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Abstract

Consider a 3-uniform hypergraph of order n with clique number k such that
the intersection of all its k-cliques is empty. Szemerédi and Petruska proved n ≤
8m2 + 3m, for fixed m = n− k, and they conjectured the sharp bound n ≤

(

m+2
2

)

.
This problem is known to be equivalent to determining the maximum order of a
τ -critical 3-uniform hypergraph with transversal number m (details may also be
found in a companion paper [9]).

The best known bound, n ≤ 3
4m

2 + m + 1, was obtained by Tuza using the
machinery of τ -critical hypergraphs. Here we propose an alternative approach, a
combination of the iterative decomposition process introduced by Szemerédi and
Petruska with the skew version of Bollobás’s theorem on set pair systems. The new
approach improves the bound to n ≤

(m+2
2

)

+ O(m5/3), resolving the conjecture
asymptotically.

1 Introduction

LetN = {N1, . . . , Nℓ} be a collection of k-subsets of {1, . . . , n}. Set V =
⋃ℓ

i=1Ni. Assume
that n = |V |, ℓ ≥ 2, and k ≥ 3. Set m = n− k; that is,

∣

∣Ni

∣

∣ = |V \Ni| = m. We further
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assume that N satisfies the following two properties:

(i)
⋂ℓ

i=1Ni = ∅, but
⋂

j 6=iNj 6= ∅ for all i = 1, . . . , ℓ.

(ii) For any S ⊆ V such that |S| ≥ k + 1, there exists a subset T ⊆ S such
that |T | = 3 and T 6⊆ Ni, for all i = 1, . . . , ℓ.

Notice that property (i) means that N is minimal with respect to having empty intersec-
tion; and property (ii) may be interpreted as stating that, in the 3-uniform hypergraph
induced by all 3-subsets of the k-sets in N , the largest cliques have k vertices.

We shall refer to a collectionN satisfying (i) and (ii) as an (n,m)-structure. Szemerédi
and Petruska [10] conjectured the following:

Conjecture 1. Any (n,m)-structure satisfies n ≤
(

m+2
2

)

.

Szemerédi and Petruska give the following construction to show that Conjecture 1, if
true, would be sharp. For fixed integers k,m ≥ 3 such that k − 1 =

(

m+1
2

)

, begin with
disjoint sets A and G satisfying |A| = k− 1 and |G| = m+1. Let A = {a1, . . . , ak−1} and
let {p1, . . . , pk−1} be the set of pairs (2-subsets) of G. Define Ni = (A \ {ai})∪ pi, for i =
1, . . . , k−1. It is easy to check that the collection N = {N1, . . . , Nk−1} satisfies properties
(i) and (ii). In particular, the (n,m)-structure N induces a 3-uniform hypergraph H on
vertex set A ∪ G with all 3-subsets included by some k-set of N forming the edge set;
furthermore, the order of H is n = |A|+ |G| = k +m =

(

m+2
2

)

and ω(H) = k.
For m = 2, 3, there are other extremal (n,m)-structures; however, it has been con-

jectured (by us and others) that this construction is the unique extremal structure for
m ≥ 4. For m = 2, 3 and 4, Conjecture 1 has been verified and all extremal structures
have been characterized by Jobson et al. [7].

The best known general bound, n ≤ 3
4
m2 + m + 1, was obtained by Tuza1 using

the machinery of τ -critical hypergraphs. Here we significantly refine and vindicate an
alternative approach first proposed by Jobson et al. [6]. This approach develops the
iterative decomposition process introduced by Szemerédi and Petruska and applies the
skew version of Bollobás’s theorem [2] on the size of cross-intersecting set pair systems.
The result (Theorem 23) is an asymptotically tight upper bound:

n ≤

(

m+ 2

2

)

+ 6m5/3 + 3m4/3 + 9m− 3.

As noted by Gyárfás et al. [4], the Szemerédi and Petruska problem is equivalent to
determining the maximum order of a τ -critical 3-uniform hypergraph with transversal
number m. More generally, they also determined that O(mr−1) is the correct order of
magnitude for the maximum order of a τ -critical r-uniform hypergraph with transversal
number m; the best known bounds were obtained by Tuza [11].

A companion paper [9] shows the details of the mentioned equivalence and presents
further remarks on the origin of the Szemerédi and Petruska problem. As an immediate
corollary of our main theorem and this equivalence we obtain a new and asymptotically
tight bound for the order of a τ -critical 3-uniform hypergraph.

1Personal communication (2019).
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Theorem 1. If H is a 3-uniform τ -critical hypergraph with τ(H) = t, then

|V (H)| ≤

(

t+ 2

2

)

+O(t5/3).

Section 2 introduces notations and recalls the process, introduced by Szemerédi and
Petruska, to decompose an (n,m)-structure into stages. Consecutive stages can be viewed
as survival times of fewer and fewer k-sets of the system. The basic concepts associated
with an (n,m)-structure are the ‘kernels’ belonging to the surviving k-sets at each time
and the ‘private pairs’ selected for the remaining k-subsets at each stage (the private
pairs are pairs that belong to precisely one k-subset of the surviving subsystem at a stage
of the decomposition). For example, in the conjectured extremal Szemerédi-Petruska
construction described above, there is only one stage; the set A is the kernel of the only
stage, and the 2-subsets of G are the private pairs of the k-sets. In Sections 3, 4 and 5 the
iterative decomposition process used by Szemerédi and Petruska is extended considerably.

In addition to extending the iterative decomposition process our new approach applies
the skew version of Bollobás’s theorem [2] on the size of cross-intersecting set pair systems
(Theorem 21): If A1, . . . , Ah are r-element sets and B1, . . . , Bh are s-element sets such
that Ai ∩ Bi = ∅ for i = 1, . . . , h, and Ai ∩ Bj 6= ∅ whenever 1 ≤ i < j ≤ h, then
h ≤

(

r+s
r

)

. Theorem 21 will be applied in Section 7 with r = 2 and s = m, where the
2-sets are carefully selected private pairs, and the m-sets are derived iteratively from the
k-sets corresponding to all those private pairs.

Section 3 introduces a recursive procedure, based on the decomposition process, to
select special private pairs by ‘promoting’ the initial pairs as needed. Section 4 describes
an additional processing of these special private pairs, known as ‘advancement’, which
sacrifices or deactivates a limited number of private pairs in order to guarantee that others
may advance into a protected position before choosing ‘free’ private pairs in Sections 5
and 6.

Sections 5 and 6 define a large subset of free private pairs chosen from the special
advanced pairs obtained in Section 4. A skew cross-intersecting (2, m)-system ultimately
arises from this subset of free private pairs and by appropriately adjusting the comple-
ments of the corresponding k-sets. This is done by using the recursive process (4) in
Section 7, where the proof of the main result, Theorem 23, is concluded.

2 The Decomposition Process

We begin by giving definitions and recalling the process, introduced by Szemerédi and
Petruska2, to decompose (n,m)-structures. Much of this section is very similar to their
presentation. We assume ℓ ≥ 4 since Szemerédi and Petruska resolve the cases ℓ = 2, 3.
Let N = {N1, . . . , Nℓ}, be an (n,m)-structure. Define a collection of objects in stages,

which are also called times, starting with stage 0. Set ℓ0 = ℓ, N (0) = N and N
(0)
i = Ni.

2We have endeavored to use the same notation introduced by Szemerédi and Petruska. Some important

exceptions: we use a
(j)
i for their x

(j)
i ; also k and ℓ here refer to their quantities n and k, respectively.
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For every i = 1, . . . , ℓ0, fix a choice of vertex a
(0)
i ∈

⋂

j 6=iNj . By definition, a
(0)
i 6= a

(0)
j , for

i 6= j. The set A(0) =
{

a
(0)
1 , . . . , a

(0)
ℓ0

}

is called the kernel and a
(0)
1 , . . . , a

(0)
ℓ0

are called the

kernel vertices at stage 0.

Assume that the collection of k-subsets N (j) =
{

N
(j)
1 , . . . , N

(j)
ℓj

}

and a corresponding

kernel A(j) =
{

a
(j)
1 , . . . , a

(j)
ℓj

}

are defined for all stages 0, 1, . . . , j. Also assume that ℓj ≥ 4

and the sets in the ‘remainder’ structure

R(j) =

{

N
(j)
1 \

j
⋃

i=0

A(i), . . . , N
(j)
ℓj

\

j
⋃

i=0

A(i)

}

have no common vertex. We refer to N
(j+1)
r = N

(j)
r \

⋃j
i=0A

(i) as the truncation of N
(j)
r .

We now explain the definition of N (j+1) and A(j+1).
Because the truncations of the N

(j)
r ’s in R(j) have no common vertex, there exist

substructures of R(j) satisfying property (i). Stop if R(j) contains such substructure(s)
only with two or three sets. Otherwise, let

N (j+1) =
{

N
(j+1)
1 , . . . , N

(j+1)
ℓj+1

}

⊂ R(j)

be a substructure satisfying (i) and ℓj+1 ≥ 4.

For i = 1, . . . , ℓj+1, fix a choice of vertex a
(j+1)
i ∈

ℓj+1
⋂

r=1

r 6=i

N
(j+1)
r and let A(j+1) =

{

a
(j+1)
1 , . . . , a

(j+1)
ℓj+1

}

be the kernel at time j + 1. Observe that the sets in the remain-

der structure

R(j+1) =

{

N
(j+1)
1 \

j+1
⋃

i=0

A(i), . . . , N
(j+1)
ℓj+1

\

j+1
⋃

i=0

A(i)

}

have empty intersection.
This process terminates at some time t, and defines ℓj , N (j), and A(j) for j = 0, 1, . . . , t.

The only substructures of the terminal remainder structure, R(t), that satisfy property (i)
have 2 or 3 sets. Because N = {N1, . . . , Nℓ0} is an arbitrary enumeration of N , we may
assume that

N (j) =
{

N1, . . . , Nℓj

}

, for j = 0, . . . , t.

That is, we linearly order the k-sets in N according to how long their truncations appear
in the sequence of chosen substructures. The longer that its truncations appear, the
earlier a set appears in this linear ordering.

Define, for i = 1, . . . , ℓ0, the last time (or stage), denoted ti, that truncations of Ni

appear in a substructure of this decomposition process; equivalently, set

ti = max
{

j : Ni ∈ N (j)
}

.

By definition, ℓ = ℓ0 ≥ · · · ≥ ℓt ≥ 4 and t = t1 ≥ · · · ≥ tℓ0 ≥ 0. Observe that
x ∈ {1, . . . , ℓj} implies j ≤ tx.
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Define Aj =
⋃j

s=0A
(s) and let A = At be the set of all kernel vertices. Let G = V \A

denote the garbage vertices; that is, the vertices remaining after the decomposition process
terminates. The selected linear ordering of N together with the decomposition process
induces a natural ordering of V : vertices within a kernel A(s) are ordered according to
their subscripts (a

(s)
i < a

(s)
j if and only if i < j), kernels are ordered according to stage

(A(r) < A(s) if and only if r < s), and garbage vertices are ordered (linearly) last (in no
particular order).

The next lemma begins a list of useful properties of the decomposition process. The
results mentioned in Lemma 2 were proved in Lemma 5 and in Lemma 6 of [10]. We
reprove these results here for completeness.

Lemma 2.

(a) t < m ≤ |G|

(b) |G| ≤ 3(m− t− 1).

Proof. (a) Since N1 ∈ N (t), we have
∣

∣N1 ∩ A
∣

∣ = t + 1; and because |N1| = m, it follows
that t < m. Next suppose, on the contrary, that |G| ≤ m − 1. Observe that |A| =
|V | − |G| ≥ n−m+ 1 = k + 1. By property (ii), there exists a set T ⊂ A, |T | = 3, such
that T 6⊆ Ni, for all 1 ≤ i ≤ ℓ. Each element of T is missed by at most one Ni, 1 ≤ i ≤ ℓt.
It follows that because ℓt ≥ 4, one of these sets contains T , a contradiction.

(b) When the decomposition process terminates any subsystem of

R(t) = {N1 \ A, . . . , Nℓt \ A}

satisfying (i) has at most three sets; we may assume that these are {N1\A,N2\A,N3\A}
or {N1 \ A,N2 \ A}. Each set Ni, i = 1, 2 or 3, ‘survives’ until stage t, hence

r = |Ni ∩G| = |Ni \ A| = k − (ℓ0 − 1)− · · · − (ℓt − 1) = k − |A|+ t + 1.

Thus, the subsystem consists of two or three r-sets that have empty intersection; so the
complements of these sets in G must satisfy

∣

∣Ni ∩G
∣

∣ ≥ r
2
. Consequently,

|G| = |N1 ∩G|+
∣

∣N1 ∩G
∣

∣ ≥ r +
r

2
=

3

2
(k − |A|+ t+ 1).

By substituting k = n−m and n− |A| = |G|, we obtain

|G| ≥
3

2
(k − |A|+ t+ 1) =

3

2
(−m+ |G|+ t + 1),

thus |G| ≤ 3(m− t− 1) follows.
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3 Selection of private pairs

For j, 0 ≤ j ≤ ti, a pair of vertices p ⊂ Ni is single-covered with respect to N (j) if Ni is
the only set in N (j) that contains p as a subset. A pair that is contained in at least two
sets in N (j) is called a double-covered pair (at time j). If p ⊂ Ni is single-covered with
respect to N (j), then it is called a private pair for Ni at time j, or simply a private pair
of Ni. We also simply say that “p is private for N

(j)
i ” to mean “p is a private pair for Ni

at time j”. Observe that, if a pair is private for N
(j)
i , then it remains a private pair for

Ni until (and including) time ti. Similar terminology is used for private elements. For

example, a vertex v is private for N
(j)
i if Ni is the only set in N (j) that contains v.

The following lemma is a rephrasing of Lemma 7(a) proven by Szemerédi and Petruska
[10]. Recall the notation Aj =

⋃j
s=0A

(s).

Lemma 3.

(c) For all j = 0, . . . , t, every pair p ⊂ Aj is double-covered at time j.

Proof. (c) Suppose that p = {a(j1)i1
, a

(j2)
i2

} ⊂ Aj , for some j ∈ {0, . . . , t}. Necessarily
j1, j2 ≤ j. Because ℓj ≥ 4, there exists {i3, i4} ⊆ {1, . . . , ℓj} \ {i1, i2}. By definition of the

kernel, p ⊆ N
(j)
i3

∩N
(j)
i3

so p is double-covered at time j.

The next three lemmas introduce new and powerful tools; they are a crucial refinement
of the proof of Szemerédi and Petruska’s Lemma 7(b) [10]. In particular, Lemma 4
introduces the novel notion of a 3-cross.

Lemma 4.

Suppose that Ni ∈ N (j), Y ⊆ Ni and |Y | ≤ j.

(d) There exists a 3-set C
(j)
i (Y ) ⊆

(

Ni ∪ {a(0)i , . . . , a
(j)
i }

)

\Y such that C
(j)
i (Y )∩Nr 6= ∅,

for all r = 1, . . . , ℓ.

Proof. (d) Observe that S =
(

Ni ∪ {a(0)i , . . . , a
(j)
i }

)

\ Y has cardinality

|S| = k + (j + 1)− |Y | ≥ k + 1.

Applying property (ii) to S produces a desired 3-set T = C
(j)
i (Y ).

A 3-set C
(j)
i (Y ), whose existence is established in Lemma 4(d), is called a 3-cross of

N
(j)
i with respect to Y . If C

(j)
i (Y ) is a 3-cross, then it is understood that Ni ∈ N (j),

Y ⊆ Ni, |Y | ≤ j and C
(j)
i (Y ) ⊆

(

Ni ∪ {a(0)i , . . . , a
(j)
i }

)

\ Y .

Now we enumerate several important properties of 3-crosses.
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Lemma 5.

Suppose that C
(j)
i (Y ) is a 3-cross. Let p = C

(j)
i (Y ) ∩Ni.

(e) |p| = 1 or |p| = 2.

(f) If |p| = 1, then the vertex in p is in (Ni \ Y ) ∩G and private to N
(j)
i .

(g) If |p| = 2, then p is a 2-set from Ni \ Y and p is a private pair for N
(j)
i .

Proof. (e) Because |C(j)
i (Y )| = 3 and C

(j)
i (Y )∩Ni 6= ∅, it follows that |C(j)

i (Y )∩Ni| ≤ 2.

If |C(j)
i (Y ) ∩ Ni| = 0, then C

(j)
i (Y ) ⊆ {a(0)i , . . . , a

(j)
i } which implies that, because ℓj ≥ 3,

there exists some r such that C
(j)
i (Y ) ⊆ Nr, a contradiction. Therefore, 1 ≤ |p| ≤ 2.

(f) Because |p| = 1 and C
(j)
i (Y ) ⊆

(

Ni ∪ {a(0)i , . . . , a
(j)
i }

)

\ Y , it follows that

C
(j)
i (Y ) = {a(α)i , a

(β)
i , v},

for some v ∈ Ni and 0 ≤ α < β ≤ j. Note p = {v} and v ∈ Ni \ Y .

Assume, to the contrary, that v is not private to N
(j)
i . This means there exists some

r 6= i such that v ∈ N
(j)
r . Because r 6= i, the definition of the kernel implies {a(α)i , a

(β)
i } ⊂

Nr; therefore, C
(j)
i (Y ) ⊆ Nr. However, this implies C

(j)
i (Y ) ∩Nr = ∅, contradicting that

C
(j)
i (Y ) is a 3-cross (Lemma 4(d)). So v is private to N

(j)
i . Because vertices in the kernel

are double-covered (Lemma 3(c)), it follows that v ∈ G.
(g) We appropriately modify the argument given to establish (f). Because |p| = 2 and

C
(j)
i (Y ) ⊆

(

Ni ∪ {a(0)i , . . . , a
(j)
i }

)

\ Y , it follows that

C
(j)
i (Y ) = {a(α)i , u, v},

for some u, v ∈ Ni and 0 ≤ α ≤ j. Note p = {u, v} and p ⊆ Ni \ Y .

Assume, to the contrary, that p is not a private pair for N
(j)
i . This means there

exists some r 6= i such that p ⊂ N
(j)
r . Because r 6= i, the definition of the kernel implies

a
(α)
i ∈ Nr; therefore, C

(j)
i (Y ) ⊆ Nr. However, this implies C

(j)
i (Y )∩Nr = ∅, contradicting

that C
(j)
i (Y ) is a 3-cross (Lemma 4(d)). So p is private pair for N

(j)
i .

Lemma 6.

Suppose that Ni ∈ N (j), Y ⊆ Ni and |Y | ≤ j.

(h) There exists a private pair, p ⊆ Ni \ Y , for N
(j)
i such that either p is a subset of a

3-cross of N
(j)
i with respect to Y , or p does contain a private vertex for N

(j)
i .

Proof. Lemma 4(d) guarantees there exists a 3-cross C
(j)
i (Y ). Let p = C

(j)
i (Y ) ∩ Ni; so

p ⊂ Ni \ Y . Lemma 4(e) gives |p| = 1 or |p| = 2.

If |p| = 2, then Lemma 5(g) shows that p is the desired private pair for N
(j)
i .

7



If |p| = 1, then Lemma 5(f) shows that p contains a private vertex for N
(j)
i . So it

suffices now to note that a private pair for N
(j)
i can be formed by adding any vertex from

Ni \ Y to p.

Next we describe an inductive process to select a collection of private pairs for every

Ni. For each i ∈ {1, . . . , ℓ}, we define, by induction on time, a set Pi =
{

p
(j)
i : 0 ≤ j ≤ ti

}

of ti + 1 private pairs for Ni. The pair p
(j)
i will be chosen from among the private pairs

for Ni existing at time j.
Notice that, by property Lemma 3(c), any private pair contains at least one garbage

vertex. Therefore, p
(j)
i contains a vertex g

(j)
i ∈ p

(j)
i ∩ G; call it the anchor of p

(j)
i . The

other vertex of p
(j)
i is the non-anchor; it is denoted u

(j)
i . It is possible that {g(j)i , u

(j)
i } ⊂ G,

but we shall still distinguish one vertex, g
(j)
i , as the anchor of p

(j)
i .

We also define auxiliary sets P
(j)
i =

{

p
(s)
i : 0 ≤ s ≤ j

}

and G
(j)
i =

{

g
(s)
i : 0 ≤ s ≤ j

}

.

They are, respectively, the initial segments of the private pairs and the initial segments
of the anchors for the private pairs selected for Ni up to time j.

Recall that every k-set Ni has a final time, ti, associated with it. Now we associate a
final time with every g ∈ G.

Definition 1. For g ∈ G, define the critical time for g, denoted tg, to be the last stage at
which there exists a k-set that contains g. In other words, tg = max {ti : g ∈ Ni} .

We also need the following definition.

Definition 2. For g ∈ G, define the critical index set for g, denoted Ig, to be the set of
indices of the k-sets that contain g at stage tg. In other words,

Ig = {i : g ∈ Ni, ti = tg}.

Observe that, by definition, Ig 6= ∅, for all g ∈ G. As we shall see in Lemma 9, the
garbage vertices g ∈ G with |Ig| = 1 are particularly significant. The private pair selection
process utilizes this information, so this motivates the following definition.

Definition 3. For x ∈ {1, . . . , ℓ}, define the set of critical garbage vertices for Nx,
denoted Γx, to be the set of g ∈ Nx ∩ G that have only Nx in their critical index set. In
other words,

Γx = {g ∈ G : Ig = {x}}.

It is possible that Γx = ∅. If x1 6= x2, then by definition Γx1
∩ Γx2

= ∅.
Now we are ready to describe the private pair selection process. Initially, for i ∈

{1, . . . , ℓ}, let p(0)i =
{

g
(0)
i , u

(0)
i

}

be a private pair for Ni at time zero. Such a private pair

exists because of property Lemma 6(h) with Y = ∅. Set G
(0)
i =

{

g
(0)
i

}

and P
(0)
i =

{

p
(0)
i

}

.

8



For j > 0 and i ∈ {1, . . . , ℓ}, assume that the sets P
(j−1)
i and G

(j−1)
i have already been

defined. Also assume that a private pair p
(j)
i =

{

g
(j)
i , u

(j)
i

}

has already been chosen for

each Ni with j ≤ ti. Now define

G
(j)
i =











G
(j−1)
i ∪

{

g
(j)
i

}

if j ≤ ti

G
(j−1)
i if j > ti,

and similarly define,

P
(j)
i =











P
(j−1)
i ∪

{

p
(j)
i

}

if j ≤ ti

P
(j−1)
i if j > ti.

This definition yields P
(j)
i =

{

p
(0)
i , . . . , p

(j)
i

}

and G
(j)
i =

{

g
(0)
i , . . . , g

(j)
i

}

; note that
∣

∣

∣
P

(j)
i

∣

∣

∣
=

∣

∣

∣
G

(j)
i

∣

∣

∣
= j + 1, for each 0 ≤ j ≤ ti.

To complete the iterative process, it remains to describe how to select a private pair
p
(j)
i , for each i ∈ {1, . . . , ℓj}.

Firstly, and very importantly, we prioritize the selection of a private pair for N
(j)
i that

contains a private vertex. Note that a private vertex of any k-set belongs to G. If Ni

has a critical garbage vertex in Γi \G
(j−1)
i that is private to Ni at time j, then we select

it. Otherwise, if Γi \ G
(j−1)
i is empty, but there is a private vertex in Ni \ G

(j−1)
i that is

private to Ni at time j, we select it. If either of these types of private vertex exists, then
necessarily it is in (Ni ∩ G) \ G(j−1)

i ; call it g
(j)
i . Complete a private pair containing g

(j)
i

by adding a vertex a
(j)
x , where x ∈ {1, . . . , ℓj} \ {i}. Note that a

(j)
x ∈ Ni by definition of

the kernel. So, in this case, the pair selected is p
(j)
i = {g(j)i , a

(j)
x }, and it is a subset of Ni.

The fact that p
(j)
i is a private pair for N

(j)
i is due to g

(j)
i being a private vertex for Ni at

time j.
If there is no vertex of Ni \ G

(j−1)
i that is private to Ni at time j, apply Lemma

6(h) with Y = G
(j−1)
i to produce a pair

{

g
(j)
i , u

}

single-covered by N (j) such that g
(j)
i ∈

G \
{

g
(0)
i , . . . , g

(j−1)
i

}

and u ∈ A ∪ G. If u ∈ G, then set u
(j)
i = u which completes the

private pair selection in this case. Otherwise, in anticipation of the need for well-behaved

private pairs later, we adjust
{

g
(j)
i , g

}

. In this case u 6∈ G, so we may assume that

u = a
(s)
r for some 1 ≤ r ≤ ℓ and 0 ≤ s ≤ tr. Note that r 6= i because a

(s)
r ∈ Ni. We

now ‘promote’ a
(s)
r , which means setting the non-anchor vertex u

(j)
i of the private pair

to the latest possible kernel vertex that substitutes for a
(s)
r (preserving the private pair

property). This is accomplished as follows:
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u
(j)
i =



























a
(s)
r if j < s ≤ tr

a
(y)
r if s ≤ j ≤ y, where y = min{ti, tr}

a
(ti)
x if s ≤ tr < j ≤ ti, with any x ∈ {1, . . . , ℓti} \ {i}.

(1)

Notice that promotion is not applied if g
(j)
i is a private vertex. Furthermore, (1)

changes the non-anchor (that is u
(j)
i 6= u) only if s ≤ j. Also observe that if u

(j)
i = a

(y)
r with

y 6∈ {ti, tr}, then the non-anchor is unchanged (that is, u
(j)
i = u under these conditions).

We next prove that this promotion process in fact produces a private pair for Ni at time
j, furthermore, anchor vertices are not repeated for the private pairs in Ni.

Lemma 7. The pair p
(j)
i =

{

g
(j)
i , u

(j)
i

}

as defined by (1) is a private pair for Ni at time

j. Furthermore, g
(j)
i ∈ G \

{

g
(0)
i , . . . , g

(j−1)
i

}

, j = 1, . . . , ti, and if u
(j)
i is a kernel vertex,

then u
(j)
i = a

(y)
x , where j ≤ y and x ≤ ℓ.

Proof. We may assume that no vertex of Ni \ G
(j−1)
i is private to Ni at time j, since

otherwise, the private pair selected has the form p
(j)
i = {g(j)i , a

(j)
x } satisfying the claim

with j = y.
Notice that the anchor of p

(j)
i is not affected by the promotion process, so g

(j)
i ∈

G \
{

g
(0)
i , . . . , g

(j−1)
i

}

follows from the generation of
{

g
(j)
i , u

}

via Lemma 6(h). Assuming

that the non-anchor is a kernel vertex, the formula (1) yields either u
(j)
i = a

(y)
r , where

y = s and j < s, or u
(j)
i = a

(y)
x , where y ∈ {ti, tr}; in each case j ≤ y. Thus, the second

part of the claim follows.

It remains to show that p
(j)
i =

{

g
(j)
i , u

(j)
i

}

, as defined by (1), is a private pair for N
(j)
i .

First we verify that p
(j)
i ⊂ Ni. Clearly, g

(j)
i ∈ Ni, so it suffices to show that promotion

produces u
(j)
i ∈ Ni. If promotion does not change the non-anchor (line 1 of (1)), then

a
(s)
r ∈ Ni follows from the generation of

{

g
(j)
i , u

}

via Lemma 6(h). So we may assume

that promotion does change u. Because i 6= r, if tr < ti, then a
(tr)
r ∈ Ni; whereas if ti ≤ tr,

then a
(ti)
r ∈ Ni (line 2 of (1)). Similar reasoning shows that x 6= i implies a

(ti)
x ∈ Ni (line

3 of (1)) because x ∈ {1, . . . , ℓti} \ {i} means ti ≤ tx.

Now we verify the privacy of p
(j)
i . If u

(j)
i is set to a

(s)
r (that is, j < s corresponding to

line 1 of (1)), then promotion does not change the non-anchor which means p
(j)
i retains

the privacy granted from the application of Lemma 6(h) which generated it. So we may

assume that promotion does change the non-anchor; that is, s ≤ j. Because {g(j)i , a
(s)
r } is

single-covered by Ni at time j and s ≤ j, the anchor vertex g
(j)
i does not belong to any

Nx ∈ N (s) \{Nr} such that tx ≥ j. In particular, if {g(j)i , a
(ti)
x } ⊂ Nq, and Nq ∈ N (j), then

q ∈ {i, r}. Hence the pair {g(j)i , a
(ti)
x } is single-covered by Ni at time j, if either x = r or

tr < j. These cases correspond to the second and third line of (1).
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In the exceptional case when j ≤ tr < ti the second line of (1) yields p
(j)
i = {g(j)i , a

(tr)
r }.

This is a single-covered pair, since s ≤ tr and {g(j)i , a
(s)
r , } is single-covered at time j.

The next lemma establishes a property of the selected private pairs that is essential
to building small transversal sets for arcs of the digraph D constructed in Section 5.

Lemma 8. Suppose that p
(j)
i =

{

g
(j)
i , u

(j)
i

}

is a selected private pair for N
(j)
i . If u

(j)
i = a

(y)
x

where y 6∈ {ti, tx} and g
(j)
i is not a private vertex for Ni at time j, then p

(j)
i is a subset of

a 3-cross of N
(j)
i with respect to G

(j−1)
i .

Proof. Because the private pair selection process prioritizes selecting private pairs with
private vertices, the hypothesis that g

(j)
i is not a private vertex for Ni at time j means

Ni \G
(j−1)
i has no private vertices at time j. Consequently, the process to select p

(j)
i must

first have applied Lemma 6(h) to generate a pair
{

g
(j)
i , u

}

in which u is a kernel vertex

(since the final private pair has a non-anchor in the kernel). Lemma 6(h) guarantees a 3-

cross C
(j)
i (G

(j−1)
i ) containing

{

g
(j)
i , u

}

. The promotion process must not have changed the

non-anchor u because the final non-anchor is u
(j)
i = a

(y)
x with y 6∈ {ti, tx} (see observation

prior to Lemma 7). Therefore, p
(j)
i =

{

g
(j)
i , u

}

⊆ C
(j)
i (G

(j−1)
i ), as desired.

Let P (j) =
{

p
(j)
i : 1 ≤ i ≤ ℓj

}

denote the private pairs defined by this process at time

j and let Pi =
{

p
(j)
i : 0 ≤ j ≤ ti

}

be the set of ti + 1 private pairs defined for Ni by this

process. The collection of all selected pairs is defined as

P =
t
⋃

j=0

P (j) =
ℓ
⋃

i=0

Pi.

Next we list for reference obvious properties of the private pairs in P which are sum-
marized in Lemma 8 of [10]:

- P (j1) ∩ P (j2) = ∅, for 0 ≤ j1 < j2 ≤ t;

- any pair in
⋃j

s=0 P
(s) is at most single-covered by N (j), for j = 0, . . . , t;

-
∣

∣P (j)
∣

∣ = ℓj and every
∣

∣Pi ∩ P (j)
∣

∣ = 1, for all 0 ≤ j ≤ t and 1 ≤ i ≤ ℓj .

4 Advancement

In this section we describe a technical modification to the private pairs, called advance-
ment, that enables our final tight asymptotic bounds. This modification concerns rare,
but troublesome private pairs that we alter and reorder. During this reordering, trou-
blesome private pairs are given improved non-anchors and advanced in time (hence the
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process name) to protect their anchors, guaranteeing that the anchors are swapped via
the recursive process (4) defined later in Section 7. Advancement preserves the number of
pairs in P , but a few pairs will lose their private nature, sacrificing themselves to advance
vital troublesome private pairs. To limit the size of the required sacrifices and identify
these vital troublesome pairs, we first partition the k-sets into three types : a k-set Nx is
weightless if |Γx| = 0; it is light if 0 < |Γx| < m1/3 and heavy if m1/3 ≤ |Γx|.

The justification for this otherwise arbitrary appearing trichotomy is that it optimizes
the bounds in Theorem 23. As we shall see, weightless k-sets are innocuous, so there will
be no need to address them further. Heavy sets require too many sacrifices to correct
via advancement; their challenges will be settled efficiently by observing that there are
few heavy k-sets (see Lemma 13) so a crude solution is affordable (definition of TH in
Section 6). This leaves the correction of light k-sets that define the ‘troublesome’ pairs
(see Definition 5).

Before defining troublesome pairs, we define and examine this precursor to them:

Definition 4. A private pair p
(j)
i ∈ P is problematic if it has the form p

(j)
i = {g, a(y)x }

with j ≤ y < tx and g ∈ Nx.

The following lemmas present important properties of problematic private pairs.

Lemma 9. If p
(j)
i = {g, a(y)x } is a problematic private pair, then

(i) i 6= x,

(ii) for any z ∈ {1, . . . , ℓ}, if g ∈ Nz and y ≤ tz, then z ∈ {i, x},

(iii) Ig ⊆ {i, x},

Proof. (i) Because a
(y)
x ∈ p

(j)
i ⊆ Ni and a

(y)
x 6∈ Nx, it follows that x 6= i.

(ii) Assume, to the contrary, that there exists z such that g ∈ Nz, tz ≥ y, and

z 6∈ {i, x}. Because y ≤ tz and z 6= x, it follows that a
(y)
x ∈ Nz. Because j ≤ y, we have

p
(j)
i = {g, a(y)x } ⊆ N

(j)
i ∩N

(j)
z , contradicting that p

(j)
i is private for Ni at stage j.

(iii) Consider z ∈ Ig; so g ∈ Nz and tz = tg. Because g ∈ Nx, we have tx ≤ tg. Hence,
y < tx ≤ tz = tg. Now (ii) implies that z ∈ {i, x}. Therefore, Ig ⊆ {i, x}.

Lemma 9(i) shows that the anchor of a problematic private pair is not a private vertex,
thus the pair is obtained through promotion (1). The next lemma highlights the size of
a critical index set of the anchor vertex, in particular, distinguishing whether it is one or
two.

Lemma 10. Suppose p
(j)
i = {g, a(y)x } is a problematic private pair.

(i) |Ig| = 1 or |Ig| = 2.

(ii) If |Ig| = 2, then Ig = {i, x} and there are at most two problematic private pairs with
anchor g.
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(iii) For |Ig| = 1, if Ig = {i} then p
(j)
i is the only problematic private pair with anchor

g; otherwise, Ig = {x} and every problematic private pair with anchor g has a
non-anchor from Nx.

Proof. (i) Because Ig 6= ∅, this claim is just a rephrasing of Lemma 9(iii).
(ii) Because |Ig| = 2 and Lemma 9(iii), it follows that Ig = {i, x}. Consider an

arbitrary problematic private pair p
(α)
u with anchor g. Lemma 9(iii) implies u ∈ {i, x}.

Now simply observe that Ni and Nx each may have at most one private pair containing
g because anchors are never repeated in the private pair selection process.

(iii) By Lemma 9(iii), {z} = Ig ⊂ {i, x}. If z = i, then p
(j)
i is the unique private pair

for Ni with anchor g; otherwise, z = x. Consequently, every problematic private pair with
anchor g that is not a private pair for Nx has non-anchor from Nx.

Now we are ready to define troublesome private pairs.

Definition 5. A private pair p
(j)
i = {g, a(y)x } is troublesome if p

(j)
i is problematic, Ni is

light, and g ∈ Γi.

These pairs are a concern because they cause particularly thorny conflicts that must
be removed to obtain a skew (2, m)-system that appears in Theorem 22. The next lemma
introduces a possible replacement pair for a troublesome pair. The replacement pair for
p
(j)
i is a new pair p̂

(j)
i with the same anchor but improved non-anchor, a

(tx)
x , that is immune

to swaps (see the recursive process (4) in Section 7) because tx is a terminal stage for
Nx. This immunity ensures that, in the ultimate skew (2, m)-system considered, the

replacement pair will continue to intersect m-sets that contain a
(tx)
x . Note however that,

in contrast to the original pair, the replacement pair may not be private for Ni at time j,
though it is private for Ni at later stages, as the next lemma specifies.

Lemma 11. If p
(j)
i = {g, a(y)x } is a troublesome private pair, then the replacement pair

p̂
(j)
i = {g, a(tx)x } is private for N

(α)
i , for any α ≥ y.

Proof. Lemma 9(i) says x 6= i, and tx < ti because g ∈ Nx and Ig = {i}; therefore,

a
(tx)
x ∈ Ni. This means that the pair {g, a(tx)x } is a subset of Ni. Indeed, Lemma 9(ii)

implies that this pair is private for N
(y)
i . Consequently, this pair is private for Ni at any

time α satisfying α ≥ y.

Because a replacement private pair is not necessarily private at the same time as the
original, to use this new pair we must advance the replacement pair in time at the expense
of destroying another private pair; this is “advancement”. The advancement expense is
justified because these replacement pairs contain important anchors whose swap must be
protected to prevent many other conflicts. Only light k-sets are considered so that the
expense of advancing these replacement pairs is limited. In some cases it may not be
possible to advance a given troublesome pair because no pair remains to be sacrificed.
The process takes this possibility into account (see ‘neutralized’ pairs below).
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Advancement: Here is the formal description of the advancement process. For each light
k-set Ni, we view the collection Pi of private pairs as a list: p

(0)
i , . . . , p

(ti)
i . The process

treats troublesome private pairs in this list according to the order in which they appear —
earlier troublesome pairs are processed before later ones. Suppose that p

(j)
i = {g(j)i , a

(y)
x }

is the next troublesome pair to consider for Ni. By definition, this means g
(j)
i ∈ Γi, that

is g
(j)
i is a critical garbage vertex in Ni. Because p

(j)
i is problematic, j ≤ y < tx.

If there exists a private pair p
(α)
i = {g(α)i , u

(α)
i } for Ni with α ≥ y and g

(α)
i 6∈ Γi, then

set {g(j)i , a
(tx)
x } as the “replacement pair” to be the new private pair for Ni at time α, and

move the pair {g(α)i , u
(α)
i } to time j to take the place of the displaced original troublesome

pair. In this case we refer to the replacement pair {g(j)i , a
(tx)
x }, which is the new p

(α)
i ,

as advanced; the moved pair {g(α)i , u
(α)
i } is labeled deactivated as it may no longer be

private to Ni at the stage at which it now appears, time j. If there is no private pair
p
(α)
i = {g(α)i , u

(α)
i } for Ni with α ≥ y and g

(α)
i 6∈ Γi, then we simply label the troublesome

pair p
(j)
i = {g(j)i , a

(y)
x } neutralized.

After all troublesome pairs for Ni are processed, some pairs are deactivated, and the
remaining pairs are all private pairs for Ni at the times at which they appear since Lemma
11 guarantees that replacement pairs are private. The only remaining troublesome pairs
are neutralized. Also note that this advancement process does not alter the set of anchors.
In particular, distinct private pairs for Ni still have different anchors.

To clearly indicate post-advancement definitions, we employ math bold face font for
these new sets. For example, the new set of pairs for Ni is denoted Pi. The union of all
new pairs for all Ni’s is denoted P. Similarly, G

(j)
i are anchors for the pairs in Pi for Ni

up to time j. A pair in P that is not deactivated is active. Observe that active pairs are
private pairs.

5 A digraph

In this section we introduce an auxiliary digraph D on the kernel A as its vertex set,
where a vertex a

(y)
x represents the private pair p

(y)
x ∈ P. The arcs of D will be labeled

with garbage vertices and will serve as the code of ‘conflicting’ private pairs. Thus an
independent set in D will determine a special subset of non-conflicting private pairs in P.
These pairs represented by the vertices of a large enough independent set of D will be
used in Section 7 to define a large skew cross-intersecting (2, m)-system.

The final skew cross-intersecting (2, m)-system will be generated by the recursive pro-
cess (4) in Section 7. To protect critical garbage vertices during this process we introduce
the following definition.

Definition 6. For x ∈ {1, . . . , ℓ}, define the set of protected private anchors for Nx at

time y, denoted Λ
(y)
x , to be the set:

Λ(y)
x =

(

G(y−1)
x ∩ Γx

)

\ {g ∈ G : g is the anchor of a neutralized private pair of Nx}.
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This set, Λ
(y)
x , contains all anchors for non-neutralized private pairs for Nx up to time

y. In the special case in which Nx is light, these anchors will get swapped via the recursive
procedure (4) to produce M

(y)
x (defined later in Section 7); this explains condition (2.4)

below.
With these definitions complete, we are now ready to define an arc-labeled digraph D

on the vertex set A. Recall that A is the set of kernel vertices; and every element of A
has the form a

(y)
x , where 1 ≤ x ≤ ℓ and 0 ≤ y ≤ tx. The arcs of the digraph D are defined

as follows.
a
(j)
i

g
→ a(y)x is an arc of D (2)

if and only if all the following are true:

(2.1) p
(j)
i = {g, a(y)x } ∈ Pi and p

(j)
i is active,

(2.2) g ∈ Nx ∩Ni,

(2.3) j ≤ y < tx, and if j = y then i < x,

(2.4) if Nx is light, then g 6∈ Λ
(y)
x .

Together, conditions (2.1), (2.2), (2.3) imply that p
(j)
i is a problematic pair. Because

conditions (2.1) requires p
(j)
i is active, the pair is also a private pair for Ni. Condition

(2.3) specifies that y < tx which means that p
(j)
i is not an advanced pair.

We refer to the vertex a
(j)
i as the tail of the arc a

(j)
i

g
→ a

(y)
x ; naturally, a

(y)
x is the head.

Observe that (2.1) implies g ∈ G because the private pair p
(j)
i must intersect G. It also

implies the digraph D has out-degree at most one because an out-going arc from vertex
a
(j)
i , if there is one, is determined by p

(j)
i . Condition (2.2) guarantees that g is not a

private vertex to Ni at time j; that is, the production of the private pair p
(j)
i = {g, a(y)x }

must have invoked Lemma 6(h).
Lemma 10 shows that if there are more than two arcs in D with label g, then |Ig| = 1.

This explains the focus on such vertices given in Definition 3.
The idea is that a labeled arc in D is a code for conflicting elements of an initial (2, m)-

system developed in Section 7. By eliminating the conflicts exposed by these arcs, this
(2, m)-system will eventually be reduced to a valid skew cross-intersecting (2, m)-system
(Theorem 22). The first three arc-defining conditions naturally encode the conflicts, but
condition (2.4) is artificial and technical, arising from the special manner in which we
treat light k-sets in Section 6. Conflict elimination is achieved via a large independent set
in D, so we now turn our attention to guaranteeing such a set.

Given an independent set F of D, call a pair p
(j)
i ∈ P free if a

(j)
i ∈ F . The size of F

determines this size of the final skew cross-intersecting (2, m)-system. The complement
T = A\F is a transversal (a vertex cover) of the arcs in D. We strive for an upper bound
on T , which yields a lower bound on F and thus on the number of free pairs. In the next
section we shall determine a small transversal. The selection of this transversal will apply
the aforementioned trichotomy of k-sets, a concept originating from the Lemma 10.
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6 A small transversal set

Our goal in this section is to find a large independent set in digraph D defined in Section
5, or equivalently, a small transversal set (vertex cover) of the arcs of D. More specifically,
we seek a transversal set T ⊂ A such that |T | = O(m5/2). This will guarantee a set of free
pairs, F = A \ T , that has cardinality |F | ≥ |A| − O(m5/2) which will play an essential
role in the proof of Theorem 23. We build T as the union of four subsets TW , TH , TS,
and TL that we describe below. Each of these subsets targets arcs of D that arise from
different circumstances.

Since the tail of an arc from D represents a problematic private pair, Lemma 9 shows
that if an arc in D has the label g, then |Ig| = 2 or |Ig| = 1. All arcs arising from the
case |Ig| = 2 will be covered by the set TW of their tails:

TW = {a(j)i : a
(j)
i

g
−→ a(y)x is an arc of D and |Ig| = 2}.

The next lemma proves that TW is not too large.

Lemma 12. |TW | ≤ 6m

Proof. Lemma 9 shows that if |Ig| = 2, then there are at most two arcs in D labeled g.
Because |G| ≤ 3m (Lemma 2(b)), it follows that there are at most 2 · 3m arcs of this
type.

We next turn our attention to covering arcs in D that have a label g such that |Ig| = 1.
Such arcs have a head vertex in a light or heavy k-set. We address the latter kind first.
We form a small transversal for these arcs using their head vertices (see definition of TH

below). First we prove that there are not many heavy k-sets.

Lemma 13. The number of heavy k-sets is at most 3m2/3.

Proof. Let h denote the number of heavy k-sets. By definition, a k-set Nx is heavy if
m1/3 ≤ |Γx|. Because different heavy sets have disjoint sets of critical garbage vertices,
we have

|G| ≥

∣

∣

∣

∣

⋃

Nx heavy

Γx

∣

∣

∣

∣

=
∑

Nx heavy

|Γx| ≥ h ·m1/3

Now h ≤ 3m2/3 follows from |G| ≤ 3m that is a consequence of Lemma 2(b).

Now define the transversal vertices contributed by the heavy k-sets:

TH = {a(y)x : a
(j)
i

g
−→ a(y)x is an arc of D and Nx is heavy}.

The next lemma proves that this set is not too large.

Lemma 14. |TH | ≤ 3m5/3

Proof. A heavy k-set Nx contributes at most tx ≤ t elements to TH . Because t < m
(Lemma 2(a)) and the number of heavy k-sets is at most 3m2/3 (Lemma 13), we conclude
that |TH | ≤ m · 3m2/3.
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Finally, we address the remaining arcs in D; these have a label g such that |Ig| = 1
and their head vertex is in a light k-set. Completing the final construction of our small
transversal set T is a very important property we seek to ensure, Property (L):

If Nx is a light k-set, g is the anchor for p
(y)
x , and g ∈ Γx,

then either p
(y)
x is neutralized or a

(y)
x 6∈ T .

(L)

The conclusion a
(y)
x 6∈ T is equivalent to a

(y)
x ∈ F or p

(y)
x is free. Property (L) guarantees

that, if p
(y)
x is not neutralized, then g gets swapped into M

(y+1)
x in the recursive process

(4) generating the final large skew cross-intersecting (2, m)-system in Section 7, thereby
avoiding many conflicts present in the initial system. Guaranteeing Property (L) for heavy
k-sets seems to require a large transversal set, frustrating the primary small transversal
objective. This explains the name of Property (L); it only concerns light k-sets.

Observe that TH contains the head vertices of all arcs in D that fall into a heavy k-set.
In contrast, we use tail vertices to cover arcs in D whose label g satisfies |Ig| = 1 and
whose head falls into a light k-set. We do this to satisfy Property (L). In particular,
define these two sets

TS = {a(j)i ∈ A \ TW : p
(j)
i is deactivated, or

a
(j)
i

g
−→ a

(y)
x is an arc of D and p

(j)
i is neutralized},

and

TL = {a(j)i ∈ A \ (TW ∪ TS) : a
(j)
i

g
−→ a(y)x is an arc of D and Nx is light}.

Observe that, in both definitions, the condition a
(j)
i ∈ A \ TW guarantees that label g

satisfies |Ig| = 1.
The final choice of transversal set is:

T = TW ∪ TH ∪ TS ∪ TL.

Clearly T is a transversal for the arcs of D. We now turn to proving that T satisfies
Property (L) and |T | = O(m5/3). We consider Property (L) first.

Lemma 15. T satisfies Property (L)

Proof. Suppose Ni is a light k-set, g is the anchor for p
(j)
i , and g ∈ Γi. Assume that p

(j)
i

is not neutralized. We must prove that a
(j)
i 6∈ T . First observe that a

(j)
i 6∈ TW ∪ TH by

definition of TW and TH , because |Ig| 6= 2 and Ni is a light k-set.

Next we claim there is no arc of D in which a
(j)
i is the tail. Suppose, to the contrary,

that a
(j)
i

g
→ a

(y)
x is such an arc of D. So, by condition (2.1), we have p

(j)
i = {g, a(y)x }.

Because p
(j)
i ⊆ Ni, clearly x 6= i since otherwise a

(y)
i = a

(y)
x ∈ Ni, a contradiction. Recall

that, if a
(j)
i

g
→ a

(y)
x is an arc of D, then p

(j)
i is a problematic pair. Since we additionally

assume that g ∈ Γi and Ni is light, it follows that p
(j)
i is a troublesome pair. However, we
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have also assumed that p
(j)
i is not neutralized. Therefore, p

(j)
i is an advanced troublesome

pair; that is, p
(j)
i = {g, a(tx)x }. In particular, y = tx which contradicts condition (2.3) that

a
(j)
i

g
→ a

(y)
x is an arc of D.

Because p
(j)
i is not neutralized, a

(j)
i 6∈ TS. We noted earlier that a

(j)
i 6∈ TW ∪ TH . The

last paragraph shows that p
(j)
i not neutralized implies there is no arc of D that has a

(j)
i

as a tail. It follows that a
(j)
i 6∈ TL since these sets are defined taking only tails of arcs.

We conclude that a
(j)
i 6∈ T , as claimed.

To prove |T | = O(m5/3), Lemma 12 and Lemma 14 imply that it suffices to prove that
|TS ∪ TL| = O(m5/3). First we bound the number of light k-sets.

Lemma 16. The number of light k-sets is at most 3m.

Proof. Let Nβ1
, . . . , Nβq

be an enumeration of all the light k-sets in N . Because ∅ 6=
Γβi

⊆ G for all 1 ≤ i ≤ q and these sets of critical garbage vertices are disjoint, we
conclude that

q ≤

q
∑

i=1

|Γβi
| =

∣

∣

∣

∣

q
⋃

i=1

Γβi

∣

∣

∣

∣

≤ |G|.

Therefore q ≤ 3m because Lemma 2(b) implies |G| ≤ 3m.

Next we prove that |TS| is small.

Lemma 17. |TS| ≤ 3m4/3.

Proof. Observe that |TS| is at most the number of deactivated or neutralized pairs in P;
we bound this latter number. Every deactivated or neutralized pair for a light k-set Ni

has a unique anchor from Γi, thus the number of these pairs is at most m1/3. Since Lemma
16 proves that the number of light k-sets is at most 3m, it follows that |TS| ≤ 3m4/3.

To prove |TL| = O(m5/3), we first develop the next tool which finally applies the
leverage the 3-crosses provide via Lemma 8.

Lemma 18. For any 0 ≤ x ≤ ℓ, any g ∈ G, and any y satisfying 0 ≤ y ≤ tx, there is at
most one problematic pair with anchor g and non-anchor a

(y)
x .

Proof. Suppose, to the contrary, that there are two problematic private pairs, p
(j1)
i1

=

{g, a(y)x } and p
(j2)
i2

= {g, a(y)x }. This means, by definition, that j1, j2 ≤ y < tx. Because
each k-set has at most one private pair with anchor g, it follows that i1 6= i2. Without
loss of generality, i1 < i2. This means ti1 ≥ ti2 , so g is not a private vertex of N

(j2)
i2

. Since

p
(j1)
i1

is private for N
(j1)
i1

, it follows that ti2 < j1 ≤ ti1 . Because j1 ≤ y < tx, we conclude
that y 6∈ {ti2 , tx}.

Now apply Lemma 8 to p
(j2)
i2

= {g, a(y)x } to obtain a 3-cross with respect to G
(j2−1)
i2

containing p
(j2)
i2

. Recall that this 3-cross C satisfies

p
(j2)
i2

⊂ C ⊆
(

Ni2 ∪ {a(0)i2
, . . . , a

(j2)
i2

}
)

\G(j2−1)
i2
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Because C is a 3-cross, it must satisfy C ∩Ni2 6= ∅. However, p
(j2)
i2

⊂ Ni2 and C contains

p
(j2)
i2

. Consequently, we conclude that C = {a(α)i2
, g, a

(y)
x }, for some a

(α)
i2

∈ {a(0)i2
, . . . , a

(j2)
i2

}.

Since ti1 > ti2 , it follows that a
(α)
i2

∈ Ni1 . Therefore, C ⊂ Ni1 , contradicting that it is a

3-cross (which requires C ∩Ni1 6= ∅).

Lemma 19. |TL| ≤ 3m5/3.

Proof. Consider now an arbitrary light k-set Nx. Let a
(y1)
x , . . . , a

(yr)
x , with y1 < · · · < yr,

be the collection of all kernel vertices in Nx that are the head of an arc of D whose tail
is in TL. We seek to give an upper bound on the number of tails of these arcs since this
gives an upper bound for the number of vertices in TL contributed by Nx, due to Lemma
10(iii) and Lemma 18.

Suppose, for some 1 ≤ w ≤ r, that a
(j)
i

g
−→ a

(yw)
x is an arc of D and a

(j)
i ∈ TL. As

noted right after the definition of TL, this means that |Ig| = 1. Lemma 10(iii) gives

Ig = {i} or Ig = {x}. If Ig = {i}, then p
(j)
i = {g, a(yw)

x } is a troublesome pair. Since we

are assuming that a
(j)
i ∈ TL, it follows that a

(j)
i 6∈ TS so p

(j)
i is an advanced pair. However,

this implies that yw = tx which contradicts condition (2.3) that a
(j)
i

g
→ a

(yw)
x is an arc of

D. So Ig = {x}.

In other words, if Nx is a light k-set, and for w fixed, a
(j)
i

g
−→ a

(yw)
x is an arc of D with

a
(j)
i ∈ TL, then g ∈ Γx. Lemma 18 states that there is at most one arc entering a

(yw)
x with

label g. Since Nx is light, |Γx| ≤ m1/3, thus at most |Γx| · r ≤ m1/3 · r arcs with tail in TL

enter a
(yw)
x , for w = 1, . . . , r. If r ≤ m1/3, then the number of vertices in TL contributed

by Nx would be at most m2/3. Therefore, because Lemma 16 shows q ≤ 3m, to prove this
lemma’s conclusion (|TL| ≤ 3m5/3) it suffices to prove r ≤ m1/3.

Toward this latter end, define, for 1 ≤ w ≤ r,

∆x(w) = {g : a
(j)
i

g
−→ a

(yw)
x is an arc of D and a

(j)
i ∈ TL}.

By the definition of a
(y1)
x , . . . , a

(yr)
x , we have ∆x(w) 6= ∅, for w = 1, . . . , r. The prior

paragraphs shows ∆x(w) ⊆ Γx, for all 1 ≤ w ≤ r. Consider an arbitrary g ∈ ∆x(w).

By definition this means D contains an arc a
(j)
i

g
−→ a

(yw)
x and a

(j)
i ∈ TL. Note that (2.4)

guarantees that g 6∈ Λ
(yw)
x ; hence g 6∈ G

(yw−1)
x . Therefore, ∆x(w) ⊆ Γx \G

(yw−1)
x .

Because |Γx| ≤ m1/3, to prove r ≤ m1/3 it is enough to prove:

Γx \G
(y1−1)
x ) Γx \G

(y2−1)
x ) · · · ) Γx \G

(yr−1)
x . (3)

Consider again an arbitrary g ∈ ∆x(w) ⊆ Γx\G
(yw−1)
x , for some w ∈ {1, . . . , r−1}, with

arc a
(j)
i

g
−→ a

(yw)
x inD. If g is not private for Nx at time yw, say g ∈ N

(yw)
u with u 6= x, then

a
(yw)
x ∈ Nu contradicting that p

(j)
i = {g, a(yw)

x } is a private pair for N
(j)
i . So g is a private

vertex for Nx at time yw and g 6∈ G
(yw−1)
x . In other words, private vertices are available

to produce the private pair p
(yw)
x . Because private pair selection prioritizes vertices from

Γx\G
(yw−1)
x that are private to Nx at time yw, some vertex in Γx\G

(yw−1)
x was chosen as the

anchor for p
(yw)
x . This private vertex is absent from Γx \G

(yw)
x since it is added to G

(yw−1)
x

to produce G
(yw)
x . Because yw+1− 1 ≥ yw, we conclude, Γx \G

(yw−1)
x ) Γx \G

(yw+1−1)
x .
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Theorem 20. |T | ≤ 6m5/3 + 3m4/3 + 6m.

Proof. Simply observe that by definition T = TW ∪ TH ∪ TS ∪ TL. Now apply |TW | ≤ 6m
(Lemma 12), |TH | ≤ 3m5/3 (Lemma 14), |TS| ≤ 3m4/3 (Lemma 17), and |TL| ≤ 3m5/3

(Lemma 19).

7 A skew cross-intersecting system

In this section we apply the following theorem, first proven by Frankl [3] (see also [8]); it
is the skew version of a theorem due to Bollobás [2]. This theorem is also presented in
the book by Babai and Frankl ([1], pages 94–95).

Theorem 21. (Bollobás’s Theorem - Skew Version) If A1, . . . , Ah are r-element sets and
B1, . . . , Bh are s-element sets such that

(a) Ai and Bi are disjoint for i = 1, . . . , h,

(b) Ai and Bj intersect whenever 1 ≤ i < j ≤ h

then h ≤
(

r+s
r

)

.

A linearly ordered collection of pairs of sets, {(Ai, Bi)}hi=1, satisfying the hypotheses
of Theorem 21 is called a skew intersecting set pair (r, s)-system; abbreviate this to skew
(r, s)-system.

Theorem 21 will be applied here with r = 2 and s = m to obtain a skew (2, m)-system,
where the 2-sets are members in the set P of free pairs specified by the set F ⊂ V \ T in
Section 6, and the m-sets are derived iteratively from the k-sets corresponding to all the
pairs in P as follows.

Recall that each k-set has a private pair at each stage until the k-set survives. First
to every Ni associate ti+1 m-sets denoted M

(0)
i , . . . ,M

(ti)
i . At stage 0, set M

(0)
i = Ni, for

all i = 1, . . . , ℓ0. For i = 1, . . . , ℓ and j = 1, . . . , ti, recursively define

M
(j)
i =











(

M
(j−1)
i \ {a(j−1)

i }
)

∪
{

g
(j−1)
i

}

if p
(j−1)
i =

{

g
(j−1)
i , u

(j−1)
i

}

is free

M
(j−1)
i if p

(j−1)
i is not free

(4)

Note that, because a
(j−1)
i ∈ M

(j−1)
i , g

(j−1)
i 6∈ M

(j−1)
i , and |M (0)

i | = m, it follows that

|M (j)
i | = m, for all i = 1, . . . , ℓ and j = 1, . . . , ti. This recursive process will never remove

a
(ti)
i from M

(0)
i because the process halts at stage j = ti.

Now define the set-pair system

F =
{

(p
(j)
i ,M

(j)
i ) : p

(j)
i ∈ P is free

}

,

where F is ordered linearly and chronologically via lexicographical order:

(p
(j)
i ,M

(j)
i ) < (p(y)x ,M (y)

x ) ⇐⇒ (j < y) or (j = y and i < x).
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Theorem 22. F is a skew (2, m)-system.

Proof. Clearly |p(j)i | = 2 and |M (j)
i | = m, for all (p

(j)
i ,M

(j)
i ) ∈ F . Because p

(j)
i =

{g(j)i , u
(j)
i } is private to Ni at time j, it follows that p

(j)
i ⊂ Ni; so, p

(j)
i ∩ M

(0)
i = ∅.

Observe that g
(j)
i /∈ M

(j)
i , because g

(j)
i is added to M

(j)
i at time j + 1 by the recursive

process generating the m-sets. Moreover, {g(j)i , u
(j)
i } ∩ {g(0)i , . . . , g

(j−1)
i } = ∅, by the it-

erative choice of private pairs, thus u
(j)
i /∈ M

(0)
i implying that u

(j)
i /∈ M

(j)
i . Therefore,

p
(j)
i ∩M

(j)
i = ∅, showing that hypothesis (a) is satisfied in Theorem 21.

Now we prove the system satisfies hypothesis (b). Suppose (p
(j)
i ,M

(j)
i ), (p

(y)
x ,M

(y)
x ) ∈ F

and (p
(j)
i ,M

(j)
i ) < (p

(y)
x ,M

(y)
x ), in particular, j ≤ y. We must prove p

(j)
i ∩M

(y)
x 6= ∅.

If i = x, then j < y so g
(j)
i ∈ M

(j+1)
i = M

(j+1)
x because p

(j)
i is free and therefore (4)

swaps g
(j)
i into M

(j+1)
i . In this case, g

(j)
i ∈ M

(y)
x . Consequently, we may assume i 6= x.

If g
(j)
i ∈ M

(y)
x , then p

(j)
i ∩M

(y)
x 6= ∅. So we may assume g

(j)
i /∈ M

(y)
x . Elements from

G are only added to M
(0)
x to get to M

(y)
x , so g

(j)
i /∈ M

(0)
x = Nx which implies g

(j)
i ∈ Nx.

Since j ≤ y and p
(j)
i is private to Ni at time j, we conclude that u

(j)
i /∈ Nx because Nx

survives at stage j (that is, tx ≥ y ≥ j). So u
(j)
i ∈ Nx = M

(0)
x .

If u
(j)
i ∈ G, or u

(j)
i = a

(s)
x and s ≥ y, then a

(s)
x is not removed from M

(0)
x during the

process generating M
(y)
x , meaning p

(j)
i ∩ M

(y)
x 6= ∅. So we may assume that u

(j)
i = a

(s)
x ,

for some s ≤ y − 1. The private pair selection and the promotion process (1) guarantees
that j ≤ s.

Setting g = g
(j)
i , we find p

(j)
i = {g, a(s)x } with g ∈ Ni ∩ (Nx ∩G) and j ≤ s ≤ y − 1 <

y ≤ tx. In other words, according to Definition 4, p
(j)
i is a problematic pair. Lemma 10(i)

yields |Ig| = 1 or |Ig| = 2. If |Ig| = 2, then a
(j)
i ∈ TW which contradicts the assumption

that p
(j)
i is free. So we may assume |Ig| = 1. Lemma 9(iii) implies that Ig = {i} or

Ig = {x}.

If Nx is heavy, then the definition of TH means a
(s)
x ∈ TH , so p

(s)
x is not free. Accord-

ingly, a
(s)
x is never removed from M

(0)
x in the production of M

(y)
x . Hence, a

(s)
x ∈ p

(j)
i ∩M

(y)
x .

So we may assume that Nx is light.
If g ∈ Λ

(y)
x , then g is the anchor for some non-neutralized private pair p

(β)
x , for some

0 ≤ β ≤ y − 1 and g ∈ Γx. In this case, Property (L) guarantees that a
(β)
x 6∈ T . It follows

that p
(β)
x is free so (4) swaps g into M

(β+1)
x . This means g ∈ M

(y)
x yielding g ∈ p

(j)
i ∩M

(y)
x .

So we may assume that g 6∈ Λ
(y)
x .

Because p
(j)
i is free, we conclude that a

(j)
i 6∈ TS so p

(j)
i is active.

To summarize, we now have these remaining conditions: p
(j)
i = {g, a(s)x }, p(j)i is active,

g ∈ Ni ∩ Nx, j ≤ s < y ≤ tx, Nx is light, and g 6∈ Λ
(y)
x . These conditions guarantee

a
(j)
i

g
−→ a

(s)
x is an arc of D. But this case can not occur because the definition of TL would

give a
(j)
i ∈ TL, implying a

(j)
i 6∈ F . This contradicts the assumption that p

(j)
i is free.

Now we may state the main theorem of the paper, a new upper bound on the order
of an (n,m)-structure
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Theorem 23. Any (n,m)-structure satisfies

n ≤

(

m+ 2

2

)

+ 6m5/3 + 3m4/3 + 9m− 3.

Proof. Recall that F = A \ T is a free set of pairs; so |F | = |A| − |T |, and the skew
Bollobás theorem yields |F | ≤

(

m+2
2

)

. Therefore, |A| ≤
(

m+2
2

)

+ |T |. By Lemma 2(b),

|G| ≤ 3(m − 1); and using the bound on |T | ≤ 6m5/3 + 3m4/3 + 6m in Theorem 20 we
obtain

n = |G|+ |A|

≤ |G|+

(

m+ 2

2

)

+ |T |

≤ 3(m− 1) +

(

m+ 2

2

)

+ 6m5/3 + 3m4/3 + 6m

≤

(

m+ 2

2

)

+ 6m5/3 + 3m4/3 + 9m− 3.
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and the maximum order of 3-uniform τ -critical hypergraphs (2022),
https://arxiv.org/abs/2204.02859.
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