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Block colourings of star systems

Robert F. Bailey and Iren Darijani∗

March 8, 2023

Abstract

An e-star system of order n is a decomposition of the complete graph Kn into copies
of the complete bipartite graph K1,e (or e-star). Such systems are known to exist if
and only if n ≥ 2e and e divides

(

n
2

)

. We consider block colourings of such systems,
where each e-star is assigned a colour, and two e-stars which share a vertex receive
different colours. We present a computer analysis of block colourings of small 3-star
systems. Furthermore, we prove that: (i) for n ≡ 0, 1 mod 2e there exists either an
n or (n − 1)-block colourable e-star system of order n; and (ii) when e = 3, the same
result holds in the remaining congruence classes mod 6.

1 Introduction

A G-decomposition of a graph H is a pair D = (V,B), where V is the vertex set of H , and B
is a set of subgraphs of H , each isomorphic to G, whose edge sets partition the edge set of H .
The elements of B are known as the blocks of D. A G-design of order n is a G-decomposition
of the complete graph Kn on n vertices. In the case where G is a complete bipartite graph
K1,e, also known as an e-star, we call the design an e-star system of order n, denoted Se(n).

Necessary and sufficient conditions for the existence of e-star systems were determined
by Yamamoto et al. [16] in 1975: they showed that an e-star system of order n exists if and
only if (i) n ≥ 2e, and (ii) e divides

(

n

2

)

. We call a positive integer n admissible if there
exists an e-star system of order n. Since a 1-star is an edge and a 2-star is a path, we will
consider e-star systems for e ≥ 3.

Our notation for an e-star isomorphic to K1,e will be {x; y1, . . . , ye}, where x is the vertex
of degree e (the root vertex), and y1, . . . , ye are the vertices of degree 1 (the pendant vertices).

Example 1.1. The following pair (V,B) is a 3-star system of order 6, where V = {1, . . . , 6}
is the set of points and B =

{

{1; 3, 5, 6}, {2; 1, 3, 6}, {4; 1, 2, 3}, {5; 2, 3, 4}, {6; 3, 4, 5}
}

is
the set of blocks (3-stars).
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1.1 Block-colourings

A block-colouring of a G-design D = (V,B) is a partition of B into colour classes, where the
blocks in each colour class are mutually disjoint. (This amounts to colouring the edges of
Kn in such a way that the edges in a particular copy of G all receive the same colour, and
two edges incident with the same vertex are the same colour if and only if they lie in the
same block.) A design is said to be k-block-colourable if this is possible using k colours; the
G-design is k-block-chromatic if it is k-block-colourable but is not (k − 1)-block-colourable.
If a G-design D is k-block-chromatic, we say that its chromatic index (also known as its
block-chromatic number) is k, and we denote this by χ′(D). In other words, χ′(D) is the
least integer k for which D admits a k-block-colouring.

In this paper, we will consider properties of block-colourings of e-star systems for e ≥ 3.
To begin with, we note that as an e-star has e + 1 vertices, we need that n ≥ 2(e + 1) in
order for two mutually-disjoint blocks to be able to exist; consequently, if 2e ≤ n ≤ 2e + 1
we will require each block to be assigned its own colour, and the block-chromatic number
will trivially be equal to the number of blocks. Thus the smallest non-trivial example is a
block-colouring of a 3-star system of order 9, as shown below.

Example 1.2. The following pair (V,B) is an S3(9), where V = {1, . . . , 9} and B =
{

{1; 3, 5, 6}, {2; 1, 3, 6}, {4; 1, 2, 3}, {5; 2, 3, 4}, {6; 3, 4, 5}, {7; 1, 2, 3}, {8; 4, 5, 9}, {7; 4, 5, 8},
{8; 1, 2, 3}, {6; 7, 8, 9}, {9; 1, 2, 3}, {9; 4, 5, 7}

}

. This system is 8-block-colourable, with colour
classes C1 =

{

{1; 3, 5, 6}
}

, C2 =
{

{2; 1, 3, 6}, {9; 4, 5, 7}
}

, C3 =
{

{4; 1, 2, 3}, {6; 7, 8, 9}
}

,
C4 =

{

{5; 2, 3, 4}
}

, C5 =
{

{6; 3, 4, 5}
}

, C6 =
{

{7; 1, 2, 3}, {8; 4, 5, 9}
}

, C7 =
{

{7; 4, 5, 8},
{9, 1, 2, 3}

}

, and C8 =
{

{8; 1, 2, 3}
}

.
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In subsection 2.1, we will see that this is the best possible: the least possible chromatic
index for an S3(9) is 8.

A G-design D = (V,B) is resolvable if it has a block-colouring where each colour class con-
tains every vertex in V . The existence of resolvableG-designs, also known asG-factorizations,
is a major area of design theory with a long history dating back to the mid-19th century and
the work of T. P. Kirkman. Clearly, for a G-design of order n to be resolvable, the number
of vertices of G must divide n. In many well-known cases, this necessary condition is also
sufficient: if G = K3 (i.e. Kirkman triple systems), this was proved by Ray-Chaudhuri and
Wilson in 1971 [11]; for G = Cm (where m ≥ 3 must be odd) by Alspach et al. in 1989 [1];
for G = Pk (i.e. a path with k vertices), by Horton in 1985 [7] and Bermond, Heinrich and
Yu in 1990 [2]. For the more general question of determining the least possible chromatic
index of a G-design, see Vanstone et al. [15] for G = K3, and Danziger, Mendelsohn and
Quattrocchi [4] for G = P3 and G = P4.

In the case of resolvable e-star systems, the necessary conditions were obtained by Huang
in 1976 [8]: for such as system of order n to exist, we must have that n ≡ 0 (mod e + 1)
and n ≡ 1 (mod 2e); clearly these cannot be satisfied when e is odd. When e is even, these
conditions were shown to be sufficient by Yu in 1993 [17]. More recently, an elementary proof
of the non-existence of resolvable 3-star systems was given by Küçükçifçi et al. in 2015 [9].
However, as far as the authors are aware, the more general question of determining the
least possible chromatic index of an e-star system remains open. This paper is devoted to
investigating this.

A trivial lower bound on the chromatic index of a G-design can be obtained by dividing
the number of blocks by the largest possible size of a colour class (i.e. the maximum possible
number of disjoint blocks). For an e-star system, the maximum number of disjoint blocks is
⌊n/(e+1)⌋, and the number of blocks is n(n− 1)/2e. Thus, for an e-star system D of order
n, we have

χ′(D) ≥

⌈

n(n− 1)

2e

/⌊

n

e+ 1

⌋⌉

.

We will denote this lower bound by L(n, e). When the necessary conditions for the existence
of a resolvable e-star system are satisfied, the floor and ceiling functions disappear, and we
are left with the obvious formula for the number of parallel classes.

1.2 Other notions of colouring

We remark that there are a number of notions of colourings of designs, which generalize
vertex- and edge-colourings of graphs; block-colourings, as considered in this paper, are a
natural analogue of edge-colourings. As a generalization of vertex-colouring, a G-design
(V,B) is said to be weakly k-colourable if V can be partitioned into k colour classes such
that no subgraph in B is monochromatic; a G-design is k-chromatic if it is k-colourable but
not (k − 1)-colourable. Weak colourings of G-designs have been studied for many classes of
G-designs; in the case of e-star systems, these were considered in a 2020 paper of Pike and
the first author [5].
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2 Experimental results

To gain an understanding of any class of combinatorial objects, it is often desirable to consider
small cases computationally. The chromatic index of star systems is no exception to this;
as such, we performed a number of computer experiments using the GAP computer algebra
system [6] to study small 3-star systems, and determine their chromatic index. We used two
different approaches: the first obtained 3-star systems as cliques in a suitably constructed
graph; the second was to view 3-star systems as a particular class of block designs, and use
classification tools for those. In both cases, we can then obtain the chromatic index of each
3-star system obtained, by first forming its block intersection graph, and then finding the
chromatic number of this graph.

2.1 Clique-finding

A commonly-used technique to construct combinatorial objects is to devise a graph, and
then to search this graph for a clique which corresponds to the desired object (see the survey
by Österg̊ard [10] for some examples of this). We were able to use this approach successfully
to obtain a complete classification of 3-star systems of order 9.

We construct a graph Γ as follows: the vertex set of Γ will be the set of all possible
3-stars on a set 9 vertices, of which there are 9 ·

(

8

3

)

= 504 (9 choices for the root vertex,

and
(

8

3

)

choices for the pendant vertices), and vertices in Γ will be adjacent if and only if
the corresponding 3-stars are edge-disjoint. This graph naturally admits a vertex-transitive
action of the symmetric group Sym(9) (which, in fact, turns out to be the full automorphism
group of Γ), as the vertex set consists of the images of elements of Sym(9) applied to the
‘canonical’ 3-star {1; 2, 3, 4}. A clique in Γ corresponds to a set of mutually edge-disjoint
3-stars in K9. Furthermore, if there exists a clique of size 1

3

(

9

2

)

= 12, then this corresponds
to a 3-star system of order 9 (so this is the maximum possible size of a clique in Γ).

Using the GRAPE package [14] for the GAP system, it is straightforward to construct the
graph Γ. Also, GRAPE has an in-built command, CliquesOfGivenSize, to find cliques of a
specified size in a given graph; in particular, it can enumerate representatives of all orbits
on cliques for some prescribed group acting on the vertices. We applied this command to
the graph Γ, and found a total of 51, 770 12-cliques in Γ arising from the action of Sym(9).
(This computation took approximately 75 minutes on an 3.20GHz Intel i7 CPU with 16GB
RAM.)

The GRAPE package also now includes an efficient function to determine the chromatic
number of a given graph. From a given 3-star system D, the block-intersection graph BIG(D)
of D has the blocks (i.e. 3-stars) of D as its vertices, and two blocks are adjacent if and only
if their intersection is non-empty; a block-colouring of D is clearly equivalent to a proper
vertex-colouring of BIG(D). It is also straightforward to construct BIG(D) in GRAPE; we
did this for each of the 51, 770 S3(9) obtained above, and determined the chromatic index
for each of them. The results of this computation (which took around a further 30 minutes)
are in Table 1 below. The code used is given in Appendices A.1 and A.2.

In particular, we determined that the least possible chromatic index for an S3(9) is 8,
as with the system in Example 1.2; the trivial lower bound is L(9, 3) = 6, so this bound is
not achieved here. Table 1 also shows that there exist examples of S3(9) where each block
requires its own colour (as the chromatic index, 12, is equal to the number of blocks); in other

4



Chromatic index # systems

8 2, 192

9 12, 221

10 21, 420

11 13, 352

12 2, 585

Total 51, 770

Table 1: Chromatic index for 3-star systems of order 9

words, any two 3-stars in such a system must have a vertex in common, as in Example 2.1
below.

Example 2.1. The following are the blocks of a 12-block-chromatic S3(9) with vertex set
{1, . . . , 12}:

{1; 2, 3, 4} {1; 5, 6, 7} {2; 3, 4, 5} {3; 4, 5, 6}

{3; 7, 8, 9} {4; 5, 6, 7} {6; 2, 5, 7} {7; 2, 5, 8}

{8; 1, 4, 5} {8; 2, 6, 9} {9; 1, 5, 6} {9; 2, 4, 7}

We remark that we did not test the systems we obtained for isomorphism, so the number
of isomorphism classes of 3-star systems with given chromatic index may be smaller than
the number of orbit representatives listed in Table 1.

2.2 Classifying designs

Unfortunately, the clique-finding approach of Section 2.1 was not feasible in the next case,
namely 3-star systems of order 10, as the size of the search space is too large, so a different
approach was required. The authors are indebted to Leonard Soicher for suggesting this
method, which makes use of the DESIGN package for GAP [13].

A 3-star system D of order n can be interpreted as a block design DE, where the points
of DE are the edges of Kn, and each block of DE consists of the three edges of a 3-star in D.
(In fact, any G-design may be interpreted in such a way.) The value of this interpretation
is that the DESIGN package includes a function, BlockDesigns, for classifying designs up to
isomorphism, which can be applied here. This classification function is most effective when
searching for designs invariant under some prescribed group of automorphisms; we applied
it to classify 3-star systems of admissible order n for 10 ≤ n ≤ 16 invariant under certain
cyclic groups of prime order p ≤ n. Once the systems were obtained, we could then find
their chromatic index by using GRAPE in the same way as in the previous section. The code
used is given in Appendices A.1 and A.3.

Our results are given in two tables. First, in Table 2 we give the number of systems S3(n)
invariant under each group. Note that, for a given prime p, the symmetric group Sym(n) has
exactly ⌊n/p⌋ conjugacy classes of subgroups of order p, corresponding to the possible cycle
types of its non-identity elements (i.e. the number of disjoint p-cycles); each such subgroup

5



may be distinguished by the order of its normalizer N in Sym(n). Second, in Table 3 we will
give the number of systems with each chromatic index for each order.

n p |N | # systems

10 2 various 0

3 30240 583

3 864 0

3 324 800

5 2400 0

5 200 40

7 252 0

12 2 various 0

3 25920 49816

3 3888 0

3 1944 0

5 100800 708

5 400 0

7 5040 0

11 110 32

13 5 1200 0

11 220 0

13 156 54

15 3 23328 0

5 24000 0

7 588 89600

13 312 0

16 7 1176 0

11 13200 0

13 936 0

Table 2: Numbers of S3(n) invariant under given cyclic groups of prime order, for 10 ≤ n ≤ 16

Some interesting observations can be made from these tables. First, we note that the
trivial lower bound is actually attained when n = 10; we have L(10, 3) = 8, and we found
19 examples of S3(10) with chromatic index 8. An example of such a system, along with an
8-block colouring, is given in Example 2.2. However, we do not observe this for the other
orders we considered (note that L(12, 3) = 8, L(13, 3) = 9, L(15, 3) = 12 and L(16, 3) = 10).
Also when n = 10, the trivial upper bound is also achieved (as happened with n = 9), so
there exist S3(10) where any two blocks intersect; however, we did not observe this for larger
orders (an S3(12) has 22 blocks, and an S3(13) has 26).

6



n Chromatic index # systems

10 8 19

9 389

10 501

11 41

12 429

13 15

14 9

15 20

12 10 823

11 19953

12 22828

13 5880

14 1036

15 36

13 10 5

11 8

12 0

13 39

14 2

15 14 961

15 17

16 14

17 6

18 2

Table 3: Chromatic index for 3-star systems of order n, for 10 ≤ n ≤ 15. For n = 15, a
random sample of 1000 systems was chosen.

7



Example 2.2. The following are the colour classes of an 8-block chromatic S3(10):
{

{1; 2, 4, 5}, {6; 7, 8, 10}
} {

{2; 3, 4, 5}, {9; 6, 8, 10}
}

{

{4; 5, 6, 7}, {10; 1, 2, 3}
} {

{4; 8, 9, 10}, {6; 1, 2, 3}
}

{

{5; 6, 9, 10}, {7; 1, 2, 3}
} {

{7; 5, 9, 10}, {8; 1, 2, 3}
}

{

{8; 5, 7, 10}, {9; 1, 2, 3}
} {

{3; 1, 4, 5}
}

For each value of n, though, we find plenty of examples of chromatic index n or less. This
suggests that n may be an upper bound on the least possible chromatic index for an S3(n),
or possibly for an Se(n) more generally (i.e. that there should exist n-block-colourable Se(n)
for a fixed value of e and any admissible value of n).

3 An upper bound: the case of e-star systems

In this section, we investigate block-colourings of e-star systems for arbitrary e ≥ 3. We
show that, for all n ≡ 0, 1 (mod 2e), there exists an e-star system which admits a block
colouring using either n or n − 1 colours; this gives an upper bound on the least possible
chromatic index for e-star systems of order n where n ≡ 0, 1 (mod 2e). In the theorems
below, we give these constructions, which depend on congruence classes modulo 4e. We do
not claim that the systems we construct have chromatic index n or n− 1, merely that they
admit a colouring with that number of colours.

We begin with the most fundamental case, namely when n ≡ 0 (mod 4e); the other cases
all involve extensions or adaptations of the construction given here.

Theorem 3.1. For n ≡ 0 (mod 4e), there exists an (n − 1)-block-colourable e-star system
of order n.

Proof. Let n = 4et, where t ≥ 1. Let V = {v11, . . . , v
1
2e, v

2
1, . . . , v

2
2e, . . . , v

2t
1 , . . . , v

2t
2e} be

the set of points. Partition V into 2t subsets V1 = {v11, . . . , v
1
2e}, V2 = {v21, . . . , v

2
2e},. . .,

V2t = {v2t1 , . . . , v
2t
2e} of size 2e. On each Vi (for 1 ≤ i ≤ 2t), we place a copy of an e-star

system (Vi,Bi) of order 2e, where Bi = {B1
i , . . . , B

2e−1

i }; this is necessarily (2e − 1)-block-
chromatic.

Next, we construct a complete graph K2t in which the vertices are V1, . . . , V2t. Since 2t is
even, K2t admits a 1-factorization, and hence we can partition the set of all pairs of subsets
V1, . . . , V2t into 2t − 1 1-factors F1, . . . , F2t−1. Without loss of generality, we may assume
that F1 =

{

(V1, V2), (V3, V4), . . . , (V2t−1, V2t)
}

. Furthermore, we will assume that each pair is
ordered. Then for each 1 ≤ j ≤ t, we form a collection of pairs of e-stars as follows:

F1
2j−1 =

{

{v2j−1

1 ; v2j1 , . . . , v2je }, {v2j−1

2 ; v2je+1, . . . , v
2j
2e}

}

,

F2
2j−1 =

{

{v2j−1

1 ; v2je+1, . . . , v
2j
2e}, {v

2j−1

2 ; v2j1 , . . . , v2je }
}

,
...

F2e−1

2j−1
=

{

{v2j−1

2e−1; v
2j
1 , . . . , v2je }, {v2j−1

2e ; v2je+1, . . . , v
2j
2e}

}

,

F2e
2j−1 =

{

{v2j−1

2e−1; v
2j
e+1, . . . , v

2j
2e}, {v

2j−1

2e ; v2j1 , . . . , v2je }
}

.

Then the edges between pairs of subsets in the 1-factor F1 can be partitioned into 2e colour
classes

C1

1 =

t
⋃

j=1

F1

2j−1, C2

1 =

t
⋃

j=1

F2

2j−1, . . . , C2e
1 =

t
⋃

j=1

F2e
2j−1.
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For each i where 2 ≤ i ≤ 2t − 1, the edges between pairs of subsets in the 1-factor Fi can
be partitioned into 2e colour classes C2

i , . . . , C
2e
i in a similar manner. This uses a total of

2e(2t− 1) distinct colours.
It remains to assign colours to the e-stars in each Bi. Since these form a collection of e-star

systems of order 2e which are mutually disjoint, we may use the same set of 2e− 1 colours
each time. So, for each k where 1 ≤ k ≤ 2e−1, we define colour classes Dk = {Bk

1 , . . . , B
k
2t}.

Pulling all of this together, we have an e-star system (V,B) of order 4et, where B =
(

2t
⋃

i=1

Bi

)

∪
(
⋃

2t−1

i=1
C1
i

)

∪ · · ·
(
⋃

2t−1

i=1
C2e
i

)

, with 2e(2t − 1) + 2e − 1 = 4et − 1 colour classes,

D1, . . . ,D2e−1, C1
1 , . . . , C

2e
1 , . . . , C1

2t−1, . . . , C
2e
2t−1. This completes the proof.

To illustrate this construction, we give the example below.

Example 3.2. We will construct a 23-block-colourable 3-star system of order 24 using the
method of Theorem 3.1. Let V = {1, . . . , 24} be the set of points. We partition V into four
subsets V1 = {1, . . . , 6}, V2 = {7, . . . , 12}, V3 = {13, . . . , 18}, and V4 = {19, . . . , 24}. For
each i where 1 ≤ i ≤ 4, we place a copy of the 3-star system of order 6 given in Example 1.1,
which is 5-block-chromatic; label the blocks of these as Bi = {B1

i , B
2
i , B

3
i , B

4
i , B

5
i }.

Next, we construct a complete graph K4 with vertices V1, V2, V3, V4.

V1

V4

V3

V2

This K4 admits a 1-factorization with 1-factors F1, F2, F3, where F1 = {(V1, V2), (V3, V4)},
F2 = {(V1, V3), (V2, V4)}, and F3 = {(V1, V4), (V2, V3)}. The edges between V1 and V2 in F1

can be partitioned into six colour classes F1
1 , . . . ,F

6
1 as depicted below.
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Likewise, we can partition the edges between V3 and V4 into six colour classes F1
3 , . . . ,F

6
3

in a similar manner. Then the edges between pairs of subsets in the 1-factor F1 are partitioned
into six colour classes C1

1 = F1
1 ∪F1

3 , . . . , C
6
1 = F6

1 ∪F6
3 . Using the same approach, we obtain

another six colour classes, C1
2 , . . . , C

6
2 , from the 1-factor F2, and a further six colour classes,

C1
3 , . . . , C

6
3 , from the 1-factor F3.

This leaves the four copies of the 3-star system of order 6. For each k where 1 ≤ k ≤ 5,
we let Dk = {Bk

1 , B
k
2 , B

k
3 , B

k
4}. For instance, D1 is shown below:

16

5

4 3

2

712

11

10 9

8

1318

17

16 15

14

1924

23

22 21

20

Then (V,B), where B =
(

4
⋃

i=1

Bi

)

∪
(

3
⋃

i=1

C1
i

)

∪ . . .∪
(

3
⋃

i=1

C6
i

)

is a 23-block-colourable 3-star

system of order 24 with colour classes D1, . . . ,D5, C1
1 , . . . , C

6
1 , C

1
2 , . . . , C

6
2 , C

1
3 , . . . , C

6
3 .

Next, we will consider the case where n ≡ 1 (mod 4e). Here, we will make use of a block
colouring of an e-star system of order n− 1 ≡ 0 (mod 4e) as obtained in Theorem 3.1, and
extend it to obtain a system of order n ≡ 1 (mod 4e) by adding an additional point.

Theorem 3.3. For n ≡ 1 (mod 4e), there exists an n-block-colourable e-star system of order
n.

Proof. Let n = 4et + 1, where t ≥ 1. Let V = V ′ ∪ {x} be the set of points where V ′ =
{v11, . . . , v

1
2e, v

2
1, . . . , v

2
2e, . . . , v

2t
1 , . . . , v

2t
2e}. Partition V ′ into 2t subsets V1 = {v11, . . . , v

1
2e}, . . . ,

V2t = {v2t1 , . . . , v
2t
2e} of size 2e. Let (V ′,B′) be the (4et − 1)-block-colourable e-star system

of order 4et constructed in the proof of Theorem 3.1, with colour classes D1, . . . ,D2e−1,
C1
1 , . . . , C

2e
1 , . . ., C1

2t−1, . . . , C
2e
2t−1.

The next step is to decompose the edges between the point x and the subsets V1, . . . , V2t

into e-stars and colour these e-stars. For each i where 1 ≤ i ≤ 2t − 1, we decompose the
edges between the point x and the subset Vi into e-stars {x; vi1, . . . , v

i
e} and {x; vie+1, . . . , v

i
2e}.

To colour these, we reuse the colours associated with the 1-factor Fi from the proof of
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Theorem 3.1. In the 1-factor Fi, take Vi to be the first element of the ordered pair (Vi, Vj) ∈
Fi. With this choice, we can see from the construction in the proof of Theorem 3.1 that the
e-stars {x; vi1, . . . , v

i
e} and {x; vie+1, . . . , v

i
2e} do not have any intersection with the points in

the colour classes C2e
i and C1

i respectively. Therefore, for each i where 1 ≤ i ≤ 2t − 1, we
let (C1

i )
′ = C1

i ∪
{

{x; vie+1, . . . , v
i
2e}

}

and (C2e
i )′ = C2e

i ∪
{

{x; vi1, . . . , v
i
e}
}

.
It only remains to decompose the edges between the point x and the subset V2t into e-stars

and colour these. We decompose these edges into e-stars {x; v2t1 , . . . , v
2t
e } and {x; v2te+1, . . . , v

2t
2e}.

To colour these e-stars, we define two new colour classes A1 =
{

{x; v2t1 , . . . , v
2t
e }

}

and
A2 =

{

{x; v2te+1, . . . , v
2t
2e}

}

.

Therefore (V,B) where B = B′ ∪
(

2t
⋃

i=1

{

{x; vi1, . . . , v
i
e}, {x; v

i
e+1, . . . , v

i
2e}

})

is a (4et + 1)-

block-colourable e-star system of order 4et+1, with colour classes D1, . . . ,D2e−1, (C1
1)

′, C2
1 , . . . ,

C2e−1

1 , (C2e
1 )′, . . . , (C1

2t−1)
′, C2

2t−1, . . . , C
2e−1

2t−1 , (C
2e
2t−1)

′,A1,A2.

Our next result considers the case where n ≡ 2e (mod 4e). Here, we will adapt the proof
of Theorem 3.1, but will use a near 1-factorization instead of a 1-factorization.

Theorem 3.4. For n ≡ 2e (mod 4e), there exists an n-block-colourable e-star system of order
n, except for n = 2e where all e-star systems of order 2e are trivially (n−1)-block-chromatic.

Proof. Since the case n = 2e is trivial, we will suppose that n = 4et + 2e where t ≥ 1.
Let V = {v11, . . . , v

1
2e, v

2
1, . . . , v

2
2e, . . . , v

2t+1

1 , . . . , v2t+1

2e } be the set of points. Partition V into
2t + 1 subsets V1 = {v11, . . . , v

1
2e}, . . . , V2t+1 = {v2t+1

1 , . . . , v2t+1

2e } of size 2e. For each i where
1 ≤ i ≤ 2t+ 1, take an e-star system (Vi,Bi) of order 2e, with blocks Bi = {B1

i , . . . , B
2e−1

i },
which is necessarily (2e− 1)-block-chromatic.

Next, obtain a complete graph K2t+1 whose vertices are V1, . . . , V2t+1. Since 2t + 1 is
odd, K2t+1 admits a near 1-factorization; hence we can partition the set of all pairs of
subsets chosen from V1, . . . , V2t+1 into 2t + 1 near 1-factors F1, . . . , F2t+1. For each i where
1 ≤ i ≤ 2t + 1, we let C1

i , . . . , C
2e
i be colour classes defined in a similar manner as those in

the proof of Theorem 3.1. Also, for each i, we suppose that Vi is the missing point of the
near 1-factor Fi.

To colour the e-stars in each Bi, we can reuse colours associated with the near 1-factor
Fi. So we let (C1

i )
′ = C1

i ∪ {B1
i }, . . . , (C

2e−1

i )′ = C2e−1

i ∪ {B2e−1

i }.

Then (V,B), where B =
(

2t+1
⋃

i=1

Bi

)

∪
(
⋃

2t+1

i=1
C1
i

)

∪ . . . ∪
(
⋃

2t+1

i=1
C2e
i

)

is a (4et + 2e)-block-

colourable e-star system of order 4et + 2e with colour classes (C1
1)

′, . . . , (C2e−1

1 )′, C2e
1 , . . . ,

(C1
2t+1)

′, . . . , (C2e−1

2t+1 )
′, C2e

2t+1.

The final result of this section considers the case where n ≡ 2e+ 1 (mod 4e). Similar to
Theorem 3.3, we will extend an e-star system of order n− 1 ≡ 2e (mod 4e) by introducing
a new point, although the details are not identical.

Theorem 3.5. For n ≡ 2e + 1 (mod 4e), there exists an (n − 1)-block-colourable e-star
system of order n, except for n = 2e+1 where all e-star systems of order 2e+1 are trivially
n-block-chromatic.

Proof. Since the case n = 2e+1 is trivial, we can suppose that n = 4et+2e+1 where t ≥ 1.
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Let V = V ′ ∪ {x}, where V ′ = {v11, . . . , v
1
2e, v

2
1, . . . , v

2
2e, . . . , v

2t+1

1 , . . . , v2t+1

2e }. Partition V ′

into 2t + 1 subsets V1 = {v11, . . . , v
1
2e}, V2 = {v21, . . . , v

2
2e}, . . . , V2t+1 = {v2t+1

1 , . . . , v2t+1

2e } of
size 2e. Let (V ′,B′) be the (4et + 2e)-block-colourable e-star system of order 4et + 2e with
colour classes (C1

1)
′, . . . , (C2e−1

1 )′, C2e
1 , . . . , (C1

2t+1)
′, . . . , (C2e−1

2t+1 )
′, C2e

2t+1 constructed in the proof
of Theorem 3.4.

The next step is to decompose the edges between the point x and the subsets V1, . . . , V2t+1

into e-stars and colour these e-stars. For each i where 1 ≤ i ≤ 2t + 1, we decompose the
edges between the point x and the subset Vi into e-stars {x; vi1, . . . , v

i
e} and {x; vie+1, . . . , v

i
2e}.

To colour these, we will reuse the existing colours: these will be taken from the colour classes
associated with the 1-factor Fi−1 (where F0 = F2t+1). In the 1-factor Fi−1, suppose that Vi is
the first element in the ordered pair (Vi, Vj) ∈ Fi−1; we can see from the constructions in the
proofs of Theorem 3.1 and Theorem 3.4 that the e-stars {x; vi1, . . . , v

i
e} and {x; vie+1, . . . , v

i
2e}

do not have any intersection with the points in the colour classes C2e
i−1 and (C1

i−1)
′ respectively.

Therefore, for each i where 1 ≤ i ≤ 2t+1, we let (C1
i−1)

′′ = (C1
i−1)

′∪
{

{x; vie+1, . . . , v
i
2e}

}

and
(C2e

i−1)
′′ = C2e

i−1 ∪
{

{x; vi1, . . . , v
i
e}
}

.

Then (V,B), where B = B′ ∪
(

2t+1
⋃

i=1

{

{x; vi1, . . . , v
i
e}, {x; v

i
e+1, . . . , v

i
2e}

})

, is a (4et + 2e)-

block-colourable e-star system of order 4et+2e+1 with colour classes (C1
1)

′′, (C2
1)

′, . . . , (C2e−1

1 )′,
(C2e

1 )′′, . . . , (C1
2t+1)

′′, (C2
2t+1)

′, . . . , (C2e−1

2t+1 )
′, (C2e

2t+1)
′′.

Combining all of the results of this section, we have the following corollary.

Corollary 3.6. For all e ≥ 3, and each n ≡ 0, 1 (mod 2e), there exists either an (n − 1)-
block-colourable or an n-block-colourable e-star system of order n.

4 An upper bound: the case of 3-star systems

In general, the results of Section 3 do not cover all the possible congruence classes mod 2e
for which e-star systems can exist. In particular, if e = 3, they only cover the cases where
n ≡ 0, 1 mod 6; it is known that 3-star systems will also exist when n ≡ 3, 4 mod 6. In
this section, we will give constructions of block-coloured 3-star systems for these additional
congruence classes (considering them modulo 12), which attain the same upper bounds on
the minimum number of colours. As an additional ingredient, we will make use of the
8-block-colourable S3(9) given in Example 1.2.

Theorem 4.1. For n ≡ 3 (mod 12), there exists an (n − 1)-block-colourable 3-star system
of order n.

Proof. Let n = 12t+3. Since there is no 3-star system of order 3, we will assume that t ≥ 1.
Let V be the set of points. We will partition V into 2t subsets, V1 = {v11, . . . , v

1
6}, . . . , V2t−1 =

{v2t−1

1 , . . . , v2t−1

6 }, V2t = {v2t1 , . . . , v
2t
9 } (so that V2t has size 9 and the others have size

6). We will place a 3-star system on each of these: for 1 ≤ i ≤ 2t − 1, we let Bi =
{

{vi1; v
i
3, v

i
5, v

i
6}, {v

i
2; v

i
1, v

i
3, v

i
6}, {v

i
4; v

i
1, v

i
2, v

i
3}, {v

i
5; v

i
2, v

i
3, v

i
4}, {v

i
6; v

i
3, v

i
4, v

i
5}
}

, so that (Vi,Bi)
is a copy of the S3(6) in Example 1.1, which is necessarily 5-block-chromatic. On V2t, we
will place a copy of the S3(9) from Example 1.2, which is 8-block-chromatic: we let B2t =
{

{v2t1 ; v
2t
3 , v

2t
5 , v

2t
6 }, {v

2t
2 ; v

2t
1 , v

2t
3 , v

2t
6 }, {v

2t
4 ; v

2t
1 , v

2t
2 , v

2t
3 }, {v

2t
5 ; v

2t
2 , v

2t
3 , v

2t
4 }, {v

2t
6 ; v

2t
3 , v

2t
4 , v

2t
5 },

{v2t7 ; v
2t
1 , v

2t
2 , v

2t
3 }, {v

2t
8 , v

2t
4 , v

2t
5 , v

2t
9 }, {v

2t
7 , v

2t
4 , v

2t
5 , v

2t
8 }, {v

2t
8 ; v

2t
1 , v

2t
2 , v

2t
3 }, {v

2t
6 , v

2t
7 , v

2t
8 , v

2t
9 },
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{v2t9 , v
2t
1 , v

2t
2 , v

2t
3 }, {v

2t
9 , v

2t
4 , v

2t
5 , v

2t
7 }

}

. Note that this has a subsystem isomorphic to the S3(6)
placed on each of V1, . . . , V2t−1.

We now construct a complete graph K2t in which the vertices are V1, . . . , V2t. Since 2t
is even, K2t admits a 1-factorization, so we can partition the set of all pairs of subsets from
V1, . . . , V2t into 2t − 1 1-factors F1, . . . , F2t−1. Without loss of generality, we assume that
F1 =

{

(V1, V2), (V3, V4), . . . , (V2t−1, V2t)
}

. Now, for each j where 1 ≤ j ≤ t− 1, let

F1
2j−1 =

{

{v2j−1

1 ; v2j1 , v2j2 , v2j3 }, {v2j−1

2 ; v2j4 , v2j5 , v2j6 }
}

,

F2
2j−1 =

{

{v2j−1

1 ; v2j4 , v2j5 , v2j6 }, {v2j−1

2 ; v2j1 , v2j2 , v2j3 }
}

,

F3
2j−1 =

{

{v2j−1

3 , v2j1 , v2j2 , v2j3 }, {v2j−1

4 , v2j4 , v2j5 , v2j6 }
}

,

F4
2j−1 =

{

{v2j−1

3 ; v2j4 , v2j5 , v2j6 }, {v2j−1

4 ; v2i1 , v
2j
2 , v2j3 }

}

,

F5
2j−1 =

{

{v2j−1

5 ; v2j1 , v2j2 , v2j3 }, {v2j−1

6 ; v2j4 , v2j5 , v2j6 }
}

,

F6
2j−1 =

{

{v2j−1

5 ; v2j4 , v2j5 , v2j6 }, {v2j−1

6 ; v2j1 , v2j2 , v2j3 }
}

.

Moreover, let

F1
2t−1 =

{

{v2t−1

1 ; v2t1 , v
2t
2 , v

2t
3 }, {v

2t−1

2 ; v2t4 , v
2t
5 , v

2t
6 }, {v

2t−1

3 ; v2t7 , v
2t
8 , v

2t
9 }

}

,

F2
2t−1 =

{

{v2t−1

1 ; v2t4 , v
2t
5 , v

2t
6 }, {v

2t−1

2 ; v2t7 , v
2t
8 , v

2t
9 }, {v

2t−1

3 ; v2t1 , v
2t
2 , v

2t
3 }

}

,

F3
2t−1 =

{

{v2t−1

1 ; v2t7 , v
2t
8 , v

2t
9 }, {v

2t−1

2 , v2t1 , v
2t
2 , v

2t
3 }, {v

2t−1

3 ; v2t4 , v
2t
5 , v

2t
6 }

}

,

F4
2t−1 =

{

{v2t−1

4 ; v2t1 , v
2t
2 , v

2t
3 }, {v

2t−1

5 ; v2t4 , v
2t
5 , v

2t
6 }, {v

2t−1

6 ; v2t7 , v
2t
8 , v

2t
9 }

}

,

F5
2t−1 =

{

{v2t−1

4 ; v2t4 , v
2t
5 , v

2t
6 }, {v

2t−1

5 ; v2t7 , v
2t
8 , v

2t
9 }, {v

2t−1

6 ; v2t1 , v
2t
2 , v

2t
3 }

}

,

F6
2t−1 =

{

{v2t−1

4 ; v2t7 , v
2t
8 , v

2t
9 }, {v

2t−1

5 , v2t1 , v
2t
2 , v

2t
3 }, {v

2t−1

6 ; v2t4 , v
2t
5 , v

2t
6 }

}

.

Then the edges between pairs of subsets in the 1-factor F1 can be partitioned into six colour

classes C1
1 =

t
⋃

j=1

F1
2j−1, . . . , C

6
1 =

t
⋃

j=1

F6
2j−1. For each i where 2 ≤ i ≤ 2t−1, the edges between

pairs of subsets in the 1-factor Fi can be partitioned into six colour classes C1
i , . . . , C

6
i in a

similar manner. Together, these use a total of 6(2t− 1) colours.
It now remains to colour the 3-stars in each Bi (where 1 ≤ i ≤ 2t). Since these are

formed of disjoint 3-star systems which are either 5-block-chromatic (for 1 ≤ i ≤ 2t− 1) or
8-block-chromatic (for i = 2t), we require eight colours. Using the 8-block colouring given
in Example 1.2, we obtain the following colour classes:

D1 =
2t
⋃

i=1

{

{vi1; v
i
3, v

i
5, v

i
6}
}

D2 =
2t
⋃

i=1

{

{vi2; v
i
1, v

i
3, v

i
6}
}

∪
{

{v2t9 ; v
2t
4 , v

2t
5 , v

2t
7 }

}

D3 =
2t
⋃

i=1

{

{vi4; v
i
1, v

i
2, v

i
3}
}

∪
{

{v2t6 ; v
2t
7 , v

2t
8 , v

2t
9 }

}

D4 =
2t
⋃

i=1

{

{vi5; v
i
2, v

i
3, v

i
4}
}

D5 =
2t
⋃

i=1

{

{vi6; v
i
3, v

i
4, v

i
5}
}

D6 =
{

{v2t7 ; v
2t
1 , v

2t
2 , v

2t
3 }, {v

2t
8 , v

2t
4 , v

2t
5 , v

2t
9 }

}

D7 =
{

{v2t7 ; v
2t
4 , v

2t
5 , v

2t
8 }, {v

2t
9 ; v

2t
1 , v

2t
2 , v

2t
3 }

}

D8 =
{

{v2t8 ; v
2t
1 , v

2t
2 , v

2t
3 }

}

Together, these 6(2t−1)+8 = 12t+2 = n−1 colour classes yield a (12t+2)-block-colourable
3-star system of order 12t+3, with colour classes C1

1 , . . . , C
6
1 , . . . , C

1
2t−1, . . . , C

6
2t−1,D

1, . . . ,D8.
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Similar to Theorem 3.3, we may consider the case where n ≡ 4 (mod 12) by taking our
previous construction and extend it by adding a new point.

Theorem 4.2. For n ≡ 4 (mod 12), there exists an n-block-colourable 3-star system of order
n.

Proof. Let n = 12t+4. Since there is no 3-star system of order 4, we will assume that t ≥ 1.
Here, we will extend the block colouring of a 3-star system of order n − 1 ≡ 3 (mod 12) as
obtained in the proof of Theorem 4.1.

Let V = V ′∪{x} be the set of points where |V ′| = 12t+3. Partition V ′ into 2t−1 subsets
of size 6, namely V1 = {v11, . . . , v

1
6}, . . . , V2t−1 = {v2t−1

1 , . . . , v2t−1

6 }, and one of size 9, namely
V2t = {v2t1 , . . . , v

2t
9 }. Let (V

′,B′) be a (12t+2)-block-colourable 3-star system of order 12t+3
as in the proof of Theorem 4.1, with colour classes C1

1 , . . . , C
6
1 , . . . , C

1
2t−1, . . . , C

6
2t−1,D

1, . . . ,D8.
The next step is to decompose the edges between the point x and the subsets V1, . . . , V2t

into 3-stars and then to colour them. First, for each i where 1 ≤ i ≤ 2t−1, we decompose the
edges between the point x and the subset Vi into two 3-stars {x; vi1, v

i
2, v

i
3} and {x; vi4, v

i
5, v

i
6}.

To colour these, we reuse the colours of C6
i and C1

i associated to the 1-factor Fi in the proof
of Theorem 4.1. So, for each i where 1 ≤ i ≤ 2t− 1, we let (C1

i )
′ = C1

i ∪
{

{x; vi4, v
i
5, v

i
6}
}

and
(C6

i )
′ = C6

i ∪
{

{x; vi1, v
i
2, v

i
3}
}

.
It only remains to decompose the edges between the point x and the subset V2t into

3-stars and colour them. This time, we obtain three 3-stars {x; v2t1 , v
2t
2 , v

2t
3 }, {x; v

2t
4 , v

2t
5 , v

2t
6 },

and {x; v2t7 , v
2t
8 , v

2t
9 }. To colour these, we define two new colour classes, namely E1 =

{

{x; v2t1 , v
2t
2 , v

2t
3 }

}

and E2 =
{

{x; v2t4 , v
2t
5 , v

2t
6 }

}

, while the third block can be assigned the
same colour as class D1. So we let (D1)′ = D1 ∪

{

{x; v2t7 , v
2t
8 , v

2t
9 }

}

.
Pulling all of this together, we obtain a (12t+ 4)-block-colourable 3-star system of order

12t+4, with colour classes (C1
1)

′, C2
1 , . . . , C

5
1 , (C

6
1)

′, . . . , (C1
2t−1)

′, C2
2t−1, . . . , C

5
2t−1, (C

6
2t−1)

′, (D1)′,
D2, . . . ,D8, E1, E2.

Our next result uses a combination of the approaches of Theorem 3.5 and Theorem 4.1,
to consider the case where n ≡ 9 (mod 12), using a near 1-factorization.

Theorem 4.3. For n ≡ 9 (mod 12), there exists an (n − 1)-block-colourable 3-star system
of order n.

Proof. Let n = 12t+ 9. If t = 0, we have an 8-block-colourable S3(9) given in Example 1.2.
In what follows, we will assume that t ≥ 1.

Let V be the set of points. Partition V into 2t subsets of size 6, namely V1 = {v11, . . . , v
1
6},

. . . , V2t = {v2t1 , . . . , v
2t
6 }, and one subset of size 9, namely V2t+1 = {v2t+1

1 , . . . , v2t+1

9 }. On each
Vi for 1 ≤ i ≤ 2t, we will place an S3(6) (from Example 1.1, which is 5-block-chromatic) with
blocks Bi as in the proof of Theorem 4.1. On V2t+1 we place a copy of the 8-block chromatic
S3(9) from Example 1.2; we label its blocks B2t+1 as in the proof of Theorem 4.1, but with
the superscript 2t + 1.

Once again, we construct a complete graph K2t+1 in which the vertices are V1, . . . , V2t+1.
Since 2t+1 is odd, this K2t+1 admits a near 1-factorization, and hence we can partition the
set of all pairs of the subsets V1, . . . , V2t+1 into 2t+ 1 near 1-factors, F1, . . . , F2t+1. Suppose
that V1, . . . , V2t+1 are the missing points of the 1-factors F1, . . . , F2t+1 respectively. Assume
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that F1 =
{

(V2, V3), (V4, V5), . . . , (V2t, V2t+1)
}

. For each j where 1 ≤ j ≤ t− 1, let

F1
2j =

{

{v2j1 ; v2j+1

1 , v2j+1

2 , v2j+1

3 }, {v2j2 ; v2j+1

4 , v2j+1

5 , v2j+1

6 }
}

,

F2
2j =

{

{v2j1 ; v2j+1

4 , v2j+1

5 , v2j+1

6 }, {v2j2 ; v2j+1

1 , v2j+1

2 , v2j+1

3 }
}

,

F3
2j =

{

{v2j3 , v2j+1

1 , v2j+1

2 , v2j+1

3 }, {v2j4 , v2j+1

4 , v2j+1

5 , v2j+1

6 }
}

,

F4
2j =

{

{v2j3 ; v2j+1

4 , v2j+1

5 , v2j+1

6 }, {v2j4 ; v2j+1

1 , v2j+1

2 , v2j+1

3 }
}

,

F5
2j =

{

{v2j5 ; v2j+1

1 , v2j+1

2 , v2j+1

3 }, {v2j6 ; v2j+1

4 , v2j+1

5 , v2j+1

6 }
}

,

F6
2j =

{

{v2j5 ; v2j+1

4 , v2j+1

5 , v2j+1

6 }, {v2j6 ; v2j+1

1 , v2j+1

2 , v2j+1

3 }
}

.

Also, let

F1
2t =

{

{v2t1 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t2 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }, {v2t3 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }
}

,

F2
2t =

{

{v2t1 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }, {v2t2 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }, {v2t3 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }
}

,

F3
2t =

{

{v2t1 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }, {v2t2 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t3 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }
}

,

F4
2t =

{

{v2t4 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t5 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }, {v2t6 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }
}

,

F5
2t =

{

{v2t4 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }, {v2t5 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }, {v2t6 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }
}

,

F6
2t =

{

{v2t4 ; v
2t+1

7 , v2t+1

8 , v2t+1

9 }, {v2t5 ; v
2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t6 ; v
2t+1

4 , v2t+1

5 , v2t+1

6 }
}

.

Then the edges between pairs of subsets in the 1-factor F1 can be partitioned into six colour

classes C1
1 =

t
⋃

j=1

F1
2j, . . . , C

6
1 =

t
⋃

j=1

F6
2j . For each i where 2 ≤ i ≤ 2t + 1, the edges between

pairs of subsets in the 1-factor Fi can be partitioned into six colour classes C1
i , . . . , C

6
i in a

similar manner.
Next, for each i where 1 ≤ i ≤ 2t, we will colour the five 3-stars in Bi. Since Vi is

the missing point of the 1-factor Fi, we can reuse the colours from classes C1
i , C

2
i , C

3
i , C

4
i

and C5
i associated with the 1-factor Fi. So, for each i where 1 ≤ i ≤ 2t, we let (C1

i )
′ =

C1
i ∪

{

{vi1; v
i
3, v

i
5, v

i
6}
}

, (C2
i )

′ = C2
i ∪

{

{vi2; v
i
1, v

i
3, v

i
6}
}

, (C3
i )

′ = C3
i ∪

{

{vi4; v
i
1, v

i
2, v

i
3}
}

, (C4
i )

′ =
C4
i ∪

{

{vi5; v
i
2, v

i
3, v

i
4}
}

, and (C5
i )

′ = C5
i ∪

{

{vi6; v
i
3, v

i
4, v

i
5}
}

.
It remains to colour the 3-stars in B2t+1, which requires eight colours. Since V2t+1 is the

missing point of the 1-factor F2t+1, we can reuse the six colours from classes C1
2t+1, . . . , C

6
2t+1

associated with the 1-factor F2t+1, as follows:

(C1
2t+1)

′ = C1
2t+1 ∪

{

{v2t+1

1 ; v2t+1

3 , v2t+1

5 , v2t+1

6 }
}

,

(C2
2t+1)

′ = C2
2t+1 ∪

{

{v2t+1

2 ; v2t+1

1 , v2t+1

3 , v2t+1

6 }, {v2t+1

9 ; v2t+1

4 , v2t+1

5 , v2t+1

7 }
}

,

(C3
2t+1)

′ = C3
2t+1 ∪

{

{v2t+1

4 ; v2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t+1

6 ; v2t+1

7 , v2t+1

8 , v2t+1

9 }
}

,

(C4
2t+1)

′ = C4
2t+1 ∪

{

{v2t+1

5 ; v2t+1

2 , v2t+1

3 , v2t+1

4 }
}

,

(C5
2t+1)

′ = C5
2t+1 ∪

{

{v2t+1

6 ; v2t+1

3 , v2t+1

4 , v2t+1

5 }
}

,

(C6
2t+1)

′ = C6
2t+1 ∪

{

{v2t+1

7 ; v2t+1

1 , v2t+1

2 , v2t+1

3 }, {v2t+1

8 , v2t+1

4 , v2t+1

5 , v2t+1

9 }
}

.

For the remaining blocks, we introduce two new colours:

A1 =
{

{v2t+1

7 ; v2t+1

4 , v2t+1

5 , v2t+1

8 }, {v2t+1

9 ; v2t+1

1 , v2t+1

2 , v2t+1

3 }
}

,

A2 =
{

{v2t+1

8 ; v2t+1

1 , v2t+1

2 , v2t+1

3 }
}

Together, these yield a (12t+ 8)-block-colourable 3-star system of order 12t+ 9 with colour
classes (C1

1)
′, . . . (C5

1)
′, C6

1 , . . . , (C
1
2t)

′, . . . , (C5
2t)

′, C6
2t, (C

1
2t+1)

′, . . . , (C6
2t+1)

′,A1,A2.
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Our last main result is another “extension” result, which enables us to consider the final
congruence class for 3-star systems.

Theorem 4.4. For n ≡ 10 (mod 12), there exists an (n− 1)-block-colourable 3-star system
of order n.

Proof. We remark that 9-block colourable 3-star systems of order 10 were obtained by com-
puter search in subsection 2.2 (see Table 3), so it suffices to consider n = 12t + 10 where
t ≥ 1. Here, we will extend a block colouring of a 3-star system of order n − 1 ≡ 9 (mod
12), as constructed in the proof of Theorem 4.3.

Let V = V ′∪{x} be the set of points where |V ′| = 12t+9. As in the proof of Theorem 4.3,
partition V ′ into 2t subsets of size 6, namely V1 = {v11, . . . , v

1
6}, . . . , V2t = {v2t1 , . . . , v

2t
6 }, and

one subset of size 9, namely V2t+1 = {v2t+1

1 , . . . , v2t+1

9 }. Let (V ′,B′) be a (12t + 8)-block-
colourable 3-star system of order 12t + 9 with colour classes labelled as in the proof of
Theorem 4.3.

The next step is to decompose the edges between the point x and the subsets V1, . . . , V2t+1

into 3-stars and colour these. For each i where 1 ≤ i ≤ 2t, we decompose the edges between
the point x and the subset Vi into two 3-stars {x; v

i
1, v

i
2, v

i
3} and {x; vi4, v

i
5, v

i
6}. To colour these,

we reuse the colour classes associated to the 1-factor Fi−1 from the proof of Theorem 4.3,
where F0 = F2t. In the 1-factor Fi−1, suppose that Vi is the first element in the ordered
pair (Vi, Vj) ∈ Fi−1; we can see from the constructions in the proof of Theorem 4.3 that the
3-stars {x; vi1, v

i
2, v

i
3} and {x; vi4, v

i
5, v

i
6} do not have any intersection with the points in the

colour classes (C6
i−1)

′ and (C1
i−1)

′ respectively. Therefore, for each i where 1 ≤ i ≤ 2t, we let
(C1

i−1)
′′ = (C1

i−1)
′ ∪

{

{x; vi4, v
i
5, v

i
6}
}

and (C6
i−1)

′′ = C6
i−1 ∪

{

{x; vi1, v
i
2, v

i
3}
}

.
It only remains to decompose the edges between the point x and the subset V2t+1 into 3-

stars and colour them. We obtain three 3-stars {x; v2t+1

2 , v2t+1

4 , v2t+1

7 }, {x; v2t+1

1 , v2t+1

6 , v2t+1

8 }
and {x; v2t+1

3 , v2t+1

5 , v2t+1

9 }. To colour the first two of these, we reuse the colour classes
(C1

2t+1)
′ and (C4

2t+1)
′, respectively, associated to the 1-factor F2t+1. To colour the third 3-

star, we define a new colour class A3 consisting of this 3-star only. So we have (C1
2t+1)

′′ =
(C1

2t+1)
′ ∪

{

{x; v2t+1

2 , v2t+1

4 , v2t+1

7 }
}

, (C4
2t+1)

′′ = (C4
2t+1)

′ ∪
{

{x; v2t+1

1 , v2t+1

6 , v2t+1

8 }
}

, and A3 =
{

{x; v2t+1

3 , v2t+1

5 , v2t+1

9 }
}

.
Together, these yield a (12t + 9)-block-colourable 3-star system of order 12t + 10 with

colour classes (C1
1)

′′, (C2
1)

′, . . . , (C5
1)

′, (C6
1)

′′, . . . , (C1
2t)

′′, (C2
2t)

′, . . . , (C5
2t)

′, (C6
2t)

′′, (C1
2t+1)

′′, (C2
2t+1)

′,
(C3

2t+1)
′, (C4

2t+1)
′′, (C5

2t+1)
′, (C6

2t+1)
′,A1,A2,A3.

Combining the results of this section, as well as the e = 3 case of Corollary 3.6, we have
the following corollary.

Corollary 4.5. For every admissible order n, there exists either an (n− 1)-block-colourable
or an n-block-colourable 3-star system of order n.

5 Conclusion

Admittedly, as can be seen from the experimental results in Section 2 (particularly Table 3),
our main theorems in Sections 3 and 4 do not give the best possible bounds on the least
possible chromatic index of an Se(n). However, a more positive observation is that our upper
bounds are linear in n, as is the trivial lower bound of L(n, e) at the end of Section 1. So
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we can conclude that the least possible chromatic index is asymptotically Θ(n), while the
number of blocks is quadratic in n. However, the general question of precisely determining
the least possible chromatic index of an Se(n) is, of course, still wide open.

Our computations also showed that, for e = 3 and 9 ≤ n ≤ 10, the largest possible
chromatic index of an Se(n) is equal to the number of blocks, i.e. any two blocks must
intersect (such as the system in Example 2.1). Determining what this maximum value can
be is another interesting open problem. (We note that for K3-designs, i.e. Steiner triple
systems, the equivalent question was discussed by Rosa [12] in 2015 and considered in detail
by Bryant et al. in 2017 [3].)

Appendix A: GAP programs

A.1 General techniques

In GAP, we specify an e-star as an ordered pair of sets, where the first entry is the set
containing the root vertex, and the second entry is the set of pendant vertices. So, for
example, the 3-star {1; 2, 3, 4} is given as [ [1], [2,3,4] ]. An e-star system is specified as
a set of e-stars. The following functions are used to manipulate e-stars or e-star systems,
and to determine the chromatic index of a system (as the chromatic number of its block
intersection graph). Most of these functions are dependent on the GRAPE package, which
must be accessed using the LoadPackage("grape"); command.

## Function to make the edge set of an e-star <s>

StarEdges:=function(s,e)

local E;

E:=List(s[2], x->Set([ s[1][1], x ]) );

return Set(E);

end;

## Inverse function to make an e-star from its edge set

InverseStarEdges:=function(edge_set,e)

local root,pendants,S;

root:=Intersection(edge_set);

if Size(root)<>1

then return fail;

else

pendants:=List(edge_set, x->Difference(x,root));

S:=[root, Union(pendants)];

return S;

fi;

end;

## Function to determine the chromatic index of an e-star system <D>

ChromaticIndexOfStarSystem:=function(D)

local big,auts,chi;

D:=Set(D);

big:=Graph( Group(()), D, OnTuplesSets,

function(x,y) return (x<>y and Intersection(Union(x),Union(y))<>[]); end);

auts:=AutGroupGraph(big);

big:=NewGroupGraph(auts,big); ## ensures the full automorphism group of <big> is used

chi:=ChromaticNumber(big);

return chi;

end;
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A.2 The clique-finding approach

Here, we give the GAP code used in subsection 2.1, using a clique-finding approach to obtain
the chromatic index of all S3(9).

## Function to make the graph whose vertices are all possible e-stars, adjacent whenever they are edge-disjoint

StarGraph:=function(n,e)

local gamma;

gamma:=Graph( SymmetricGroup(n), [ [[1],[2..e+1]] ], OnTuplesSets,

function(x,y) return ( x<>y and Intersection(StarEdges(x,e),StarEdges(y,e))=[] ); end );

return gamma;

end;

## Function to convert a clique <C> in a "star graph" <gamma> into a set of e-stars

CliqueStars:=function(gamma,C)

local blocks;

blocks:= List(C, x->gamma.names[x]); ## the ".names" component stores the e-star corresponding to each vertex

return blocks;

end;

## Code to obtain all possible 3-star systems of order 9, and determine the chromatic index of each

gamma:=StarGraph(9,3);

cliques:=CliquesOfGivenSize(gamma,12,1); ## the argument "1" will find all cliques of the specified size

chromatic_list:=[];

for C in cliques do

D:=CliqueStars(gamma,C);

chi:=ChromaticIndexOfStarSystem(D);

Add(chromatic_list,chi);

od;

A.3 The design classification approach

Here, we give the GAP code (using the DESIGN package [13]) implementing the techniques
described in subsection 2.2.

## Obtain action of Sym(n) on edges of complete graph K_n

SymmetricGroupOnEdges:=function(n)

local S,edges,hom;

S:=SymmetricGroup([1..n]);

edges:=Combinations([1..n],2);

hom:=ActionHomomorphism(S,edges,OnSets);

return Image(hom,S);

end;

## Function to obtain representatives for each conjugacy class of subgroups of Sym(n) of prime order

PGroupRepresentatives:=function(n)

local G,class_reps,group_list,c,x;

G:=SymmetricGroupOnEdges(n);

class_reps:=Set(ConjugacyClasses(G),c->Group(Representative(c)));

group_list:=Filtered(class_reps,x->IsPrimeInt(Size(x)));

return group_list;

end;

## Function to construct set of all e-stars as a block design

## Note that entries 1..e of "edges" will be the edges of the e-star [ [1], [2..e+1] ]

AllStarsDesign:=function(n,e)

local edges,G,D;

edges:=Combinations([1..n],2);

G:=SymmetricGroupOnEdges(n);

D:=BlockDesign(Size(edges),[[1..e]],G);;

AllTDesignLambdas(D);

return D;

end;
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## Function to obtain all e-star systems of order n invariant under a given group H

InvariantStarSystems:=function(n,e,H)

local edges,G,D,N,spreads,systems_edges,systems,x,y,z;

edges:=Combinations([1..n],2);

G:=SymmetricGroupOnEdges(n);

D:=AllStarsDesign(n,e);

N:=Normalizer(G,H);

spreads:=BlockDesigns(rec(v:=D.v, blockSizes:=BlockSizes(D),

blockDesign:=D, tSubsetStructure:=rec(t:=1, lambdas:=[1]),

requiredAutSubgroup:=H, isoGroup:=N, isoLevel:=2));

systems_edges:=List(spreads, x->List(x.blocks, y->edges{y}));

systems:=List(systems_edges, x->Set(List(x, y->InverseStarEdges(y,3))));

return systems;

end;

## Sample code to determine chromatic index of 3-star systems of order 10 invariant under groups of prime order

systems:=[];

groups:=PGroupRepresentatives(10);

for H in groups do

Append(systems, InvariantStarSystems(10,3,H));

od;

chromatic_list:=[];

for D in systems do

chi:=ChromaticIndexOfStarSystem(D);

Add(chromatic_list,chi);

od;
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[9] S. Küçükçifçi, G. Lo Faro, S. Milici and A. Tripodi, Resolvable 3-star designs, Discrete
Math. 338 (2015), 608–614.
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