − k ≤ |Rm ∪ Fm| =
|Rm| + |Fm| ≤ |L|. Since ⌈(n + k − 1)/2⌉ + 1 ≤ |L| ≤ n/2 + n/(50k), we
deduce that ⌈(n − k + 1)/2⌉ ≤ |Rm|+ |Fm| ≤ n/2 + n/(50k).

Note that each h ∈ V (H) satisfies

d−L (h) ≥ δ−(D)− (|H| − 1) ≥ ⌈(n + k − 1)/2⌉ − ⌈(n − k)/2⌉ + 1 + 1

≥ (n + k − 1)/2 − (n− k + 1)/2 + 2 = k + 1

and so |R| ≥ k + 1. Similarly, d+L (h) ≥ δ+(D) − (|H| − 1) ≥ k + 1, so
|F | ≥ k+ 1. For any vertex x ∈ Rm, Lemma 7 implies that N−

D (x) ⊆ V (L).
Furthermore,

|L| − δ−(D) ≤ n/2 + n/(50k) − (n+ k − 1)/2 < n/(50k),

so for every vertex x ∈ Rm and a vertex set Z1 ⊆ V (L) satisfying |Z1| ≥
n/(50k), there exists a vertex a1 ∈ Z1 such that a1x ∈ A(D). Similarly, for

11



every vertex y ∈ Fm and a vertex set Z2 ⊆ V (L) satisfying |Z2| ≥ n/(50k),
there exists a vertex a2 ∈ Z2 such that ya2 ∈ A(D).

Case 3.1. 1 ≤ |Rm| ≤ k.

By Lemma 7, |(R ∩ F ) ∩ V (Pi)| ≤ 1. Together with the fact that |R| ≥
k+1, we deduce that there exists a path Pi such that x1 ∈ R and x+

1
∈ Rm.

Observe that |Fm| ≥ ⌈(n − k + 1)/2⌉ − k ≥ n/3 since |Rm| ≤ k, and so
one of the k paths of L, say Pj , contains at least n/(3k) vertices from Fm.
Thus there is a subpath y1Pjy2 on path Pj such that V (y1Pjy2) ⊆ Fm and
|y1Pjy2| = n/(20k).

We first consider the case that j 6= i, without loss of generality, assume
that i = 1 and j = 2. There is a vertex a1 ∈ V (y1P2y

−

2
) such that a1x

+

1
∈

A(D) since x+
1

∈ Rm and |y1P2y
−

2
| ≥ n/(50k). As x1 ∈ R, there exists

a vertex h1 ∈ V (H) such that x1h1 ∈ A(D). According to the argument
in Case 2.1, we deduce that H has a Hamiltonian cycle. As a+

1
∈ Fm,

h−
1
a+
1
∈ A(D). Note that there is a Hamiltonian path from h1 to h−

1
in H.

This implies that there exists a path x1Q1a
+
1
, where Q1 contains all vertices

in H. Let P ∗

1 := sP2a1x
+
1
P1t1 and P ∗

2 := sP1x1Q1a
+
1
P2t2. Now we obtain a

larger S-T path L∗ which is a one-to-many k-DDPC in D. This produces a
contradiction (see Figure 6).

s

x1 x+
1

t1

a1 a+
1

t2

Q1

Figure 6

We next consider the case that j = i, without loss of generality, assume
that j = i = 1. Let I1 := y1P1y3, I2 := y+

3
P1y4, I3 := y+

4
P1y5, and

I4 := y+
5
P1y2, where |I1| = n/(240k), |I2| = n/(240k), |I3| = n/(48k), and

|I4| = n/(48k). According to the argument at the beginning of Case 3,
there is a vertex a3 ∈ V (I3) such that a3x

+

1
∈ A(D) since x+

1
∈ Rm and

|I3| > n/(50k). Similarly, there are two vertices a1 ∈ I1 and a4 ∈ I4 such
that a1a4 ∈ A(D) (since a1 ∈ Fm and |I4| > n/(50k)). As x1 ∈ R, there
exists a vertex h1 ∈ V (H) such that x1h1 ∈ A(D). For a vertex a2 ∈ I2, we
have a2 ∈ Fm, so h−

1
a2 ∈ A(D). According to the argument in Case 2.1, we

12



deduce that H contains a Hamiltonian cycle, and so there is a Hamiltonian
path from h1 to h

−

1
inH. This implies that there exists a path x1Q2a2, where

Q2 contains all vertices in H. Let P ∗

1 := sP1a1a4P1x1Q2a2P1a3x
+

1
P1t1.

Thus we obtain a larger S-T path L∗ which contains at least |H| − |I1| −
|I2| − |I3| − |I4| ≥ n/2− n/(50k) − n/(20k) > 0 vertices more than L. This
produces a contradiction (see Figure 7).

s

a1
a2

a3 a4
x1

x+
1

t1

Q2

Figure 7

Case 3.2. |Fm| = 1.

In this case, n−k is odd, |H| = (n−k+1)/2−1 and |L| = (n+k−1)/2+1
by Lemma 8. Recall that |F | ≥ k + 1 at the beginning of Case 3. By
Lemma 7, |R ∩ F | ≤ k and |(R ∩ F ) ∩ V (Pj)| ≤ 1. Therefore, s ∈ Fm and
there exists exactly a vertex s+j in each Pj such that s+j ∈ R∩F by Lemma 7.
As |Rm| + |Fm| ≥ ⌈(n − k + 1)/2⌉, |Rm| ≥ ⌈(n − k + 1)/2⌉ − 1 ≥ n/3.
Consequently, one of the k paths of L, say Pi, contains at least n/(3k)
vertices from Rm. There is a subpath x1Pix2 on Pi such that V (x1Pix2) ⊆
Rm and |x1Pix2| = n/(20k).

Without loss of generality, assume that i = 1. There are two vertices
s ∈ Fm and s+

2
∈ R∩F in P2. According to the argument at the beginning of

Case 3, there is a vertex a1 ∈ V (x+
1
P1x2) such that sa1 ∈ A(D) since s ∈ Fm

and |x+
1
P1x2| > n/(50k). As s+

2
∈ F , there exists a vertex h1 ∈ V (H) such

that h1s
+
2
∈ A(D). By the assumption, a−

1
∈ Rm, so there is an arc from a−

1

to h+
1
. According to the argument in Case 2.1, we deduce that H contains

a Hamiltonian cycle. Note that there is a Hamiltonian path from h+
1

to h1
in H. This implies that there exists a path a−

1
Qs+

2
, where Q contains all

vertices in H. Let P ∗

1 := sa1P1t1 and P ∗

2 := sP1a
−

1
Qs+

2
P2t2. Thus we obtain

a larger S-T path L∗ which is a one-to-many k-DDPC in D. This produces
a contradiction (see Figure 8).

Case 3.3. |Fm| ≥ 2 and |Rm| ≥ k + 1.
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a−
1

a1
t1

s+
2

t2

Q

Figure 8

Since |Rm| ≥ k + 1, there is a path Pi such that x1, x2 ∈ Rm, and x1
precedes x2. Similarly, as |Fm| ≥ 2, there is a path Pj such that y1, y2 ∈ Fm,
and y1 precedes y2.

Case 3.3.1. There exists a subpath x1Pix2 on Pi such that |x1Pix2| ≥
n/(20k).

We first consider the case that j 6= i, without loss of generality, assume
that i = 1, j = 2, and y1 = y−

2
. Lemma 7 implies that V (x1Pix2) ⊆

Rm. Let A1 := x1P1x3 and A2 := x+
3
P1x4, where |A1| = n/(48k) and

|A2| = n/(48k). According to the argument at the beginning of Case 3,
there is a vertex a1 ∈ A1 such that a1x2 ∈ A(D) since x2 ∈ Rm and
|A1| > n/(50k). Similarly, as y−

2
∈ Fm and |A2| > n/(50k), there exists a

vertex a2 ∈ A2 such that y−
2
a2 ∈ A(D). By Theorem 2, H has a Hamiltonian

path. Suppose that there is a Hamiltonian path from u to v in H. Since
x−
2
∈ Rm and y2 ∈ Fm, x−

2
u, vy2 ∈ A(D). This implies that there exists a

path x−
2
Q1y2, where Q1 contains all vertices in H. Let P ∗

1 := sP1a1x2P1t1
and P ∗

2 := sP2y
−

2
a2P1x

−

2
Q1y2P2t2. Thus we obtain a larger S-T path L∗

which contains at least |H| − |V (a1P1a2)| ≥ n/2 − n/(50k) − n/(24k) > 0
vertices more than L. This produces a contradiction (see Figure 9).

We next consider the case that j = i, without loss of generality, assume
that j = i = 1 and y1 = y−

2
. The argument for the case that j = i is similar

to that of the case j 6= i, so there exists a path x−
2
Q2y2, where Q2 contains

all vertices in H. Let P ∗

1 := sP1y
−

2
a2P1x

−

2
Q2y2P1a1x2P1t1. Thus we obtain

a larger S-T path L∗ which contains at least |H| − |V (a1P1a2)| ≥ n/2 −
n/(50k)−n/(24k) > 0 vertices more than L. This produces a contradiction
(see Figure 10).

Case 3.3.2. Case 3.3.1 does not hold.
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s
y−
2

y2
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t1
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Figure 10

There is not a subpath x1Pix2 in each path Pi such that |x1Pix2| ≥
n/(20k), so |Rm| < n/(20). Recall that |Rm|+ |Fm| ≥ ⌈(n−k+1)/2⌉ at the
beginning of Case 3, so |Fm| ≥ ⌈(n−k+1)/2⌉−n/(20) ≥ n/3. One of the k
paths of L, say Pj , contains at least n/(3k) vertices from Fm. Without loss
of generality, assume that j = 2. We can find a subpath y1P2y2 such that
V (y1P2y2) ⊆ Fm and |V (y1P2y2)| ≥ n/(20k). There is a path Pi such that
x1, x2 ∈ Rm and x1 precedes x2 since |Rm| ≥ k + 1.

We first consider the case that j 6= i, without loss of generality, assume
that i = 1, j = 2, and x2 = x+

1
. Let A2 := y3P2y2 and A1 := y4P2y

−

3
, where

|A2| = n/(48k) and |A1| = n/(48k). According to the argument at the
beginning of Case 3, there is a vertex a2 ∈ A2 such that y1a2 ∈ A(D) since
y1 ∈ Fm and |A2| > n/(50k). Similarly, as x+

1
∈ Rm and |A1| > n/(50k),

there exists a vertex a1 ∈ A1 such that a1x
+

1
∈ A(D). By Theorem 2, H

has a Hamiltonian path. Assume that there is a Hamiltonian path from u
to v in H. Since x1 ∈ Rm and y+

1
∈ Fm, x1u, vy

+
1

∈ A(D). This implies
that there exists a path x1Q1y

+
1
, where Q1 contains all vertices in H. Let

P ∗

1 := sP1x1Q1y
+
1
P2a1x

+
1
P1t1 and P ∗

2 := sP2y1a2P2t2. Thus we obtain
a larger S-T path L∗ which contains at least |H| − |V (a1P2a2)| ≥ n/2 −
n/(50k)−n/(24k) > 0 vertices more than L. This produces a contradiction
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(see Figure 11).

s

x1 x+
1 t1

y1

y+
1

a1

a2
t2

Q1

Figure 11

We next consider the case that i = j = 2, without loss of generality,
assume that x2 = x+

1
. Arguing similarly as that of the case i 6= j, we get

that there exists a path x1Q2y
+
1
, where Q2 contains all vertices in H. Let

P ∗

2 := sP2y1a2P2x1Q2y
+
1
P2a1x

+
1
P2t2. Thus we obtain a larger S-T path L∗

which contains at least |H| − |V (a1P2a2)| ≥ n/2 − n/(50k) − n/(24k) > 0
vertices more than L. This produces a contradiction (see Figure 12).

s
y1

y+
1

a1 a2
x1

x+
1

t2

Q2

Figure 12
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