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Abstract

A clutter on Ω is a family of subsets of Ω that are incomparable under inclusion.
Given a collection Σ of clutters on Ω and another clutter Λ on Ω, we study the
problem of approximating and decomposing Λ in terms of the clutters in Σ. We
want to guarantee when these approximations exist not only for a single element
Λ, but for all Λ that belong to a family of clutters X. We use the lattice structure
of the collection of clutters to show that the existence of such approximations and
decompositions for every clutter Λ is equivalent to the fact that Σ contains a given
family of irreducible elements determined by Σ and X. We explicitly compute these
irreducible families in some cases and apply our results to clutters arising from
discrete objects such as matroids, graphs and secret sharing schemes.

1 Introduction

There are many clutters (that is, families of mutually incomparable sets) that arise from
discrete objects; for instance, the clutter of circuits of a matroid or the clutter of maximal
independent sets of a graph. This paper is motivated by the following question: given a
family Σ of clutters and another clutter Λ 6∈ Σ, how can one determine which clutters
from Σ (if any) are those closest to Λ? And if these exist, is it possible to recover the
original clutter Λ from them? This question was considered for matroids in [11, 12] and
in a more general setting in [13]. Our goal here is to give a framework for this problem
as general as possible, and to give conditions that guarantee a positive answer, and also
to apply the results to some particular instances. To do so, we will heavily rely on the
fact that the set of clutters on a given ground set has a distributive lattice structure.

To formalize the questions above, we consider four problems transversal to many
areas of mathematics: solving equations, giving representations (or realizations), ap-
proximating arbitrary elements by elements satisfying some conditions, and factoring
an element in terms of elements of some type. Observe that given a map Θ : A → B
between two sets A and B, and fixing an element b ∈ B, solving the equation Θ(x) = b
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amounts to determining the preimages of b by Θ. We can also say that the solutions
x are realizations of b ∈ B by elements of A. Suppose moreover that B is endowed
with an order or a distance. Then, whenever the equation Θ(x) = b has no solution,
or if b is not realizable by elements of A, we can wonder if there are elements b0 ∈ B
close to b and such that the equation Θ(x) = b0 has a solution; that is, we can ask
whether there are elements b0 ∈ B close to b that are realizable by elements of A. Here,
“close” refers to the order or the distance we have in B. So one seeks to approximate
an element b ∈ B by elements of the image Im Θ ⊆ B. It can also be that the set B has
an internal operation ∗. Then one can wonder if it is possible to recover the element b
if its optimal approximations are known, that is, if the equality b = b1 ∗ · · · ∗ br where
b1, . . . , br ∈ Im Θ are the optimal approximations of b. All these questions can be con-
sidered for a particular element b ∈ B, for all elements of the set B, or for all elements
of B that satisfy certain conditions, that is, for a subset, B′ ⊆ B.

The problem that we study in this paper is a concrete instance of this general frame-
work. Given a finite set Ω, the role of A is played by a collection Obj(Ω) of objects
defined on Ω. Among the wide variety of objects that can be considered, in this work
we will pay special attention to objects arising in a discrete setting, like matroids with
ground set Ω, graphs with vertex set Ω and secret sharing schemes with set of partici-
pants Ω (we will introduce the necessary definitions in the sections they are needed).

It is often the case that to an object X ∈ Obj(Ω) one can associate an increasing or
decreasing family of subsets of Ω, and that this family of subsets is hence determined
by its minimal or maximal elements under inclusion. Examples of these minimal or
maximal elements are the circuits or the bases of a matroid, minimal vertex covers of
a graph or the minimal qualified subsets of participants in a secret sharing scheme. A
family of mutually incomparable subsets of Ω is called a clutter ; that is, a clutter Λ on
Ω is a collection of subsets of the powerset 2Ω such that if A,B ∈ Λ are two different
elements of Λ then neither A ⊆ B nor B ⊆ A. Clutters are also called antichains of
sets, Sperner families or simple hypergraphs. The role of B above is played by the set of
all clutters on Ω, which we denote Clut(Ω) .

From what has been said so far, we have the following initial situation. On one hand,
a collection of discrete objects Obj(Ω) defined on a finite set Ω and, on the other hand,
a criterion Θ that associates a clutter Θ(X ) on Ω to any discrete object X ∈ Obj(Ω).
So we can consider the corresponding map:

Θ : Obj(Ω)→ Clut(Ω)

X 7→ Θ(X )

Let us say that a clutter ∆ on Ω is a Θ-clutter if there exists a Θ-realization for
∆; that is, if there exist X ∈ Obj(Ω) such that ∆ = Θ(X ). We denote by ClutΘ(Ω)
the collection of all the Θ-clutters of Ω; that is, ClutΘ(Ω) ⊆ Clut(Ω) is the image
of the map Θ. In general the map Θ is not surjective and so ClutΘ(Ω)  Clut(Ω),
(moreover, in general Θ is not one-to-one and, so there are Θ-clutters with more than
one Θ-realization). Therefore a natural question arises at this point: is it possible to
approximate and to recover any non Θ-clutter by means of Θ-clutters?
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This problem can be posed either for a specific clutter Λ, or for all clutters Λ ∈
Clut(Ω), or for all those clutters that verify a certain restriction, that is, for all Λ ∈ X
being X ⊆ Clut(Ω) an specific subset of clutters. For instance, X can be considered to
be the collection of clutters Λ on Ω such that all elements of Ω appear in at least one
element of the clutter Λ; or X can be the collection of those clutters Λ such that no
element of Ω appears in all the elements of the clutter Λ, or the collection of clutters
whose elements have at least size two. In any case, the fact that we can endow Clut(Ω)
with a distributive lattice structure allows us to operate with clutters and to characterize
when is it possible to approximate and to recover any non Θ-clutter by means of Θ-
clutters (and thus, the order and the operation ∗ mentioned in the general framework
come from the lattice structure of Clut(Ω)).

To do this, first in Section 2 we recall some basic concepts about lattices (Subsec-
tion 2.1), we endow Clut(Ω) with two (different but isomorphic) lattice structures (Sub-
section 2.2), and we analyze whether the lattice structure is preserved by considering
certain constraints (Subsection 2.3). The problems of approximation and decomposition
by a subset Σ of a general lattice is considered in Section 3. The main results character-
ize the existence of approximations, both for the case of approximating a single element
or all elements in a family X (that need not have a lattice structure). A key role is
played by the irreducible elements with respect to X, which are needed to guarantee
the existence of approximations. We also introduce another useful characterization in
terms of what we call “avoidance properties”. Next, in Section 4 we provide a complete
description of these irreducible elements for some families of clutters, some of which have
a lattice structure (Subsection 4.1), and some do not (Subsection 4.2). Finally, by using
these descriptions of the irreducible elements (that are summarized in Subsection 4.3),
and by combining them with the general results on lattices presented in Theorem 6, in
Section 5 we explore if it is possible to approximate and to recover any non Θ-clutter
by means of Θ-clutters whenever the combinatorial objects Obj(Ω) under consideration
are matroids (Subsection 5.1), graphs (Subsection 5.2) or secret sharing schemes (Sub-
section 5.3). In each case we also consider the problem when we restrict ourselves to
clutters that verify a certain restriction, that is, for all Λ ∈ X being X ⊆ Clut(Ω) some
specific subsets of clutters.

We stress that all results in this paper are about the existence of approximations or
decompositions, but we do not give results concerning the actual computation of such
approximations. For some clutters related to matroids, this was done in [11, 13], but we
do not know of other results in this direction, either for other specific discrete objects
or in general.

2 Preliminaries on lattices and clutters

For completeness, we start by recalling some concepts about lattices in general. Then
we endow the set of all clutters over a fixed set Ω with a distributive lattice structure
(actually, in two different but related ways). We also consider some particular families of
clutters and discuss the relation among them and whether they have a lattice structure
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as well.

2.1 General lattices

Although our main object of interest is the lattice of clutters of a finite set, in some
parts of this paper we work with an arbitrary finite lattice (L,6,∨,∧). We refer to
the books [6, 8] for general definitions about lattices and distributive lattices. For
completeness we recall some definitions and notation.

The bottom and top elements of a lattice, if they exist, are denoted by 0 and by
1, respectively. For A ⊆ L, the collection of minimal elements of A is denoted by
minimal(A,6); if A is a collection of subsets and we want to select those that are
minimal under inclusion, we just write minimal(A); for maximal elements we write
maximal(A,6) and maximal(A), respectively.

In a lattice (L,6,∨,∧), an element a is join-irreducible if a 6= 0 and whenever
a = b ∨ c either a = b or a = c. Similarly, an element a is meet-irreducible if a 6= 1 and
whenever a = b ∧ c either a = b or a = c. The set of all join-irreducible elements of L
will be denoted J (L); similary, M(L) denotes the set of all meet-irreducible elements
of L.

It is well-known that if (L,6,∨,∧) is a finite distributive lattice, then every element
different from 0 has a unique representation as an irredundant join of join-irreducible
elements ([8, Cor II.1.13]). Similarly, every element different from 1 has a unique repre-
sentation as an irredundant meet of meet-irreducible elements.

Let (L1,61,∨1,∧1) and (L2,62,∨1,∧2) be two lattices. A map ψ : L1 → L2 is
said to be a lattice homomorphism if it is both a join-homomorphism and a meet-
homomorphism; that is, if ψ(a ∨1 b) = ψ(a) ∨2 ψ(b) and ψ(a ∧1 b) = ψ(a) ∧2 ψ(b) for
any a, b ∈ L1. Any lattice homomorphism ψ is necessarily monotone with respect to the
associated ordering relation; that is, if a 61 b then ψ(a) 62 ψ(b).

A lattice isomorphism is a one-to-one and onto lattice homomorphism. If ψ : L1 →
L2 is a lattice isomorphism then ψ(J (L1)) = J (L2), ψ(M(L1)) = M(L2) and ψ pre-
serves the irredundant representation as a join of join-irreducible elements and the irre-
dundant representation as a meet of meet-irreducible elements.

The dual of a lattice L = (L,6,∨,∧) is the lattice Ld = (L,>,∧,∨). So, J (Ld) =
M(L) and M(Ld) = J (L).

An anti-isomorphism ψ of a lattice (L,6,∨,∧) is a lattice isomorphism ψ between
the lattice and its dual. If ψ is an anti-isomorphism of L then ψ(M(L)) = J (L) and
ψ(J (L)) =M(L).

2.2 Two lattices of clutters

Let Ω be a non-empty finite set. By a clutter on Ω we mean a collection Λ ⊆ P(Ω) such
that the elements of Λ are pairwise incomparable under inclusion. Note that ∅ = {}
and {∅} are clutters. The collection of all cutters of Ω is denoted by Clut(Ω). We next
introduce two natural partial orders on Clut(Ω) (we refer to [13] for more details and
motivation).
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Figure 1: The posets (Clut(Ω),6+) and (Clut(Ω),6−) for a Ω = {1, 2, 3}.

Given Λ ∈ Clut(Ω), we denote by Λ+ the monotone increasing family of subsets of
Ω that has Λ as its minimal elements; that is, Λ+ = {A ⊆ Ω : B ⊆ A for some B ∈ Λ}.
This induces a partial order 6+ on Clut(Ω) by setting Λ1 6+ Λ2 if and only if Λ+

1 ⊆ Λ+
2 .

It is straightforward to check that Λ1 6+ Λ2 if and only if for all A ∈ Λ1 there is B ∈ Λ2

such that B ⊆ A.
Similarly, we define Λ− = {A ⊆ Ω : A ⊆ B for some B ∈ Λ} and Λ1 6− Λ2 if and

only if Λ−1 ⊆ Λ−2 . The fact that Λ1 6− Λ2 is equivalent to the fact that for each A ∈ Λ1

there is B ∈ Λ2 with A ⊆ B.
Figure 1 shows the Hasse diagram of both posets (Clut(Ω),6+) and (Clut(Ω),6−)

when Ω is a set of three elements. Note that the bottom and top elements of the poset
(Clut(Ω),6+) are {} = ∅ and {∅}, respectively, and those of (Clut(Ω),6−) are {} and
{Ω}.

The following operations endow the posets (Clut(Ω),6+) and (Clut(Ω),6−) with a
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lattice structure. Let Λ1,Λ2 be clutters on Ω. We define

Λ1 u+ Λ2 = minimal
(
Λ+

1 ∩ Λ+
2

)
= minimal

(
{A1 ∪A2 : Ai ∈ Λi

}
),

Λ1 t+ Λ2 = minimal
(
Λ+

1 ∪ Λ+
2

)
= minimal

(
Λ1 ∪ Λ2

)
,

Λ1 u− Λ2 = maximal
(
Λ−1 ∩ Λ−2

)
= maximal

(
{A1 ∩A2 : Ai ∈ Λi

}
),

Λ1 t− Λ2 = maximal
(
Λ−1 ∪ Λ−2

)
= maximal

(
Λ1 ∪ Λ2

)
.

It is routine to check that indeed these operations give a distributive lattice structure.
(We note that Clut+(Ω) is isomorphic to the free distributive lattice on |Ω| generators,
although we will not use this fact in the sequel.)

Lemma 1. The lattices Clut+(Ω) = (Clut(Ω),6+,t+,u+) and Clut−(Ω) = (Clut(Ω),6−

,t−,u−) are distributive.

We next introduce two operations on clutters that allow us to relate the lattice
structures of Clut+(Ω) and Clut−(Ω) (see Lemma 2). In fact, one of these operations
provides a lattice isomorphism between Clut−(Ω) and Clut+(Ω).

The complementary clutter of a clutter Λ is the clutter Λc = {Ω \ A : A ∈ Λ}.
Observe that it is an involutive operation, that is, ((Λ)c)c = Λ. Note that {}c = { } and
{∅} = {Ω}.

The blocker (or transversal) of a clutter Λ is the clutter b(Λ) = minimal({B : B∩A 6=
∅ for allA ∈ Λ}). The blocker operation is also involutive on clutters, that is, b(b(Λ)) = Λ
(see [7] for more details). Note that b({}) = {∅} and that b({Ω}) = {{w} : w ∈ Ω}.

The following lemma summarizes the behaviour of the lattice structure of clutters
with respect to the blocker and complementary operations (it is a routine to prove its
statements).

Lemma 2. Let Ω be a finite set. Then:

1. The complementary operation c is an involutive isomorphism between the lattice
Clut+(Ω) and the lattice Clut−(Ω).

2. The blocker operation b is an involutive anti-isomorphism of the lattice Clut+(Ω).

3. The composition c◦ b◦ c is an involutive anti-isomorphism of the lattice Clut−(Ω).

2.3 Clutters with additional properties

In this section we introduce some families of clutters that are of interest from the com-
binatorial point of view.

For a clutter Λ ∈ Clut(Ω), its support is defined as supp(Λ) =
⋃
A∈ΛA. We say that

Λ has full support if supp(Λ) = Ω; that is, all elements of Ω appear in at least one
element of the clutter Λ. The collection of all clutters on Ω with full support is denoted
by Clut0(Ω).

The intersection of Λ is defined as int(Λ) =
⋂
A∈ΛA. We say that Λ has empty

intersection if int(Λ) = ∅; that is, if no element of Ω appears in all the elements of

6



the clutter Λ. The collection of all clutters on Ω with empty intersection is denoted by
Clut∅(Ω). Note that ∅ 6∈ Clut∅(Ω) since an empty intersection equals Ω.

For a clutter Λ 6= ∅, we define the rank, respectively the corank, of Λ as the maximum,
respectively the minimum, of all the cardinalities of the elements of Λ; that is, rk(Λ) =
max{|A| : A ∈ Λ} and crk(Λ) = min{|A| : A ∈ Λ}. The collection Clutc≥2(Ω) contains
all clutters on Ω with corank crk(Λ) ≥ 2; that is, clutters whose elements have size
at least two. For technical reasons that will become clear in Lemma 3 below, we set
rk(∅) = −∞ and crk(∅) =∞, so that ∅ ∈ Clutc≥2(Ω).

The following lemma summarizes how the above families of clutters behave with
respect to the blocker and complementary operations.

Lemma 3. Let Ω be a finite non-empty set and Λ ∈ Clut(Ω). Then

1. Λ ∈ Clut0(Ω) if and only if b(Λ) ∈ Clut0(Ω) if and only if Λc ∈ Clut∅(Ω).

2. Λ ∈ Clutc≥2(Ω) if and only if b(Λ) ∈ Clut∅(Ω) if and only if b(Λ)c ∈ Clut0(Ω).

3. Λ ∈ Clut∅(Ω) if and only if b(Λ) ∈ Clutc≥2(Ω) if and only if Λc ∈ Clut0(Ω).

Proof. The first part of statement (1) follows from the equality supp(Λ) = supp(b(Λ))
that we next prove. Note that it holds for Λ = ∅. For an arbitrary Λ = {A1, . . . , Ak}
with k ≥ 1, take a 6∈ supp(Λ). If A is a minimal set such that A∩Ai 6= ∅ for all 1 ≤ i ≤ k,
then a 6∈ A. Thus, supp(b(Λ)) ⊆ supp(Λ). Since the blocker operation is involutive, we
have an equality. To complete the proof of (1), note that int(Λ) = Ω \ supp(Λc).

Statements (2) and (3) are equivalent, and they follow from the facts that crk(Λ) ≤ 1
if and only if int(b(Λ)) 6= ∅ and again that supp(Λc) = Ω \ int(Λ). 2

In addition to the families Clut0(Ω), Clut∅(Ω) and Clutc≥2(Ω), we can also consider
their intersections, that is,

Clut0,∅(Ω) = Clut0(Ω) ∩ Clut∅(Ω),

Clut0,c≥2(Ω) = Clut0(Ω) ∩ Clutc≥2(Ω),

Clutc≥2,∅(Ω) = Clutc≥2(Ω) ∩ Clut∅(Ω),

Clut0,c≥2,∅(Ω) = Clut0(Ω) ∩ Clutc≥2(Ω) ∩ Clut∅(Ω).

Each of these seven families gives rise to two posets, one for the order 6+ and
one for the order 6−. We next show that only four of these posets have a lattice
structure in general. Recall that an interval in a lattice (L,6,∨,∧) is a set of the form
[a, b] = {x ∈ L : a 6 x 6 b}, and it is a sublattice of L. We call the intervals of the form
[a, 1] and [0, b] upper and lower intervals, respectively.

Lemma 4. Let Ω be a finite non-empty set of size |Ω| = n. Then:

1. The following families have a distributive lattice structure:

(a) (Clutc≥2(Ω),6+,t+,u+), (Clut∅(Ω),6+,t+,u+) and (Clutc≥2,∅(Ω),6+,t+,u+)
are distributive sublattices of Clut+(Ω); actually, Clutc≥2(Ω) is a lower inter-
val, Clut∅(Ω) is an upper interval and Clutc≥2,∅(Ω) is an interval in Clut+(Ω).
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(b) (Clut0(Ω),6−,t−,u−) is a distributive sublattice of Clut−(Ω); actually, Clut0(Ω)
is an upper interval of Clut−(Ω).

2. The following families do not have a lattice structure:

(a) With respect to the order 6+, the families Clut0(Ω), Clut0,c≥2(Ω) and Clut0,∅(Ω)
do not have a lattice structure for n ≥ 4, and the family Clut0,c≥2,∅(Ω) does
not have a lattice structure for n ≥ 5.

(b) With respect to the order 6−, the families Clutc≥2(Ω), Clut∅(Ω), Clut0,c≥2(Ω),
Clut0,∅(Ω), Clutc≥2,∅(Ω) and Clut0,c≥2,∅(Ω) do not have a lattice structure for
n ≥ 4.

Proof. For (1), by Lemmas 2 and 3, it is enough to show that Clut0(Ω) is an upper
interval in Clut−(Ω), and this is indeed the case since from the definition of 6− one can
check that Λ ∈ Clut0(Ω) is equivalent to {{a1}, . . . , {an}} 6− Λ.

For n = 4, the posets (Clut0(Ω),6+) and (Clut0,∅(Ω),6+) are not lattices since the
clutters Λ1 = {{a1}, {a2, a3}, {a3, a4}} and Λ2 = {{a1}, {a2, a3}, {a2, a4}} have two com-
mon maximal lower bounds: {{a1}, {a2, a3, a4}} and {{a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}}.
Again by Lemmas 2 and 3, we conclude that the posets (Clut0,c≥2(Ω),6+), (Clut∅(Ω),6−

) and (Clut0,∅(Ω),6−) are not lattices either. To generalize to n > 4, it is enough to
add the singletons {a5}, . . . , {an} to the construction above.

The poset (Clut0,c≥2,∅(Ω),6+) for n = 5 is not a lattice as the clutters Λ1 =
{{a1, a2}, {a3, a4, a5}} and Λ2 = {{a1, a2, a3}, {a4, a5}} have two common minimal up-
per bounds: {{a1, a2}, {a1, a3, a4}, {a4, a5}} and {{a1, a2}, {a2, a3, a4}, {a4, a5}}. To
generalize the construction, it is sufficient to add the sets {a1, a6}, . . . , {a1, an} to all
the clutters in the construction.

For n = 4, the posets (Clutc≥2(Ω),6−), (Clut0,c≥2(Ω),6−), (Clutc≥2,∅(Ω),6−)
and (Clut0,c≥2,∅(Ω),6−) are not lattices since Λ1 = {{a1, a2}, {a3, a4}} and Λ2 =
{{a1, a3}, {a2, a4}} do not have common lower bounds. To generalize the construction,
add the pairs {a1, a5}, . . . , {a1, an} to Λ1 and the pairs {a2, a5}, . . . , {a2, an} to Λ2.

Remark. Lemma 4 above gives some bounds on the size of the ground set for which
the given families are not lattices. For smaller values, it is sometimes the case that they
are lattices, and in some other cases they are not. Since we are interested in the general
behaviour of the family, we omit the details for the small values of |Ω|.

3 Decomposition in lattices

We start by extending the notion of decomposition and irreducibility when restricted
to a subset X of our lattice. As for general meet- and join-irreducibility, the top and
bottom elements are sometimes excluded from the definitions. In what follows, we write
x ∈ X, x 6= y to exclude the element y whenever it belongs to X.

Given a finite distributive lattice (L,6,∨,∧) and a subset X ⊆ L, we say that a ∈ X,
a 6= 1, is meet X-irreducible if whenever a = b1 ∧ b2 ∧ · · · ∧ bk with bi ∈ X for all i,
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implies a = bi for some i. We denote byM(X,L) the set of meet X-irreducible elements.
Note that if X is a sublattice of L we have M(X,L) = M(X); also, if X ⊆ L1 ⊆ L
and L1 is a sublattice of L, we have M(X,L) = M(X,L1). The definitions of join
X-irreducibility and J (X,L) are analogous (here we exclude the bottom element 0 from
being join X-irreducible, in case it belongs to X).

Let now Σ be a non-empty subset of L. For an element x ∈ L, we say that A ⊆ Σ
is a Σ-meet decomposition of x if x =

∧
a∈A a; note that the case A = ∅ is not excluded,

in which case x = 1. The definition of Σ-join decomposition is analogous.
The fact that L is finite gives the following lemma.

Lemma 5. Let (L,6,∨,∧) be a finite distributive lattice and X ⊆ L. Then every
element of x ∈ X has a M(X,L)-meet decomposition and a J (X,L)-join decomposition.

The following is a generalisation of a well-known result (see for instance Theorem 2.46
in [6]). The convention that empty meets and joins equal 1 and 0, respectively, allows
us to write results like this one in a more compact way. In the proofs we do not address
explicitly these extreme cases since they are usually trivial. Also, the results in this
section are stated for both meets and joins, but by duality it is enough to prove just one
of them, and we do so without further mention.

Theorem 6. Let (L,6,∨,∧) be a finite distributive lattice, let X ⊆ L and Σ ⊆ L. Every
element x ∈ X has a Σ-meet decomposition if and only ifM(X∪Σ,L) ⊆ Σ. Analogously,
every element x ∈ X has a Σ-join decomposition if and only if J (X ∪ Σ,L) ⊆ Σ.

Proof. Suppose that every element in X has a Σ-meet decomposition and let x ∈M(X∪
Σ,L). If x belongs to Σ there is nothing to prove, so suppose x ∈ X. As x has a Σ-meet
decomposition, we can write x = y1 ∧ · · · ∧ yk for some k ≥ 1 and y1, . . . , yk ∈ Σ. But x
is meet (X ∪ Σ)−irreducible, so k = 1 and x belongs to Σ, as needed.

For the converse, let x ∈ X. If x belongs to M(X ∪ Σ,L), then x ∈ Σ and it
trivially has a Σ-meet decomposition. Otherwise, by Lemma 5 the element x has a
M(X∪Σ,L)-decomposition, but sinceM(X∪Σ,L) ⊆ Σ, it has a Σ-meet decomposition
as well.

The following lemma sometimes simplifies the computation of meet- or join-irreducible
elements. We omit the straightforward proof.

Lemma 7. Let (L,6,∨,∧) be a finite distributive lattice and X′ ⊆ X ⊆ L. If X′ is an
upper interval, then M(X′,L) = M(X,L) ∩ X′. Analogously, if X′ is a lower interval,
then J (X′,L) = J (X,L) ∩ X′.

In the following subsections we relate Σ-decompositions to the problem of approxi-
mating an element of a lattice with elements from Σ (Subsection 3.1) and we characterize
the elements that have a Σ decomposition by means of what we call “avoidance proper-
ties” (Subsection 3.2).
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3.1 Decomposition and optimal approximations

Let (L,6,∨,∧) be a finite distributive lattice and fix a non-empty subset Σ ⊆ L. Given
x ∈ L, we define the set Σu(x) of Σ-upper completions of x as

Σu(x) = {y ∈ Σ : x 6 y}; analgously, and set Σ`(x) of Σ-lower completions of x
is Σ`(x) = {y ∈ Σ : y 6 x}. We also define Φu(x) = minimal (Σu(x),6) and Φ`(x) =
maximal (Σ`(x),6). The elements of Φu(x) are said to be the optimal Σ-upper comple-
tions of x, and the elements of Φ`(x) are the optimal Σ-lower completions of x.

Observe that if the element x admits a Σ-meet decomposition {y1, . . . , yr} with r ≥ 1,
then {y1, . . . , yr} ⊆ Σu(x) and, in particular, Σu(x) 6= ∅. The analogous statement holds
for Σ-join decompositions and Σ-lower completions. So in such a case, there are optimal
approximations. The following proposition highlights the role of optimal approximations
for the existence of decompositions.

Proposition 8. Let (L,6,∨,∧) be a finite distributive lattice and let Σ ⊆ L be non-
empty. The following statements hold for x ∈ L:

1. There exists a Σ-meet decomposition of x if and only if the set Φu(x) of Σ-upper
optimal completions of x is a Σ-meet decomposition of x.

2. There exists a Σ-join decomposition of x if and only if the set Φ`(x) of the Σ-lower
optimal completions of x is a Σ-join decomposition of x.

Proof. Suppose that Σu(x) is non-empty, as otherwise the statement holds trivially.
Let Φu(x) = {x1, . . . , xm} and suppose that {y1, . . . , yr} is a Σ-meet decomposition of
x. We only need to check that x = x1 ∧ . . .∧ xm. The equality x 6 x1 ∧ . . .∧ xm follows
from the fact that x 6 xj for each 1 ≤ j ≤ m. To show that x1∧ . . .∧xm 6 x, note that
since {y1, . . . , yr} is a Σ-meet decomposition of x, we have {y1, . . . , yr} ⊆ Σu(x), and for
each i there is ji such that xji 6 yi. We thus conclude xj1 ∧ . . .∧xjr 6 y1∧ . . .∧ym = x,
as needed. 2

The following two corollaries follow directly from Proposition 8. The first one charac-
terizes when there is a unique optimal Σ-completion, and the second translates equality
of elements into equality of the sets of optimal completions.

Corollary 9. Let (L,6,∨,∧) be a finite distributive lattice and let Σ ⊆ L be a non-
empty subset. Let x ∈ L. The following statements hold:

1. If there is some Σ-meet decomposition of x, then Φu(x) has a unique element if
and only if Φu(x) = {x}, which happens if and only if x ∈ Σ.

2. If there is some Σ-join decomposition of x, then Φ`(x) has a unique element if and
only if Φ`(x) = {x}, which happens if and only if x ∈ Σ.

Corollary 10. Let (L,6,∨,∧) be a finite distributive lattice and let Σ ⊆ L be a non-
empty subset. Let x1, x2 ∈ L. The following statements hold:

1. If there exist some Σ-meet decompositions of x1 and of x2, then x1 = x2 if and
only if Φu(x1) = Φu(x2).
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2. If there exist some Σ-join decomposition of x1 and of x2, then x1 = x2 if and only
if Φ`(x1) = Φ`(x2).

3.2 Decomposition and avoidance properties

We next characterize when a particular element x has a Σ-decomposition in terms of
what we call avoidance properties (which are similar in spirit to Proposition 2.45 in [6]).
We say that x ∈ L verifies the Σ-upper avoidance property if for all y ∈ L with x 6 y
and x 6= y, there is y0 ∈ Σ such that x 6 y0 and y 66 y0. Analogously, the element x
verifies the Σ-lower avoidance property if for all y ∈ L with y 6 x and x 6= y, there is
y0 ∈ Σ such that y0 6 x and y0 66 y.

Note that the top element 1 satisfies the Σ-upper avoidance property vacuously,
and similarly the bottom element 0 satisfies the Σ-lower avoidance property. If x 6= 1
verifies the Σ-upper avoidance property then Σu(x) 6= ∅, and if x 6= 0 verifies the Σ-
lower avoidance property then Σ`(x) 6= ∅. However, the converse is not true, as in fact
avoidance properties are equivalent to the existence of decompositions, as we next show.

Theorem 11. Let (L,6,∨,∧) be a finite distributive lattice and let Σ ⊆ L be a non-
empty set. The following statements hold for x ∈ L.

1. There is a Σ-meet decomposition of x if and only if x verifies the Σ-upper avoidance
property.

2. There is a Σ-join decomposition of x if and only if x verifies the Σ-lower avoidance
property.

Proof. Statement (1) holds trivially for x = 1. For x 6= 1, let {y1, . . . , yr} be a Σ-
meet decomposition of x. Let y ∈ L with x 6 y and x 6= y. If y 6 yi for all i, then
y 6 y1 ∧ . . . ∧ yr = x and hence y = x, a contradiction. Thus there is i0 such that
y 66 yi0 . By definition, x 6 yi0 and yi0 ∈ Σ. Hence we take y0 = yi0 and thus x verifies
the Σ-upper avoidance property.

Reciprocally, if x 6= 1 verifies the Σ-upper avoidance property, by taking y = 1 in the
statement of the Σ-upper avoidance property we conclude that Σu(x) 6= ∅. Let Φu(x) =
{x1, . . . , xm} be the minimal elements of Σu(x). Let us check that x = x1 ∧ · · · ∧ xm.
Since x 6 xi, then x 6 x1∧. . .∧xm. If the inequality is strict, by taking y = x1∧. . .∧xm
in the Σ-upper avoidance property we conclude that there is y0 ∈ Σ such that x 6 y0

and x1 ∧ . . . ∧ xm 66 y0. But then y0 ∈ Σu(x) and hence there is i0 such that xi0 6 y0,
which is a contradiction since y = x1 ∧ . . .∧ xm 6 xi0 6 y0. Hence x = x1 ∧ . . .∧ xm, as
needed. 2

Theorem 11 gives a strategy for showing that a candidate family F ⊆ L is indeed
M(X ∪ Σ,L). This is the approach we will use later in Subsection 4.2.

Theorem 12. Let (L,6,∨,∧) be a finite distributive lattice, let X ⊆ L and Σ ⊆ L. The
following statements hold:

1. Let F ⊆M(X∪Σ,L) and assume that every element x ∈ X∪Σ verifies the F-upper
avoidance property. Then, F =M(X ∪ Σ,L).
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2. Let F ⊆ J (X∪Σ,L) and assume that every element x ∈ X∪Σ verifies the F-lower
avoidance property. Then F = J (X ∪ Σ,L).

Proof. Let x ∈ M(X ∪ Σ,L). Since it belongs to X ∪ Σ, it satisfies the F−upper
avoidance property. By Theorem 11, the element x has an F−meet decomposition.
Since F ⊆ M(X ∪ Σ,L) and x is meet (X ∪ Σ)−irreducible, it must be that x ∈ F , as
needed.

We end this section with a characterization of avoidance properties that makes them
easier to check. In particular, in the sequel we use condition (c) in the lemma below.

Lemma 13. Let (L,6,∨,∧) be a finite distributive lattice and let Σ ⊆ L be a non-empty
subset and x ∈ L.

1. The following conditions are equivalent:

(a) The element x verifies the Σ-upper avoidance property.

(b) For all y ∈ L with y 66 x there is y0 ∈ Σ such that x 6 y0 and y 66 y0.

(c) For all y ∈ J (L) with y 66 x there is y0 ∈ Σ such that x 6 y0 and y 66 y0.

2. The following conditions are equivalent:

(a) The element x verifies the Σ-lower avoidance property.

(b) For all y ∈ L with x 66 y there is y0 ∈ Σ such that y0 6 x and y0 66 y.

(c) For all y ∈M(L) with x 66 y there is y0 ∈ Σ such that y0 6 x and y0 66 y.

Proof. We prove (1). Supose x 6= 1, as for x = 1 the three conditions hold trivially.
For (a) ⇒ (b), let y ∈ L be such that y 66 x and assume x 66 y, as otherwise the Σ-
upper avoidance property gives y0 as needed. Let y′ = x∨ y. By the Σ-upper avoidance
property applied to x and y′, we find y0 ∈ Σ such that x 6 y0 and y′ 66 y0, which also
implies y 66 y0. The implication (b) ⇒ (c) is straightforward. For (c) ⇒ (a), let y ∈ L
with x 6 y. Let y = y1 ∨ . . . ∨ yr be the irredundant join decomposition of the element
y. Since x 6 y, there is i0 ∈ {1, . . . , r} with yi0 66 x. As yi0 ∈ J (L), there is y0 ∈ Σ
such that x 6 y0 i yi0 66 y0. Finally, y 66 y0 because yi0 6 y. 2

Remark. In checking whether x satisfies the Σ-upper avoidance property, it is
not sufficient to restrict to y ∈ J (L) with x 6 y and x 6= y. Indeed, for the lattice
Clut+({1, 2, 3}), taking x = {{1, 2}} and Σ = {y0} with y0 = {{1, 2}, {1, 3}, {2, 3}}, one
can check that x does not satisfy the Σ-upper avoidance property, but that x 6 y0 and
y 66 y0 for every join-irreducible element y such that x ≤ y.

The situation is analogous with respect to the Σ-lower avoidance property andM(L).
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4 Decomposition in families of clutters: description of the
meet and join irreducible elements

In this section we particularize the results of Section 3 to the two lattices of clutters
Clut+(Ω) and Clut−(Ω). Given a subset Σ ⊆ Clut(Ω), we seek to determine conditions
on Σ that guarantee that every element of a subset X ⊆ Clut(Ω) has a Σ-meet or
Σ-join decomposition. So according to Theorem 6 we have to determine the families
M(X ∪ Σ,L) and J (X ∪ Σ,L) and, after that, we will have to check whether these
families are subsets of Σ. This section deals with the first issue while the second one
will be considered in Section 5 for some sets Σ arising from discrete objects.

Specifically, and due to the difficulty of giving an explicit description of all the meet
and join irreducible elements of the set X ∪ Σ, here we will only focus on the case in
which we take Σ to be a subset of X, so that we have to determineM(X,L) and J (X,L).
Also, we restrict X to being either the full lattice of clutters or one of the families of
clutters identified in Subsection 2.3.

In Subsection 4.1 we deal with the families X that have a lattice structure, and in
Subsection 4.2 with the families X that do not have a lattice structure. For ease of
reference, the results are summarized in Subsection 4.3.

4.1 The meet and join irreducible elements for some families of clutters
with a lattice structure

The following proposition identifies join- and meet-irreducible elements in the lattices
of clutters Clut+(Ω) and Clut−(Ω). Given a subset A ⊆ Ω and a nonnegative integer
k ≤ |A|, the uniform clutter Uk,A is the clutter {B : B ⊆ A and |B| = k}. We write
M+(Ω) instead of M(Clut+(Ω)) and so on.

We omit the easy proof (by Lemma 2 it is sufficient to prove just one of the four
items below). We also note that this proposition together with the results in Section 3
give a more general proof of the results in Section 3 of [13].

Proposition 14. Let Ω be a finite non-empty set.

1. In the distributive lattice Clut+(Ω) :

(a) M+(Ω) = {∪a∈A{{a}} : ∅ ⊆ A ⊆ Ω} = {U1,A : ∅ ⊆ A ⊆ Ω}.
(b) J +(Ω) = {{A} : ∅ ⊆ A ⊆ Ω} = {U|A|,A : ∅ ⊆ A ⊆ Ω}.

2. In the distributive lattice Clut−(Ω):

(a) M−(Ω) = {∪a∈A{Ω \ {a}} : ∅ ⊆ A ⊆ Ω}.
(b) J −(Ω) = {{A} : ∅ ⊆ A ⊆ Ω} = {U|A|,A : ∅ ⊆ A ⊆ Ω}.

Note that {∅} ∈ J +(Ω) and {} ∈ M+(Ω) ∩M−(Ω)
For each of the four lattices in Lemma 4, we next determine their join- and meet-

irreducible elements. Thanks to Lemma 3, it is enough to find three of these families
to determine the other five. This is summarized in the tables below, where we use the
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following notation: given ∗ ∈ {+,−} and ? ⊂ {0, ∅, c ≥ 2}, we write M∗?(Ω) instead
of M(Clut∗?(Ω),Clut∗(Ω)), and analogously for join-irreducibility. In each column, we
have a clutter A of some irreducible elements and its transformation under either the
blocker or the complementary operations.

A M+
∅ (Ω) M+

c≥2(Ω) M+
c≥2,∅(Ω)

b(A) J +
c≥2(Ω) J +

∅ (Ω) J +
c≥2,∅(Ω)

A M+
∅ (Ω) J +

∅ (Ω)

Ac M−0 (Ω) J −0 (Ω)

In Proposition 15 below, we determine M−0 (Ω), Mc≥2(Ω) and M+
c≥2,∅(Ω). For ease

of reference, in Subsection 4.3 we write down explicitly all meet- and join-irreducible
elements for the sets X considered here and in the following section.

To state the result, we need to introduce some graph theory terminology (see [5, 21]
for general references). A graph G is an ordered pair (V (G), E(G)) comprising a finite
non-empty set V (G) of vertices together with a (possibly empty) set E(G) of edges,
which are two-element subsets of V (G). Let Graph(Ω) be the collection of all graphs
with vertex set Ω, and note that if G ∈ Graph(Ω) then E(G) ∈ Clutc≥2(Ω).

Proposition 15.

1. M+
c≥2(Ω) = {E(G) : G ∈ Graph(Ω)}, that is, all clutters formed by sets of size

two.

2. M+
c≥2,∅(Ω) =M+

c≥2(Ω)∩Clut∅(Ω), that is, clutters E(G) such that G has at least
two edges and there is no vertex that belongs to all edges.

3. M−0 (Ω) =
⋃
A⊆Ω,|A|≥2{{Ω \ {a} : a ∈ A}}.

Proof. We show that statement (1) follows directly from the definition of the operation
u+. Indeed, if Λ = Λ1 u+ · · · u+ Λk and A ∈ Λ has size 2, then A ∈ Λ1 ∩ · · · ∩ Λk, so
all edge-sets of graphs belong to M+

c≥2. If Λ ∈ Clut0,c≥2(Ω) contains some set A with

|A| ≥ 3, it has a non-trivial meet-decomposition in Clut+
c≥2(Ω):

Λ = (Λ \ {A} ∪ {A \ {x}}) u+ (Λ \ {A} ∪ {A \ {y}}) ,

where x, y are two different elements from A. Thus, statement (1) is proved.
Since Clut+

∅ and Clut−0 (Ω) are upper intervals, statements (2) and (3) follow respec-
tively from statement (1) and part (2.a) of Proposition 14.

4.2 The meet and join irreducible elements for some non-lattice fam-
ilies of clutters

Recall that in Lemma 4 we identified ten families in Clut+(Ω) and Clut−(Ω) that are not
lattices in general. We will focus on four out of these ten families, the ones with respect
to the order 6+ (statement (2.a) in Lemma 4). They seem to us the most interesting
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ones and they are related to each other with the blocker operation, which greatly reduces
the number of cases to deal with. We leave the other families to the interested reader.

The following table is an immediate consequence of the properties of the blocker
operation (Lemmas 2 and 3); each column gives a collection A of clutters and its blocker
b(A) = {b(Λ) : Λ ∈ A}.

A M+
0 (Ω) M+

0,∅(Ω) M+
0,c≥2(Ω) M+

0,c≥2,∅(Ω)

b(A) J +
0 (Ω) J +

0,c≥2(Ω) J +
0,∅(Ω) J +

0,c≥2,∅(Ω)

Next, since Clut∅(Ω) is an upper interval, by Lemma 7 it is enough to determine
only M+

0 (Ω) and M+
0,c≥2(Ω). For ease of reference, in Subsection 4.3 one can find the

full list of meet- and join-irreducible elements for each of the four families Clut0(Ω),
Clut0,∅(Ω), Clut0,c≥2(Ω), Clut0,c≥2,∅(Ω) in the lattice Clut+(Ω). We next find the sets
M+

0 (Ω) and M+
0,c≥2(Ω), from which all others will follow. Recall that Ω = {a1, . . . , an}

and that Sn denotes the symmetric group on [n].

Proposition 16. The family M+
0 (Ω) is

{{{a1}, . . . , {an}}} ∪
{{
{aσ(1), aσ(2)}, . . . , {aσ(1), aσ(n)}

}
: σ ∈ Sn

}
∪{{

{aσ(1)}, . . . , {aσ(r)}, {aσ(r+1), aσ(n)}, . . . , {aσ(n−1), aσ(n)}
}

: σ ∈ Sn, 1 6 r 6 n− 2
}
.

Proof. Let us denote by F the collection of clutters in the statement of the theorem.
We apply the characterization in Theorem 12. We first show that F ⊆M+

0 (Ω).
The clutter {{a1}, . . . , {an}} is clearly meet Clut0(Ω)-irreducible since it is meet-

irreducible in the lattice Clut+(Ω).
For the other two families of clutters in F , by symmetry we can suppose that σ is

the identity permutation. Thus, let us assume first that

{{a1, a2}, . . . , {a1, an}} = Λ1 u+ Λ2 u+ · · · u+ Λk

= min{A1 ∪ · · · ∪Ak : Ai ∈ Λi, 1 ≤ i ≤ k},

where Λj ∈ Clut0(Ω) for all 1 ≤ j ≤ k.
By definition of the u+ operation, note that if for each i the clutter Λi contained

a set that did not contain a1, then Λ1 u+ · · · u+ Λk would contain a set without a1,
a contradiction. Hence, we can suppose that Λ1 = {B1, . . . , Bt} with a1 ∈ Bj for all
1 ≤ j ≤ t.

Again by the definition of u+, we can conclude that for all j and for all 2 ≤ i ≤ n, the
clutter Λj must contain one of the sets {a1}, {ai} or {a1, ai}. Thus, Λ1 contains the sets
{a1, ai} for all 2 ≤ i ≤ n, and hence must be exactly the clutter {{a1, a2}, . . . , {a1, an}},
as needed.

Finally, we show that the clutter {{a1}, . . . , {ar}, {ar+1, an}, . . . , {an−1, an}} is meet
Clut0(Ω)-irreducible. Assuming again that

{{a1}, . . . , {ar}, {ar+1, an}, . . . , {an−1, an}} = Λ1 u+ Λ2 u+ · · · u+ Λk,
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we deduce that {{a1}, . . . , {ar}} ⊂ Λi for all 1 ≤ i ≤ k, so we can restrict to the elements
{ar+1, . . . , an} and argue as in the previous case.

Next, we show that every Λ ∈ Clut0(Ω) satisfies the F-upper avoidance property.
By Lemma 13, it is enough to check that if Λ′ ∈ J +(Ω) is join-irreducible and Λ′ 66+ Λ,
then there is Λ0 ∈ F such that Λ 6+ Λ0 and Λ′ 66+ Λ0.

Recall that a clutter Λ′ ∈ J +(Ω) is of the form Λ′ = {A′} for some subset A′ ⊆ Ω.
If A′ = ∅, we can take Λ0 = {{a1}, . . . , {an}}, since {∅} is the top element in Clut+(Ω)
and covers {{a1}, . . . , {an}}, which in turn is greater than all other clutters in Clut+(Ω).

Hence, we assume that A′ 6= ∅. The fact that Λ′ 66+ Λ implies that this set A′

is such that A 6⊆ A′ for all A ∈ Λ, and in particular A′ 6= Ω. We can suppose A′ =
{ar+1, . . . , an}, for 1 ≤ r ≤ n− 1.

We next claim that there is a ∈ Ω \A′ such that {a} 6∈ Λ. Indeed, if it were not the
case, since Λ ∈ Clut0(Ω), it must be of the form Λ = {{a1}, . . . , {ar}, Ar+1, . . . , Am},
where Ar+1, . . . , Am are subsets of A′, which contradicts the previous paragraph. So we
can assume that {a1} 6∈ Λ.

Let us now define a clutter Λ0 ∈ F as follows.

Λ0 =

{
{{a1, a2}, . . . , {a1, an}} if r = 1,

{{a2}, . . . , {ar}, {a1, ar+1}, . . . , {a1, an}} if 1 < r ≤ n− 1.

We need to check that Λ 6+ Λ0 and Λ′ 66+ Λ0. The latter is clear since Λ′ = {A′} =
{{ar+1, . . . , an}} and the condition Λ′ 66+ Λ0 is equivalent to A 6⊆ A′ for all A ∈ Λ0.

As for Λ 6+ Λ0, we need to check that for A ∈ Λ there is A0 ∈ Λ0 such that A0 ⊆ A.
We consider two cases according to whether A 6⊆ A′ ∪ {a1} or A ⊆ A′ ∪ {a1}.

First, suppose A ⊆ A′ ∪ {a1}. As A 6⊆ A′, we have a1 ∈ A, and since {a1} 6∈ Λ, it
must be {a1}  A. Thus, there is a ∈ A ∩ A′ and we can take A0 = {a1, a} ∈ Λ0 with
A0 ⊆ A.

If A 6⊆ A′ ∪ {a1}, there is a ∈ A with a 6∈ A′ ∪ {a1}. Hence we must be in the case
r > 2 and A0 = {a} ∈ Λ0 satisfies A0 ⊆ A.

Recall from Proposition 15 that the meet irreducible elements in the lattice Clutc≥2(Ω)
correspond to edge-sets of graphs. In the following theorem, this class is further re-
stricted to graphs without isolated vertices, that is, graphs where every vertex belongs
to at least one edge.

Proposition 17. The family M+
0,c≥2(Ω) is

{E(G) : G ∈ Graph(Ω), G does not have isolated vertices}.

Proof. Again, we denote by F the collection of clutters in the statement of the the-
orem and apply Theorem 12. Recall that the meet-irreducible elements in the lattice
Clutc≥2(Ω) are the edge-sets of all graphs, so this implies directly that F ⊆M+

0,c≥2(Ω).
Next, to check that the F-upper avoidance property is satisfied, we take Λ ∈

Clut0,c≥2(Ω) and Λ′ ∈ J +(Ω) with Λ′ 66+ Λ; we know that Λ′ = {A′} for some subset
A′ ⊆ Ω, and as in the proof of Theorem 16 A′ 6= Ω. We must find Λ0 ∈ F such that
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Λ 6+ Λ0 and Λ′ 66+ Λ0. Recall that Λ′ 66+ Λ is equivalent to the fact that no set of Λ
is contained in A′. In particular, A′ 6= Ω

If A′ = ∅, since {∅} is the top element in Clut+(Ω), it is enough to find Λ0 ∈ F such
that Λ 6+ Λ0, and this follows since the maximal clutters in Clut0,c≥2(Ω) belong to F .
Indeed, for any Λ1 ∈ Clut0,c≥2(Ω), the clutter Λ2 =

⋃
A∈Λ1

{{a, b} : a, b ∈ A, a 6= b} is
such that Λ1 6+ Λ2 and Λ2 is the clutter of edges of some graph. Moreover, if this
graph has no isolated vertices, the clutter of edges has full support and thus belongs to
Clut0,c≥2(Ω).

Otherwise, let A′ = {ar, . . . , an} with 2 ≤ r ≤ n. Let G be the complete r-partite
graph with parts {a1}, {a2}, . . . , {ar−1}, {ar, . . . , an} and let Λ0 = E(G); that is, edges
of G are all sets of the form {a, b} where a, b belong to different parts. Clearly Λ′ =
{A′} 66+ Λ0, since no element of Λ0 is a subset of A′. To check that Λ 6+ Λ0, take
A ∈ Λ; by assumption, A is not contained in A′, so at least it contains some element ai
with 1 ≤ i < r. Since Λ has corank at least two, the set A contains another element aj
with j 6= i, and so the set {ai, aj} of Λ0 is contained in A, as needed.

4.3 Summary of irreducible clutters

In Tables 1–4 below we present the collections of meet- and join-irreducible elements of
the families of clutters considered in the previous two sections. In order to make these
tables clear, we group the clutters that appear as meet- or join-irreducible into twelve
families. As before, Ω = {a1, . . . , an}.

On one hand, for 1 ≤ m ≤ n let us consider the clutters ∆1,m, ∆2,m and ∆3,m

defined as follows (we stress that actually ∆2,m = ∆c
1,m and ∆3,m = b(∆1,m)):

∆1,m = {{a1}, . . . , {am}}
∆2,m = {Ω \ {a1}, . . . ,Ω \ {am}}
∆3,m = {{a1, . . . , am}}

On the other hand, for 2 ≤ m ≤ n let us consider the clutters ∆4,m, ∆5,m and ∆6,m

defined as follows (we underline that actually ∆5,m = ∆c
4,m and that ∆6,m = b(∆4,m)):

∆4,m = {{a1, a2}, . . . , {a1, am}}
∆5,m = {Ω \ {a1, a2}, . . . ,Ω \ {a1, am}}
∆6,m = {{a1}, {a2, . . . , am}}

In addition, for 1 ≤ r ≤ n−2 let us consider the clutters ∆7,r, ∆8,r and ∆9,r defined
as follows (here ∆8,r = ∆c

7,r and ∆9,r = b(∆7,r)):

∆7,r = {{a1}, . . . , {ar}, {ar+1, an}, . . . , {an−1, an}}
∆8,r = {Ω \ {a1}, . . . ,Ω \ {ar},Ω \ {ar+1, an}, . . . ,Ω \ {an−1, an}}
∆9,r = {{a1, . . . , ar, an}, {a1, . . . , ar, ar+1, . . . , an−1}}

The last three families ∆10,G, ∆11,G and ∆12,G are indexed by graphs, and they
satisfy ∆11,G = ∆c

10,G and ∆12,G = b(∆10,G). To properly define them, we need to
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introduce some more concepts. An independent set of a graph G is a set of vertices
I ⊆ V (G) such that |e ∩ I| ≤ 1 for every edge e ∈ E(G). A vertex cover of G is a set of
vertices C ⊆ V (G) such that |e ∩ C| ≥ 1. Let Cover(G) be the set of all vertex covers
of G, and Ind(G) be the set of all independent sets. It is clear that I is an independent
set if and only if V (G) \ I is a vertex cover, and that b(E(G)) = minimal(Cover(G)).

∆10,G = minimal(Cover(G))

∆11,G = maximal(Ind(G))

∆12,G = E(G)

The next four tables summarize the results in Subsections 4.1 and 4.2. To further
simplify the writing, for two clutters Λ1,Λ2 ∈ Clut(Ω), we write Λ1

∼= Λ2 if both clutters
differ only by a permutation of Ω. Also, all graphs G that appear in the tables have
vertex-set V (G) = Ω. A graph is a star if there is a vertex u ∈ V (G) such that
E(G) = {uv : v ∈ V (G), v 6= u}.

M+(Ω) ∆ = { } or ∆ ∼= ∆1,m where 1 ≤ m ≤ n

M+
0 (Ω) ∆ = ∆1,n or ∆ ∼= ∆4,n or ∆ ∼= ∆7,r where 1 ≤ r ≤ n− 2

M+
∅ (Ω) ∆ ∼= ∆1,m where 2 ≤ m ≤ n

M+
c≥2(Ω) ∆ ∼= ∆12,G where G is a graph with vertex set V (G) = Ω

M+
0,∅(Ω) ∆ = ∆1,n or ∆ ∼= ∆7,r where 1 ≤ r ≤ n− 2

M+
0,c≥2(Ω) ∆ ∼= ∆12,G where G is a graph without isolated vertices

M+
c≥2,∅(Ω) ∆ ∼= ∆12,G where G ∈ Graph(Ω) has no vertex belonging to all edges and |E(G)| ≥ 2

M+
0,c≥2,∅(Ω) ∆ ∼= ∆12,G where G has no isolated vertices, is not a star and |E(G)| ≥ 2.

Table 1: The meet-irreducible elements of some families of clutters with respect to the
order 6+.

5 Decomposition in families of clutters: clutters associ-
ated to discrete objects

Let us recall from the introduction that given a map Θ : Obj(Ω)→ Clut(Ω) that assigns
clutters to combinatorial objects, we consider ClutΘ(Ω) as the set of those clutters that
are in the image of Θ; we also say refer to these clutters as the ones that have Θ-
realizations, and as Θ-clutters. The goal of this section is to explore if is it possible to
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M−(Ω) ∆ = { } or ∆ ∼= ∆2,m where 1 ≤ m ≤ n

M−0 (Ω) ∆ ∼= ∆2,m where 2 ≤ m ≤ n

M−∅ (Ω) ∆ = ∆2,n or ∆ ∼= ∆5,n or ∆ ∼= ∆8,r where 1 ≤ r ≤ n− 2

M−0,∅(Ω) ∆ = ∆2,n or ∆ ∼= ∆8,r where 1 ≤ r ≤ n− 2

Table 2: The meet-irreducible elements of some families of clutters with respect to the
order 6−.

J +(Ω) ∆ = {∅} or ∆ ∼= ∆3,m where 1 ≤ m ≤ n.

J +
0 (Ω) ∆ = ∆3,n or ∆ ∼= ∆6,n or ∆ ∼= ∆9,r where 1 ≤ r ≤ n− 2.

J +
∅ (Ω) ∆ ∼= ∆10,G

J +
c≥2(Ω) ∆ ∼= ∆3,m where 2 ≤ m ≤ n.

J +
0,∅(Ω) ∆ ∼= ∆10,G where G has no isolated vertices

J +
0,c≥2(Ω) ∆ = ∆3,n or ∆ ∼= ∆9,r where 1 ≤ r ≤ n− 2

J +
c≥2,∅(Ω) ∆ ∼= ∆10,G where where G has no vertex belonging to all edges and |E(G)| ≥ 2

J +
0,c≥2,∅(Ω) ∆ ∼= ∆10,G where G is not a star, has no isolated vertices and |E(G)| ≥ 2

Table 3: The join-irreducible elements of some families of clutters with respect to the
order 6+.

J −(Ω) ∆ = {∅} or ∆ ∼= ∆3,m where 1 ≤ m ≤ n.

J −0 (Ω) ∆ ∼= ∆11,G

J −∅ (Ω) ∆ = {∅} or ∆ ∼= ∆6,m where 2 ≤ m ≤ n

J −0,∅(Ω) ∆ ∼= ∆11,G where G has no isolated vertices

Table 4: The join-irreducible elements of some families of clutters with respect to the
order 6−.

approximate and decompose any clutter by means of Θ-clutters for some special maps
Θ related to matroids (Subsection 5.1), to graphs (Subsection 5.2) and to secret sharing
schemes (Subsection 5.3). Before doing this, we will first formulate the problem in a
precise way and as generally as possible.

Throughout, we write ClutP(Ω) to denote the set of clutters on Ω that satisfy a
given restriction P. To help readability, we write P0 for the restriction of having full
support, write P∅ for the restriction of having empty intersection, and so on. If needed,
we identify Clut(Ω) with ClutP(Ω) for the empty restriction P = {}.
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If P denotes a restriction on clutters, we could be interested in the Θ-clutters that
satisfy that restriction. This leads us to the following three definitions:

C1(Ω,Θ,P) = ClutΘ(Ω) ∩ ClutP(Ω)

C2(Ω,Θ,P) =
( ⋃

Ω′⊆Ω

ClutΘ(Ω′)
)
∩ ClutP(Ω)

C3(Ω,Θ,P) =
⋃

Ω′⊆Ω

(
ClutΘ(Ω′) ∩ ClutP(Ω′)

)
Before continuing, we want to highlight the relationship between these three def-

initions. Specifically that we have the trivial inclusions C1(Ω,Θ,P) ⊆ C2(Ω,Θ,P) ⊆
ClutP(Ω) ⊆ Clut(Ω) and C1(Ω,Θ,P) ⊆ C3(Ω,Θ,P) ⊆ Clut(Ω), but in general no inclu-
sion holds between C2(Ω,Θ,P) and ClutP(Ω), or between C2(Ω,Θ,P) and C3(Ω,Θ,P).
The reason is that, in general, the inclusion Ω′ ⊆ Ω does not imply ClutP(Ω′) ⊆
ClutP(Ω) (for instance, for the property of having full support we have Clut0(Ω′) 6⊆
Clut0(Ω) whenever Ω′ ⊂ Ω, whereas Clut∅(Ω

′) ⊆ Clut∅(Ω) and Clutc≥2(Ω′) ⊆ Clutc≥2(Ω)).
With these notations, a very general framework would be to consider two restrictions

P1 and P2 and aiming at decomposing clutters that satisfy P1 in terms of Θ-clutters
that satisfy P2. Therefore, in order to answer this question, we would apply our results
with

L = Clut+(Ω) or L = Clut−(Ω),

X = ClutP1(Ω),

Σ = C1(Ω,Θ,P2) or Σ = C2(Ω,Θ,P2) or Σ = C3(Ω,Θ,P2).

Thus, from Theorem 6, to guarantee that every element of X has a Σ-meet decom-
position we need to check the inclusion M(X ∪ Σ,L) ⊆ Σ, and to guarantee a Σ-join
decomposition we need the inclusion J (X ∪ Σ,L) ⊆ Σ. However, the collections of ir-
reducible elements computed in Section 4 are of the form J (X,L) and M(X,L). So in
order to apply our results we need that Σ ⊆ X.

To guarantee this, in the examples we study in the following subsections we always
take P1 = P2 and, specifically, we consider the following three situations:

1. First we consider the case without restrictions. We then have C1(Ω,Θ,P2) =
ClutΘ(Ω) and C2(Ω,Θ,P2) = C3(Ω,Θ,P2) =

⋃
Ω′⊆Ω ClutΘ(Ω′). Thus

L = Clut+(Ω) o L = Clut−(Ω)

X = Clut(Ω)

Σ = ClutΘ(Ω) o Σ =
⋃

Ω′⊆Ω

ClutΘ(Ω′)

and indeed Σ ⊆ X = L, so that M(X ∪ Σ,L) =M(L) and J (X ∪ Σ,L) = J (L).

2. Next we consider the case in which P1 = P2 = P where P is a property satis-
fying ClutP(Ω′) ∩ ClutP(Ω) = ∅ for Ω′  Ω. This happens for P = P0, P0,∅,
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P0,c≥2, P0,∅,c≥2. We have that C1(Ω,Θ,P) = C2(Ω,Θ,P) but we cannot guarantee
C3(Ω,Θ,P) ⊆ ClutP(Ω). We thus have

L = Clut+(Ω) or L = Clut−(Ω)

X = ClutP(Ω)

Σ = ClutΘ(Ω) ∩ ClutP(Ω) or Σ =
⋃

Ω′⊆Ω

(
ClutΘ(Ω′) ∩ ClutP(Ω′)

)
,

and hence the inclusion Σ ⊆ X holds if and only if Σ = ClutΘ(Ω) ∩ ClutP(Ω), so
we will only consider this collection Σ.

3. Finally, we consider P1 = P2 = P where P satisfies ClutP(Ω′) = Clut(Ω′) ∩
ClutP(Ω) for Ω′  Ω. This is the case for P = P∅, Pc≥2, P∅,c≥2. Here we have
C1(Ω,Θ,P) ⊆ C2(Ω,Θ,P) = C3(Ω,Θ,P) ⊆ ClutP(Ω). As before, we take

L = Clut+(Ω) o L = Clut−(Ω)

X = ClutP(Ω)

Σ = ClutΘ(Ω) ∩ ClutP(Ω) o Σ =
( ⋃

Ω′⊆Ω

ClutΘ(Ω′)
)
∩ ClutP(Ω),

but now Σ ⊆ X, so we can consider both families Σ.

In the three following sections we consider different families of combinatorial objects
and several maps Θ that associate clutters to them. For each one, we study whereas the
inclusion I(X,L) ⊆ Σ holds in the cases above, where we use I to denote either M or
J . We will look only at the families I(X,L) that we have identified in Section 4, so in
particular we will not deal with some of the restrictions in the order 6−.

In some of the cases above the set Σ is of the form ClutΘ(Ω) ∩ ClutP(Ω), but we
only need to check that I(X,L) ⊆ ClutΘ(Ω) since I(X,L) ⊆ ClutP(Ω) holds trivially.

Note also that in several cases the sets I(X,L) identified in Section 4 include the
clutters {}, ∅, {Ω}, which correspond to the bottom or top elements of Clut+(Ω) and
Clut−(Ω). It is easy to check that whenever these three clutters belong to some family
I(X,L) they are only needed to guarantee their own decomposition. Since in general
one is not interested in decomposing these particular clutters, in the examples they can
be safely omitted from the collections I(X,L), and we will do so from now on without
further mention.

Before moving on to the examples, we finish this general introduction with some
open questions related to this section and to the whole paper.

First, we mention that all results in this section given in which cases a clutter can
be decomposed in terms of Θ−clutters, but all the results have an existential nature. In
the paper [13] we gave some algorithms to compute matroidal completions in the case of
the restriction P being empty, but we do not know if such algorithms behave well when
considering other restrictions. We also do not know of any algorithm for other kinds of
combinatorial clutters.
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For a clutter Λ and a map Θ : Obj(Ω) → Clut(Ω), having just one optimal Θ-
completion is equivalent to Λ being a Θ-clutter (Corollary 9). It might be worth inves-
tigating if those elements having exactly two optimal Θ-completions have an interesting
characterization, as they should correspond with the clutters that are closest to being
Θ-clutters. These could happen for a given choice of order (6+ or 6−) and type of
decomposition (meet or join), or for all of the four choices. More generally, even in
the case that there were more than two optimal Θ-completions, it could be that there
is a Θ-decomposition using only two of those optimal completions, so it would be also
interesting to characterize these clutters.

Finally, the restrictions that we have considered in this paper (like having full support
or empty intersection) are very particular to clutters and it is not clear whether they
can be expressed in pure lattice theoretic terms. We would be interested in knowing for
which arbitrary distributive lattices one can define a notion akin to having full support.

5.1 Matroidal clutters

Matroids are discrete structures that abstract and generalize the notion of linear inde-
pendence in vector spaces. Namely a matroid M is a pair M = (Ω, Ind) where Ω is
a finite set (called the ground set) and Ind is a non-empty and monotone decreasing
family of subsets of Ω (called the independent sets) satisfying the following property:
if I1, I2 ∈ Ind and |I1| > |I2| then there exists x ∈ I1 \ I2 such that I2 ∪ {x} ∈ Ind
(this is sometimes called the augmentation property or the independent set exchange
property). We refer to [16] as a general reference in matroid theory. Let Mat(Ω) denote
the collection of all matroids with ground set Ω.

There are several maps Θ : Mat(Ω) → Clut(Ω) from matroids to clutters. Here we
will only consider the ones that arise from taking bases, circuits and hyperplanes, which
we next define. A basis of a matroid is a maximal independent set, a circuit is a minimal
dependent set and a hyperplane is a maximal set not containing any basis. So we can
take Θ(M) to be one of

Θ(M) = B(M) = {B ⊆ Ω : B is a basis of M},
Θ(M) = C(M) = {C ⊆ Ω : C is a circuit of M},
Θ(M) = H(M) = {H ⊆ Ω : H is a hyperplane of M}.

We recall the following characterizations:

- Basis exchange property ([16, Cor. 1.2.5]: a clutter ∆ 6= {} is the clutter of bases
of a matroid if and only if whenever B1, B2 are elements of ∆ and x ∈ B1 \ B2,
then there is y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ ∆.

- Circuit elimination property ([16, Cor. 1.1.5]: a clutter ∆ 6= {∅} is the clutter of
circuits of a matroid if and only if whenever C1 and C2 are distinct members of ∆
and x ∈ C1∩C2, then there is some member C3 of ∆ such that C3 ⊆ (C1∪C2)\{x}.
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- Hyperplane characterization ([16, Prop. 2.1.18]): a clutter ∆ 6= {Ω} is a hyper-
plane clutter if and only if ∆ 6= {Ω} and if H1, H2 are distinct members of ∆ and
x ∈ Ω \ (H1 ∪H2), then there is H3 ∈ ∆ such that H3 ⊇ (H1 ∩H2) ∪ {x}.

It is easy to see from these characterizations that all bases have the same number of
elements, or, in other words, that if ∆ is a clutter of basis then rk(∆) = crk(∆). Also,
clutters of circuits belong to Clut∅(Ω), unless they have just one element, and clutters
of hyperplanes belong to Clut0(Ω), again unless they have just one element. Also, the
clutter B(M) belongs to Clut0(Ω) if and only if M has no loops (that is, circuits of size
1), and it belongs to Clut∅(Ω) if and only if it has no coloops (which are precisely the
elements that belong to all bases). Similarly, C(M) belongs to Clut0(Ω) if and only if
M has no coloops, and it belongs to Clut0,c≥2(Ω) if and only if it has no loops. Clutters
of hyperplanes belong to Clut∅(Ω) if and only if the matroid has no loops, whereas they
belong to Clut0,c≥2(Ω) for all matroids of rank at least three.

Let us also recall the well-known relation between these families of clutters and the
dual matroid M∗ (the first identity is the definition of the dual matroid):

(B(M))c = B(M∗), b(B(M)) = C(M∗), (C(M))c = H(M∗).

Using the setting introduced in this section, we want to study when it is possible
to decompose and approximate clutters on Ω that satisfy a restriction P by means of
clutters of basis, circuits or hyperplanes satisfying that same restriction P. Let us note
that this problem was partially studied in [11, 12, 13] (see also the references in [13]
for other works relating clutters and matroids). All these papers correspond to taking
the restriction P to be empty. In [12] results were developed for matroids representable
over a field. Whereas here we consider arbitrary matroids, it is easy to adapt the tables
we present below to the representable case, and naturally one could consider any other
family of matroids of interest.

For the sake of completeness, we reproduce the case where the restriction P is empty.
Recall that we need to check whether the corresponding meet- or join-irreducible ele-
ments belong to the corresponding family Σ of matroidal clutters. We summarize the
results in Table 5 (we present the proofs of all tables at the end of this subsection). Part
of the results in this table were already given in [13]. Let us note that in that article we
also gave algorithms for finding the optimal matroidal completions of a given clutter, a
topic that we do not touch in the present article.

As mentioned above, the restrictions of having full support, empty interesection or
corank at least two arise naturally in the setting of matroidal clutters. We next study
the approximation and decomposition problems with P = P0, P∅, Pc≥2, P0,∅, P0,c≥2,
Pc≥2,∅, P0,c≥2,∅. The results are gathered in Tables 6 and 7. Note that some cases are
not studied with respect to the order 6− since we do not have the description of the
corresponding irreducible elements.
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the inclusion I(L) ⊆ Σ
where Σ = ClutΘ(Ω) or Σ =

⋃
Ω′⊆Ω ClutΘ(Ω′)

Θ = B Θ = C Θ = H

I(L) =M+ ( X , X ) ( X , X ) ( × , X )

I(L) =M− ( X , X ) ( × , × ) ( X , X )

I(L) = J + = J − ( X , X ) ( X , X ) ( X , X )

Table 5: Approximation and decomposition of clutters by Θ-matroidal clutters, the
general case. In each cell, the pairs in {X,×}2 indicate if the inclusion I(L) ⊆ Σ holds
(the first component for Σ = ClutΘ(Ω) and the second for Σ =

⋃
Ω′⊆Ω ClutΘ(Ω′)).

the inclusion I = I(X,L) ⊆ Σ
where X = ClutP(Ω) and Σ = ClutΘ(Ω) ∩ ClutP(Ω)

and whereP = P0, P0,∅, P0,c≥2, P0,c≥2,∅

Θ = B Θ = C Θ = H Θ = B Θ = C Θ = H

I =M+
0 × × × I = J +

0 × × ×

I =M+
0,∅ × × × I = J +

0,∅ × × ×

I =M+
0,c≥2 × × × I = J +

0,c≥2 × × ×

I =M+
0,c≥2,∅ × × × I = J +

0,c≥2,∅ × × ×

I =M−0 X × X I = J −0 × × ×

I =M−0,∅ × × × I = J −0,∅ × × ×

Table 6: Approximation and decomposition of clutters by Θ-matroidal clutters. Case of
clutters with full support and with empty intersection or corank greater than or equal
to two.

Before turning to the proof of Tables 5–7, we remark that the fact that most entries
are in the negative does not imply that there are no decompositions, only that they
cannot be guaranteed in all cases. In this situation, if one is interested in decomposing
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the inclusion I = I(X,L) ⊆ Σ where X = Clut∅(Ω)
and Σ = ClutΘ(Ω) ∩ ClutP(Ω) or Σ =

(⋃
Ω′⊆Ω ClutΘ(Ω′)

)
∩ ClutP(Ω)

for P = P∅,Pc≥2,Pc≥2,∅

Θ = B Θ = C Θ = H Θ = B Θ = C Θ = H

I =M+
∅ (X,X) (X,X) (×,X) I = J +

∅ (×,×) (×,×) (×,×)

I =M+
c≥2 (×,×) (×,×) (×,×) I = J +

c≥2 (X,X) (X,X) (×,X)

I =M+
c≥2,∅ (×,×) (×,×) (×,×) I = J +

c≥2,∅ (×,×) (×,×) (×,×)

I =M−∅ (×,×) (×,×) (×,×) I = J −∅ (×,×) (X,X) (×,X)

Table 7: Approximation and decomposition of clutters by Θ-matroidal clutters. Case of
clutters with empty intersection and corank gretaer than or equal to two. In each cell,
the pairs in {X,×}2 indicate if the inclusion I(X,L) ⊆ Σ holds (the first component for
Σ = ClutΘ(Ω) ∩ ClutP(Ω) and the second for Σ = (

⋃
Ω′⊆Ω ClutΘ(Ω′)) ∩ ClutP(Ω).

a given clutter Λ in terms of clutters of Σ one needs to check if the corresponding
avoidance property is fulfilled. Just to mention an example on the positive side, the
clutter Λ = {12, 13, 14, 23, 24} (brackets are omitted for ease of reading) is not a clutter
of circuits, but it can be written as a join of clutters of circuits with full support and
corank at least two: Λ = {13, 24} t+ {23, 14} t+ {12, 134, 234}. Note that if we drop
the restriction of having full support there are other decompositions, for instance, Λ =
{12, 13, 23} t+ {12, 13, 24}.

Proof of the results in Table 5, Table 6 and Table 7

To prove the results in the tables, we need to check which of the twelve families of clutters
listed in Subsection 4.3 admit realizations as clutters of bases, circuits or hyperplanes,
and whether this realizations can be achieved with ground set Ω or just a subset of it.

Let us note that if ∆ belongs to ClutB(Ω′) (that is, if it is a clutter of basis with
ground set Ω′), then it also belongs to ClutB(Ω) for any Ω ⊇ Ω′; the same holds for clut-
ters of circuits, but not for clutters of hyperplanes. Hence, in the columns corresponding
to B and C in Tables 5 and 7, both components are always equal. Also, as mentioned
in the introduction to this section, the clutters {}, {∅} and {Ω} are not considered.

All the clutters ∆1,m, ∆2,m i ∆3,m for 1 ≤ m ≤ n verify the basis exchange property.
As for the circuit elimination property, it is satisfied by clutters ∆1,m for all m, clutters
∆2,m only form = n and clutters ∆3,m for allm. Finally, the hyperplane characterization
holds for clutters ∆1,m only ifm = n, clutters ∆2,m for allm and clutters ∆3,m form 6= n.
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Next, let us look at the clutters ∆4,m, ∆5,m and ∆6,m with 2 ≤ m ≤ n. They basis
condition is verified by ∆4,m for all m, by ∆5,m for all m and by the clutter ∆6,2. The
only ones that are clutters of circuits are ∆4,2, ∆5,n and ∆6,m for all m. Finally, the
hyperplane condition is satisfied only by ∆4,n, ∆5,2 and ∆6,n.

As for the clutters ∆7,r, ∆8,r and ∆9,r with 1 ≤ r ≤ n − 2 the only one that is a
clutter of basis is ∆9,n−2. The ones that are clutters of circuits are ∆7,n−2 and ∆8,n−2,
and the ones that are clutters of hyperplanes are ∆7,n−2, ∆8,n−2 and ∆9,r for all r.

Finally, we obseve that not all clutters of the form ∆10,G,∆11,G,∆12,G are Θ-clutters.
For instance, let n ≥ 4 and let us consider the graph G with vertex set V (G) = Ω =
{a1, . . . , an} and with edges E(G) = {{a1, a2}, {a1, a3}, {a2, a3}} ∪ {{a3, a4}, {a3, a5},
. . . , {a3, an}}. Then the clutter of its minimal vertex cover sets is the clutter ∆10,G =
minimal(Cover(G)) = {{a1, a3}, {a2, a3}, {a1, a2, a4, . . . , an}} and the clutter of its max-
imal independent sets is the clutter ∆11,G = maximal(Ind(G)) = {{a3}, {a1, a4, . . . , an},
{a2, a4, . . . , an}}. So, for this graph we have that the clutters ∆10,G, ∆11,G and ∆12,G =
E(G) are not clutters neither of basis, nor of circuits, nor of hyperplanes. This completes
the proof of the results in Table 5, Table 6 and Table 7.

5.2 Graphic clutters: independence, vertex cover and dominating sets

In this subsection we consider as set of combinatorial objects the set Obj(Ω) = Graph(Ω)
whose elements are all the graphs G with vertex set V (G) = Ω.

There are many different criteria Γ that can be considered in order to obtain a family
of subsets of vertices Γ(G) associated with a given graph G. Some of these criteria Γ
are defined directly from properties of the vertices and edges of the graph. In any case,
for a given criterion Γ, the associated family of subsets of vertices Γ(G) is, in general,
univocally determined by a clutter ΘΓ(G) on the set of vertices of the graph. So for a
given criterion Γ we can consider its corresponding map

ΘΓ : Graph(Ω)→ Clut(Ω)

G 7→ ΘΓ(G)

In this subsection we analyse the problem of approximation and decomposition of
clutters by means of ΘΓ-clutters for some criteria Γ that somehow involve concepts
related with the control of the vertices of the graph. Namely we focus our attention on
the dominating sets of vertices of a graph, on the independent set of vertices and on the
vertex cover subsets (we stress that there are more criteria in this sense, for instance
the forcing sets of vertices and for the immune sets of any forcing process acting on the
vertices of the graph). Before continuing let us recall the definition of each of these three
concepts (two of which were already introduced in Section 4.3, but for completeness we
include all the definitions here).

Let Ω be a finite set and let G be a graph with set of vertices V (G) = Ω and edges
E(G). A dominating set of G is a subset D ⊆ Ω such that every vertex not in D is
adjacent to at least one member of D; an independent set of G is a set of vertices I ⊆ Ω
such that no two of them are adjacent; and a vertex cover is set of vertices C ⊆ Ω such
that for every edge {x, y} ∈ E(G), either x ∈ C or y ∈ C.
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Therefore, now we can consider the following three families of subsets Γ(G) associated
with a graph G:

Γ(G) = Dom(G) = {D ⊆ Ω : D is a dominating set G},
Γ(G) = Ind(G) = {I ⊆ Ω : I is an independent set of G},
Γ(G) = Cover(G) = {C ⊆ Ω : C is a vertex cover of G},

From the definitions it is clear that Dom(G) and Cover(G) are monotone increasing
families of subsets, while Ind(G) is a monotone decreasing family of subsets. There-
fore the families Γ(G) = Dom(G) and Γ(G) = Cover(G) are univocally determined
by the clutter of their inclusion minimal elements ΘΓ(G) = minimal(Γ(G)); the fam-
ily Γ(G) = Ind(G) is determined by the clutter of its inclusion maximal elements
ΘΓ(G) = maximal(Γ(G)). We also note the following fact, that we use sometimes
in the proofs: a maximal independent set of vertices is a minimal dominating set of the
graph.

Thus, for studying decomposition problems in terms of vertex-cover and dominating
sets it is more natural to consider the order 6+, and the order 6− is more natural for
independent sets. However, in the sequel we study both orders for all families.

We first start by considering no restriction on the family of clutters, that is, to take
the property P to be empty. In this case, the answer is given by Table 8 below, whose
proof appears at the end of this subsection.

the inclusion I(L) ⊆ Σ
where Σ = ClutΘΓ

(Ω) or Σ =
⋃

Ω′⊆Ω ClutΘΓ
(Ω′)

Γ = Dom Γ = Ind Γ = Cover

I(L) =M+ ( × , X ) ( × , X ) ( × , × )

I(L) =M− ( × , × ) ( × , × ) ( × , × )

I(L) = J + = J − ( × , X ) ( × , X ) ( × , × )

Table 8: Approximation and decomposition of clutters by Γ-graphic clutters. The gen-
eral case. In each cell, the pairs in {X,×}2 indicate if the inclusion I(L) ⊆ Σ holds (the
first component for Σ = ClutΘΓ

(Ω) and the second for Σ =
⋃

Ω′⊆Ω ClutΘΓ
(Ω′)).

Many clutters arising from graphs naturally satisify the restrictions of having full
support or empty intersection. Namely, it is easy to check that ΘΓ(G) ∈ Clut0(Ω) for
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Γ = Dom, Ind, and that ΘΓ(G) ∈ Clut∅(Ω) for Γ = Cover. Moreover, if G has no isolated
vertex, then ΘΓ(G) ∈ Clut0(Ω) for Γ = Cover; and ΘΓ(G) ∈ Clut∅(Ω) for Γ = Dom, Ind.
Finally, we note that for Γ = Dom, Ind,Cover the condition of having corank at least
two is equivalent to not having vertices adjacent to all other.

Thus, for graphic clutters we will consider the restrictions P0,P∅,P0,∅. For the
problem of approximating and decomposing clutters Λ verifying property P by ΘΓ-
clutters also satisfying P, we gather in Table 9 the case P = P0,P0,∅, and in Table 10
the case P = P∅. The results are stated for Ω large enough to avoid stating exceptions
for all small values of |Ω|, so if the reader is interested in values smaller than five they
should double-check the case separately.

the inclusion I(X,L) ⊆ Σ
where X = ClutP(Ω) and Σ = ClutΘΓ

(Ω) ∩ ClutP(Ω) for P = P0,P0,∅

Γ = Dom Γ = Ind Γ = Cover

I(X,L) =M+
0 X X ×

I(X,L) =M+
0,∅ X X ×

I(X,L) =M−0 × × ×

I(X,L) =M−0,∅ × × ×

I(X,L) = J +
0 X X ×

I(X,L) = J +
0,∅ × × X

I(X,L) = J −0 × X ×

I(X,L) = J −0,∅ × X ×

Table 9: Approximation and decomposition of clutters by Γ-graphic clutters. Case of
clutters with full support and empty intersection.

Proof of the results in Table 8, Table 9 and Table 10

Recall that in Table 8 we want to decide in which cases we have the inclusion I(L) ⊆ Σ
where I(L) =M+,M−,J +,J − and where Σ = ClutΘΓ

(Ω) or Σ =
⋃

Ω′⊆Ω ClutΘΓ
(Ω′).

While in Table 9, and for the properties P = P0,P0,∅, we want to decide in which cases
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the inclusion I(X,L) ⊆ Σ where X = Clut∅(Ω)
and Σ = ClutΘΓ

(Ω) ∩ Clut∅(Ω) or Σ =
(⋃

Ω′⊆Ω ClutΘΓ
(Ω′)

)
∩ Clut∅(Ω)

Γ = Dom Γ = Ind Γ = Cover

I(X,L) =M+
∅ (× , X ) (× , X ) (× , × )

I(X,L) =M−∅ (× , × ) (× , × ) (× , × )

I(X,L) = J +
∅ (× , × ) (× , × ) (X , X )

I(X,L) = J −∅ (× , X ) (× , X ) (X , X )

Table 10: Approximation and decomposition of clutters by Γ-graphic clutter. Case
of clutters with empty intersection. In each cell, the pairs in {X,×}2 indicate if the
inclusion I(L) ⊆ Σ holds (the first component for Σ = ClutΘΓ

(Ω) ∩ Clut∅(Ω) and the
second for Σ = (

⋃
Ω′⊆Ω ClutΘΓ

(Ω′)) ∩ Clut∅(Ω).

we have the inclusion I(X,L) ⊆ Σ where X = ClutP(Ω), the family I(X,L) is any
of M+

0 ,M
+
0,∅,M

−
0 ,M

−
0,∅,J

+
0 ,J

+
0,∅,J

−
0 ,J

−
0,∅, and Σ = ClutΘΓ

(Ω) ∩ ClutP(Ω). Whereas
in Table 10, and now for the property P = P∅, we want to decide in which cases we
have the inclusion I(X,L) ⊆ Σ where X = ClutP(Ω), the family I(X,L) is any of
M+
∅ ,M

−
∅ ,J

+
∅ ,J

−
∅ , and either Σ = ClutΘΓ

(Ω)∩ClutP(Ω) or Σ =
(⋃

Ω′⊆Ω ClutΘΓ
(Ω′)

)
∩

ClutP(Ω). At this point observe that in both Table 9 and Table 10 we have that
I(X,L) ⊆ ClutP(Ω).

Therefore, if we denote by I any of the above mentioned irreducible sets of elements,
we have that in Table 8, Table 9 and Table 10 we must check if for a given ∆ ∈ I there
exist graphs G with vertex set V (G) = Ω and such that ∆ = ΘΓ(G); and, in addition,
in Table 8 and Table 10 we also must check if there exist graphs G with vertex set
V (G) = Ω′ ⊆ Ω and such that ∆ = ΘΓ(G).

First let us consider the case Γ = Cover.
Clearly there is nothing to say whenever I = J +

∅ ,J
+
0,∅ because on both cases we have

that ∆ = ∆10,G is actually a Cover-clutter. Moreover, observe that the clutter ∆6,m is
the collection of minimal vertex covers of the star G with vertex set V (G) = {a1, . . . , am}
and edges E(G) = {{a1, a2}, . . . , {a1, am}}. So the case I = J −∅ is done.

Therefore we only must prove that in all remaining cases there are clutters ∆ ∈ I
for which there does not exists a graph G with minimal(Cover(G)) = ∆.

Let us consider the clutter ∆ = ∆1,n ∈M+,M+
0 ,M

+
∅ ,M

+
0,∅, the clutter ∆ = ∆2,m ∈

M−,M−0 (with 2 < m 6= n), the clutter ∆ = ∆3,n−1 ∈ J +,J −, the clutter ∆9,n−2 ∈
J +

0 , the clutter ∆ = ∆5,n ∈ M−∅ and the clutter ∆ = ∆8,r ∈ M−0,∅. It is not hard to

check that in any case there exists A ∈ b(∆) with |A| 6= 2. Hence it follows that there
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does not exist a graph G with E(G) = b(Λ). Since b(minimal(Cover(G))) = E(G), we
conclude that there does not exists a graph G with minimal(Cover(G)) = b(b(∆)) = ∆
as needed. Finally, note that the clutter ∆1.n is a particular case of a clutter ∆11,G by
taking G to be the complete graph with vertex set Ω, so this takes care of the remaining
cases J −0 ,J

−
0,∅.

Now we examine the cases Γ = Dom and Γ = Ind. Set Ω = {a1, . . . , an}.
First recall that if G is a graph with vertex set Ω then ΘΓ(G) ∈ Clut0(Ω); that

is, ClutΘΓ
(Ω) ⊆ Clut0(Ω). Therefore, if m < n then neither the clutter ∆1,m nor

the clutters ∆3,m,∆6,m admit Γ-graph realizations by using graphs G with V (G) = Ω
(because an 6∈ A if A ∈ ∆). The same argument applies to the clutter ∆ = ∆2,m where
m = 1, and to the clutter ∆ = ∆10,G if G is a graph with isolated vertices. So, for
Γ = Dom, Ind we have that the first component of the pairs in Table 8 and Table 10
must be ”×” whenever I = M+,M−,J +,J −,M+

∅ ,J
−
∅ . Moreover we have that for

I = J +
∅ both components of the pairs in Table 10 must be ”×”.

Next let us show that, for I = M−, the second component of the pairs in Table 8
must be ”×” and that, for I =M−∅ , both components of the pairs in Table 10 must be
”×”. Actually we claim that by means of graphs with vertex set Ω it is not possible to
obtain a Γ-graph realization for the clutter ∆2,m with m = n. Let us prove our claim.
On one hand, it is clear that there does not exist a graph G with vertex set Ω and whose
maximal independent sets of vertices are all the subsets of size n − 1; in other words,
the clutter ∆2,n does not admit an Ind-graph realization. On the other hand, from [14,
Proposition 5] it follows that the uniform clutter Un−1,n does not admit a Dom-graph
realization; since ∆2,n = Un−1,n, our claim follows.

At this point, the proof of the results in Table 8 and Table 10 will be completed
by showing that with graphs G with vertex set V (G) = Ω′ ⊆ Ω is it possible to obtain
Γ-graph realizations for all the clutters ∆ ∈M+,J +,J −,M+

∅ ,J
−
∅ . Let us prove it. Let

∆ ∈ M+,J +,J −,M+
∅ ,J

−
∅ . Then, either ∆ = ∆1,m (where 1 ≤ m ≤ n), or ∆ = ∆3.m

(where 1 ≤ m ≤ n), or ∆ = ∆6.m (where 2 ≤ m ≤ n). It is easy to check that the
complete graph G = KΩ′ on the set of vertices Ω′ = {a1, . . . , am} ⊆ Ω is a Dom-graph
realization and an Ind-graph realization for ∆1,m; that the null graph G = KΩ′ on the
set of vertices Ω′ = {a1, . . . , am} ⊆ Ω is a Dom-graph realization and an Ind-graph
realization for ∆3,m; and that the star G with vertex set V (G) = {a1, . . . , am} and
edge set E(G) = {{a1, a2}, . . . , {a1, am}} is a Dom-graph realization and an Ind-graph
realization for ∆6,m.

To finish, let us prove the results in Table 9. Clearly there is nothing to say whenever
Γ = Ind and I = J −0 ,J

−
0,∅, as in both cases we have that if ∆ ∈ I then ∆ = ∆11,G

which is a Ind-clutter by definition. The cases M−0 ,M
−
0,∅ follow by considering the

clutter ∆2,n, which we saw before it is not Γ-realizable. So it only remains to prove
three facts: that there are Γ-graph realizations for all the clutters ∆ ∈ M+

0 ,M
+
0,∅,J

+
0 ;

that there are clutters ∆ ∈ J +
0,∅ that do not admit a Γ-graph realization; and that by

means of graphs with vertex set Ω it is not possible to obtain a Dom-graph realization
for all the clutters of the form ∆11,G.

If ∆ ∈M+
0 ,M

+
0,∅,J

+
0 , then either ∆ is one of the clutters ∆1,n, ∆3,n, ∆4,n, or ∆6,n,
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or ∆ is of the form ∆7,r or ∆9,r for 1 ≤ r ≤ n − 2. All these clutters are Γ-clutters.
Namely, we have that a realization of ∆1,n is given by the complete graph G = Kn; a
realization of ∆3,n is given by the null graph G = KΩ; a realization of ∆4,n is given by
the union G = K{a1} ∪K{a2,...,an}; a realization of ∆6,n is given by the star G with edge
set E(G) = {{a1, a2}, . . . , {a1, an}}; a realization of ∆7,r is given by the graph G with
set of vertices V (G) = Ω obtained from the complete graph KΩ by removing the edges
{ar+1, an}, . . . , {an−1, an}; and, finally, the graph G with vertex set V (G) = Ω and edge
set E(G) = {{an, ar+1}, . . . , {an, an−1}} is a realization for ∆9,r.

If ∆ ∈ J +
0,∅ then ∆ = ∆10,G = minimal(Cover(G)) for some graph G with vertex set

V (G) = Ω. Observe that if the graph G has isolated vertices then ∆10,G 6∈ Clut0(Ω).
Therefore, since ΘΓ(G′) ∈ Clut0(V (G′)) for both Γ = Ind,Dom, we conclude that if the
graph G has isolated vertices then there can be no graph G′ with vertex set V (G′) = Ω
and with minimal(Dom(G′)) = ∆10,G or with maximal(Ind(G′)) = ∆10,G.

Finally, let n ≥ 4 and let us consider the graph G with set of vertices V (G) =
Ω = {a1, . . . , an} obtained from the complete graph KΩ by removing the edges {a1, a4},
{a2, a3}. Then ∆11,G = maximal(Ind(G)) = {{a1, a4}, {a2, a3}, {a5}, . . . , {an}}, and it
is not difficult to check that there does not exist a graph G′ with vertex set V (G′) = Ω
and with minimal(Dom(G′)) = ∆11,G. This completes the proof of the results gathered
in Table 8, Table 9 and Table 10.

5.3 Access structures and ideal secret sharing decompositions

Secret sharing was introduced by Blakley [1] and Shamir [18]. A comprehensive intro-
duction to this topic can be found in [19].

A secret sharing scheme S is a method to distribute a secret value k ∈ K of a finite
set K among a set of participants Ω. Every participant p ∈ Ω receives a share sp ∈ Sp
in such a way that only some subsets of participants, the qualified subsets, are able to
reconstruct the secret k from their shares (for each participant p, its corresponding set
of shares Sp is a finite set too). Only perfect secret sharing schemes are going to be
considered, that is, schemes in which the shares of the participants in a non-qualified
subset provide absolutely no information about the value of the secret. Besides, we are
dealing here with unconditional security , that is, we are not making any assumption on
the computational power of the participants.

The access structure of a secret sharing scheme S is the family of the qualified subsets,
Γ(S) ⊆ 2Ω. In general, access structures are considered to be monotone increasing , that
is, any subset of Ω containing a qualified subset is qualified. So, the access structure
Γ(S) is determined by the family of the minimal qualified subsets, ∆(S), which is called
the basis of Γ(S) (observe that ∆(S) is a clutter on Ω).

Ito, Saito and Nishizeki [9] proved, in a constructive way, that given a monotone
increasing family of subsets Γ ⊆ 2Ω, there exists a secret sharing scheme SΓ with access
structure Γ (that is, with Γ = Γ(SΓ)). In other words, the result of Ito, Saito and
Nishizeki states that given a clutter ∆ ⊆ 2Ω there exists a secret sharing scheme S∆

with basis ∆ (that is, with ∆ = ∆(S∆)).
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One of the main parameters in secret sharing is the information rate ρ(S) of the
scheme S, which is defined as the ratio between the length (in bits) of the secret
and the maximum length of the shares given to the participants. That is, ρ(S) =
log | K |/maxp∈Ω log | Sp |, where K is the set of secrets and Sp is the set of shares given
to p. In any perfect secret sharing scheme 0 < ρ(S) ≤ 1 because the size of the share of
any participant is at least the size of the secret [19]. Due to efficiency reasons a high in-
formation rate is desirable. A secret sharing scheme is said to be ideal if its information
rate is equal to one, that is, if all shares have the same size as the secret.

Unfortunately, for a given monotone increasing family of subsets, the schemes con-
structed by the method in [9] are in general very inefficient because the size of the shares
is much larger than the size of the secret and so, in most cases, their information is very
small. Thus, when designing a secret sharing scheme for a given monotone increasing
family of subsets Γ (or, equivalently, for a clutter ∆), we may try to maximize the infor-
mation rate. The optimal information rate of Γ is defined by ρ∗(Γ) = sup(ρ(S)), where
the supremum is taken over all possible secret sharing schemes S with access structure
Γ. The monotone increasing family Γ is said to be ideal if there exists an ideal secret
sharing scheme S for Γ (analogously, a clutter ∆ is said to be ideal if there exists an
ideal secret sharing scheme S for ∆).

Since not all clutters are ideal, to characterize the ideal access structures and to
provide bounds on the optimal information rate are two important problems in secret
sharing that have received considerable attention.

Our goal is to decide when it is possible to approximate and to recover any non
ideal clutter by means of ideal clutters. We stress that from our results it follows that
there are different ways to do it. Among all of them we have the one corresponding
to the join decomposition with respect the order 6+. It is worth mentioning that
this descomposition is the one used in the decomposition method introduced by Stinson
in [20] to provide lower bounds on the optimal information rate (see for instance [15,
Proposition 3.2]). Therefore, the following two open problem arise at this point: is
it possible to obtain lower bounds on the optimal information rate by using the join
decomposition with respect the order 6−? is it possible to obtain upper bounds on the
optimal information rate by using meet decompositions? In this work we are not going
to focus our attention on answering these two questions.

Returning to our approximation and decomposition problem, to solve it we will
formalize it in our general framework.

Let Ω be a finite set of n > 5 participants (the perfect secret sharing schemes on sets
of n ≤ 5 participants has been completely studied in [10]). Let us denote by IdealSSS(Ω)
the set of all the ideal secret sharing schemes S defined on the set of participants Ω.
Now we consider the map

Θ : Obj(Ω) = IdealSSS(Ω)→ Clut(Ω)

S 7→ ∆(S)

With this notation, and from the results collected in the following three tables, we
obtain the different ways to approximate and decompose a non-ideal access structure
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that satisfies a property P by means of ideal access structures fulfilling that same prop-
erty.

As in the case of graphs, the first table (Table 11) summarizes the results when we
do not consider any constraints on the clutters, that is to say, whenever P = {}. (We
emphasize that unlike the case of graphs, here there is no difference between the value
of the two components of the ordered pairs.)

the inclusion I(L) ⊆ Σ
where Σ = ClutΘ(Ω) or Σ =

⋃
Ω′⊆Ω ClutΘ(Ω′)

I(L) =M+ ( X , X )

I(L) =M− ( X , X )

I(L) = J + = J − ( X , X )

Table 11: Approximation and decomposition of clutters by ideal access structures. The
general case. In each cell, the pairs in {X,×}2 indicate if the inclusion I(L) ⊆ Σ holds
(the first component for Σ = ClutΘ(Ω) and the second for Σ =

⋃
Ω′⊆Ω ClutΘ(Ω′)).

However, in a secret sharing scheme it is natural to require one or more of the
following three constraints: that all participants appear in at least one minimal qualified
subset; that very minimal qualified subset has at least two participants; and that no
participant appears in all the minimal qualified subsets. So it is reasonable to consider
clutters with the restriction P where P = P0, P∅, Pc≥2, P0,∅, P0,c≥2, Pc≥2,∅, P0,c≥2,∅.
The answer to the problem of approximation and decomposition of clutters verifying
P by using Θ-clutters that also verify P follows from the results of Table 12 if P =
P0,P0,∅,P0,c≥2,P0,c≥2,∅, and from Table 13 whenever P = P∅,Pc≥2,Pc≥2,∅.

Proof of the results in Table 11, Table 12 and Table 13

From [2] we know that if G is a connected graph then there exists an ideal secret sharing
scheme S with basis ∆(S) the edges of the graphG if and only if the graphG is a complete
multipartite graph. Therefore, in general not all the clutters of the form ∆12,G admit
an ideal secret sharing representation. Next let us prove that the same apply for the
clutters ∆10,G and ∆11,G.
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the inclusion I(X,L) ⊆ Σ
where X = ClutP(Ω) and Σ = ClutΘ(Ω) ∩ ClutP(Ω)

and whereP = P0, P0,∅, P0,c≥2, P0,c≥2,∅

I(X,L) =M+
0 X I(X,L) = J +

0 X

I(X,L) =M+
0,∅ X I(X,L) = J +

0,∅ ×

I(X,L) =M+
0,c≥2 × I(X,L) = J +

0,c≥2 X

I(X,L) =M+
0,c≥2,∅ × I(X,L) = J +

0,c≥2,∅ ×

I(X,L) =M−0 X I(X,L) = J −0 ×

I(X,L) =M−0,∅ × I(X,L) = J −0,∅ ×

Table 12: Approximation and decomposition of clutters by ideal access structures. Case
of clutters with full support and with empty intersection or corank greater than or equal
to two.

the inclusion I(X,L) ⊆ Σ where X = ClutP(Ω)
where Σ = ClutΘ(Ω) ∩ ClutP(Ω) or Σ =

(⋃
Ω′⊆Ω ClutΘ(Ω′)

)
∩ ClutP(Ω)

and whereP = P∅, Pc≥2, P∅,≥2

I(X,L) =M+
∅ (X , X ) I(X,L) = J +

∅ (× , × )

I(X,L) =M+
c≥2 (× , × ) I(X,L) = J +

c≥2 (X , X )

I(X,L) =M+
∅,c≥2 (× , × ) I(X,L) = J +

∅,c≥2 (× , × )

I(X,L) =M−∅ (× , × ) I(X,L) = J −∅ (X , X )

Table 13: Approximation and decomposition of clutters by ideal access structures. Case
of clutters with empty intersection and corank greater than or equal to two. In each
cell, the pairs in {X,×}2 indicate if the inclusion I(L) ⊆ Σ holds (the first component
for Σ = ClutΘΓ

(Ω)∩ClutP(Ω) and the second for Σ = (
⋃

Ω′⊆Ω ClutΘΓ
(Ω′)∩ClutP(Ω)).

First we are going to prove that not all the clutters of the form ∆10,G admit an ideal
secret sharing representation. For instance, let n ≥ 5 and let us consider the graph G
with vertex set V (G) = Ω = {a1, . . . , an} and with edges E(G) = {{a1, a2}, {a1, a3},
{a2, a3}}∪{{a3, a4}, {a3, a5}, . . . , {a3, an}}. Then the clutter of its minimal vertex cover
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sets is the clutter ∆10,G = minimal(Cover(G)) = {{a1, a3}, {a2, a3}, {a1, a2, a4, . . . , an}}.
This clutter has three elements and so we can apply the results in [15]. In this case,
from [15, Proposition 3.2], we get that there does not exists an ideal secret sharing
scheme S with basis ∆(S) = ∆10,G. Therefore, the clutter ∆10,G is not a Θ-clutter.

Now let us show that not all the clutters of the form ∆11,G admit an ideal secret shar-
ing representation. For instance, let n ≥ 4 and let G be the graph with vertex set V (G) =
Ω = {a1, . . . , an} and with edges E(G) = {{a1, a2}, {a2, a3}} ∪ {{a3, a4}, . . . , {a3, an}}.
For this graph we have that the clutter of the maximal independent sets of vertices is
∆11,G = minimal(Ind(G)) = {{a1, a3}, {a1, a4, a5, . . . , an}, {a2, a4, . . . , an}}. Now, ap-
plying again [15, Proposition 3.2], we conclude that there does not exists an ideal secret
sharing scheme S with basis ∆(S) = ∆11,G. So the clutter ∆11,G is not a Θ-clutter.

In addition to the clutters ∆10,G, ∆11,G i ∆12,G, next we are going to prove that
there is another irreducible clutter which is not a Θ-clutter. Namely, let us show that if
n ≥ 5 and if 1 ≤ r ≤ n− 3, then the clutter ∆8,r does not admit an ideal secret sharing
representation. To prove this fact we use the independent sequence method which was
introduced by Blundo, De Santis, De Simone and Vaccaro in [3] and was generalized
by Padró and Sáez in [17] (here we use the notations gathered in [15, Proposition 2.1]).
Let Γ be the monotone increasing family if substes defined by ∆8,r. Let us consider the
subsets B1 = Ω \ {a1, ar+1, ar+2, an}, B2 = Ω \ {a1, ar+1, an}, B3 = Ω \ {a1, ar+1}, and
the subsets X1 = {a1, ar+1}, X2 = {a1} and X3 = {ar+1}. Then we have that X1∪B1 =
Ω \ {ar+2, an} ∈ Γ, X2 ∪ B1 = Ω \ {ar+1, ar+2, an} 6∈ Γ, X2 ∪ B2 = Ω \ {ar+1, an} ∈ Γ,
X3 ∪ B2 = Ω \ {a1, an} 6∈ Γ and that X3 ∪ B3 = Ω \ {a1} ∈ Γ. Therefore we have that
the sequence of subsets ∅ 6= B1  B2  B3 /∈ Γ is made independent by the subset
A = {a1, ar+1} /∈ Γ. So, by applying the independent sequence method, we conclude
that ρ∗(Γ) ≤ 2/3. In particular, there does not exists an ideal secret sharing scheme S
with basis ∆(S) = ∆8,r, as we wanted to prove.

At this point, the proof will be completed by showing that the clutters ∆ = ∆1,m,
∆2,m,∆3,m (where 1 ≤ m ≤ n), the clutters ∆ = ∆4,m,∆5,m,∆6,m (where 2 ≤ m ≤ n)
and the clutters ∆ = ∆7,r,∆9,r (where 1 ≤ r ≤ n−2) are all Θ-clutters. Specifically, we
are always going to provide θ-realizations over the set Ω and, therefore, we do not have
to analyze the case Ω′ with Ω′ ⊆ Ω. To do this we will use the vector space structures
introduced by Brickell [4].

It is said that a monotone increasing family of subsets Γ is a vector space access
structure if there exist a vector space E over a finite field K and a map ψ : P ∪{D} −→
E \ {0}, where D /∈ P is the dealer , such that if A ⊆ P then, A ∈ Γ if and only if ψ(D)
is a linear combination of the vectors in the set {ψ(p) : p ∈ A}. In such a case, an
ideal secret sharing scheme S for Γ is obtained in the following way: given a secret value
k ∈ K, the dealer takes at random an element v ∈ E such that v · ψ(D) = k, and gives
the share sp = v · ψ(p) to p. Therefore, the vector space structures are ideal. The map
ψ is said to be a vector space realization of Γ.

So the proof of our result will be completed by presenting a vector space realization
ψi,j : P∪{D} −→ E \{0} for the monotone increasing family of subsets Γ∆i,j associated
to the clutter ∆i,j .

From now on, {e1, . . . , ed} will denote the elements of the canonical basis of the
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d-dimensional vector space E = Kd. The vector space realizations ψi,j are listed next.
We consider K to be as large as needed.

- ψ1,m : P ∪ {D} −→ K2 \ {0} where ψ1,m(D) = e1, ψ1,m(ai) = e1 if 1 ≤ i ≤ m, and
ψ1,m(ai) = e2 if i > m.

- ψ2,m : P ∪ {D} −→ Kn−1 \ {0} where ψ2,m(D) = e1 + · · ·+ en−1, ψ2,m(ai) = ei for
all i < m, ψ2,m(em) = α1e1 +α2e2 + . . .+αm−1em−1 (being α1, . . . , αm−1 ∈ K\{0}
different elements of the finite field K), and ψ2,m(ai) = ei−1 for m < i ≤ n.

- ψ3,m : P ∪ {D} −→ Km+1 \ {0} where ψ3,m(D) = e1 + · · · + em, ψ3,m(ai) = ei if
1 ≤ i ≤ m, and ψ3,m(ai) = em+1 if i > m.

- ψ4,m : P∪{D} −→ K3\{0} where ψ4,m(D) = e1 +e2, ψ4,m(a1) = e1, ψ4,m(ai) = e2

if 2 ≤ i ≤ m and φ4,m(ai) = e3 if i > m.

- ψ5,m : P ∪ {D} −→ Kn−1 \ {0} where ψ5,m(D) = e2 + · · ·+ en−1, ψ5,m(ai) = ei for
all i < m and ψ5,m(em) = α2e2 + . . . + αm−1em−1 (being α2, . . . , αm−1 ∈ K \ {0}
different elements of the finite field K), and ψ5,m(ai) = ei−1 for m < i ≤ n.

- ψ6,m : P ∪ {D} −→ Km \ {0} where ψ6,m(D) = e1 + · · · + em−1, ψ6,m(a1) =
e1 + · · ·+ em−1, ψ6,m(ai) = ei−1 if 2 ≤ i ≤ m and ψ6,m(ai) = em if m < i ≤ n.

- ψ7,r : P∪{D} −→ K2 \{0} where ψ7,r(D) = e1 +e2, ψ7,r(ai) = e1 +e2 if 1 ≤ i ≤ r,
ψ7,r(ai) = e1 if r + 1 ≤ i < n and ψ7,r(an) = e2.

- ψ9,r : P ∪ {D} −→ Kn \ {0} where ψ9,r(D) = e1 + · · · + er + en, ψ9,r(ai) = ei if
i 6= r + 1, and ψ9,r(ar+1) = er+2 + · · ·+ en.

This completes the proof of the results in Table 11, Table 12 and Table 13.
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