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On the regular 2-connected 2-path Hamiltonian graphs
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Abstract: A graph G is l-path Hamiltonian if every path of length not exceeding l is contained

in a Hamiltonian cycle. It is well known that a 2-connected, k-regular graph G on at most 3k−1

vertices is edge-Hamiltonian if for every edge uv of G, {u, v} is not a cut-set. Thus G is 1-path

Hamiltonian if G \ {u, v} is connected for every edge uv of G. Let P = uvz be a 2-path of a

2-connected, k-regular graph G on at most 2k vertices. In this paper, we show that there is a

Hamiltonian cycle containing the 2-path P if G\V (P ) is connected. Therefore, the work implies

a condition for a 2-connected, k-regular graph to be 2-path Hamiltonian. An example shows

that the 2k is almost sharp, i.e., the number is at most 2k + 1.

Keywords: Hamiltonian cycle; l-path Hamiltonian; k-regular graph; edge-Hamiltonian

1 Introduction

All graphs mentioned in this paper are finite simple graphs. Standard graph theory

notation and terminology not explained in this paper, we refer the reader to [1]. A

Hamiltonian cycle in a graph G is a cycle containing all the vertices of G, and a graph

∗Corresponding author. E-mail: ywh222@163.com; yangweihua@tyut.edu.cn (W. Yang).
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with a Hamiltonian cycle is called Hamiltonian. Dirac’s Theorem [2] states that every

n-vertex graph with minimum degree at least n
2
is Hamiltonian.

One particular classic subarea on Hamiltonian graph theory is about Hamiltonian

cycles containing specified elements of a graph. One of these directions is the study of

l-path Hamiltonian. A graph G on n vertices is said to be l-path Hamiltonian if every

path of length not exceeding l, 1 6 l 6 n− 2, is contained in a Hamiltonian cycle (i.e., a

Hamiltonian graph is 0-path Hamiltonian). A graph G is said to be edge-Hamiltonian, or

1-path Hamiltonian if every edge of G is contained in a Hamiltonian cycle. Kronk in [4]

considered the l-path Hamiltonian.

Theorem 1 ([4]). Let G be a graph on n vertices, if d(a) + d(b) > n+ l for every pair of

non-adjacent vertices a and b, then G is l-path Hamiltonian.

It is not difficult to see that Kronk’s work is sharp. Due to the theorem above, we try

to explore such problems on k-regular graphs.

Many problems and conjectures on Hamiltonian regular graphs have been investigated

by various authors. The problem of determining the values of k for which all 2-connected,

k-regular graphs on n vertices are Hamiltonian was first suggested by Szekeres (see [3]).

Jackson in [3] showed that every 2-connected, k-regular graph on at most 3k vertices is

Hamiltonian. The strongest result of these works given by Li in [5] is that all 2-connected,

k-regular graphs, k > 14, on at most 3k+ 4 vertices are Hamiltonian except two kinds of

well defined families of graphs.

Li in [6] showed the following result that under almost the same conditions in [3], the

graphs are edge-Hamiltonian.

Theorem 2 ([6]). Let G be a 2-connected, k-regular graph on n 6 3k − 1 vertices, and

let e0 = uv be any edge of G such that {u, v} is not a cut-set, then G has a Hamiltonian

cycle containing e0.

In other words, if G is a 2-connected, k-regular graph on at most 3k− 1 vertices, and

G \ V (P ) is connected for every path P of length 1, then G is 1-path Hamiltonian.
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By Theorem 1, we have that 2-connected, k-regular graphs on at most 2k− 2 vertices

are 2-path Hamiltonian. Naturally, what else can we say about the 2-path Hamiltonian

regular graphs? In this paper, we are going to prove the following.

Theorem 3. Let G be a 2-connected, k-regular graph on n 6 2k vertices, and let P = uvz

be any path of G such that {u, v, z} is not a cut-set, then G has a Hamiltonian cycle

containing P .

The following corollary follows from Theorem 2 and Theorem 3.

Corollary 4. Let G be a 2-connected, k-regular graph on at most 2k vertices, if G\V (P )

is connected for every path P of length at most 2, then G is 2-path Hamiltonian.

We shall present an example which shows that the best bound of Theorem 4 is at

most 2k + 1. Let Hi, i = 1, 2, be a graph which is obtained from Kk+1 by deleting one

edge ei = aibi. We can construct a 2-connected, k-regular graph G on 2k+2 vertices from

two disjoint copies H1 and H2 by adding a1a2 and b1b2. There is a 2-path in G that is

not contained in any Hamiltonian cycle of G. Thus, the problems on regular 2-connected

l-path Hamiltonian graphs with n vertices are interesting in 2k − l 6 n 6 2k + 1.

2 Proof of Theorem 3

The proof of Theorem 3 is divided into two cases. We first consider the case of k > 5

and we prove it by using the classic hopping lemma ([7], Lemma 12.3). In the end, we

consider the cases of k = 3 and k = 4.

We fist assume k > 5. Let G be a 2-connected, k-regular graph on n 6 2k vertices, and

let P = uvz be a path of G such that {u, v, z} is not a cut-set. We define a new graph G1

by inserting two vertices w1 and w2 on the edges e1 = uv and e2 = vz of P respectively.

Then we have G1 = (G− {e1, e2}) ∪ {w1, w2} ∪ {uw1, w1v, vw2, w2z}, P1 = uw1vw2z and

|V (G1)| = n1 6 2k + 2. Clearly, it is sufficient to prove that G1 is Hamiltonian.
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Suppose that G1 is not Hamiltonian. Let C1 = c1, c2, · · · , cn1−r1 be a longest cycle of

G1 containing w1 and w2 (Note that G1 − V (P1) is connected.), such that the number of

components of R1 = G1 − C1 is as small as possible. Let r1 = |R1|, R
′

1 be the largest

component of R1 and r′1 = |R′

1|. The subscripts of ci will be reduced modulo n1 − r1

throughout. Obviously, we have |V (C1)| = n1 − r1 > 6.

For any A,B ⊆ V (G1), let

e(A,B) = |{uv ∈ E(G1) : u ∈ A, v ∈ B}|

e(A) = |{uv ∈ E(G1) : u, v ∈ A}|.

For any D ⊆ V (C1), let

D+ = {ci+1 : ci ∈ D} and D− = {ci−1 : ci ∈ D}.

Case 1. R1 contains an isolated vertex v0.

Define that Y0 = ∅, and for any j > 1,

Xj = N(Yj−1 ∪ {v0})

Yj = {ci ∈ C1 : ci−1, ci+1 ∈ Xj}

and

X =
∞
⋃

i=1

Xj, Y =
∞
⋃

i=0

Yj, x = |X| > k and y = |Y |.

By the hopping lemma, we have X ⊂ V (C1), X ∩ Y = ∅ and X dose not contain two

consecutive vertices of C1.

Let S1, S2, · · · , Sx be the sets of vertices contained in the open segments of C1 between

vertices of X . Put φ = {Si : |Si| > 2, 1 6 i 6 x}. Then Si = {cl, cl+1, · · · , cm} ∈ φ is

said to be ψ-connected to Sj = {cq, cq+1, · · · , cz} ∈ φ if |Si| is odd and cq and cz are

both joined to cl+e for all odd e, 1 6 e 6 m− l − 1. Now, cl+1, cl+3, · · · , cm−1 are called
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P -vertices of Si. Set P ={ci ∈ V (C1) : ci is a P -vertex of some Sj which is ψ-connected

to some St of φ}, and p = |P |.

Since

e(V (G1)−X,X) = (n1 − 2− x)k + 4− 2e(V (G1)−X)

e(X, V (G1)−X) 6 xk (1)

we have

2e(V (G1)−X) > (n1 − 2− 2x)k + 4. (2)

On the other hand, under the properties of C1, we can follow the series of the arguments

in [3] and finally have the following inequality:

2e(V (G1)−X) 6 p(k + n1 − x− y − p− 1) + (n1 − 2x− 2p− 1)(n1 − 2x)

−p(x− y − p)− 2(r1 − 1)(x− y − 1).
(3)

Combining (3) with (2), it can be deduced that

p+ 4 6 (n1 − 2x− k)(n1 − 1− 2x− p) + k − 2(r1 − 1)(x− y − 1). (4)

By the definitions of X and Y , we have x > y. If x = y, we have

e(Y ∪ {v0} , X) = k + (y − 2)k + 4 = xk + 4− k,

contrary to (1) because of k > 5. It follows that 2(r1 − 1)(x − y − 1) > 0. From the

definition of P , we have p 6
n1−1−2x

2
, which implies n1 − 1 − 2x − p > 2p− p > 0. And

k > n1 − 2x− p− 1 by n1 6 2k + 2 and x > k. So we have

p+ 4 6 (n1 − 2x− k + 1)k − 2(r1 − 1)(x− y − 1). (5)

Therefore by (5), we have n1 − 2x− k + 1 > 0, and then n1 > 3k − 1, a contradiction.

The next two cases in this part are both discussed that R1 contains no isolated vertex.

For a path Q = q1, q2, · · · , qg, g > 2, in R1, let t(Q) denote the number of occurrences

of ordered pair (ci, cj) of the vertices of C1 such that ci is joined to one of q1 and qg, cj is

joined to the other, and e({q1, qg} , {ci+1, ci+2, · · · , cj−1}) = 0. We say that Q satisfies the
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condition (∗) if t(Q) > 2, NC1
({q1, qg}) 6⊂ {u, v, z} and there is a ordered pair (ci, cj) of

the vertices of C1 such that u, v, z, w1 and w2 /∈ {ci+1, ci+2, · · · , cj−1}. Put A = NC1
(q1)

and B = NC1
(qg).

Case 2. 2 6 |R′

1| 6 k − 1.

Before the proof of this case, we derive some results about the structure of R′

1.

Lemma 5. There exists a maximal path Q in R′

1 such that Q satisfies (∗).

Proof. Since |R′

1| 6 k − 1, for any vi ∈ V (R′

1), i = 1, · · · , r′1, we have NC1
(vi) > 2.

By the assumption of 2-connectivity and {u, v, z} is not a cut-set, there exists a path

Q = q1, q2, · · · , qg in R′

1, which is chosen as long as possible such that Q satisfies (∗).

If Q is not a maximal path of R′

1, let Q
′ = b1, b2, · · · , bs, q1, q2, · · · , qg, qg+1, · · · , qe be

a maximal path in R′

1 containing Q. Without loss of generality, we assume s > 1.

From the definition of Q, it is easy to see that NC1
(b1) 6 3. So N

R
′

1

(b1) > k − 3, and

there is at most one vertex in R
′

1 which is not adjacent to b1.

We consider the following two cases.

Case (a): b1q2 ∈ E(G1).

In this case, there is a longer path Q
′′

= q1, bs, bs−1, · · · , b1, q2, · · · , qg than Q that

satisfies (∗), a contradiction of the definition of Q.

Case (b): b1q2 /∈ E(G1).

In this case, if s > 2, there is a longer path Q
′′

= q1, bs, bs−1, · · · , b1, q3, · · · , qg than Q

that satisfies (∗). If s = 1, we claim that NC1
(q2) 6 3, otherwise, Q

′′

= q2, q1, b1, q3, · · · , qg

is a longer path than Q that satisfies (∗). Therefore, q2 is joined to every vertex of R′

1

except b1. There is a longer path Q
′′

= q1, b1, q3, q2, q4, · · · , qg than Q that satisfies (∗), a

contradiction.

A similar argument holds if e > g.

Lemma 6. There exists a maximal path Q in R′

1 such that t(Q) > 3.
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Proof. Suppose that Q satisfies the property of Lemma 5 and t(Q) = 2. Then we consider

the following two cases:

case (a): A = B = {ci, cj} 6⊂ {u, v, z}, ci 6= v and cj 6= v;

case (b): A = {ci1 , ci2, · · · , cis} and B = {cj1, cj2, · · · , cjl} such that s > 2, l > 2 and

{ci1 , ci2, · · · , cis} ∩ {cj1, cj2, · · · , cjl} = ∅.

If case (a) occurs, we have g = r′1 = k − 1. Without loss of generality, let {w1, w2} /∈

{ci+1, ci+2, · · · , cj−1}, then we have cd = ci
− or cd′ = cj

+ such that cd /∈ {w1, w2} or

cd′ /∈ {w1, w2}. Clearly, we have

NC1
(cd) ∩ [Q ∪ {cj−1, cj−2, · · · , cj−g} ∪ cd] = ∅

or

NC1
(cd′) ∩ [Q ∪ {ci+1, ci+2, · · · , ci+g} ∪ cd′ ] = ∅.

And there is at least two of {v, w1, w2} which can not be adjacent to cd or cd′ . It

follows that

dC1
(cd) 6 2k + 2− 2(k − 1)− 3 = 1

or

dC1
(cd′) 6 2k + 2− 2(k − 1)− 3 = 1.

This is a contradiction.

For case (b), without loss of generality, let w1, w2 /∈ {cj1, cj1+1, · · · , cjl}, then there

exists either some cz ∈ A+ satisfying NC1
(cz)∩

[

Q ∪ (
l−1
⋃

h=1

{cjh+1, cjh+2}) ∪ {w1, w2, cz}

]

=

∅, or some cf ∈ A− satisfying NC1
(cf) ∩

[

Q ∪ (
l
⋃

h=2

{cjh−1, cjh−2}) ∪ {w1, w2, cf}

]

= ∅.

Which implies

dC1
(cz) 6 2k + 2− [g + 2(l − 1) + 3] 6 k − 2

or

dC1
(cf) 6 2k + 2− [g + 2(l − 1) + 3] 6 k − 2

a contradiction.
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Corollary 7. If t(Q) > 3, then g 6 k − 2.

Proof. Suppose g > k − 1 and t(Q) > 3. Then |A ∪ B| > 3, we have

2k + 2 > |V (G1)| = |R1|+ |V (C1)|

> r1 + |A ∪ B|+ (t(Q)− 2)g + 2

> 2(k − 1) + 3 + 2 = 2k + 3

a contradiction.

Lemma 8. There exists a maximal path Q in R′

1 such that t(Q) > 3. Then A = B.

Proof. By contradiction. Suppose B 6= A and |B − A| > 1, without loss of generality,

|B| > |A|. We have

V (C1) = n1 − r1 > |A ∪B|+ |A+ ∪ A− ∪B+ ∪B−|+(t− 2)(g − 2)

= |A|+ |B−A|+ |A+ ∪B−|+ |(A− ∪ B+)− (A+ ∪B−)|+(t− 2)(g − 2).

Since g > 2, if cd ∈ A+ ∩ B−, we have cd = w1 or cd = w2. Let t(Q) = t, σ =

|B−A|+ |(A− ∪ B+)− (A+ ∪B−)|, and

θ=



















−2 if u ∈ A, v ∈ A ∩ B, z ∈ B

−1 if u ∈ A, v ∈ B\A or v ∈ A\B, z ∈ B

0 otherwise.

So we have

n1 − r1 > |A|+
∣

∣A+
∣

∣+
∣

∣B−
∣

∣+ θ + σ + (t− 2)(g − 2).

By the maximality of Q, |A| > k − g + 1 and |B| > k − g + 1. Therefore we have

2k + 2− r1 > |A|+ |A+|+ |B−|+ θ + σ + (t− 2)(g − 2)

2k + 2− r1 > 3(k − g + 1) + θ + σ + (t− 2)(g − 2)

1− θ > r1 − g + k − g + σ + (t− 3)(g − 2).
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By Corollary 7, we have

−1 − θ > r1 − g + σ + (t− 3)(g − 2).

Since t(Q) > 3, g > 2, r1 > g and σ > 1, we have a contradiction when θ = 0

or θ = −1. If θ = −2, we have (A− ∪ B+) − (A+ ∪ B−) = ∅ which implies θ = 0, a

contradiction. In fact, let ci ∈ B − A be the vertex such that the next vertex of A ∪ B

after ci belongs to A. Since ci+1 /∈ (A− ∪ B+)− (A+ ∪ B−), we have ci+1 is in B−, which

implies ci+2 ∈ B ∩ A and then ci = u ∈ B − A and ci+2 = v ∈ B ∩ A, or ci = v ∈ B − A

and ci+2 = z ∈ B ∩ A. According to the definition of θ, we see θ = 0.

Lemma 9. There exists a maximal path Q in R′

1 such that t(Q) > 3. Then g = k− t+1.

Proof. Clearly, g > k − t + 1. If g > k − t + 2, by Lemma 8 and Corollary 7, we have

2 6 g 6 k − 2. Thus,

2k + 2 > V (C1) + g > g(t− 2) + 2 + g + t > (g + 1)(t− 1) + 3 > (g + 1)(k − g + 1) + 3.

But since f(g) = (g+1)(k−g+1)+3 is a concave function of g and f(2) = f(k−2) =

3k > 2k + 2, we have f(g) > 2k + 2, a contradiction.

Now, let Q = q1, q2, · · · , qg be a maximal path in R
′

1 such that t(Q) > 3 and A = B.

We write X ′ = A = B = {x′1, x
′

2, · · · , x
′

t}.

Put D= {Si, 1 6 i 6 t}, where Si is the set of vertices contained in the open segment

of C1 between two vertices of X ′. Let D′= {S∗

i , i = 1, 2} denote the element of D which

contains w1 or w2 (If w1 and w2 is contained in a same segment, let D′ = S∗ ). Let

D
′′

= D −D′. The structure of D has two cases:

Case (a): w1 and w2 is contained in a same segment S∗.
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By Lemma 9, we have

n1 > |V (C1)|+ |V (R1)|

> g(t− 1) + 2 + (|S∗| − 2) +
∑

Si∈D
′′

(|Si| − g) + t+ g + (r1 − g)

> (g + 1)t+ 2 + (|S∗| − 2) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g)

> (g + 1)(k − g + 1) + 2 + (|S∗| − 2) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g).

Put f ′(g) = (g + 1)(k − g + 1) + 2. Since f ′(g) is a concave function of g with

f ′(2) = 3k − 1 = f ′(k − 2), we obtain a contradiction that

2k + 2 > 3k − 1 + (|S∗| − 2) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g).

Case (b): w1 is contained in S∗

1 , and w2 is contained in S∗

2 .

By Lemma 9, we have

n1 > |V (C1)|+ |V (R1)|

> g(t− 2) + 2 +
2
∑

i=1

(|S∗

i | − 1) +
∑

Si∈D
′′

(|Si| − g) + t+ g + (r1 − g)

> (g + 1)(t− 1) + 3 +
2
∑

i=1

(|S∗

i | − 1) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g)

> (g + 1)(k − g) + 3 +
2
∑

i=1

(|S∗

i | − 1) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g).

Put f ′′(g) = (g + 1)(k − g) + 3. When 2 6 g 6 k − 3, f ′′(g) is a concave function of g

with f ′′(2) = 3k − 3 = f ′′(k − 3), we have

2k + 2 > 3k − 3 +
2

∑

i=1

(|S∗

i | − 1) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g).

There is a contradiction when k > 6 from

5− k >

2
∑

i=1

(|S∗

i | − 1) +
∑

Si∈D
′′

(|Si| − g) + (r1 − g).

When k = 5, we have r1 = g, |Si| = g for all Si ∈ D
′′

and |S∗

i | = 1 for i = 1, 2. By

Lemma 9, we have t = k − g + 1 = 6 − g. For any elements Si and Sj of D
′′

, we have
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e(Si, Sj) = 0 because of the maximality of C1. Firstly, if there is some qi of Q − {q1}

such that NC1
(qi) ∩ Si 6= ∅ for some Si ∈ D

′′

. By Lemma 9, since qi−1qg ∈ E(G1), then

Q′ = q1, q2, · · · , qi−1, qg, qg−1, · · · , qi is a path satisfying (∗) in R
′

1, which implies 2g+1 6 g.

So we have NC1
(Q) ⊂ X ′. Secondly, we have e(X ′, V (G1)−X ′) 6 kt = 5t. Moreover, we

also have

kt > e(V (G1)−X ′, X ′) > gt+ (t− 2)g(k − g + 1) + 4.

By Lemma 6 we deduce that

(5− g)(6− g) > (4− g)g(6− g) + 4.

Because 2 6 g 6 3 and g is an integer, we have

(5− g)(6− g) 6 (4− g)g(6− g) + 4

a contradiction.

If g = k − 2, we have t = 3. So there exists x′i ∈ X ′ such that x
′
−

i /∈ {w1, w2} or

x
′+

i /∈ {w1, w2}. It is clearly that

dG1
(x

′
−

i ) 6 2k + 2− 2(k − 2)− 2 = 4

or

dG1
(x

′+

i ) 6 2k + 2− 2(k − 2)− 2 = 4

a contradiction.

Case 3. |R′

1| > k.

By the assumption of connectivity and {u, v, z} is not a cut-set, there exists x′′ ∈

NC1
(R

′

1), such that x
′′
− /∈ {w1, w2}. It is clearly that NG1

(x
′′
−)∩R′ = ∅, and at least two

of {v, w1, w2} cannot be adjacent to x
′′
−. It follows that

dG1
(x

′′
−) 6 2k + 2− k − 2− 1 = k − 1

a contradiction.
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These contradictions complete our proof in this part. We next discuss the cases of

k = 3 and k = 4. Similarly, let C be a longest cycle of G containing P and R = G− C.

Clearly, |C| > 4. By Theorem 1, we only need to discuss the cases that 2k−1 6 |V (G)| =

n 6 2k.

When k = 3, 5 6 n 6 6. If n = 5, we consider the following two cases.

Case (a): |C| = 5. Theorem 3 holds.

Case (b): |C| = 4. Let C = uvzx1. Then R is an isolated vertex v0. It is easy to

see that there exist two consecutive vertices of {u, z, x1} which are adjacent to v0. A

contradiction of that C is the longest cycle of G containing P .

If n = 6, we consider the following three cases.

Case (a): |C| = 6. Theorem 3 holds.

Case (b): |C| = 5. Let C = uvzx1x2. Then R is an isolated vertex v0. By assumption,

we have NC(v0) = {v, z, x2} or NC(v0) = {u, v, x1}. By symmetry, we consider the

case of NC(v0) = {v, z, x2}. Since ux1 ∈ E(G), there is a Hamiltonian cycle C ′ =

u, v, z, v0, x2, x1, u containing P . Theorem 3 holds.

Case (c): |C| = 4. Let C = uvzx1.

Subcase (c1): R contains an isolated vertex v0. It is similar to that of the case(b)

when k = 3 and n = 5.

Subcase (c2): R contains no isolated vertex. So the vertices of C are adjacent to R.

This contradict with the assumption that C is the longest cycle of G containing P .

When k = 4, 7 6 n 6 8. If n = 7, we consider the following four cases.

Case (a): |C| = 7. Theorem 3 holds.

Case (b): |C| = 6. Let C = uvzx1x2x3. Then R is an isolated vertex v0. By assump-

tion, we have NC(v0) = {u, v, z, x2}. If x1x3 /∈ E(G), we have x1u, x1v ∈ E(G) which

makes dG(x3) 6 3, a contradiction. So we have x1x3 ∈ E(G). There is a Hamiltonian

cycle C ′ = u, v, z, v0, x2, x1, x3, u containing P . Theorem 3 holds.
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Case (c): |C| = 5. Let C = uvzx1x2.

Subcase (c1): R contains an isolated vertex v0. It is easy to see that there exist two

consecutive vertices of {u, z, x1, x2} which are adjacent to v0, a contradiction.

Subcase (c2): R contains no isolated vertex. Since G is 4-regular graph, we have

dC(R) > 6 and NC(R) > 3. When NC(R) = 3, by assumption, we have NC(R) =

{v, z, x2} or NC(R) = {u, v, x1}. By symmetry, we consider the case of NC(R) = {v, z, x2}

in which we have dG(u) 6 3, a contradiction. When NC(R) > 4, there exist two consecu-

tive vertices of {u, z, x1, x2} which are adjacent to R, a contradiction.

Case (d): |C| = 4. Let C = uvzx1. For every connected component R′ of R, NC(R
′) >

3. Clearly, there exist two consecutive vertices of {u, z, x1} which are adjacent to R′, a

contradiction.

If n = 8, we consider the following five cases.

Case (a): |C| = 8. Theorem 3 holds.

Case (b): |C| = 7. Let C = uvzx1x2x3x4. Then R is an isolated vertex v0. By

assumption, we have NC(v0) = {u, v, z, x2}, NC(v0) = {u, v, z, x3}, NC(v0) = {u, v, x1, x3}

or NC(v0) = {v, z, x2, x4}. By the same discussion as for n=7 when k=4, there is a

Hamiltonian cycle containing P in all cases.

Case (c): |C| = 6. Let C = uvzx1x2x3.

Subcase (c1): R contains two isolated vertices v0 and v1. By assumption, we have

NC(v0) = NC(v1) = {u, v, z, x2}, dG(x1) 6 3, a contradiction.

Subcase (c2): R is an edge e = v0v1. Since G is a 4-regular graph, we have dC(R) > 6

and NC(R) > 3. When NC(R) = 3, we have NC(v0) = NC(v1). By assumption, we

have NC(R) = {u, v, x1}, NC(R) = {v, z, x3}, NC(R) = {u, v, x2}, NC(R) = {v, z, x2},

NC(R) = {u, z, x2} or NC(R) = {x1, x3, v}. In the discussion of all cases, either there is a

contradiction of regularity, or there is a Hamiltonian cycle containing P . When NC(R) >

4, it is clear that there is no consecutive vertices of {u, z, x1, x2, x3} which are adjacent
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to R. So NC(R) = {u, v, z, x2}. We claim x1x3 ∈ E(G), and then there is a Hamiltonian

cycle C ′ = u, v, z, v1, v0, x2, x1, x3, u containing P . Otherwise, ux1, vx1 ∈ E(G) which

makes dG(x3) 6 3, a contradiction.

Case (d): |C| = 5. It is similar to that of the case(c) when k = 4 and n = 7.

Case (e): |C| = 4. Let C = uvzx1. Obviously, R contains no isolated vertex. Let R′

be a connected component of R. If NC(R
′) > 3, it is clear that there exist two consecutive

vertices of {u, z, x1} which are adjacent to R′, a contradiction. If NC(R
′) = 2, we have

NC(R) = {v, x1}, which makes dG(u) 6 3, a contradiction.

Thus, we complete the proof.
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