A minimum semi-degree sufficient condition for one-to-many disjoint path covers in semicomplete digraphs

Ansong Ma¹, Yuefang Sun²,* Xiaoyan Zhang³
¹ School of Mathematics and Statistics, Ningbo University Zhejiang 315211, China, mas0710@163.com
² School of Mathematics and Statistics, Ningbo University Zhejiang 315211, China, sunyuefang@nbu.edu.cn
³ School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Jiangsu 210023, China, zhangxiaoyan@njnu.edu.cn

Abstract

Let D be a digraph. We define the minimum semi-degree of Das $\delta^0(D) := \min\{\delta^+(D), \delta^-(D)\}$. Let k be a positive integer, and let $S = \{s\}$ and $T = \{t_1, \ldots, t_k\}$ be any two disjoint subsets of V(D). A set of k internally disjoint paths joining source set S and sink set Tthat cover all vertices D are called a one-to-many k-disjoint directed path cover (k-DDPC for short) of D. A digraph D is semicomplete if for every pair x, y of vertices of it, there is at least one arc between xand y.

In this paper, we prove that every semicomplete digraph D of sufficiently large order n with $\delta^0(D) \ge \lceil (n+k-1)/2 \rceil$ has a one-tomany k-DDPC joining any disjoint source set S and sink set T, where $S = \{s\}, T = \{t_1, \ldots, t_k\}.$

Keywords: Semicomplete digraph; Minimun semi-degree; Disjoint path cover

AMS subject classification (2020): 05C07, 05C20, 05C35, 05C70.

^{*}Corresponding author.

1. Introduction

For terminology and notation not defined here, we refer to [1] and [2]. In this paper, a path always means a directed path. An x-y path is a directed path which is from x to y for two vertices $x, y \in V(D)$. For two vertices xand y on a path P satisfying x precedes y, let xPy denote the subpath of Pfrom x to y. A digraph D is strongly connected, or strong for short, if there exists an x-y path and a y-x path, for every pair x, y of distinct vertices in D.

Let D = (V(D), A(D)) be a digraph, and let D_1 and D_2 be two disjoint subdigraphs of D satisfying $V(D_1) \cup V(D_2) = V(D)$. For $x \in V(D_i)$, let $N_{D_i}^+(x) := \{y \in V(D_i) \setminus x : xy \in A(D)\}$. $N_{D_i}^-(x)$ is defined similarly. Let $d_{D_i}^+(x) := |N_{D_i}^+(x)|, \ d_{D_i}^-(x) := |N_{D_i}^-(x)|$ and $N_{D_i}(x) := N_{D_i}^+(x) \cup N_{D_i}^-(x)$.

A k-disjoint path cover of an undirected graph G is a set of k internally disjoint paths connecting given disjoint source set and sink set such that all vertices of G is covered by the path set. The k-disjoint path cover problem (k-DPC for short) has been studied by many researchers, see [7, 8, 10, 11, 12, 13, 14, 16, 17]. The problem of k-disjoint path cover can be classified into three types according to the number of elements in the source set and the sink set: one-to-one, one-to-many and many-to-many. The one-to-one type considers disjoint path covers joining a single pair of source s and sink t [4, 16, 17], and the one-to-many type is about disjoint path covers which join a single source s and a set of k distinct sinks t_1, t_2, \ldots, t_k [12, 18]. The many-to-many type considers disjoint path covers between a set of k sources s_1, s_2, \ldots, s_k and another set of k sinks t_1, t_2, \ldots, t_k [7, 8, 11, 13, 14].

Let k be a positive integer, let $S = \{s\}$ and $T = \{t_1, \ldots, t_k\}$ be two disjoint subsets of V(D). A set of disjoint path $\{P_1, \ldots, P_k\}$ of D is a k-disjoint directed path cover (one-to-many k-DDPC for short) of D, if $\bigcup_{i=1}^k V(P_i) = V(D)$ and $V(P_i) \cap V(P_j) = \{s\}$ for all $i \neq j$, where P_i is a path from s to t_i .

A digraph D is *semicomplete* if for every pair x, y of vertices of it, there is at least one arc between x and y. In this paper, we study the problem of one-to-many k-DDPC in semicomplete digraphs and prove the following main result. Note that our argument is inspired by that of [9],

Theorem 1. Let D be a semicomplete digraph of order $n \ge (9k)^5$, where $k (\ge 2)$ is an integer. If $\delta^0(D) \ge \lceil (n+k-1)/2 \rceil$, then D has a one-to-many k-DDPC for any disjoint source set S and sink set T, where $S = \{s\}, T = \{t_1, \ldots, t_k\}$.

2. Preliminaries

We now introduce two results concerning the existence of a Hamiltonian path (cycle) in semicomplete digraphs.

Theorem 2. [15] Every semicomplete digraph contains a Hamiltonian path.

Theorem 3. [3] Every strong semicomplete digraph on $n \ge 3$ vertices has a Hamiltonian cycle.

The following is the definition of H-subdivision.

Definition 1. [5] Let H be a (multi)digraph and D be a digraph. Let $\mathcal{P}(D)$ denote the set of paths in D. An H-subdivision in D is a pair of mappings $f: V(H) \to V(D)$ and $g: A(H) \to \mathcal{P}(D)$ such that:

(a) $f(u) \neq f(v)$ for all disjoint $u, v \in V(H)$ and

(b) for every $uv \in A(H)$, g(uv) is an f(u)-f(v) path in D, and disjoint arcs map into internally disjoint paths in D.

A digraph D is H-linked if every injective mapping $f: V(H) \to V(D)$ can be extended to an H-subdivision in D. A digraph D is one-to-many k-linked if it has a set of k paths $\{P_1, \ldots, P_k\}$ for any disjoint vertex subsets $S = \{s\}$ and $T = \{t_1, \ldots, t_k\}$ such that every path P_i is from s to t_i and $V(P_i) \cap V(P_j) = \{s\}$ for $i \neq j$.

Ferrara, Jacobson and Pfender [6] gave a sufficient condition for a digraph D to be H-linked. By this result, Zhou [18] found a specific digraph H and got the following corollary.

Corollary 4. [18] Let $k (\geq 2)$ be an integer, and let D be a digraph with order $n \geq 80k$. If $\delta^0(D) \geq \lceil (n+k-1)/2 \rceil$, then D is one-to-many k-linked.

3. Proof of Theorem 1

In the rest of this paper, let D be a semicomplete digraph which satisfies the assumption of Theorem 1. Let $S = \{s\}$ and $T = \{t_1, \ldots, t_k\}$ be any two disjoint subsets of D. An S-T path in D is a set of k-disjoint paths P_1, \ldots, P_k , where every path P_i is from s to t_i and $V(P_i) \cap V(P_j) = \{s\}$ for all $i \neq j$. By Corollary 4, D contains at least one S-T path. Let L be a maximum S-T path, that is, it covers the most vertices of D among all S-T paths. Suppose that L is not a one-to-many k-DDPC (this implies that $\bigcup_{i=1}^k V(P_i) \subsetneq V(D)$). We aim to obtain a larger S-T path from L and hence this produces a contradiction. Let H be the subdigraph of D induced by $V(D) \setminus V(L)$. Since D is semicomplete, both L and H are semicomplete. Let $F := \{x \in V(L) : \exists y \in V(H) \text{ such that } yx \in A(D)\}$, $R := \{x \in V(L) : \exists y \in V(H) \text{ such that } xy \in A(D)\}$. Let $F_m := F \setminus R$ and $R_m := R \setminus F$. Since D is semicomplete, for every vertex $h \in V(H)$ and every vertex $x \in R_m$, there is an arc from x to h. Similarly, for every vertex $y \in F_m$, there is an arc from h to y. For a vertex $v \in V(P_i) \setminus \{s\}$, its predecessor is denoted by $v^- \in V(P_i) \setminus \{t_i\}$. Similarly, for a vertex $v \in V(P_i) \setminus \{t_i\}$, its successor is denoted by $v^+ \in V(P_i) \setminus \{s\}$. Let $F^- := \{x^- : x \in F \setminus S\}$ and $R^+ := \{x^+ : x \in R \setminus T\}$. Similarly, let $F_m^- := \{x^- : x \in F_m \setminus S\}$ and $R_m^+ := \{x^+ : x \in R_m \setminus T\}$. To prove Theorem 1, we need more preliminary results, including several lemmas and corollaries.

Lemma 5. The following assertions hold:

- (a) $d_H^-(x) + d_H^+(y) \ge |H| 1$ for every pair of vertices $x, y \in V(H)$.
- (b) *H* is strong with $|H| \leq \lfloor \frac{n-k+1}{2} \rfloor 1$.

Proof. For any vertex $x \in V(H)$, we have $d_H^-(x) + d_H^+(x) \ge |H| - 1$ since H is semicomplete. The case that |H| = 1 is trivial, so now we assume that $|H| \ge 2$.

We first consider the case that |H| = 2, say $V(H) = \{x, y\}$. There is at least one arc, say $xy \in A(H)$, between x and y since H is semicomplete. We claim that $d_L^-(x) + d_L^+(y) \le |L| + k$. Suppose that $d_L^-(x) + d_L^+(y) \ge |L| + k + 1$. Let $X = N_L^-(x)$ and $Y = \{v: v^+ \in N_L^+(y)\}$. If $s \in N_L^+(y)$, then s^- does not exist. For each path P_i , if $s^+ \in N_L^+(y)$, then there is only one s satisfying $s \in Y$. Therefore, we have $|Y| \ge d_L^+(y) - k$ and

$$|X \cap Y| = |X| + |Y| - |X \cup Y| \ge d_L^-(x) + d_L^+(y) - k - |L| \ge |L| + k + 1 - k - |L| = 1.$$

This implies that there are two vertices $v \in N_L^-(x)$ and $v^+ \in N_L^+(y)$. By replacing the arc vv^+ with the path $vxyv^+$, we obtain a larger S-T path, a contradiction. Therefore, $d_L^-(x) + d_L^+(y) \leq |L| + k$ and

$$d_{H}^{-}(x) + d_{H}^{+}(y) \ge 2\lceil \frac{n+k-1}{2} \rceil - (|L|+k) \ge |H| - 1 = 1,$$

which satisfies the degree condition in Lemma 5. Hence, $yx \in A(H)$ and so H is strong in this case.

When $|H| \ge 3$, from the argument above, any two vertices $x_1, y_1 \in V(H)$ with $x_1y_1 \in A(D)$ satisfy the degree condition in Lemma 5. If $y_1x_1 \notin A(H)$, then $y_1 \notin N_H^-(x_1)$ and $x_1 \notin N_H^+(y_1)$. Consequently, $|N_H^-(x_1) \cup N_H^+(y_1)| \le$ |H| - 2, and so $|N_{H}^{-}(x_{1}) \cap N_{H}^{+}(y_{1})| = |N_{H}^{-}(x_{1})| + |N_{H}^{+}(y_{1})| - |N_{H}^{-}(x_{1}) \cup N_{H}^{+}(y_{1})| \ge d_{H}^{-}(x_{1}) + d_{H}^{+}(y_{1}) - (|H| - 2) \ge 1$. This implies that H contains a y_{1} - x_{1} path of length 2. Therefore, when $x_{1}y_{1} \in A(H)$, either $y_{1}x_{1} \in A(H)$ or there is a y_{1} - x_{1} path of length 2 in H. For any vertex $x \in V(H)$, we have $|N_{H}(x)| = |N_{H}^{-}(x) \cup N_{H}^{+}(x)| = |H| - 1$ since H is semicomplete. According to the argument above, there are two paths of both directions between x and every vertex in $N_{H}(x)$. For any two vertices $x, z \in V(H)$, note that $z \in N_{H}(x)$ since H is semicomplete, and this implies that there are two paths of both directions between x and z. Hence, H is also strong in this case.

For every pair of vertices $x, y \in V(H)$, there is an x-y path, say P, since H is strong. With a similar argument to that of the case |H| = 2, we can get $d_L^-(x) + d_L^+(y) \leq |L| + k$, and for every pair of vertices $x, y \in V(H)$,

$$d_{H}^{-}(x) + d_{H}^{+}(y) \ge |H| - 1.$$
(1)

In particular, when $V(H) = \{h\}$, $d_H^-(h) + d_H^+(h) = |H| - 1 = 0$ (satisfying the above degree condition).

We now prove the upper bound for |H|. Note that $R^+ \cap F = \emptyset$. If $v \in R^+ \cap F$, then $v^- \in R$. There are two vertices $u_1, u_2 \in V(H)$ such that $v^-u_1, u_2v \in A(D)$. Since H is strong, H contains a u_1 - u_2 path P. By replacing the arc v^-v with the path v^-Pv , we obtain a larger S-T path, a contradiction. This implies that there is a vertex $v \in V(L)$ such that $N_D^+(v) \subseteq L$ or $N_D^-(v) \subseteq L$. Thus $|L| - 1 \ge \delta^0(D) \ge \lceil (n+k-1)/2 \rceil$, and then $|H| \le \lfloor (n-k+1)/2 \rfloor - 1$.

According to the proof above, we have $R^+ \cap F = \emptyset$. Similarly, $R \cap F^- = \emptyset$, so the following corollary holds.

Corollary 6. For any $u \in R$, $u^+ \notin F$. Similarly, for any $v \in F$, $v^- \notin R$.

Lemma 7. The following assertions hold:

- (a) $|F \cup R| = |L|$ and $|F \cap R| \le k$.
- (b) For any path P_i , if x_1 precedes x_2 in P_i , then there are no distinct vertices $y_1, y_2 \in V(H)$ such that $x_1y_1, y_2x_2 \in A(D)$.

Proof. For any vertex $x \in V(L)$ and any vertex $y \in V(H)$, there is at least one arc between x and y since H is semicomplete. Observe that $x \in F$, or $x \in R$ (or both) for any vertex $x \in L$, so $|F \cup R| = |L|$.

For each path P_i , we claim that $|(R \cap F) \cap V(P_i)| \leq 1$. Suppose that $u, v \in R \cap F$ are two distinct vertices in P_i and u precedes v. Let Q_1 denote

the set of all vertices between u and v. For any path P_i , if $x \notin F$, then $x \in R$ since $|F \cup R| = |L|$. By Corollary 6, $u^+ \notin F$, for any $u \in R$. Therefore, $u^+ \in R$ and $V(u^+P_it_i) \subseteq R$. As $v^- \in V(u^+P_it_i)$, we get that $v^- \in R$. By the assumption, $v \in F$, so there are two vertices $h_1, h_2 \in V(H)$ such that $v^-h_1, h_2v \in A(D)$. By Lemma 5, H is strong and hence contains an h_1 - h_2 path P. By replacing v^-v with v^-Pv , we obtain a larger S-T path, a contradiction. Particularly, when $Q_1 = \emptyset$, $u \in R$ and $v = u^+ \in F$ by the assumption. Similar to the argument above, we still can find a larger S-Tpath, this also produces a contradiction. Consequently, $|(R \cap F) \cap V(P_i)| \leq 1$ for each path P_i , which implies that $|R \cap F| \leq k$.

Now we prove the assertion (b). Assume that such y_1, y_2 exist. Therefore, $x_1 \in R$ and $x_2 \in F$ in P_i . Similar to the proof above, let Q_2 denote the set of all vertices between x_1 and x_2 . For any path P_i , if $x \notin F$, then $x \in R$ since $|F \cup R| = |L|$. By Corollary 6, $u^+ \notin F$, for any $u \in R$. Therefore, $x_1^+ \in R, V(x_1^+P_it_i) \subseteq R$ and $x_2^- \in R$. Together with the fact $x_2 \in F$, we can find a larger S-T path, a contradiction. Particularly, if $Q_2 = \emptyset$, then $x_1 \in R$ and $x_2 = x_1^+ \in F$ by the assumption. Similar to the argument above, we still find a larger S-T path, and hence this also produces a contradiction. Consequently, for any path P_i , if x_1 precedes x_2 in P_i , then there are no distinct vertices $y_1, y_2 \in H$ such that $x_1y_1, y_2x_2 \in A(D)$. This implies x_2 always precedes x_1 for any $x_1 \in R, x_2 \in F$ in each path P_i .

The proof of the following lemma is similar to that of Lemma 13 in [9], but we still need to give the proof below.

Lemma 8. |F|, $|R| \ge (n + k + 1)/2 - |H|$. Furthermore, $|F_m|$, $|R_m| \ge (n - k + 1)/2 - |H|$ and $|F_m \cup R_m| \ge |L| - k$.

Proof. For every vertex $x \in V(H)$, $d_L^-(x) \ge \delta^0(D) - (|H| - 1) \ge (n + k + 1)/2 - |H|$, and so $|R| \ge (n + k + 1)/2 - |H|$. The inequality $|F| \ge (n + k + 1)/2 - |H|$ can be proved similarly. By Lemma 7, $|R \cap F| \le k$, so $|R_m| = |R| - |R \cap F| \ge (n + k + 1)/2 - |H| - k = (n - k + 1)/2 - |H|$. Similarly, we can prove the inequality $|F_m| \ge (n - k + 1)/2 - |H|$.

By Lemma 7, $|F \cup R| = |L|$ and $|F \cap R| \le k$. Together with the definition of F_m and R_m , $|F \cup R| = |F_m| + |R_m| + |F \cap R|$, so $|R_m \cup F_m| = |F_m| + |R_m| = |F \cup R| - |F \cap R| \ge |L| - k$.

We rewrite Theorem 1 and give the proof now:

Theorem 1. Let D be a semicomplete digraph of order $n \ge (9k)^5$, where $k (\ge 2)$ is an integer. If $\delta^0(D) \ge \lceil (n+k-1)/2 \rceil$, then D has a one-to-many

k-DDPC for any disjoint source set S and sink set T, where $S = \{s\}, T = \{t_1, \ldots, t_k\}.$

Proof. Recall that at the beginning of Section 3, we supposed that L is not a one-to-many k-DDPC. It suffices to find a larger S-T path more than L, and then this produces a contradiction and thus we prove Theorem 1. Our argument is divided into the following three cases.

Case 1. |H| = 1.

Let $V(H) = \{h\}$. Since |H| = 1, we have $d_L^-(h) = |R|$, $d_L^+(h) = |F|$ and $d_L^+(h) + d_L^-(h) = d_D^+(h) + d_D^-(h)$. According to whether n + k is even, we distinguish the following two subcases.

Case 1.1. n + k is even.

When n + k is even, we have $\lceil \frac{n+k-1}{2} \rceil = \frac{n+k}{2}$ and $d_L^+(h) + d_L^-(h) \ge 2\delta^0(D) \ge n+k$. Consequently, $|F| + |R| \ge n+k$. By Lemma 7, $|R \cup F| = |L| = n-1$. Therefore, $|R \cap F| = |R| + |F| - |R \cup F| \ge (n+k) - (n-1) = k+1$, which implies that there exists a path P_i such that $u, v \in R \cap F$. Without loss of generality, assume that u precedes v. Arguing similarly as in the proof of Lemma 7, we can find a larger S-T path, say L^* , which contains h. Consequently, L^* is a one-to-many k-DDPC in D, a contradiction.

Case 1.2. n + k is odd.

When n + k is odd, we have $\lceil (n + k - 1)/2 \rceil = (n + k - 1)/2$. Therefore, $d_L^+(h) = d_D^+(h) \ge (n + k - 1)/2$, $d_L^-(h) = d_D^-(h) \ge (n + k - 1)/2$, and $d_L^+(h) + d_L^-(h) \ge 2\delta^0(D) \ge n + k - 1$. Consequently, $|R| + |F| \ge n + k - 1$. Since |L| = n - 1, $|R \cap F| = |R| + |F| - |R \cup F| \ge (n + k - 1) - (n - 1) = k$. By Lemma 7, $|R \cap F| \le k$, so $|R \cap F| = k$. According to the argument in Lemma 5, $d_L^+(h) + d_L^-(h) \le |L| + k = n + k - 1$. Therefore, $d_L^+(h) + d_L^-(h) = n + k - 1$, and then $d_L^+(h) = d_L^-(h) = (n + k - 1)/2$. Thus we get $|F| = d_L^+(h) = (n + k - 1)/2$, $|R| = d_L^-(h) = (n + k - 1)/2$ and $|R_m| = |F_m| = (n + k - 1)/2 - k = (n - k - 1)/2$ by Lemma 8.

Note that each $y \in F_m$ satisfies $d_{R_m}^+(y) \ge \delta^0(D) - (|F| - 1) = 1$, so there is at least one vertex $x_1 \in R_m$ such that $yx_1 \in A(D)$. By Lemma 7, we have $s \in F_m$, so there exists a vertex $x_1 \in R_m$ in P_i such that $sx_1 \in A(D)$. As $|(R \cap F) \cap V(P_i)| \le 1$ and $|R \cap F| = k$, there is a vertex $s_j^+ \in F$ in P_j . Together with the fact that $x_1^- \in R$, there exists an $x_1^- s_j^+$ path whose inner vertex is h. Let $P_i^* := sx_1P_it_i$ and $P_j^* := sP_ix_1^-hs_j^+P_jt_j$. Therefore, we obtain a larger S-T path, say L^* , which contains h. Consequently, L^* is a one-to-many k-DDPC in D, this produces a contradiction (see Figure 1).

Figure 1

Case 2. $2 \le |H| \le n/2 - n/(50k)$.

By Lemma 8, $|R_m| \ge (n-k+1)/2 - |H| \ge n/(53k)$, so there exists a path P_j which contains at least $n/(53k^2)$ vertices from R_m . Without loss of generality, assume that j = 1. Let A be the set of vertices belonging to R_m in P_1 . We use A_1 (A_2 , respectively) to denote the subpath of A which contains the first (last, respectively) $n/(110k^2)$ inner vertices of A.

The first vertex of A is denoted by t. For any vertex $a \in V(t^+P_1t_1)$, Lemma 7 implies that $a \in R$ and $N_D^-(a) \subseteq V(L)$. By Lemma 8, $|F| \ge (n+k+1)/2 - |H|$ and so

$$d_{L}^{-}(a) \ge \delta^{0}(D) \ge (n+k-1)/2 \ge n+k-|H|-|F| = |L|-|F|+k.$$
(2)

Case 2.1. There are two vertices $a_1 \in A_1$ and $a_2 \in A_2$ such that $a_1a_2 \in A(D)$.

By inequality (2), we have $d_L^-(a_1^+) \ge |L| - |F| + k$ and

$$\begin{split} |N_L^-(a_1^+) \cap F^-| &= |N_L^-(a_1^+)| + |F^-| - |N_L^-(a_1^+) \cup F^-| \\ &\geq d_L^-(a_1^+) + (|F| - k) - (|L| - 1) \\ &\geq |L| - |F| + k + (|F| - k) - (|L| - 1) = 1 \end{split}$$

(By the definition of F^- , we have $F^- \cap T = \emptyset$. Corollary 6 implies that $F^- \cap R = \emptyset$ and $a_1^+ \notin F^-$, thus $|N_L^-(a_1^+) \cup F^-| \leq |L| - 1$. If $s \in F$, then s^- does not exist. For each P_i , if $s_i^+ \in F$, then there is only one s satisfying $s \in F^-$. Therefore, $|F^-| \geq |F| - k$). This implies that there are two vertices $w \in N_L^-(a_1^+) \cap F^-$ and $w^+ \in F$. Lemma 7 implies that $F \cap V(t^+P_1t_1) = \emptyset$, so $w^+ \in V(s^+P_1t)$ or $w^+ \in V(P_i \setminus \{s\})$ $(i \neq 1)$. Therefore, $w \in V(sP_it^-)$ or $w \in V(p_i \setminus \{t_i\})$ $(i \neq 1)$. By Lemma 5, H is strong. When $|H| \geq 3$, by Theorem 3, we get that H contains a Hamiltonian cycle, say C. For a

vertex x on C, its predecessor on C is denoted by x^- and its successor on C is denoted by x^+ . When $|H| \ge 3$, there exists a vertex $u \in V(H)$ such that $uw^+ \in A(D)$ since $w^+ \in F$. As $a_2^- \in R_m$, there is an arc from a_2^- to u^+ . Note that there is a Hamiltonian path from u^+ to u in H. When |H| = 2, let $V(H) = \{u, v\}$. There exists a vertex, say $v \in V(H)$, such that $vw^+ \in A(D)$ since $w^+ \in F$. As $a_2^- \in R_m$, there is an arc from a_2^- to u. Note that $uv, vu \in A(H)$ since H is strong.

If $w \in V(sP_1t^-)$, then according to the argument above, there exists a path $a_2^-Q_1w^+$, where Q_1 contains all vertices in H. Let $P_1^* := sP_1wa_1^+P_1a_2^-Q_1w^+P_1a_1a_2P_1t_1$. Now we obtain a larger S-T path L^* which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 2).

Figure 2

If $w \in V(P_i \setminus \{t_i\})$ $(i \neq 1)$, then according to the argument above, we can also find a path $a_2^-Q_2w^+$, where Q_2 contains all vertices in H. Let $P_1^* := sP_1a_1a_2P_1t_1$ and $P_i^* := sP_iwa_1^+P_1a_2^-Q_2w^+P_it_i$. Therefore, we obtain a larger S-T path L^* which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 3).

Figure 3

Case 2.2. Case 2.1 does not hold.

By the definition of F_m^- , $F_m^- \cap V(tP_1t_1) = \emptyset$. For any vertex $a \in A_2$, Lemma 7 implies that $N_D^-(a) \subseteq V(L)$. By the assumption, $N_D^-(a) \subseteq V(L) \setminus V(A_1)$. By Lemma 8, $|F_m| \ge (n-k+1)/2 - |H|$. Similar to the argument in (2), we get that $d_{L-A_1}^-(a) \ge \delta^0(D) \ge (n+k-1)/2 \ge n - |H| - |F_m| \ge |L-A_1| + |A_1| - |F_m^-| - k$ (recall that $|F^-| \ge |F| - k$, so $|F| \le |F^-| + k$ and $|F_m| \le |F_m^-| + k$). By the definition of F_m^- , $F_m^- \cap V(A_1) = \emptyset$, and so

$$|N_{L-A_{1}}^{-}(a) \cap F_{m}^{-}| \ge |L-A_{1}| + |A_{1}| - |F_{m}^{-}| - k + |F_{m}^{-}| - |L-A_{1}|$$

= |A_{1}| - k = (n - 110k³)/(110k²). (3)

Let $I_1 := sP_1t$ and $I_i := P_i \setminus \{t_i\}$ $(i \neq 1)$. We use G_i to denote the auxiliary bipartite graph whose vertex sets are $V(A_2)$ and $V(I_i) \cap F_m^ (i = 1, \ldots, k)$. For any $a \in V(A_2)$ and $w \in V(I_i) \cap F_m^-$, if $wa \in A(D)$, then there is an edge between a and w in each G_i . As $F_m^- \cap V(tP_1t_1) = \emptyset$, $F_m^- \subseteq V(I_1) \cup \cdots \cup V(I_k)$ and the edges of $G_1 \cup \cdots \cup G_k$ are equivalent to the arcs which are from F_m^- to A_2 in D. Since $|N_{L-A_1}^-(a) \cap F_m^-| \ge (n-110k^3)/(110k^2)$, there exists a G_i satisfying

$$e(G_i) \ge \frac{|A_2|(n-110k^3)}{110k^3} \ge \frac{n(n-110k^3)}{12100k^5} \ge 3n \ge 3|G_i|.$$

This implies that G_i is not planar, so there are vertices $a_1, a_2 \in V(A_2)$ and $w_1, w_2 \in V(I_i) \cap F_m^-$ such that the edges w_1a_1, w_2a_2 cross in G_i .

We first consider the case that i = 1, and then $w_1, w_2 \in V(sP_1t) \cap F_m^$ and $w_1^+, w_2^+ \in F_m$. Together with the fact that $a_1^-, a_2^- \in R_m$, we can find disjoint paths $a_j^-Q_jw_j^+$ (j = 1, 2), where the vertices of Q_j lie in Hand $|Q_1 \cup Q_2| \geq 2$. Particularly, when |H| = 2, say $V(H) = \{u, v\}$, we have $Q_1 = u$ and $Q_2 = v$, or $Q_1 = v$ and $Q_2 = u$. Let $P_1^* :=$ $sP_1w_1a_1P_1a_2^-Q_2w_2^+P_1a_1^-Q_1w_1^+P_1w_2a_2P_1t_1$. Thus we obtain a larger S-T path L^* which contains at least |L| + 2 vertices, this produces a contradiction (see Figure 4).

We now consider the case that $i \neq 1$, without loss of generality, assume that i = 2. Consequently, $w_1, w_2 \in V(P_2 \setminus \{t_2\}) \cap F_m^-$ and $w_1^+, w_2^+ \in F_m$. According to the argument above, w_1a_1 and w_2a_2 cross in G_2 . Without loss of generality, assume that a_1 precedes a_2 in P_1 and w_2 precedes w_1 in P_2 . By Theorem 2, H has a Hamiltonian path. Suppose that there is a Hamiltonian path from u to v in H. Since $a_2^- \in R_m$ and $w_2^+ \in F_m$, we have $a_2^-u, vw_2^+ \in A(D)$, which implies that there exists a path $a_2^-Qw_2^+$, where Q contains all vertices in H. Let $P_1^* := sP_2w_2a_2P_1t_1$ and $P_2^* :=$

Figure 5

 $sP_1a_2^-Qw_2^+P_2t_2$. Therefore, we obtain a larger S-T path L^* which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 5).

Case 3. $n/2 - n/(50k) \le |H| \le \lceil (n-k)/2 \rceil - 1 = \lfloor (n-k+1)/2 \rfloor - 1.$

By Lemma 8, $|R_m| \ge (n-k+1)/2 - |H| \ge 1$. Similarly, $|F_m| \ge 1$. By Lemma 7, $|R \cup F| = |L|$, $|R \cap F| \le k$ and $|L| - k \le |R_m \cup F_m| = |R_m| + |F_m| \le |L|$. Since $\lceil (n+k-1)/2 \rceil + 1 \le |L| \le n/2 + n/(50k)$, we deduce that $\lceil (n-k+1)/2 \rceil \le |R_m| + |F_m| \le n/2 + n/(50k)$. Note that each $h \in V(H)$ satisfies

Note that each $h \in V(H)$ satisfies

$$\begin{split} d^-_L(h) &\geq \delta^-(D) - (|H|-1) \geq \lceil (n+k-1)/2 \rceil - \lceil (n-k)/2 \rceil + 1 + 1 \\ &\geq (n+k-1)/2 - (n-k+1)/2 + 2 = k+1 \end{split}$$

and so $|R| \ge k + 1$. Similarly, $d_L^+(h) \ge \delta^+(D) - (|H| - 1) \ge k + 1$, so $|F| \ge k + 1$. For any vertex $x \in R_m$, Lemma 7 implies that $N_D^-(x) \subseteq V(L)$. Furthermore,

$$|L| - \delta^{-}(D) \le n/2 + n/(50k) - (n+k-1)/2 < n/(50k),$$

so for every vertex $x \in R_m$ and a vertex set $Z_1 \subseteq V(L)$ satisfying $|Z_1| \ge n/(50k)$, there exists a vertex $a_1 \in Z_1$ such that $a_1x \in A(D)$. Similarly, for

every vertex $y \in F_m$ and a vertex set $Z_2 \subseteq V(L)$ satisfying $|Z_2| \ge n/(50k)$, there exists a vertex $a_2 \in Z_2$ such that $ya_2 \in A(D)$.

Case 3.1. $1 \le |R_m| \le k$.

By Lemma 7, $|(R \cap F) \cap V(P_i)| \leq 1$. Together with the fact that $|R| \geq k+1$, we deduce that there exists a path P_i such that $x_1 \in R$ and $x_1^+ \in R_m$. Observe that $|F_m| \geq \lceil (n-k+1)/2 \rceil - k \geq n/3$ since $|R_m| \leq k$, and so one of the k paths of L, say P_j , contains at least n/(3k) vertices from F_m . Thus there is a subpath $y_1P_jy_2$ on path P_j such that $V(y_1P_jy_2) \subseteq F_m$ and $|y_1P_jy_2| = n/(20k)$.

We first consider the case that $j \neq i$, without loss of generality, assume that i = 1 and j = 2. There is a vertex $a_1 \in V(y_1P_2y_2^-)$ such that $a_1x_1^+ \in A(D)$ since $x_1^+ \in R_m$ and $|y_1P_2y_2^-| \geq n/(50k)$. As $x_1 \in R$, there exists a vertex $h_1 \in V(H)$ such that $x_1h_1 \in A(D)$. According to the argument in Case 2.1, we deduce that H has a Hamiltonian cycle. As $a_1^+ \in F_m$, $h_1^-a_1^+ \in A(D)$. Note that there is a Hamiltonian path from h_1 to h_1^- in H. This implies that there exists a path $x_1Q_1a_1^+$, where Q_1 contains all vertices in H. Let $P_1^* := sP_2a_1x_1^+P_1t_1$ and $P_2^* := sP_1x_1Q_1a_1^+P_2t_2$. Now we obtain a larger S-T path L^* which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 6).

Figure 6

We next consider the case that j = i, without loss of generality, assume that j = i = 1. Let $I_1 := y_1 P_1 y_3$, $I_2 := y_3^+ P_1 y_4$, $I_3 := y_4^+ P_1 y_5$, and $I_4 := y_5^+ P_1 y_2$, where $|I_1| = n/(240k)$, $|I_2| = n/(240k)$, $|I_3| = n/(48k)$, and $|I_4| = n/(48k)$. According to the argument at the beginning of Case 3, there is a vertex $a_3 \in V(I_3)$ such that $a_3 x_1^+ \in A(D)$ since $x_1^+ \in R_m$ and $|I_3| > n/(50k)$. Similarly, there are two vertices $a_1 \in I_1$ and $a_4 \in I_4$ such that $a_1 a_4 \in A(D)$ (since $a_1 \in F_m$ and $|I_4| > n/(50k)$). As $x_1 \in R$, there exists a vertex $h_1 \in V(H)$ such that $x_1 h_1 \in A(D)$. For a vertex $a_2 \in I_2$, we have $a_2 \in F_m$, so $h_1^- a_2 \in A(D)$. According to the argument in Case 2.1, we deduce that H contains a Hamiltonian cycle, and so there is a Hamiltonian path from h_1 to h_1^- in H. This implies that there exists a path $x_1Q_2a_2$, where Q_2 contains all vertices in H. Let $P_1^* := sP_1a_1a_4P_1x_1Q_2a_2P_1a_3x_1^+P_1t_1$. Thus we obtain a larger S-T path L^* which contains at least $|H| - |I_1| - |I_2| - |I_3| - |I_4| \ge n/2 - n/(50k) - n/(20k) > 0$ vertices more than L. This produces a contradiction (see Figure 7).

Figure 7

Case 3.2. $|F_m| = 1$.

In this case, n-k is odd, |H| = (n-k+1)/2-1 and |L| = (n+k-1)/2+1by Lemma 8. Recall that $|F| \ge k+1$ at the beginning of Case 3. By Lemma 7, $|R \cap F| \le k$ and $|(R \cap F) \cap V(P_j)| \le 1$. Therefore, $s \in F_m$ and there exists exactly a vertex s_j^+ in each P_j such that $s_j^+ \in R \cap F$ by Lemma 7. As $|R_m| + |F_m| \ge \lceil (n-k+1)/2 \rceil$, $|R_m| \ge \lceil (n-k+1)/2 \rceil - 1 \ge n/3$. Consequently, one of the k paths of L, say P_i , contains at least n/(3k)vertices from R_m . There is a subpath $x_1P_ix_2$ on P_i such that $V(x_1P_ix_2) \subseteq R_m$ and $|x_1P_ix_2| = n/(20k)$.

Without loss of generality, assume that i = 1. There are two vertices $s \in F_m$ and $s_2^+ \in R \cap F$ in P_2 . According to the argument at the beginning of Case 3, there is a vertex $a_1 \in V(x_1^+P_1x_2)$ such that $sa_1 \in A(D)$ since $s \in F_m$ and $|x_1^+P_1x_2| > n/(50k)$. As $s_2^+ \in F$, there exists a vertex $h_1 \in V(H)$ such that $h_1s_2^+ \in A(D)$. By the assumption, $a_1^- \in R_m$, so there is an arc from a_1^- to h_1^+ . According to the argument in Case 2.1, we deduce that H contains a Hamiltonian cycle. Note that there is a Hamiltonian path from h_1^+ to h_1 in H. This implies that there exists a path $a_1^-Qs_2^+$, where Q contains all vertices in H. Let $P_1^* := sa_1P_1t_1$ and $P_2^* := sP_1a_1^-Qs_2^+P_2t_2$. Thus we obtain a larger S-T path L^* which is a one-to-many k-DDPC in D. This produces a contradiction (see Figure 8).

Case 3.3. $|F_m| \ge 2$ and $|R_m| \ge k+1$.

Figure 8

Since $|R_m| \ge k + 1$, there is a path P_i such that $x_1, x_2 \in R_m$, and x_1 precedes x_2 . Similarly, as $|F_m| \ge 2$, there is a path P_j such that $y_1, y_2 \in F_m$, and y_1 precedes y_2 .

Case 3.3.1. There exists a subpath $x_1P_ix_2$ on P_i such that $|x_1P_ix_2| \ge n/(20k)$.

We first consider the case that $j \neq i$, without loss of generality, assume that i = 1, j = 2, and $y_1 = y_2^-$. Lemma 7 implies that $V(x_1P_ix_2) \subseteq R_m$. Let $A_1 := x_1P_1x_3$ and $A_2 := x_3^+P_1x_4$, where $|A_1| = n/(48k)$ and $|A_2| = n/(48k)$. According to the argument at the beginning of Case 3, there is a vertex $a_1 \in A_1$ such that $a_1x_2 \in A(D)$ since $x_2 \in R_m$ and $|A_1| > n/(50k)$. Similarly, as $y_2^- \in F_m$ and $|A_2| > n/(50k)$, there exists a vertex $a_2 \in A_2$ such that $y_2^-a_2 \in A(D)$. By Theorem 2, H has a Hamiltonian path. Suppose that there is a Hamiltonian path from u to v in H. Since $x_2^- \in R_m$ and $y_2 \in F_m, x_2^-u, vy_2 \in A(D)$. This implies that there exists a path $x_2^-Q_1y_2$, where Q_1 contains all vertices in H. Let $P_1^* := sP_1a_1x_2P_1t_1$ and $P_2^* := sP_2y_2^-a_2P_1x_2^-Q_1y_2P_2t_2$. Thus we obtain a larger S-T path L^* which contains at least $|H| - |V(a_1P_1a_2)| \ge n/2 - n/(50k) - n/(24k) > 0$ vertices more than L. This produces a contradiction (see Figure 9).

We next consider the case that j = i, without loss of generality, assume that j = i = 1 and $y_1 = y_2^-$. The argument for the case that j = i is similar to that of the case $j \neq i$, so there exists a path $x_2^-Q_2y_2$, where Q_2 contains all vertices in H. Let $P_1^* := sP_1y_2^-a_2P_1x_2^-Q_2y_2P_1a_1x_2P_1t_1$. Thus we obtain a larger S-T path L^* which contains at least $|H| - |V(a_1P_1a_2)| \geq n/2 - n/(50k) - n/(24k) > 0$ vertices more than L. This produces a contradiction (see Figure 10).

Case 3.3.2. Case 3.3.1 does not hold.

Figure 10

There is not a subpath $x_1P_ix_2$ in each path P_i such that $|x_1P_ix_2| \ge n/(20k)$, so $|R_m| < n/(20)$. Recall that $|R_m| + |F_m| \ge \lceil (n-k+1)/2 \rceil$ at the beginning of Case 3, so $|F_m| \ge \lceil (n-k+1)/2 \rceil - n/(20) \ge n/3$. One of the k paths of L, say P_j , contains at least n/(3k) vertices from F_m . Without loss of generality, assume that j = 2. We can find a subpath $y_1P_2y_2$ such that $V(y_1P_2y_2) \subseteq F_m$ and $|V(y_1P_2y_2)| \ge n/(20k)$. There is a path P_i such that $x_1, x_2 \in R_m$ and x_1 precedes x_2 since $|R_m| \ge k + 1$.

We first consider the case that $j \neq i$, without loss of generality, assume that i = 1, j = 2, and $x_2 = x_1^+$. Let $A_2 := y_3 P_2 y_2$ and $A_1 := y_4 P_2 y_3^-$, where $|A_2| = n/(48k)$ and $|A_1| = n/(48k)$. According to the argument at the beginning of Case 3, there is a vertex $a_2 \in A_2$ such that $y_1 a_2 \in A(D)$ since $y_1 \in F_m$ and $|A_2| > n/(50k)$. Similarly, as $x_1^+ \in R_m$ and $|A_1| > n/(50k)$, there exists a vertex $a_1 \in A_1$ such that $a_1 x_1^+ \in A(D)$. By Theorem 2, H has a Hamiltonian path. Assume that there is a Hamiltonian path from u to v in H. Since $x_1 \in R_m$ and $y_1^+ \in F_m$, $x_1 u$, $vy_1^+ \in A(D)$. This implies that there exists a path $x_1 Q_1 y_1^+$, where Q_1 contains all vertices in H. Let $P_1^* := sP_1 x_1 Q_1 y_1^+ P_2 a_1 x_1^+ P_1 t_1$ and $P_2^* := sP_2 y_1 a_2 P_2 t_2$. Thus we obtain a larger S-T path L^* which contains at least $|H| - |V(a_1 P_2 a_2)| \ge n/2 - n/(50k) - n/(24k) > 0$ vertices more than L. This produces a contradiction

(see Figure 11).

Figure 11

We next consider the case that i = j = 2, without loss of generality, assume that $x_2 = x_1^+$. Arguing similarly as that of the case $i \neq j$, we get that there exists a path $x_1Q_2y_1^+$, where Q_2 contains all vertices in H. Let $P_2^* := sP_2y_1a_2P_2x_1Q_2y_1^+P_2a_1x_1^+P_2t_2$. Thus we obtain a larger S-T path L^* which contains at least $|H| - |V(a_1P_2a_2)| \geq n/2 - n/(50k) - n/(24k) > 0$ vertices more than L. This produces a contradiction (see Figure 12).

Figure 12

Acknowledgement. Yuefang Sun was supported by Yongjiang Talent Introduction Programme of Ningbo under Grant No. 2021B-011-G and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY20A010013. Xiaoyan Zhang was supported by NSFC under Grant No. 11871280.

References

- J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2008.
- [2] J. Bang-Jensen, G. Gutin, Classes of Directed Graphs, Springer, 2018.
- [3] P. Camion. Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris, 249 (1959) 2151-2152.
- [4] H. Cao, B. Zhang, Z. Zhou, one-to-one disjoint path covers in digraphs, Theoretical Computer Science, 714 (2018) 27-35.
- [5] M. Ferrara, R. Gould, G. Tansey and T. Whalen, On *H*-linked Graphs, Graphs and Combinatorics, 22 (2006) 217-224.
- [6] M. Ferrara, M. Jacobson, F, Pfender, Degree conditions for *H*-linked digraphs, Combinatorics, Probability and Computing, 22 (5) (2013) 684–699.
- [7] S. Jo, J. H. Park, K. Y. Chwa. Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs, Information Sciences, 242 (2013) 103-112.
- [8] S. Jo, J. H. Park, K. Y. Chwa, Paired many-to-many disjoint path covers in faulty hypercubes, Theoretical Computer Science 513 (1) (2013) 1–24.
- [9] D. Kühn, D. Osthus, A. Young, k-ordered hamilton cycles in digraphs, Journal of Combinatorial Theory, Series B, 98 (6) (2008) 1165–1180.
- [10] H. S. Lim, H. C. Kim, J. H. Park, Ore-type degree conditions for disjoint path covers in simple graphs, Discrete Mathematics 339 (2) (2016) 770–779.
- [11] D. Liu, J. Li, Many-to-many n-disjoint path covers in n-dimensional hypercubes, Information Processing Letters 110 (1415) (2010) 580–584.
- [12] J. H. Park. One-to-many disjoint path covers in a graph with faulty elements, International Computing and Combinatorics Conference, Springer, Berlin, Heidelberg, (2004) 392-401.
- [13] J. H. Park, H. C. Kim, H. S. Lim. Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE

Transactions on Parallel and Distributed Systems, 17 (3) (2006) 227-240.

- [14] J. H. Park, H. C. Kim, H. S. Lim. Many-to-many disjoint path covers in the presence of faulty elements, IEEE Transactions on Computers, 58 (4) (2008) 528-540.
- [15] L. Redei, Ein kombinatorischer Satz, Acta Litt, Szeged, 7 (1934) 39-43.
- [16] Y. K. Shih, S. S. Kao, One-to-one disjoint path covers on k-ary n-cubes, Theoretical Computer Science 412 (35) (2011) 4513–4530.
- [17] L. You, J. Fan, Y. Han, X. Jia, One-to-one disjoint path covers on alternating group graphs, Theoretical Computer Science 562 (2015) 146–164.
- [18] Z. Zhou, Semi-degree conditions for one-to-many disjoint path covers in digraph, submitted.