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Abstract: A graph G is [-path Hamiltonian if every path of length not exceeding [ is contained
in a Hamiltonian cycle. It is well known that a 2-connected, k-regular graph G on at most 3k —1
vertices is edge-Hamiltonian if for every edge uv of G, {u,v} is not a cut-set. Thus G is 1-path
Hamiltonian if G\ {u,v} is connected for every edge uv of G. Let P = uwvz be a 2-path of a
2-connected, k-regular graph G on at most 2k vertices. In this paper, we show that there is a
Hamiltonian cycle containing the 2-path P if G\ V(P) is connected. Therefore, the work implies
a condition for a 2-connected, k-regular graph to be 2-path Hamiltonian. An example shows

that the 2k is almost sharp, i.e., the number is at most 2k + 1.

Keywords: Hamiltonian cycle; [-path Hamiltonian; k-regular graph; edge-Hamiltonian

1 Introduction

All graphs mentioned in this paper are finite simple graphs. Standard graph theory
notation and terminology not explained in this paper, we refer the reader to [I]. A

Hamiltonian cycle in a graph G is a cycle containing all the vertices of G, and a graph
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with a Hamiltonian cycle is called Hamiltonian. Dirac’s Theorem [2] states that every

n-vertex graph with minimum degree at least § is Hamiltonian.

One particular classic subarea on Hamiltonian graph theory is about Hamiltonian
cycles containing specified elements of a graph. One of these directions is the study of
[-path Hamiltonian. A graph G on n vertices is said to be [-path Hamiltonian if every
path of length not exceeding I, 1 <1 < n — 2, is contained in a Hamiltonian cycle (i.e., a
Hamiltonian graph is 0-path Hamiltonian). A graph G is said to be edge-Hamiltonian, or
1-path Hamiltonian if every edge of G is contained in a Hamiltonian cycle. Kronk in [4]

considered the [-path Hamiltonian.

Theorem 1 ([4]). Let G be a graph on n vertices, if d(a) + d(b) = n+1 for every pair of

non-adjacent vertices a and b, then G is l-path Hamiltonian.

It is not difficult to see that Kronk’s work is sharp. Due to the theorem above, we try

to explore such problems on k-regular graphs.

Many problems and conjectures on Hamiltonian regular graphs have been investigated
by various authors. The problem of determining the values of k for which all 2-connected,
k-regular graphs on n vertices are Hamiltonian was first suggested by Szekeres (see [3]).
Jackson in [3] showed that every 2-connected, k-regular graph on at most 3k vertices is
Hamiltonian. The strongest result of these works given by Li in [5] is that all 2-connected,
k-regular graphs, k > 14, on at most 3k + 4 vertices are Hamiltonian except two kinds of

well defined families of graphs.

Li in [6] showed the following result that under almost the same conditions in [3], the

graphs are edge-Hamiltonian.

Theorem 2 ([0]). Let G be a 2-connected, k-regular graph on n < 3k — 1 vertices, and
let eg = uv be any edge of G such that {u, v} is not a cut-set, then G has a Hamiltonian

cycle containing eq.

In other words, if G is a 2-connected, k-regular graph on at most 3k — 1 vertices, and

G\ V(P) is connected for every path P of length 1, then G is 1-path Hamiltonian.
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By Theorem [Il we have that 2-connected, k-regular graphs on at most 2k — 2 vertices
are 2-path Hamiltonian. Naturally, what else can we say about the 2-path Hamiltonian

regular graphs? In this paper, we are going to prove the following.

Theorem 3. Let G be a 2-connected, k-reqular graph on n < 2k vertices, and let P = uvz
be any path of G such that {u,v,z} is not a cut-set, then G has a Hamiltonian cycle

containing P.

The following corollary follows from Theorem 2 and Theorem [3]

Corollary 4. Let G be a 2-connected, k-reqular graph on at most 2k vertices, if G\ V(P)
1s connected for every path P of length at most 2, then G is 2-path Hamiltonian.

We shall present an example which shows that the best bound of Theorem [ is at
most 2k + 1. Let H;, i = 1,2, be a graph which is obtained from K., by deleting one
edge e; = a;b;. We can construct a 2-connected, k-regular graph G on 2k+2 vertices from
two disjoint copies H; and Hs by adding ajas and bibs. There is a 2-path in G that is
not contained in any Hamiltonian cycle of G. Thus, the problems on regular 2-connected

[-path Hamiltonian graphs with n vertices are interesting in 2k — [ <n < 2k + 1.

2 Proof of Theorem

The proof of Theorem [l is divided into two cases. We first consider the case of k > 5
and we prove it by using the classic hopping lemma ([7], Lemma 12.3). In the end, we

consider the cases of £k = 3 and k£ = 4.

We fist assume k£ > 5. Let GG be a 2-connected, k-regular graph on n < 2k vertices, and
let P = uvz be a path of G such that {u,v, z} is not a cut-set. We define a new graph G
by inserting two vertices w; and wy on the edges e; = uv and ey = vz of P respectively.
Then we have G; = (G — {e1, ea}) U {wy, wa} U {uwy, wiv, vwg, wez}, P = uwivwyz and

|[V(G1)| = ny < 2k + 2. Clearly, it is sufficient to prove that G is Hamiltonian.



Suppose that G is not Hamiltonian. Let Cy = ¢1,¢9,- -+, ¢p,—r, be a longest cycle of
G containing w; and we (Note that G; — V(P) is connected.), such that the number of
components of Ry = G; — C is as small as possible. Let r; = |Ry|, R] be the largest
component of Ry and r; = |R}|. The subscripts of ¢; will be reduced modulo n; —

throughout. Obviously, we have |V (C})| = ny — 7 > 6.

For any A, B C V(Gy), let

e(A,B) = [{uv € E(G;) :u € A,v € B}|

e(A) = {uv € E(Gy) : u,v € A}|.
For any D C V(C), let
Dt = {Ci+1 1C € D} and D™ = {Ci—l 1C € D}

Case 1. R, contains an isolated vertex vy.

Define that Yy = (), and for any j > 1,

X; = N(Yj-1 U{wo})

Y;={c € Ci:cia,ci1 € X}
and
X=UX;, Y=UY, z=[X|>k and y=[Y|.
i=1 i=0

By the hopping lemma, we have X C V(C;), X NY = () and X dose not contain two
consecutive vertices of Cf.

Let S, 5s, -+, S, be the sets of vertices contained in the open segments of C'; between
vertices of X. Put ¢ = {S; : |S;| = 2,1 < i < z}. Then S; = {c;, 41, ,em} € @ is
said to be t-connected to S; = {c;, Cqr1, -+ ¢} € ¢ if |S;] is odd and ¢, and ¢, are

both joined to ¢4, for all odd e, 1 < e <m —1—1. Now, ¢41,¢43,- -+, ¢ are called
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P-vertices of S;. Set P ={c; € V(C1) : ¢; is a P-vertex of some S; which is ¢)-connected
to some S; of ¢}, and p = |P|.

Since
e(V(G)) — X, X)=(n1 —2—2)k+4—2e(V(Gy) — X)
e(X,V(Gy) — X) < zk (1)
we have
2¢(V(Gh) — X) = (1 — 2 —2x)k + 4. (2)

On the other hand, under the properties of C, we can follow the series of the arguments

in [3] and finally have the following inequality:
2e(V(G) = X)<plk+n—2xz—y—p—1)+ (ny — 2z —2p — 1)(ny — 22)
—plz—y—p)—2n-DE-y—-1).
Combining (3] with (2)), it can be deduced that
p+4<(ni—2c—k)ng—1—-20—p)+k—2(r1 —1)(z—y—1). (4)
By the definitions of X and Y, we have x > y. If x = y, we have
e(YU{v}, X)=k+(y—2)k+4=0k+4—kF,

contrary to (Il) because of k& > 5. It follows that 2(ry — 1)(z —y — 1) > 0. From the

ni—1—-2x
2

definition of P, we have p < , which implies n;y — 1 —2x —p > 2p—p > 0. And
<

k>ny—2xr—p—1byn; <2k+2and x> k. So we have

p+4<(ng—2c—k+1D)k—-2(r —1)(x—y—1). (5)
Therefore by (Bl), we have n; — 2z — k + 1 > 0, and then n; > 3k — 1, a contradiction.

The next two cases in this part are both discussed that R, contains no isolated vertex.

For a path Q = ¢1,¢2, -+ ,q,, 9 = 2, in Ry, let ¢(Q)) denote the number of occurrences
of ordered pair (¢;, ¢;) of the vertices of C such that ¢; is joined to one of ¢; and gy, ¢; is

joined to the other, and e({q1,q,},{ci+1, Cit2, -+ ,¢j—1}) = 0. We say that () satisfies the
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condition (x) if ¢(Q) = 2, Noy({¢1,494}) € {u, v, 2z} and there is a ordered pair (¢;, c;) of
the vertices of Cy such that u, v, z,w; and wy ¢ {ciy1,¢ip2, -+ ,¢cjo1}. Put A = Ne,(q1)

and B = N¢, (q,)-
Case 2. 2 < |Rj| < k-1

Before the proof of this case, we derive some results about the structure of R).

Lemma 5. There exists a mazimal path Q) in R such that Q) satisfies (x).

Proof. Since |R)| < k — 1, for any v; € V(R}), i = 1,---,r], we have N¢, (v;) > 2.
By the assumption of 2-connectivity and {u,v, z} is not a cut-set, there exists a path

Q=aq1,¢, - ,q, in R}, which is chosen as long as possible such that () satisfies (x).

If @ is not a maximal path of R}, let Q" = by,bs, -+ ,bs,q1,G2,** . g, Qg41, " ,Ge be

a maximal path in R containing ). Without loss of generality, we assume s > 1.

From the definition of @, it is easy to see that N¢, (b1) < 3. So NRfl(bl) >k —3, and

there is at most one vertex in R; which is not adjacent to b;.
We consider the following two cases.
Case (a): bige € E(Gy).

In this case, there is a longer path Q" = qi,bs, b1, ,b1, G2, - - ,qg than @ that

satisfies (*), a contradiction of the definition of Q.
Case (b) b1QQ ¢ E(G1>

In this case, if s > 2, there is a longer path Q" = ¢1, b, bs_1,- - ,b1,q3, - - , qg than @
that satisfies (x). If s = 1, we claim that N¢, (¢2) < 3, otherwise, Q" = qa, q1, b1, 43, - , qq
is a longer path than @ that satisfies (x). Therefore, g, is joined to every vertex of R]
except by. There is a longer path Q" = q¢1, b1, ¢s, @2, Qu, - - - , ¢y than @ that satisfies (), a

contradiction.

A similar argument holds if e > g. O

Lemma 6. There exists a mazimal path Q in R such that t(Q) > 3.
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Proof. Suppose that @ satisfies the property of Lemma Bl and ¢(Q) = 2. Then we consider
the following two cases:

case (a): A= B ={c,¢;} ¢ {u,v,z}, ¢; # v and ¢; # v;

case (b): A ={cy,ci, -+ ,c.} and B = {¢j,,¢j,, -+ ,¢j, } such that s > 2,1 > 2 and
{Ciwciza T >Cis} N {le’cjm T ’Cjz} = 0.

If case (a) occurs, we have g = 1} = k — 1. Without loss of generality, let {w;,ws} ¢
{Cit1,Ciz2,- -+ ,cj_1}, then we have ¢ = ¢, or ¢y = ¢;T such that ¢ ¢ {wy,ws} or

car ¢ {wy, ws}. Clearly, we have
Ney(ca) N[QUAcj-1,¢j-2,- - ¢j—g} Uca =0

or

Ney(co) N[Q U{ciya, Civa, -+ 5 Cirg} Uca] = 0.

And there is at least two of {v,w;,ws} which can not be adjacent to ¢4 or cy. It
follows that
dcl(cd) <2/€—|—2—2(k‘—1)—3:1

or

dcl(Cd/) < 2k + 2 — 2(]{7 - 1) —-3=1
This is a contradiction.
For case (b), without loss of generality, let wy, ws ¢ {c;,,¢j 41, ,¢;,}, then there

-1
exists either some ¢, € A% satisfying N¢, (¢,) N {Q U (U {ej,41,¢ja2}) U {wr, wo, cz}} =
h=1

!
0, or some ¢; € A~ satisfying N, (cp) N [QU (U {¢j,-1,¢j,—2}) U {wl,w2,cf}} = 0.
h=2
Which implies
dey(c,) <2k+2—[g+2(1—-1)+3] <k—2

or

dey(cr) <2%k+2—[g+2(—1)+3] < k—2

a contradiction. O



Corollary 7. Ift(Q) > 3, then g < k — 2.

Proof. Suppose g > k — 1 and #(Q) > 3. Then |AU B| > 3, we have

2k +2 > |V(Gy)| = |Ri| + [V(CY)]

>
>r +|AUB|+ (t(Q) —2)g +2
>2(k—1)+3+2=2k+3

a contradiction. O

Lemma 8. There exists a mazimal path Q) in R} such that t(Q) > 3. Then A = B.

Proof. By contradiction. Suppose B # A and |B — A| > 1, without loss of generality,
|B| > |A|. We have

V(C)=n—r > |AUB|+|ATUA-UBYUB | +(t —2)(g — 2)
= |A|+|B—A|+ |[ATUB |+ |(A-UB") — (AT UB7)|+(t —2)(g — 2).

Since g > 2, if ¢y € AT N B~, we have ¢4 = wy or ¢q = wy. Let t(Q) = t, 0 =

IB—A| +|(A~ U B*) — (A* UB")|, and

-2 ifueA, veANB, z€B
0=q -1 ifueA veB\A or ve A\B, z€ B

0 otherwise.
So we have

ny—r = A+ |[AT|+|B7[+0+0+ (t—2)(g—2).

By the maximality of @, |A| > k— g+ 1 and |B| > k — g + 1. Therefore we have

2k+2—r > |A|+ |AT|+|B7|+0+0+(t—2)(g—2)
2k+2—r 23k—g+1)+0+0+(t—2)(g—2)
P

1—0>2r—g+k—g+o+(t—3)(g—2).



By Corollary [7, we have

—1-0>2r—g+o+(t—3)(g—2).

Since t(Q) > 3, g = 2, r1 > g and ¢ > 1, we have a contradiction when 6 = 0
or = —1. If # = —2, we have (A~ U B") — (AT U B™) = () which implies § = 0, a
contradiction. In fact, let ¢; € B — A be the vertex such that the next vertex of AU B
after ¢; belongs to A. Since ¢;41 ¢ (A~ U BT) — (AT U B™), we have ¢;41 is in B~, which
implies ¢;j;0 € BNAand thenc;,=u€ B—Aandci,o=veEBNA orcg=veEB—-A
and ¢;; 0 = z € BN A. According to the definition of 6, we see 6 = 0. O

Lemma 9. There exists a mazimal path Q) in R such that t(Q)) > 3. Then g =k—t+1.

Proof. Clearly, g > k—t+1. If g > k —t+ 2, by Lemma [ and Corollary [7, we have
2 < g < k—2. Thus,

2k+22V(IC)+g=2g(t—2)+24+g+t>(g+1)t-1)+3=2(g+1)(k—g+1)+3.

But since f(g) = (¢9+1)(k—g+1)+3is a concave function of g and f(2) = f(k—2) =
3k > 2k + 2, we have f(g) > 2k + 2, a contradiction. O

Now, let @ = q1, 2, - ,q, be a maximal path in R such that ¢(Q) > 3 and A = B.
We write X' = A= B = {z,2,,--- ,x}}.

Put D={S;,1 < i < t}, where S; is the set of vertices contained in the open segment
of C between two vertices of X'. Let D'={S},i = 1,2} denote the element of D which

contains w; or wy (If wy and ws is contained in a same segment, let D' = S* ). Let

D" = D — D'. The structure of D has two cases:

Case (a): wy and wy is contained in a same segment S*.



By Lemma [9 we have

ni

V(C)| + [V (R)]

gt=D+2+(51=2)+ X (S -g)+t+g+(n

SiED”

Z(g+Dt+2+ (5" -2)+ X2 (5] —9)+(

Z g+ Dk —g+D+2+(5"=2)+ > (5] -9)

SiED”

>
> —9)
T —9)

+ (11— g).

Put f'(9) = (¢ +1)(k — g + 1) + 2. Since f'(g) is a concave function of g with
f'(2) =3k — 1= f'(k — 2), we obtain a contradiction that

2k+223k—1+ (IS =2)+ > (S| —g)+ (11 —g).

S;eD”
Case (b): w; is contained in ST, and ws is contained in Sj.
By Lemma [9 we have
ny 2 [V(Cy)| + |V(R1)|

> g(t - )+2+Z(\5*\—1)+ Z (Sil —g) +t+g+(n

—-9)
(9+1)(t—1)+3+2(\5*|—1)+ Z (18 =g)+ (rn—g)
> (g+1)(k— g)+3+2(|5*\—1)+ E (15i = 9) + (r = g)-

Put f"(g) = (g+1)(k—g)+3. When 2 < g <k—3, f’(g) is a concave function of g
with f”(2) =3k — 3 = f"(k — 3), we have

2
2k+2>3k—3+> (IS5|-1+ > (IS|—9)+(r1—g).
i=1

SiED”

There is a contradiction when k£ > 6 from

Z (1S71—-1) + Z (1Si] —g) + (r1 — 9).

S;eD"”
When k = 5, we have 7, = g, |S;] = g for all S; € D" and |S¥| = 1 for i = 1,2. By
Lemma [ we have t = k — g+ 1 = 6 — g. For any elements S; and S; of D", we have
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e(S;,5;) = 0 because of the maximality of Cy. Firstly, if there is some ¢; of Q@ — {q:1}
such that Ng, (¢;) N S; # 0 for some S; € D”. By Lemma [, since ¢i—19y € E(Gy), then
Q =q1,q2, " ,Gi-1,49:qg—1," " - , @i is a path satisfying (%) in R}, which implies 2g+1 < g.
So we have N¢, (@) C X’. Secondly, we have e(X',V(G;) — X') < kt = 5t. Moreover, we
also have

kt 2e(V(G)— X', XY= gt+(t—2)g(k—g+1)+4.
By Lemma 6 we deduce that
(5-9)(6-9)=>(4-9)g(6—g)+4
Because 2 < g < 3 and g is an integer, we have

(5-9)(6-9) <(4-9g)g(6—g)+4
a contradiction.
If g = k—2, we have t = 3. So there exists ; € X’ such that z,” ¢ {wy,w,} or
x5 ¢ {wy,wy}. It is clearly that
do, (27) < 2k+2—-2(k—2)—2=4
or
dey (7)) <2k +2-2(k—2)—2=4
a contradiction.
Case 3. |R|| > k.

By the assumption of connectivity and {u,v,z} is not a cut-set, there exists z” €
Ne¢, (R}), such that 2"~ ¢ {wy, wy}. It is clearly that Ng, (z"~)N R = (), and at least two

of {v,wy,wy} cannot be adjacent to 2" ~. Tt follows that
dg, (') <2%k+2—-k—2—-1=k—1

a contradiction.

11



These contradictions complete our proof in this part. We next discuss the cases of
k = 3 and k = 4. Similarly, let C' be a longest cycle of G containing P and R = G — C.
Clearly, |C'| > 4. By Theorem [I], we only need to discuss the cases that 2k —1 < |V(G)| =
n < 2k.

When £ =3, 5 <n <6. If n =5, we consider the following two cases.
Case (a): |C| = 5. Theorem [ holds.

Case (b): |C] = 4. Let C' = wvzzy. Then R is an isolated vertex vy. It is easy to
see that there exist two consecutive vertices of {u,z,x1} which are adjacent to vy. A

contradiction of that C' is the longest cycle of G containing P.
If n = 6, we consider the following three cases.

Case (a): |C| = 6. Theorem [3 holds.

Case (b): |C| = 5. Let C' = uvzzixo. Then R is an isolated vertex vg. By assumption,
we have Ng(vg) = {v,z,22} or No(vg) = {u,v,z1}. By symmetry, we consider the
case of Ngo(vg) = {v,z,22}. Since uzy € E(G), there is a Hamiltonian cycle " =
u, v, z, Vg, Ta, 1, w containing P. Theorem [3 holds.

Case (c): |C| =4. Let C = wvzz;.

Subcase (cl): R contains an isolated vertex vy. It is similar to that of the case(b)

when kK = 3 and n = 5.

Subcase (¢2): R contains no isolated vertex. So the vertices of C' are adjacent to R.

This contradict with the assumption that C' is the longest cycle of G' containing P.
When k=4,7 <n <8. If n =717, we consider the following four cases.

Case (a): |C| = 7. Theorem [ holds.

Case (b): |C] =6. Let C' = wvzxixoxs. Then R is an isolated vertex vy. By assump-
tion, we have No(vg) = {u,v, z,22}. If z125 ¢ E(G), we have xyu, zyv € E(G) which
makes dg(x3) < 3, a contradiction. So we have z1z3 € E(G). There is a Hamiltonian

cycle C" = u, v, z,vg, Ta, X1, T3, u containing P. Theorem [3] holds.
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Case (¢): |C| =5. Let C' = uvzzzs.

Subcase (cl): R contains an isolated vertex vy. It is easy to see that there exist two

consecutive vertices of {u, z, x1, 25} which are adjacent to vy, a contradiction.

Subcase (c2): R contains no isolated vertex. Since G is 4-regular graph, we have
dc(R) > 6 and No(R) > 3. When N¢(R) = 3, by assumption, we have Ng(R) =
{v, 2,22} or No(R) = {u, v, x1}. By symmetry, we consider the case of No(R) = {v, z, x5}
in which we have dg(u) < 3, a contradiction. When N (R) > 4, there exist two consecu-

tive vertices of {u, z, x1, xo} which are adjacent to R, a contradiction.

Case (d): |C| = 4. Let C' = uvzz,. For every connected component R’ of R, No(R') >
3. Clearly, there exist two consecutive vertices of {u, z, x1} which are adjacent to R', a

contradiction.
If n = 8, we consider the following five cases.
Case (a): |C| = 8. Theorem [ holds.

Case (b): |C| = 7. Let C = wvzzriroxzry. Then R is an isolated vertex vg. By
assumption, we have Nc(vo) = {u, v, 2, 22}, Ne(vo) = {u, v, z, x3}, No(vo) = {u, v, 21, 3}
or No(vg) = {v,2,29,24}. By the same discussion as for n=7 when k=4, there is a

Hamiltonian cycle containing P in all cases.
Case (c): |C] =6. Let C = uvzxizozs.

Subcase (cl): R contains two isolated vertices vy and vy. By assumption, we have

Ne(vg) = Neo(v1) = {u, v, 2,29}, dg(x1) < 3, a contradiction.

Subcase (¢2): R is an edge e = vyvy. Since G is a 4-regular graph, we have do(R) > 6
and Ng(R) > 3. When Ng(R) = 3, we have Ng(vg) = Neo(vy). By assumption, we
have No(R) = {u,v,z1}, No(R) = {v,z,23}, No(R) = {u,v,22}, Ne(R) = {v, 2, z2},
Nco(R) =A{u, z,x2} or No(R) = {z1,z3,v}. In the discussion of all cases, either there is a
contradiction of regularity, or there is a Hamiltonian cycle containing P. When N¢(R) >

4, it is clear that there is no consecutive vertices of {u, z, 1, xs, 3} which are adjacent
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to R. So No(R) = {u,v, z,x2}. We claim z123 € E(G), and then there is a Hamiltonian
cycle C' = w,v, z,v1, Vg, g, T1, T3, u containing P. Otherwise, uxy,vz; € E(G) which

makes dg(x3) < 3, a contradiction.
Case (d): |C| = 5. It is similar to that of the case(c) when k =4 and n = 7.

Case (e): |C| = 4. Let C = wvzz;. Obviously, R contains no isolated vertex. Let R’
be a connected component of R. If No(R') > 3, it is clear that there exist two consecutive
vertices of {u, z, 1} which are adjacent to R, a contradiction. If No(R') = 2, we have

Nc(R) = {v, x1}, which makes dg(u) < 3, a contradiction.

Thus, we complete the proof.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory with application, Macmillan, London,
1976.

[2] G. A. Dirac, Some theorems on abstract graphs, Proc London Math Soc 3 (2) (1952)
171-174.

[3] B. Jackson, Hamilton cycle in regular 2-connected graphs, J. Combin. Theory, Ser.
B 29 (1980) 27-46.

[4] H. V. Kronk, A note on k-path Hamiltinian graphs, J. Combin. Theory 7 (1969)
104-106.

[5] H. Li, Hamilton cycles in regular graphs, Science Bulletin of China (1988) 474-475.

[6] H. Li, Edge-Hamiltonian property in regular 2-connected graphs, Discrete Mathe-
matics 82 (1990) 25-34.

[7] D.R. Woodall, The binding number of a graph and its Anderson number, J. Combin.
Theory, Ser. B 15 (1973) 225-255.

14



	1 Introduction
	2 Proof of Theorem 3

