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Abstract

We consider the coloring of certain distance graphs on the Euclidean
plane. Namely, we ask for the minimal number of colors needed to
color all points of the plane in such a way that pairs of points at
distance in the interval [1, b] get different colors. The classic Hadwiger-
Nelson problem is a special case of this question – obtained by taking
b = 1. The main results of the paper are improved lower and upper
bounds on the number of colors for some values of b. In particular,
we determine the minimal number of colors for two ranges of values
of b - one of which is enlarging an interval presented by Exoo and the
second is completely new. Up to our knowledge, these are the only
known families of distance graphs on R2 with a determined nontrivial
chromatic number. Moreover, we present the first 8-coloring for b
larger than values of b for the known 7-colorings. As a byproduct,
we give some bounds and exact values for bounded parts of the plane,
specifically by coloring certain annuli.
keywords: coloring, distance graphs, Hadwiger-Nelson problem
MSC Classification 05C15, 05C10, 05C62

1 Introduction
How many colors are needed to color the Euclidean plane R2 so that
no pair of points at distance 1 get the same color? This famous open
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question is known as the Hadwiger-Nelson problem, named after Hugo
Hadwiger and Edward Nelson. It is also often formulated as a question
about the chromatic number of a unit distance graph of the plane. A
graph with a set of vertices R2 and a set of edges as pair of points
at euclidean distance. Any of its subgraphs is called a unit distance
graph. For short, the parameter in question is often called the chro-
matic number of the plane.

Figure 1: The so-called Moser spindle graph embedded as a unit distance
graph in the plane (edges stand for segments of length 1), with the chromatic
number equal to 4.

1 2 3 4 5 6 7 1

3 4 5 6 7 1 2 3

5 6 7 1 2 3 4 5

6 7 1 2 3 4 5 6

1 2 3 4 5 6 7 1

Figure 2: The coloring scheme of a of 7-coloring of the unit distance graph
of the plane, with hexagons of diameter slightly smaller than 1 (sufficiently
close to 1).

The problem was originally proposed by Edward Nelson in 1950
(see [64]) in hope of being helpful in the four-color problem of coloring
maps. This idea did not work as desired, but the question proved itself
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to be interesting on its own, to put it mildly. In the same year, Nelson
observed that at least 4 colors are needed, as there are small, finite sets
of points that are not 3-colorable. The smallest example, consisting of
just 7 points, was found by Moser and Moser [48] and is known as
Moser spindle (see Figure 1). Still, in 1950, John Isbell found the up-
per bound of 7 by the following coloring: take a tiling of the plane by
regular hexagons of a diameter slightly smaller than 1 and then color
each hexagon with one color according to the scheme presented in Fig-
ure 2 (colors of the borders do not matter). It is easy to check that two
different hexagons of the same color are at distance greater than 1, thus
this coloring satisfies the required condition. The same coloring was
considered a few years before by Hadwiger [32], although in a different
context. Yet Hadwiger [33] was the first to publish both bounds in
a scientific article. Somehow surprisingly, the aforementioned bounds
remained unchanged for 68 years - as long as we consider the full gener-
ality. Nevertheless, advanced studies of the question, its subproblems,
and other related topics provided some understanding. For example,
if we consider only measurable colorings (i.e. with measurable colors)
then at least 5 colors are necessary (Falconer [29]) and if we demand
that the coloring consists of regions bounded by Jordan curves then
at least 6 colors are required (incorrect proof by Woodall [71]; cor-
rected proof by Townsend [66, 67]). On the other hand, it follows
from De Bruijn–Erdos Compactness Theorem [13] that the chromatic
number of the plane is equal to the maximum chromatic number of
its finite subsets, assuming the axiom of choice. Note that this as-
sumption is crucial, as the influence of axiomatization of set theory on
the chromatic number of geometrical graphs is a nuanced topic (see
Soifer [64] for a discussion) with implications concerning the existence
of measurable colorings. In particular, Payne [55] constructed a unit
distance graph with the chromatic number different for two different
consistent axiom systems - the one with the axiom of choice giving the
smaller number. In fact, in his considerations, the difference between
the two axiomatizations essentially corresponds to considering mea-
surable colorings and arbitrary colorings, respectively - hence showing
that demanding measurability, in general, makes a difference. How-
ever, we do not know whether the axiom of choice is relevant to the
chromatic number of the plane itself. Generally, across the decades,
the Hadwiger-Nelson problem inspired many interesting results in com-
binatorics, geometry, topology, measure theory or abstract algebra, a
vast number of challenging problems, and various applications. The list
of variants include for example coloring of Euclidean spaces of higher
dimensions [27, 22, 8], fractional coloring [60, 31, 9, 23] or circular col-
oring [14, 41]. We refer the reader to the article of Soifer [64] for an
extensive discussion on the history of the question (including Soifer’s
private investigations) and a pleasant presentation of selected related
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problems.
And then the breakthrough happened. In 2018, Aubrey de Grey

[12], biogerontologist and computer scientist, proved that the chro-
matic number of the plane is at least 5. Soon, a different, independent
proof was published by Exoo and Ismailescu [25]. Both first proofs
were based on constructing a finite set of points (or a finite unit dis-
tance graph, if you prefer) forcing 5 colors - although not as small and
simple as the ones used to force 4 colors. In both cases, the proof is
a mixture of theoretical reasoning and computer computations. The
breakthrough attracted a new wave of interest in the problem and its
relatives. For example, a new Polymath project has been started [57]
in order to coordinate collaboration between those interested, both
professional and amateur mathematicians. Considerable efforts were
involved to the goal of finding as small example as possible (see Heule
[34, 36], Parts [52]), in particular using clausal proof optimization.
Note that the basic de Grey’s graph consisted of 20425 vertices, which
was shrunk by the author to 1581 by additional steps - but more min-
imization was possible. The current record of 509 vertices is held by
Parts [52]. The minimization efforts form other examples supporting
a general observation that the development in computer’s computa-
tional power helped in the development of this area - the mentioned
papers, apart from interesting ideas, make use of even hundreds or
thousands of CPU computation hours. In some cases, a computer is
used to run an algorithm written specifically for a certain subproblem,
in other cases some general tools are used to check the colorability
of constructed graphs, like SAT or Integer Programming solvers. Let
us give an example of computer-driven progress related to a relative
of the fractional chromatic number of the plane - without explaining
the parameter here. In 2017, Cranston and Rabern [9] published a
paper with a clever proof by discharging method for the best known
lower bound for this parameter. Currently, according to preliminary,
unreviewed results of Polymath16 project (and thanks to a mixture of
computers computation power and the power of the human mind), a
unit distance graph on just 35 vertices yielding a better lower bound
has been found [40] - and the best known bound is significantly bet-
ter [23, 39]. Only recently, a human verifiable (and still constructive)
proof of de Grey’s theorem was proposed by Parts [53], however, it still
contains a large number of small cases for step-by-step checking. The
topic does not seem to be dried up, as another proof was presented
by Voronov, Neopryatnaya, and Dergachev [68]. This construction has
much more vertices but does not contain a copy of the Moser spin-
dle, as opposed to previous constructions. In general, having various,
especially relatively small non-4-colorable unit distance graphs with
strong properties can be useful for another tempting step: hypothetic
construction of a non-5-colorable unit distance graph, if it exists. First
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efforts in this direction already started, for example by Heule [35].
Can we say something about the minimal size of such examples? It

is not easy to obtain such assertions and the only known bounds are
related to the following question: what is the maximal 6-colorable (or
5-colorable) portion of the plane? Results in this area were obtained
by Pegg, Jr. [64], which were improved by Pritikin [58], and then
improved by Parts [54]. In particular, Parts’ theorem states that more
than 99.985698% of the plane can be 6-colored and at least 95.99% of
the plane can be 5-colored. The presented colorings are then used to
show that any subgraph of G{1} with at most 6992 vertices can be 6
colored, and any subgraph of G{1} with at most 24 vertices can be 5
colored.

The article is devoted to one of the most straightforward general-
izations of Hadwiger-Nelson problem. In the classic question, only one
distance is forbidden in any color class, namely 1. What if we forbid
more than one distance, let say, some set D of distances? How many
colors are needed for a coloring in which no color class contains a pair
of points at distance from D? Our results concentrate on D being an
interval, but the general knowledge about other sets is also discussed.

This leads to a more general notion of distance graphs. ForD ⊆ R+

and a metric spaceX let us define the distance graph GD(X) as a graph
on the set of vertices X and with x, y ∈ X adjacent if the distance
between x and y belongs to D. Distance graphs were considered first
by Eggleton, Erdos and Skilton [20, 19] in case of X = R and X =
Z (understood as Euclidean metric spaces). It would be difficult to
give a comprehensive summary of research directions concerning the
coloring of distance graphs, as various variants of distance graphs were
already studied, including non-Euclidean spaces (see for example [44]).
However, still relatively little is known for many problems considered
so far. Particularly much work was devoted to integer distance graphs,
that is, the case of X = Z. For example, Katznelson [43] and Ruzsa,
Tuza, and Voigt [59] independently proved that if a set D consists
of a sequence with exponential growth, then the chromatic number is
finite. On the other hand, providing a complete characterization of
sets D with finite GD(Z) seems to be a difficult problem connected to
some highly non-trivial questions in additive number theory. We note
that some publications use the name ’distance graphs’ for the class of
integer distance graphs itself.

Here we are interested in GD(X) with X = R2 (understood as Eu-
clidean metric space). For short, we will write GD for GD(R2). In
the language of distance graphs, the unit distance graph of the plane
can be described as G{1}. Note that G{1} is isomorphic to G{d} for
any d > 0. What if the set D contains more than one element? Let
us first consider |D| = 2. As we can use scaling, without loss of gen-
erality we assume that 1 is the smaller element of D. Probably, the
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first results concerning χ(G{1,d}) was proved by Huddleston [50]. In
this paper, few examples of d forcing χ(G{1,d}) ≥ 5 were presented,
but most importantly, it was shown that χ(G{1,

√
5+1
2 }) ≥ 6 (by con-

structing of a finite set of points). Unaware of Huddleston’s results,
Katz, Krebs, and Shaheen [42] independently proved one of Huddle-
ston’s lower bounds with 5. Exoo and Ismailescu [24] obtained more
values forcing 5 colors. From that point in time, χ(G{1}) ≥ 5 by de
Grey comes into being and implies the mentioned lower bounds of 5
colors. However, all those proofs are different and simpler than any
proof of χ(G{1}) ≥ 5, and hence give some additional insight. Later
on, Exoo and Ismailescu [26] showed that χ(G{1,2}) ≥ 6 (construction
of a finite set of points, computer-aided proof); Palvolgyi and Agos-
ton [15] claim to have proved the same for d =

√
3 and d =

√
3+1
2

(worth noting: probabilistic method); Parts [51] presented a simpler
proof of Exoo-Ismailescu result by constructing a set of only 31 points.
It remains open whether we can force 7 colors with some {1, d}.

The opposite direction is to consider cases with D being infinite
and, moreover, unbounded. In particular, let us discuss D equal to
the set of odd integers. It was proved by Ardal, Manuch, Rosenfeld,
Shelah and Stacho [2] that χ(G{1,3,...}) ≥ 5 (now implied by de Grey’s
result). However, the only known upper bound is the trivial ℵ0, hence
we do not even know if χ(G{1,3,...}) is finite. On the other hand, it was
proven by various authors that if we require colors to be Lebesgue mea-
surable then an infinite number of colors is needed. The most recent
proof is by Steinhardt [65] who used spectral graph theory. This result
can also be shown as a direct consequence of a theorem of Fursten-
berg, Katznelson, and Weiss [30]. For a measurable set A ⊆ R2 and
Lebesgue measure denoted by m, the upper density of A is defined as
lim sup
r→+∞

m(A∩B(r))
m(B(r)) . The Furstenberg-Katznelson-Weiss theorem states

that for d ≥ 2 and a measurable set A ⊆ Rd with positive upper density,
all sufficiently large real numbers occur as distances between elements
of A. The original proof of Furstenberg, Katznelson, and Weiss was
ergodic-theoretic, see also Bourgain [6] for a harmonic-analytic proof
and Falconer and Marstrand [28] for a direct geometric proof.

Let us call a coloring of R2 measurable if every single color is a
Lebesgue measurable set. In fact, Furstenberg-Katznelson-Weiss theo-
rem implies a much more general statement: if D contains arbitrarily
large numbers then no measurable coloring of GD(R2) using a finite
number of colors exists. Moreover, a theorem by Bukh [7] (which gen-
eralizes the Furstenberg-Katznelson-Weiss theorem) implies that even
less strong assumption is sufficient. Namely, it is enough to assume that
D contains pairs of elements with arbitrarily large ratios (in particu-
lar, D with elements arbitrarily close to 0 satisfies this assumption). In
other words, if D is not a subset of an interval [a, b] with a, b ∈ R+ then
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no measurable coloring using a finite number of colors exists. On the
other hand, if D is a subset of such an interval then χ(GD) is finite, as
proved by Exoo [21]. However, we note that, for a fixed number of col-
ors, nonexistence of a measurable coloring for a geometrically defined
graph is not necessarily accompanied by nonexistence of any coloring.
Shelah and Soifer [61, 62] and Soifer [63] presented examples of geo-
metrically defined graphs that admit colorings using a finite number
of colors but do not admit measurable colorings even for countably
many colors. In particular, if we set D = {|

√
2 + q| : q ∈ Q}, then

GD(R) has a 2-coloring but does not admit any measurable coloring
with countably many colors.

In this article, we are interested in GD for D equal to an interval
[a, b] for some 0 < a < b. As we can use scaling, without loss of gen-
erality we assume that a = 1. Some important results on coloring of
such graphs were presented by Exoo [21] (using slightly different no-
tation). His motivation for considering such graphs was the following.
Let us revisit the well known 7-coloring of G{1} from Figure 2. This
time take the same pattern of colors, but choose hexagons of diameter
1. If we choose the colors of borders cleverly (see Figure 3), then the
coloring will still satisfy the condition for G{1}. It turns out that this
coloring is proper also for supergraphs of G{1} of the form of G[1,b]

with b ≤
√
7/2. Hence, despite having more edges in such supergraphs

of G{1}, we still can bound the chromatic number by 7. Can we obtain
better lower bounds on χ(G[1,b]) for such b than on χ(G{1})?

1

Figure 3: Color assignment from Figure 2 on the borders (solid lines stand
for the same color as in the interior). Proper for G[1,b] with 1 ≤ b ≤

√
7/2.

Among other results, Exoo managed to determine the chromatic
number of some of such graphs G[1,b]:

Theorem 1.1 (Exoo [21]).
For b ∈ (

√
43/5,

√
7/2] ≈ (1.31149, 1.32287] it holds χ(G[1,b]) = 7.

Up to now, the interval given in Theorem 1.1 was the only known
set of values of b such that χ(G[1,b]) was determined. Moreover, to
our knowledge, this family of distance graphs was the only family of
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distance graphs on R2 with a determined nontrivial chromatic num-
ber. We emphasize that the real contribution of Theorem 1.1 lays in
establishing the lower bound for χ(G[1,b]) (the method behind it will
be discussed later). Together with some computational experiments,
Exoo considered Theorem 1.1 a clue for a strong conjecture.

Conjecture 1.2 (Exoo [21]).
For b > 1 sufficiently close to 1, it holds χ(G[1,b]) = 7.

Regarding values of b that are closer to 1 than in Theorem 1.1,
Exoo provided the following:

Theorem 1.3 (Exoo [21]).
For b ≥

√
149
12 ≈ 1.01721 it holds χ(G[1,b]) ≥ 5.

Later, a strengthening of this statement to any b > 1 was published.

Theorem 1.4 (Grytczuk [31]).
For b > 1 it holds χ(G[1,b]) ≥ 5.

However, it appears that years before the publication, Theorems 1.3
and 1.4 were surpassed by a less known result obtained separately in
two independent works. In a series of papers by Brown, Dunfield, Perry
[16, 17, 18], among other results, the authors gave an elegant proof by
Dunfield that for any b > 1 we have χ(G[1,b]) ≥ 6. The proof is using a
result by Woodall (incorrect proof [71]) and Townsend (correct proof
based on a similar idea, see [64, 66, 67]). Without giving the precise
statement, the Woodall-Townsend theorem can be expressed in the
following way: if the unit distance graph of the plane is colored with
the condition that color classes are defined with Jordan curves, then
at least 6 colors are necessary. The key ingredient of the proof of the
Woodall-Townsend theorem, very roughly speaking, is to find a point in
the plane, which has at least 3 colors in any ε-neighborhood. A related
idea was used by Currie and Eggleton in their manuscript [10], in which
they (independently) prove the same result as Dunfield. Although the
manuscript was not published, it was already mentioned by Currie in
his other paper published in 1992 [11]. Currie and Eggleton consider
a proper coloring of G[1,b] and for ε ∈

(
0, (b− 1)/2

)
find a point x for

which the closed ε-ball centered at x contains at least 3 colors. Then
they prove that the annulus {p ∈ R2 : 1+ ε ≤ dist(p, x) ≤ b− ε} needs
at least 3 colors and observe that it cannot use any of the colors from
the closed ε-ball centered at x. This ends the proof. Therefore, let us
state again the best known lower bound for b close to 1.

Theorem 1.5 (Dunfield [16, 17, 18]; Currie, Eggleton [10]).
For b > 1 it holds χ(G[1,b]) ≥ 6.

We mentioned that De Bruijn–Erdos Compactness Theorem [13]
implies the chromatic number of the plane is witnessed by a finite
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subgraph, assuming the axiom of choice. This statement is true also for
G[1,b] for any b > 1. Krebs [46] recently presented a construction of a
finite subgraph of G[1,b] with chromatic number at least 5 for any b > 1.
Although the result does not yield any new bound, the value lays in
constructive nature combined with straightforward human verifiability.

A particular case of graphs G[1,b], namely G[1,2], has a practical mo-
tivation in telecommunication networks. Namely, subgraphs of G[1,2]

can model hidden conflicts in a radio network (e.g., mobile phone net-
work [69]). Coloring of G[1,2] produces a schedule that can solve such
conflicts. For this motivation, also the fractional variant of graph col-
oring can be useful or even more efficient. Fractional coloring of graphs
G[1,b] was also investigated[31].

1.1 Our approach
It seems that the idea of a point close to at least 3 colors was not
exploited for larger values of b. In our work, we use this concept to
provide new lower bounds for χ(G[1,b]) for certain values of b > 1. The
approach consists of two steps. First, we use the mentioned fact that
any proper coloring of G[1,b] for any b > 1 and any sufficiently small
ε > 0 admits a closed ε-ball centered at some point x containing at
least 3 colors. We give a new proof of this statement. Without loss
of generality, we can assume that x = (0, 0). As the second step, we
consider the annulus Ab,ε centered at (0, 0) with the inner radius 1+ ε
and the outer radius b − ε. Clearly, none of at least 3 colors found in
the closed ε-ball centered at (0, 0) can be used in Ab,ε. If for some k
we are able to prove that Ab,ε itself requires at least k colors, then we
obtain χ(G[1,b]) ≥ k + 3.

In order to show a lower bound for proper coloring of G[1,b] or a
subgraph of G[1,b], one may try to construct a finite set of points for
which finite graph coloring techniques can be applied. Many mentioned
lower bounds, including de Grey’s result, fit this scheme. For example
Exoo, in order to prove the lower bound in Theorem 1.1, considered
proper coloring of a set P of vertices of a bounded part a carefully
chosen regular triangular grid. Using computer-aided calculations, he
showed that for the specified range of b the subgraph of G[1,b] induced
by P requires at least 7 colors. However, it is unlikely that his choice of
parameters for the grid is optimal (in terms of the range of b), as it is
limited by the computer computational power. In order to show a lower
bound for proper colorings of Ab,ε, we also construct a certain finite
subset of it. Our analysis suggested that it is reasonable to consider
sets created by taking a number of points regularly placed on a small
number of circles of radius chosen between 1 + ε and b− ε.

The benefit of this approach is that we reduce the search for finite
configurations to a relatively small part of the plane. On the other
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hand, it is likely that for many values of b the chromatic number of
the subgraph of G[1,b] induced by Ab,ε plus 3 is strictly smaller than
χ(G[1,b]). However, this plan proves itself to be effective in provid-
ing a new contribution, as we were able to determine χ(G[1,b]) for two
intervals of values of b. Namely, we enlarge the interval given in The-
orem 1.1 (by providing a more general lower bound) and present a
completely new interval for which 9 colors are optimal. The results
are presented in Section 3. Our lower bounds on the number of colors
for finite configurations are obtained by computer-based computations.
We used one of the standard integer linear programming formulations
of graph coloring.

As a byproduct of the method from Section 3, a natural question
arises: what is the chromatic number of the subgraph of G[1,b] in-
duced by Ab,ε? Since Section 3 makes use of lower bounds, can we say
something about upper bounds for such graphs? The topic of coloring
bounded parts of the plane is discussed in Section 4.

Moreover, in Section 5 we present colorings of distance graph G[1,b]

for various values of b establishing some upper bounds. In particular
we present coloring with 8-colors for b slightly bigger than

√
7/2. We

also present a scheme for larger values of parameter b that generalize
and improves colorings based on hexagon tiling by Exoo [21] and Lonc
[38].

2 Preliminaries
First, we shall give some fundamental graph theoretical definitions.
A graph is a pair G = (V,E) where V is an arbitrary set and E ⊆
{{x, y} : x, y ∈ V }. Elements of V are called vertices and elements of
E are called edges. For short, we often write xy for an edge {x, y}. If
xy ∈ E, then we say that x and y are adjacent in G. In this thesis, we
will consider graphs with finite and infinite sets of vertices.

Definition 2.1. A coloring of a graph G = (V,E) is a function c :
V → K (where K is an arbitrary set of colors) such that any xy ∈ E
satisfies c(x) 6= c(y). We say c is a proper k-coloring if |K| = k, for
finite k. For a (non necessarily finite) graph G, the chromatic number
of G is defined by

χ(G) = inf{|K|: a proper coloring of G into K exists}.

Note that for a finite graph, it is the minimal number of colors for a
proper coloring.

Definition 2.2. A graph G[a,b] is a graph whose vertices are all the
point of the plane V = R2, in which two point are adjacent if their
distance d satisfies a ≤ d ≤ b.
G[a,b] = (R2, {{x, y} ⊂ R2 : a ≤ dist(x, y) ≤ b}
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For b > 1 and ε ≥ 0, let us formally define a class of annuli that we
will use

Ab,ε = {p ∈ R2 : 1 + ε ≤ dist(p, (0, 0)) ≤ b− ε}.

3 Lower bounds for the chromatic number
of G[1,b]

We start with a key lemma already proved in [10]. However, we give a
different, shorter proof of this fact (while the core idea is similar). For
ε > 0, by a closed ε-ball centered in a point x we understand the set
{p ∈ R2 : dist(p, x) ≤ ε}.

Lemma 3.1 ([10]; a different proof).
Let c be a proper coloring of G[1,b] for b > 1. Consider any ε satisfying
0 < ε < b−1. Then there exists a point x in R2 such that in the closed
ε-ball centered in x there are at least 3 colors (with respect to c).

Proof. Take a proper coloring c of G[1,b] for b > 1 and fix ε satisfying
0 < ε < b− 1. For any nonempty monochromatic set A ⊆ R2, denote
by S(A) the following set: with c1 being the color of A, take the set of
all c1-colored points of R2 that can be obtained from A by a sequence
of c1-colored points with consecutive distances at most ε. For S ⊆ R2,
let Hε(S) = {p ∈ R2 : ∃s∈S dist(p, s) ≤ ε}. In the proof, we will use
the following observation.

(∗) If S is a bounded, connected set, then there exists a simple closed
curve C in Hε(S) \ S so that all points from S are inside C.

Suppose the contrary to the thesis, that there is no point x as in
the lemma formulation. Take any point y ∈ R2. Set S1 = S({y}).
Note that S1 is a bounded set. Otherwise, it would contain a sequence
of points of the same color with consecutive distances less than ε and
realizing an arbitrarily large distance. Hence S1 would contain a pair of
points at distance in [1, b], a contradiction. Since Hε/2(S1) is bounded
and connected, by (∗) we can find a simple closed curve C1 in Hε(S1)\
Hε/2(S1) = Hε/2(Hε/2(S1))\Hε/2(S1) so that all points from Hε/2(S1)
are inside C1. Let us show that all points of C1 have the same color.
Suppose that there are at least 2 colors in C1. Then there exists a pair
of points at distance smaller than ε/2. Since points of C1 are ε/2-close
to a vertex colored with color of y (distinct from colors in C1), hence
we have a closed ε-ball with 3 colors, a contradiction. Thus only one
color is used in C1. We will iteratively construct Si, Ci for i > 1 in
the following way. Take i > 1 and set Si = S(Ci−1). Since Hε/2(Si) is
bounded and connected, by (∗) we can find a simple closed curve Ci in
Hε(Si) \Hε/2(Si) = Hε/2(Hε/2(Si)) \Hε/2(Si) so that all points from
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Hε/2(Si) are inside Ci. Again, all points of Ci have the same color, as
otherwise, we would have a closed ε-ball with 3 colors.

We claim that diam(Ci) − diam(Ci−1) ≥ ε for i > 1. For a
simple closed curve C, let In(C) stand for the bounded component
of R2 \ C. Consider two points y1, y2 that realize diam(Ci−1) and
take the line ` containing y1, y2. Let y′1, y′2 be the points from `
satisfying dist(y′1, y1) = ε/2, dist(y′2, y2) = ε/2 and dist(y′1, y

′
2) =

dist(y1, y2) + ε. Clearly, y′1, y′2 ∈ Hε/2(Si, Xi) ⊆ In(Ci) and hence
diam(Ci) ≥ dist(y′1, y′2), as claimed. Thus diam(Ci)−diam(Ci−1) ≥ ε.
Therefore for sufficiently large i we have diam(Ci) > 1 and there are
two points in Ci at distance from [1, b]. On the other hand, all points
Ci have the same color, which contradicts with the fact that c is a
proper coloring of G[1,b].

The proof of the following Theorem is partially computer aided.
We use mixed integer programming solver to compute the coloring
of some graphs. Coloring is modeled in a standard way: for a given
graph G with V (G) = {1, . . . , n} and a number of colors K. We want
to check if G is K-colorable. It is equivalent to the feasibility of the
following integer linear program. For i ∈ 1, . . . , n and k ∈ {1, . . . ,K},
we introduce a binary variable xi,k indicating if vertex i receives color
k. The problem itself is a decision problem and there is no inherent
objective function. However, it is useful to introduce an objective
function using additional variables in order to break some symmetries
of the model (see for example [70]). Hence for k ∈ {1, . . . ,K}, we
introduce a binary variable yk indicating if color k is used.

minimize
K∑
k=1

k · yk

subject to
K∑
k=1

xi,k ≥ 1, i = 1, . . . , n

xi,k + xj,k ≤ 1, (i, j) ∈ E(G), k = 1, . . . ,K
xi,k − yk ≤ 0, i = 1, . . . , n, k = 1, . . . ,K
xi,k, yk ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . ,K

Now we are ready for the proof of the main theorem of this chapter.

Theorem 3.2. The following inequalities hold:

1. χ(G[1,b]) ≥ 7 for b >
√
2− 2 sin(18π325 ) ≈ 1.28599

2. χ(G[1,b]) ≥ 8 for b >
√
2 + 2 sin( π38 ) ≈ 1.47145

3. χ(G[1,b]) ≥ 9 for b >
√
2 + 2 sin( 7π45 ) ≈ 1.71433
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4. χ(G[1,b]) ≥ 10 for b > 2
√
2− 1 ≈ 1.82843

5. χ(G[1,b]) ≥ 11 for b > 1
3 (5−

√
2 +
√
6) ≈ 2.01176

Proof. A key step of the proof is encapsulated in the following claim:

Claim 3.3. Let b > 1. If G[1,b][Ab,ε] for some ε > 0 requires at least
k colors, then χ(G[1,b]) ≥ k + 3.

Let us prove Claim 3.3. Consider b > 1 and a proper coloring c
of G[1,b]. Fix ε > 0. Let x be a point obtained from Lemma 3.1:
such that in the closed ε-ball centered at x there are at least 3 colors
with respect to c, say colors 1, 2, 3. Without loss of generality, we can
assume x = (0, 0), as the coloring can be shifted. No point in Ab,ε can
be colored with any of the colors 1, 2, 3. Hence c uses at least k + 3
colors. It follows that χ(G[1,b]) ≥ k + 3, which concludes the proof of
Claim 3.3.

In order to make use of Claim 3.3, in each case, we constructed a
finite subset of Ab,ε such that, for sufficiently small ε > 0, it induces
a graph requiring at least k colors in G[1,b] (for some k). In other
words, we found a subgraph of G[1,b] consisting of vertices from Ab,ε
forcing k colors. In each case, we formulated the coloring problem as
a mixed integer programming instance and used a computer to show
infeasibility for any number of colors smaller than the presented bound.
Denote by Xn

r the set consisting of n points evenly distributed on the
circle with the center in x and radius r so that one of the points lays
on the upward vertical half-line from x.

1. Assume that b >
√

2− 2 sin(18π325 ). Consider Yb,ε = X1300
1+ε ∪

X1300
b−ε ⊆ Ab,ε. We checked that for sufficiently small ε > 0 any

proper coloring of the graph induced by Yε in G[1,b] requires at
least 4 colors.

2. Assume that b >
√
2 + 2 sin( π38 ). Consider Yb,ε = X190

1+ε∪X190
b−ε ⊆

Ab,ε. We checked that for sufficiently small ε > 0 any proper
coloring of the graph induced by Yε in G[1,b] requires at least 5
colors.

3. Assume that b >
√
2 + 2 sin( 7π45 ). Consider Yb,ε = X180

1+ε∪X180
(1+b)/2∪

X180
b−ε ⊆ Ab,ε. We checked that for sufficiently small ε > 0 any

proper coloring of the graph induced by Yε in G[1,b] requires at
least 6 colors.

4. Assume that b > 2
√
2 − 1. Consider Yb,ε = X120

1+ε ∪ X120
(1+b)/2 ∪

X120
b−ε ⊆ Ab,ε. We checked that for sufficiently small ε > 0 any

proper coloring of the graph induced by Yε in G[1,b] requires at
least 7 colors.
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5. Assume that b > 1
3 (5 −

√
2 +
√
6). Consider Yb,ε = X120

1+ε ∪
X120

(1+b)/2 ∪ X
120
b−ε ⊆ Ab,ε. We checked that for sufficiently small

ε > 0 any proper coloring of the graph induced by Yε in G[1,b]

requires at least 8 colors.

As promised before, Claim 3.1 concludes the proof in each case.

The exact right-hand side values in the inequalities on b in Theo-
rem 3.2 are the optimal values for which the given finite configurations
of points possess the desired chromatic properties. That is, in each
case for any smaller value of b and any small value of ε > 0 (only small
values of ε > 0 were checked), the given set Yb,ε can be colored in G[1,b]

with fewer colors than stated - hence we cannot use Claim 3.1 for the
same lower bound. Nevertheless, we are far from claiming optimality
of the given sets. In Theorem 3.2 we simply present the best construc-
tions that we were able to find and verify. We expect that there exist
sets of similar forms which work for smaller values of b in respective
cases. We will shed some light on the range of possible improvements
later.

By combining Theorem 3.2 with previously known bounds, we can
obtain two intervals of values of b for which the chromatic number
can be determined. Namely, let us use that Exoo [21] observed that
χ(G[1,b]) ≤ 7 for b ≤

√
7/2 and Ivanov [37] showed that χ(G[1,b]) ≤ 9

for b ≤
√
3 (see Figure 4).

1 2 3 1 2 3 1

9 7 8 9 7 8 9

4 5 6 4 5 6 4

3 1 2 3 1 2 3

Figure 4: The coloring scheme for a proper 9-coloring of the plane based on
hexagons of diameter 1, by Ivanov [37]. Color assignment on the borders
according to the one presented in Figure 3.

Corollary 3.4.
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1. For b ∈
(√

2− 2 sin( 18π325 ),
√
7/2
]
≈ (1.28599, 1.32287] it holds

χ(G[1,b]) = 7.

2. For b ∈
(√

2 + 2 sin( 7π45 ),
√
3
]
≈ (1.71433, 1.73205] it holds χ(G[1,b]) =

9.

Note that the first interval contains and substantially enlarges the
interval obtained by Exoo in Theorem 1.1. Moreover, no interval for
which the chromatic number is 9 was known before. Up to our knowl-
edge, Corollorary 3.4 covers all the known distance graphs on R2 with
a determined nontrivial chromatic number.

4 Colorings of annuli
The proof of Theorem 3.2 relies on lower bounds on the number of
colors needed for G[1,b][Ab,ε] for certain values of b and sufficiently
small ε > 0. One may ask if we can give an upper bound for the
chromatic number of these graphs (orG[1,b][Ab,0], for simplicity). Using
this knowledge we would be able to say something about the range of
possible improvements in the method used in the proof of Theorem 3.2.

The chromatic number of subgraphs of G{1} induced by some sub-
sets of the plane have been already studied. Bauslaugh [4], Perz [56],
Bock [5], Oostema, Martins and Heule [49] analyzed infinite strips,
Clyde Kruskal [47] considered circles, squares and regular polygons,
Axenovich, Choi, Lastrina, McKay, Smith and Stanton [3] studied sub-
sets of Q × R, set of vertices of a convex polygon, unions of lines and
infinite strips. The paper closest to our interest was published by Alm
and Manske [1]. The authors considered particular classes of annuli,
especially with respect to a special class of colorings called radial col-
orings. A coloring of an annulus A is a radial coloring if there exists a
sequence of radii r1, . . . , rk+1 = r1 so that the sector strictly between
radii ri and ri+1 is colored with a single color for i ∈ {1, . . . , k}. Thus,
the color of a point (except a finite number of radii) depends only on
the angle of the half-line from the center of the annulus to this point.
See Figure 5 for an example of a radial coloring. The results of Alm
and Manske do not have direct application for the annuli of interest
in this section, as they studied annuli of outer radius smaller than 1
(and as a subgraph of G{1}). However, it appears that radial colorings
themselves can be of use for our purposes.

We are interested in upper bounds for the chromatic number of
G[1,b][Ab,ε]. It is sufficient to provide upper bounds for ε = 0, since
χ(G[1,b][Ab,ε]) ≤ χ(G[1,b][Ab,0]) for any b > 1, ε > 0. Let us denote
Ab = Ab,0. In the next result, we consider chromatic number of Ab as a
subgraph of G[1,b]. We present upper bounds for the chromatic number
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of annuli obtained by constructing radial proper colorings and combine
them with lower bounds coming from the proof of Theorem 3.2.

Proposition 4.1. Table 1 presents bounds on χ(G[1,b][Ab]).

b ∈ χ(G[1,b][Ab]) =(
1,
√
2− 2 sin( π18)

]
≈ (1, 1.28558] 3(√

2− 2 sin( π18),
√
2− 2 sin(18π325 )

]
≈ (1.28558, 1.28599] 3 or 4(√

2− 2 sin(18π325 ),
√
2
]

≈ (1.28599, 1.41421] 4(√
2,
√

2 + 2 sin( π38)
]

≈ (1.41421, 1.47145] 4 or 5(√
2 + 2 sin( π38),

√
3
2 −

√
5
2

]
≈ (1.47145, 1.61803] 5(√

3
2 −

√
5
2 ,
√

2 + 2 sin(7π45 )
]

≈ (1.61803, 1.71433] 5 or 6(√
2 + 2 sin(7π45 ),

√
3
]

≈ (1.71433, 1.73205] 6(√
3, 2 cos(π7 )

]
≈ (1.73205, 1.80194] 6 or 7(

2 cos(π7 ), 2
√
2− 1

]
≈ (1.80194, 1.82843] 6 or 7 or 8(

2
√
2− 1,

√
2 +
√
2
]

≈ (1.82843, 1.84776] 7 or 8

Table 1: Known bounds on χ(G[1,b][Ab]) depending on b.

Proof. All the presented lower bounds are implied by the proof of
Theorem 3.2, as χ(G[1,b][Ab,ε]) ≤ χ(G[1,b][Ab]) for any b > 1, ε > 0.
We need to prove the upper bounds. We will give detailed reasoning
only for two of the upper bounds. In other cases, we only present the
proper coloring - the rest follows similarly.

1. We will show that χ(G[1,b][Ab]) ≤ 3 for b =
√

2− 2 sin( π18 ) .
We shall define a radial proper 3-coloring c of G[1,b][Ab]. For a
point p ∈ Ab, let ∠(p) stands for the inclined angle of the outer
radius of Ab containing p. Then put

c(p) =

⌊
∠(p)
(2/9)π

⌋
mod 3.

Less formally, the color is assigned according to the angle and it
is changed cyclically after an interval of length (2/9)π (in terms
of angle). The coloring is depicted on Figure 5. The additionally
marked distances will be explained later in the proof.
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Figure 5: A proper 3-coloring of G[1,b][Ab] for b =
√
2− 2 sin( π18).

Let us argue that c is a proper coloring of G[1,b][Ab]. First, the
distance between two points inside a single connected component
of a color is (strictly) smaller than the diameter of this compo-
nent. Note that strictness follows from the choice of colors on
boundaries of single-colored regions. On the other hand, this di-
ameter is the maximum of the following two distances: between a
pair of points on the outer circle with angle difference (2/9)π and
between a pair of a point on each the outer and the inner circle
with angle difference (2/9)π. Denote these values by d1 and d2,
respectively. By the law of cosines we have

d1 =
√

2b2 − 2b2 cos((2/9)π) < 1,

d2 =
√
b2 + 12 − 2b cos((2/9)π) < 1.

Secondly, the minimal distance between two points of the same
color but from different connected components of this color is
(strictly) larger than the distance between two points on the inner
circle with angle difference 2 · (2/9)π. As before, the strictness of
this inequality follows from the choice of colors on boundaries of
single-colored regions. By the law of cosines, this is equal to

√
2− 2 cos((4/9)π) =

√
2− 2 sin(

π

18
) = b.

2. We will show that χ(G[1,b][Ab]) ≤ 4 for b =
√
2.

For a point p ∈ Ab, define a radial proper 4-coloring c of G[1,b][Ab]
by

c(p) =

⌊
∠(p)
(1/6)π

⌋
mod 4.

First, the distance between two points inside a single color con-
nected component is (strictly) smaller than the maximum of the
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following two distances: between a pair of points on the outer cir-
cle with angle difference (1/6)π and between a pair of a point on
each the outer and the inner circle with angle difference (2/12)π.
Denote these values by d1 and d2, respectively. By the law of
cosines we have

d1 =
√

2b2 − 2b2 cos((1/6)π) < 1,

d2 =
√
b2 + 12 − 2b cos((1/6)π) < 1.

Secondly, the minimal distance between two points of the same
color but from different connected components of this color is
(strictly) larger than the distance between two points on the inner
circle with angle difference 3 · (1/6)π. By the law of cosines, this
is equal to √

2− 2 cos((3/6)π) = b.

3. In order to show that χ(G[1,b][Ab]) ≤ 5 for b =
√

3
2 −

√
5
2 , one can

consider the following proper 5-coloring c. For a point p ∈ Ab,
define

c(p) =

⌊
∠(p)
(1/5)π

⌋
mod 5.

4. In order to show that χ(G[1,b][Ab]) ≤ 6 for b =
√
3, one can

consider the following proper 6-coloring c. For a point p ∈ Ab,
define

c(p) =

⌊
∠(p)
(1/6)π

⌋
mod 6.

5. In order to show that χ(G[1,b][Ab]) ≤ 7 for b = 2 cos(π7 ), one can
consider the following proper 7-coloring c. For a point p ∈ Ab,
define

c(p) =

⌊
∠(p)
(1/7)π

⌋
mod 7.

6. In order to show that χ(G[1,b][Ab]) ≤ 8 for b =
√

2 +
√
2, one can

consider the following proper 8-coloring c. For a point p ∈ Ab,
define

c(p) =

⌊
∠(p)
(1/8)π

⌋
mod 8.

As mentioned before, the proof of Theorem 3.2 relies on lower
bounds for χ(G[1,b][Ab,ε]) for certain values of b and sufficiently small
ε > 0. In particular, the proof of Theorem 3.2.1 uses the inequal-
ity χ(G[1,b][Ab,ε]) ≥ 4 for any b >

√
2− 2 sin( 18π325 ) ≈ 1.28599 and
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sufficiently small ε > 0. On the other hand, 3 colors are enough
for slightly smaller values of b. Namely, χ(G[1,b][Ab,ε]) ≤ 3 for any
b ≤

√
2− 2 sin( π18 ) ≈ 1.28558 and ε > 0 is implied by Proposition 4.1

and the inequality χ(G[1,b][Ab,ε]) ≤ χ(G[1,b][Ab]) for any ε > 0. This
means that the condition on b in Theorem 3.2.1 cannot be substantially
improved with the same method. Unfortunately, for larger values of
b, this gap is getting much larger. Hence for those values, we do not
know if the constructions given in the proof of Theorem 3.2 are close
to the potential optima. We believe that more complex colorings of
annuli need to be constructed to reduce the gap.

5 Upper bounds on number of colors for
the plane

5.1 Eight colors
In this subsection, we present that 8 colors allows to color G[1,b] for
bigger b, than for 7 colors. The coloring was inspired by a 7-coloring
of G{1} by Edward Pegg, Jr. [64], such that the seventh color occupies
only about 1/3 of 1% of the plane.

Theorem 5.1. For b = 1.37542 holds χ(G[1,b]) ≤ 8

Proof. The coloring is given by Figure 6 and it is a modified classic
7-coloring (see Figure 2) by adding a small triangle in the eighth color
in every second meeting point of their hexagons. This allows to make
hexagons bigger and in consequence enlarge b. Let x, y be defined by
the Figure 7.

1 2 3 4 5

5 6 7 1 2 3

Figure 6: 8-coloring, black triangles are in color number 8

To make the coloring proper, x and y must fulfill restrictions:

1. y
√
3 + x ≤ 1
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≥b (2)

≤1 (1)

≤1 (3)

≥b (4)

y

x

Figure 7: 8-coloring - restrictions

2. 2y
√
3− x ≥ b

3.
(
2y − x

2
√
3

)2
+
(
x
2

)2 ≤ 1

4.
(
3
2y
√
3
)2

+
(
y
2 + x√

3

)2
≥ b2

Under these restrictions, we maximize b obtaining b = 1.37542 for
y = 0.514884 and x = 0.108194.

5.2 General method for coloring G[1,b]

A few general bounds on the number of colors for larger values of
parameter b are given in the following theorems:

Theorem 5.2 (Exoo [21]). If b < 1
2

√
9r2 − 3r + 1, then χ(G[1,b]) ≤

3r2 + 3r + 1.

Actually, Exoo stated his result for the graph G[1−ε,1+ε], but as we
mentioned before his notion can be translated easily into ours.

Lonc [38] generalized idea of 12-coloring by Ivanow [37] and ob-
tained improvement for some values of b:

Theorem 5.3 (Lonc [38]). If b ≤ 3
2r − 1, then χ(G[1,b]) ≤ 3r2.

The next bound (again partially improving previous ones) follows
as a special case of a fractional multifold coloring scheme established
in [31].

Theorem 5.4 (Chybowska-Sokół, Grytczuk, Junosza-Szaniawski, Węsek
[31]). If b ≤

√
3
2 (r − 1), then χ(G[1,b]) ≤ r2.
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The aim of this subsection is to present a general method for col-
oring G[1,b] that improves the previously known results in some ranges
of b. The Figure 10 shows the comparison of bounds from [21, 38, 31]
and this paper on the number of colors depending on the value of b.

We define a scheme for constructing a coloring of the plane based
on hexagonal tilings. All points in a single hexagon (including some
borders as on figure 3) will be colored with the same color. Let us
start with defining the tiling. Let H0,0 be a hexagon with two vertical
sides, center in (0, 0), diameter equal one, and part of the boundary
removed as in Figure 8(a). Note that the width of H0,0 equals

√
3
2 .

Then let s1 = [
√
3
2 , 0], and s2 = [

√
3
4 ,−

3
4 ]. For i, j ∈ Z let Hi,j , be a

tile created by shifting H0,0 by a vector i · s1 + j · s2, namely Hi,j :=
{(x, y)+ i ·s1+j ·s2 ∈ R2 : (x, y) ∈ H0,0}. Notice that {Hi,j : i, j ∈ Z}
forms a partition of the plane, which we call a hexagonal tiling.

Now for a pair of non-negative integers (p, q), we define a coloring
such that for any (i, j) ∈ Z2 hexagons Hi,j , Hi+p,j+q, Hi+p+q,j−p have
the same color. Notice that the centers of such three hexagons form
an equilateral triangle (see Figure 9). By reapplying this rule of a single
colored triangles, we obtain that sets of the form {Hi+k·p+l·(p+q),j+k·q−l·p :
k, l ∈ Z} are monochromatic. For any q, p, the (p, q)-coloring is the
coloring in which all color classes are of this form.

Let us define the distance between two hexagons as the infimum of
the distances between points from the hexagons, i.e.

dist(Hi1,j1, Hi2,j2) = inf{dist(p1, p2) : p1 ∈ Hi1,j1 and p2 ∈ Hi2,j2}.

(a) A bound-
ary of a tile.

H0,0

Hi,i

i·s1

j·s2

(b) Relation between H0,0 and Hi,j .

H0,0 H1,0 H2,0 H3,0

H0,1 H1,1 H2,1 H3,1

(c) Hexagonal tiling.

Figure 8: Hexagonal tiling.

Lemma 5.5. If p, q ≥ 1 then (p, q)-coloring uses p2 + q2 + pq colors.

Let us denote greatest common divisor of p and q as d and let
p′ = p/d, q′ = q/d.
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v

v

v

v

T2

T1

Figure 9: A pattern given by tiles H0,0 and Hp,q

We call the set of Hi,j , i ∈ Z, the j-th row of tiles. Let us call
the color of H0,0 blue and T = {Hk·p+l·(p+q),k·q−l·p : k, l ∈ Z} denote
the set of all blue hexagons. To give some insight of where T comes
from, let v denote a vector from (0, 0) to the center of Hp,q (v =
p · s1 + q · s2) and v be the vector obtained from v via rotating it by
π
3 (v = p · (s1 − s2) + q · s1 = (p+ q) · s1 − p · s2). Then T is a set of
all tiles created by shifting H0,0 by kv + lv, for k, l ∈ Z. First let us
notice that, by the definition of T , blue appears in rows numbered by
k · q− l ·p = (kq′− lp′) ·d, for any k, l ∈ Z. Since p′ and q′ are coprime,
{kq′ − lp′ : k, l ∈ Z} = Z. Then blue appears in a row if and only if
its number is divisible by d.

Note that, since we used the same pattern (only shifted) for every
color, we have the same number of colors in every row. Hence the
total number of colors equals the number of colors used in a single row
multiplied by d.

In order to find the number of colors used in a row, it is enough
to know how often does a single color reappear in it (see example on
Figure 2) in one row every 7th hexagon is blue and we use 7 colors in
each row).

Let m be the smallest positive number such that Hm,0 is colored
blue. Since Hm,0 ∈ T , then there exist integers k, l such that:

k · p+ l · (p+ q) = m, (1)
k · q − l · p = 0. (2)

From (2) we derive kq′ = lp′. Since p′, q′ are coprime, then k is
divisible by p′ and l by q′. Moreover p′, q′ are both non-negative, hence
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either k and l are both non-positive or they are both non-negative.
Without loss of generality we assume the latter. Hence m = d · (kp′ +
lq′+lp′) is minimal when k = p′ and l = q′. So the numbers of colors in
a row equalsm = d(p′p′+q′q′+p′q′), and from our previous remarks we
conclude that the total number of colors equals d2(p′p′+ q′q′+ p′q′) =
p2 + q2 + pq.

Remark 5.6. The coloring from Exoo Theorem 5.2 is (r, r+1)-coloring,
coloring from Lonc Theorem 5.3 is (r, r)-coloring and coloring from 5.4
is (r, 0)-coloring.

0 2 4 6 8 10
b

50

100

150

χ(G[1,b])

Lonc

Exoo

GJSSW

new

Figure 10: The plot shows bounds on χ(G[1,b]) given by the theorems above
and our best results.

Table 2 presents bounds on χ(G[1,b][R2]).

6 Conclusions
We note that our method of constructing lower bounds combines the-
oretical reasoning of continuous nature and constructions of finite sets
for which the coloring properties are checked by computer. Therefore,
the approach differs from the previously used in the literature. Similar
constructions for larger values of b and a larger number of colors can be
designed. However, it seems that the method should work better for
relatively small values of b (and hence a small number of colors), as in
this case the 3 colors reserved by the ε-ball make a greater difference.

One may observe that we do not have any interval with the chro-
matic number determined to 8, 10 or 11 colors - even though Theo-
rem 3.2 gives some results concerning these numbers of colors. The

23



reason seems to be that we do not have sufficiently good k-colorings of
the plane for k ∈ {8, 10, 11}. That is, a k-coloring of G[1,b] that would
work for sufficiently large b. In particular, let us consider 8 colors. In
Theorem 5.1, we present an 8-coloring for b = 1.37542. However, it is
still not enough, as the corresponding lower bound from Theorem 3.2
works only for b >

√
2 + 2 sin( π38 ) ≈ 1.47145. The gap is relatively

large and seems that closing it, if possible, would require a new idea –
note that Theorem 5.1 is based on careful use of the coloring scheme of
the classic 7-coloring (see Figure 2). It would be interesting to obtain
an 8-coloring of G[1,b] even for b > 1.4. Moreover, we do not have any
10-coloring or any 11-coloring for b >

√
3, while b =

√
3 is satisfied by

the 9-coloring from Figure 4. May it be that adding 2 colors to these 9
colors does not make any difference? Let us conclude this part of the
discussion with the following open problem:

Conjecture 6.1. For any integer k ≥ 7, there exists b > 1 such that
χ(G[1,b]) = k.

Our 8-coloring does not have the property which in [31] is called
solid coloring, that is every color class consists of regions pairwise at
a distance of at least one. Solid colorings can be applied in online
colorings of disc intersections graphs. We post as an open question if
there is a solid 8-coloring of G[1,b] for any b >

√
7/2.

For general upper bounds, we concentrate on the colorings of the
Euclidean plane based on hexagonal tiling. However, this method can
be adjusted to the setting of other regular tilings of the plane. It can
also be applied to coloring Euclidean spaces of higher dimensions.
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b b ≈ χ(G[1, b]) ≤ p q First appears in√
7/2 1,32288 7 1 2 Isbell; Hadwiger [33]√
3 1,73205 9 0 3 Ivanov [37]
2 2 12 2 2 Ivanov [37]√
19/2 2,17945 13 1 3 Ivanov [37]

(3
√
3)/2 2,59808 16 0 4 Ivanov [37]√

31/2 2,78388 19 2 3 Exoo [21]√
37/2 3,04138 21 1 4 Ivanov [37]
2
√
3 3,4641 25 0 5 GJSSW [31]

7/2 3,5 27 3 3 Lonc [38]√
13 3,60555 28 2 4 new√

61/2 3,90512 31 1 5 new
(5
√
3)/2 4,33013 36 0 6 GJSSW [31]√

79/2 4,4441 39 2 5 new√
91/2 4,7697 43 1 6 new
5 5 48 4 4 Lonc [38]

3
√
3 5,19615 49 0 7 GJSSW [31]

2
√
7 5,2915 52 2 6 new√

127/2 5,63471 57 1 7 new√
133/2 5,76628 61 4 5 Exoo [21]√
139/2 5,89491 63 3 6 new

(7
√
3)/2 6,06218 64 0 8 GJSSW [31]√

151/2 6,1441 67 2 7 new
13/2 6,5 75 5 5 Lonc [38]√
43 6,55744 76 4 6 new√

181/2 6,72681 79 3 7 new
4
√
3 6,9282 81 0 9 GJSSW [31]

7 7 84 2 8 new√
211/2 7,26292 91 5 6 Exoo [21]√
217/2 7,36546 93 4 7 new√
229/2 7,56637 97 3 8 new

(9
√
3)/2 7,79423 100 0 10 GJSSW [31]√

247/2 7,85812 103 2 9 new
8 8 108 6 6 Lonc [38]√

259/2 8,04674 109 5 7 new√
271/2 8,23104 111 1 10 new√
283/2 8,4113 117 3 9 new
2
√
19 8,7178 124 2 10 new√

307/2 8,76071 127 6 7 Exoo [21]√
313/2 8,8459 129 5 8 new

(5
√
13)/2 9,01388 133 4 9 new

(7
√
7)/2 9,26013 139 3 10 new

19/2 9,5 147 7 7 Lonc [38]√
91 9,53939 148 6 8 new√

373/2 9,6566 151 5 9 new√
97 9,84886 156 4 10 new√

421/2 10,2591 169 7 8 Exoo [21]√
427/2 10,332 171 6 9 new√
439/2 10,4762 175 5 10 new
11 11 192 8 8 Lonc [38]√
487/2 11,034 193 7 9 new
2
√
31 11,1355 196 6 10 new√

553/2 11,758 217 8 9 Exoo [21]√
559/2 11,8216 219 7 10 new
25/2 12,5 243 9 9 Lonc [38]√
157 12,53 244 8 10 new√

703/2 13,2571 271 9 10 Exoo [21]
14 14 300 10 10 Lonc [38]

Table 2: Bounds on χ(G[1,b][Ab]) depending on b achieved by (p, q)-coloring.
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