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Abstract

In this paper, we study skew frame starters, which are strong frame starters
that satisfy an additional “skew” property. We prove three new non-existence
results for cyclic skew frame starters of certain types. We also construct several
small examples of previously unknown cyclic skew frame starters by computer.

1 Introduction

The paper [10] is a recent work discussing existence of cyclic strong frame starters.
Here, we turn our attention to cyclic skew frame starters. We begin with relevant
definitions and a review of results on cyclic skew starters in Section 1. We observe
that there is a gap in the proof of a well-known existence theorem (namely, Theorem
1.5) from [2] and we show how to complete the missing details in the proof. We
prove three nonexistence theorems in Section 2. The first nonexistence result uses
a classical method previously employed by Constable [3] and Wallis and Mullin
[12]. The other two nonexistence results are obtained by analyzing properties of
homomorphic images of hypothetical cyclic skew frame starters. In Section 3, we
discuss existence and nonexistence of “small” cyclic skew frame starters, and several
previously unknown cyclic skew frame starters are constructed by computer. Section
4 is a brief summary and discussion.

We recall some standard definitions now.

Definition 1.1. Let G be an additive abelian group of order g and let H be a
subgroup of G of order h, where g − h is even. A frame starter in G \H is a set
of (g − h)/2 pairs {{xi, yi} : 1 ≤ i ≤ (g − h)/2} that satisfies the following two
properties:

∗The author’s research is supported by NSERC discovery grant RGPIN-03882.

1

http://arxiv.org/abs/2211.12367v1


1. {xi, yi : 1 ≤ i ≤ (g − h)/2} = G \H.

2. {±(xi − yi) : 1 ≤ i ≤ (g − h)/2} = G \H.

This frame starter has type hg/h.

Note that the pairs in the frame starter form a partition of G \ H, and the
differences obtained from these pairs also partitions G \ H. If H = {0}, then the
frame starter is just called a starter.

Definition 1.2. Suppose that S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a frame starter
in G \H. S is strong if the following two properties hold:

1. xi + yi 6∈ H for 1 ≤ i ≤ (g − h)/2.

2. xi + yi 6= xj + yj if 1 ≤ i, j ≤ (g − h)/2, i 6= j.

Definition 1.3. Suppose that S1 = {{xi, yi} : 1 ≤ i ≤ (g−h)/2} and S2 = {{ui, vi} :
1 ≤ i ≤ (g − h)/2} are both frame starters in G \ H. Without loss of generality,
assume that yi− xi = vi − ui for 1 ≤ i ≤ (g− h)/2. S1 and S2 are orthogonal if the
following two properties hold:

1. yi − vi 6∈ H for 1 ≤ i ≤ (g − h)/2.

2. yi − vi 6= yj − vj if 1 ≤ i, j ≤ (g − h)/2, i 6= j.

In other words, when the pairs in S1 and S2 are matched according to their
differences, the “translates” are distinct elements of G \ H. These translates are
often called the adder.

It is not hard to see that a strong frame starter S is orthogonal to −S. The
associated adder is ai = −(xi + yi), 1 ≤ i ≤ (g − h)/2.

Definition 1.4. Suppose that S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a frame starter
in G \H. S is skew if

{±(xi + yi) : 1 ≤ i ≤ (g − h)/2} = G \H.

It is clear that any skew starter is also strong.

The skew property is aesthetically pleasing. However, we should note that skew
starters (especially in cyclic groups) have some unexpected applications to the con-
struction of other types of designs. See [2, 5] for some examples.

Example 1.1. Suppose G = Z10 and H = {0, 5}. Here is a skew frame starter of
type 25 in G \H:

S = {{3, 4}, {7, 9}, {8, 1}, {2, 6}}.

Example 1.2. Suppose G = Z7 and H = {0}. Here is a skew frame starter of type
17 (i.e., a skew starter) in G \H:

S = {{2, 3}, {5, 1}, {6, 4}}.
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Example 1.3. [9] Suppose G = Z4 × Z4 and H = {(0, 0), (0, 2), (2, 0), (2, 2)}. Here
is a skew frame starter of type 44 in G \H:

S = {{(1, 1), (3, 2)}, {(3, 0), (3, 1)}, {(2, 1), (3, 3)}, {(0, 3), (1, 3)},
{(1, 0), (2, 3)}, {(0, 1), (1, 2)}}.

A frame starter S is patterned if S = {{x,−x} : x ∈ G\H}. There is a (unique)
patterned frame starter in G \H whenever G has odd order.

The next theorem generalizes a classical result due to Byleen [1] to the setting
of frame starters.

Theorem 1.1. Suppose G is an abelian group of odd order. Then there is a strong
frame starter S in G \H if and only if there is an adder A for the patterned frame
starter in G \H. Further, S is a skew frame starter if and only if the adder A is
skew.

Proof. Suppose S is a patterned frame starter in G \ H. Suppose that ai is the
adder associated with a pair {xi,−xi}. The corresponding orthogonal frame starter
T contains the pair {xi + ai,−xi + ai}. We just need to check that T is strong.
The sums of the pairs in T are 2ai, 1 ≤ i ≤ (g − h)/2. These sums are clearly
distinct, so we need only prove that 2ai 6∈ H for all i. But this follows easily from
the observation that the mapping x 7→ 2x is a bijection of G that maps H to H.

Conversely, suppose that S is a strong frame starter. For any pair {xi, yi} ∈ S,
let ai = (xi + yi)/2 be the adder for the pair {si, ti} in the patterned frame starter,
where si = (xi−yi)/2 and ti = (yi−xi)/2. We check that si+ai = xi and ti+ai = yi,
so S is orthogonal to the patterned frame starter. It is easy to see that no element
ai ∈ H, again using the fact that the mapping x 7→ 2x is a bijection of G that maps
H to H.

Finally, S is skew if and only if {±(xi + yi) : 1 ≤ i ≤ (g− h)/2} = G \H, and A
is skew if and only if {±(xi + yi)/2 : 1 ≤ i ≤ (g − h)/2} = G \H. Hence, S is skew
if and only if A is skew.

The main topic we study in this paper is skew frame starters. However, there has
been considerable prior work on the special case of skew starters. For completeness,
we recall some known existence results. The following infinite class of skew starters
is usually called the Mullin-Nemeth starters.

Theorem 1.2. [8] Suppose q = 2kt+ 1 is a prime power where t > 1 is odd. Then
there is a skew starter in Fq \ {0}.

There is another infinite class of skew starters that is often called the Chong-
Chan-Dinitz starters. We refer to Lins and Schellenberg [7] for a simple presentation
of this class of starters.

Theorem 1.3. [7] Suppose that n = 16t2 + 1. Then there is a skew starter in Zn.

The following consequence of Theorems 1.2 and 1.3 is well-known.
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Corollary 1.4. If n > 5 is prime, then there is a skew starter in Zn.

Proof. Write n = 2kt + 1, where t ≥ 1 is odd. If t > 1, then there is a Mullin-
Nemeth skew starter in Zn. If t = 1, then n = 2k + 1 is prime. Therefore n must
be a Fermat prime, i.e., n = 22

s

+ 1 for some integer s ≥ 0. Since we assumed that
n > 5, we have s ≥ 2, and therefore n = 16t2 + 1 for a positive integer t. Then the
Chong-Chan-Dinitz starter is a skew starter in Zn.

Skew starters in Zn have been studied in detail by Liaw [6] and by Chen, Ge
and Zhu [2]. The most general current existence result for skew starters is in [2].

Theorem 1.5. [2, Theorem 1.2] Suppose that gcd(n, 6) = 1 and either n 6≡ 0 mod 5
or n ≡ 0 mod 125. Then there is a skew starter in Zn.

It seems that there is a gap in the proof of Theorem 1.5 given in [2]. However,
this gap is easily filled using techniques from [2]. We discuss this now.

Dinitz and Stinson in [5, p. 191] posed the following open problem: “Prove that
there exists a skew starter in Zn for all n such that gcd(n, 6) = 1.”1 This open
problem was recalled in [2] and Theorem 1.5 was presented as a partial answer to
the problem. The proof of Theorem 1.5 given in [2] uses the following lemma as a
starting point.

Lemma 1.6. If gcd(n, 30) = 1, then there is a skew starter in Zn.

In [2], Lemma 1.6 is attributed to Dinitz and Stinson [5]. However, this lemma
does not appear in the cited article [5] and neither Dinitz nor Stinson can recall
having seen this lemma at the time that [5] was published. Fortunately, the tech-
niques of [2] suffice to prove Lemma 1.6. The main tool is the following powerful
multiplication construction from [2].

Lemma 1.7. [2, Lemma 2.3] Suppose there exist skew starters in Zm and Zn. Then
there is a skew starter in Zmn.

Now, it is not hard to see that Lemma 1.6 is a consequence of Corollary 1.4 and
Lemma 1.7. First, for any prime p > 5 and any integer s ≥ 1, Corollary 1.4 and
Lemma 1.7 prove that there is a skew starter in Zps . Then additional applications
of Lemma 1.7 can be used to handle all Zn where gcd(n, 30) = 1, since these values
of n have no prime divisors ≤ 5.

Thus it is not difficult to reconstruct a proof of Lemma 1.6; then the rest of the
proof of Theorem 1.5 from [2] goes through unchanged.

There are very few prior existence results on skew frame starters. However, here
is one infinite class that is known to exist.

Theorem 1.8. [4, 11] Suppose q ≡ 1 mod 4 is a prime power and n ≥ 1. Then
there is a skew frame starter in (Fq × (Z2)

n) \ ({0} × (Z2)
n).

1Of course the condition n > 5 also needs to be included. Otherwise, the conjecture is false
because there is no skew starter in Z5.
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Finally, it will be useful to recall some nonexistence results for frame starters
and strong frame starters. These results (due to various authors) can all be found
in [10].

Theorem 1.9. Suppose G is an abelian group of order 2u and suppose H is a
subgroup of G of order 2t, where t is odd. If u/t ≡ 2 or 3 mod 4, then there is no
frame starter in G \H.

Theorem 1.10. Suppose t is odd, G is an abelian group of order 5t and H is a
subgroup of order t. Then there does not exist a strong frame starter in G \H.

Theorem 1.11. Suppose G is an abelian group of order 4t and suppose H is a
subgroup of G of order t, where t is even and G/H ∼= Z4. Then there is no strong
frame starter in G \H.

Theorem 1.12. Suppose G is an abelian group of order 6t and suppose H is a
subgroup of G of order t. Then there is no strong frame starter in G \H.

2 Three new nonexistence theorems

In the rest of this paper, we restrict our attention to skew frame starters in G \H,
where G = Zg and H = {0, r, 2r, . . . , (h− 1)r} (note that H is the unique subgroup
of G having order h). We will refer to such a starter as being a cyclic skew frame
starter of type hg/h.

First we consider odd order cyclic groups. The following result uses a technique
due to Constable [3] and Wallis and Mullin [12].

Lemma 2.1. Suppose S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a cyclic strong frame
starter of type hg/h, where g is odd. Then

(g−h)/2
∑

i=1

(xi + yi)
2 ≡ 0 mod g. (1)

Proof. Since S is strong and g is odd, it follows from Theorem 1.1 that the values
ai = (xi + yi)/2 comprise an adder for the patterned frame starter in G \H (ai is
the adder element for the pair {(xi−yi)/2, (yi−xi)/2}. Let {si, ti} denote the pairs
in the patterned frame starter, where si = (xi− yi)/2 and ti = (yi−xi)/2. We have

{si : 1 ≤ i ≤ (g − h)/2} ∪ {ti : 1 ≤ i ≤ (g − h)/2} = G \H

and

{si + ai : 1 ≤ i ≤ (g − h)/2} ∪ {ti + ai : 1 ≤ i ≤ (g − h)/2} = G \H.

Hence,

{si, ti : 1 ≤ i ≤ (g − h)/2} = {si + ai, ti + ai : 1 ≤ i ≤ (g − h)/2},
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and therefore we have

(g−h)/2
∑

i=1

(

si
2 + ti

2
)

≡

(g−h)/2
∑

i=1

(

(si + ai)
2 + (ti + ai)

2
)

mod g.

Expanding the right hand side, we have

(g−h)/2
∑

i=1

(

si
2 + ti

2
)

≡

(g−h)/2
∑

i=1

(

si
2 + 2siai + ai

2 + ti
2 + 2tiai + ai

2
)

mod g,

so
(g−h)/2
∑

i=1

(

2siai + ai
2 + 2tiai + ai

2
)

≡ 0 mod g.

Hence,
(g−h)/2
∑

i=1

(

2ai(si + ti) + 2ai
2
)

≡ 0 mod g.

Since si + ti ≡ 0 mod g for all i, it follows that

(g−h)/2
∑

i=1

2ai
2 ≡ 0 mod g.

Now, substitute ai = (xi + yi)/2 to obtain

(g−h)/2
∑

i=1

(xi + yi)
2/2 ≡ 0 mod g.

Finally, since g is odd, we have

(g−h)/2
∑

i=1

(xi + yi)
2 ≡ 0 mod g.

Suppose g = hr is odd. As before, let G = Zg and let H = {0, r, 2r, . . . , (h−1)r}
be the unique subgroup of G of order h. Define

half(G,H) = {j : 1 ≤ j ≤ (g − 1)/2, j 6≡ 0 mod r}.

Lemma 2.2. Let g = hr be odd. Suppose S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a
cyclic skew frame starter of type hg/h = hr.

∑

j∈half(G,H)

j2 ≡ 0 mod g. (2)
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Proof. We are assuming that S is a skew frame starter in G \H, where G = Zg and
H = {0, r, 2r, . . . , (h− 1)r}. We first observe that

half(G,H) ∪ (−half(G,H)) = G \H.

For every j ∈ G\H, there is a unique pair {xi, yi} ∈ S such that xi+yi ≡ ±j mod g
(this is because S is skew). Therefore

∑

j∈half(G,H)

j2 ≡

(g−h)/2
∑

i=1

(xi + yi)
2 mod g.

The result then follows immediately from Lemma 2.1.

Lemma 2.3. Let g = hr be odd. Then

∑

j∈G\H

j2 =
g(2gh − 1)(g − h)

6h
. (3)

Proof. It is clear that
∑

j∈G\H

j2 =

g−1
∑

i=1

i2 − r2
h−1
∑

i=1

i2.

Using the standard formula

n
∑

j=1

j2 =
n(n+ 1)(2n + 1)

6

twice, and simplifying, the stated result is obtained.

Theorem 2.4. Let g be odd and suppose h is a divisor of g. Suppose that

(2gh − 1)(g − h) 6≡ 0 mod 6h. (4)

Then there is no cyclic skew frame starter of type hg/h (in Zg).

Proof. Suppose there is a skew frame starter in G \ H, where G = Zg and H =
{0, r, 2r, . . . , (h− 1)r}. Let

T =
∑

j∈half(G,H)

j2.

From Lemma 2.2, we have T ≡ 0 mod g. Since g is odd, T ≡ 0 mod g if and only if
2T ≡ 0 mod g. However,

2T ≡
∑

j∈G\H

j2 mod g

≡
g(2gh − 1)(g − h)

6h
mod g

7



from Lemma 2.3.
So T ≡ 0 mod g if and only if (2gh − 1)(g − h)/6h is an integer. Therefore, if

(2gh − 1)(g − h) 6≡ 0 mod 6h, it follows that T 6≡ 0 mod g and hence a cyclic skew
frame starter of type hg/h cannot exist.

We look at some consequences of Theorem 2.4. First, we consider the case h = 1.

Corollary 2.5. If t is odd, then there does not exist a cyclic skew starter in Z3t.

Proof. When h = 1, the condition (4) reduces to

(2g − 1)(g − 1) 6≡ 0 mod 6.

Recalling that g is odd, this condition holds if and only if g ≡ 3 mod 6. If g ≡
3 mod 6, then g = 3t where t is odd. Hence, there is no cyclic skew starter in Z3t

when t is odd.

We note that Corollary 2.5 is a classic result proven in [3, 12].2 The next case
is h = 3.

Corollary 2.6. If t ≡ 3 or 5 mod 6, then there does not exist a cyclic skew frame
starter of type 3t (in Z3t).

Proof. When h = 3, the condition (4) becomes

(6g − 1)(g − 3) 6≡ 0 mod 18.

Since gcd(6g − 1, 18) = 1, this condition reduces to g 6≡ 3 mod 18. Writing g = 3t,
the result follows from Theorem 2.4.

The following corollary is proven in a similar manner as Theorem 2.6.

Corollary 2.7. If t ≡ 3 mod 6, then there does not exist a cyclic skew frame starter
of type 5t in Z5t.

For even order cyclic groups, we use a different approach. Some nonexistence
results for strong frame starters have previously been obtained by considering a
homomorphic image of a putative strong frame starter (see, e.g., [10]). Here we
assume the existence of a cyclic skew frame starter S of type h3t in Zg, where g = 3ht,
and consider the image of S under the canonical homomorphism φ : Zg → Z3. Note
that g can be even or odd in this analysis.

Theorem 2.8. There does not exist a cyclic skew strong starter of type h3t in Z3ht

if ht 6≡ 0 mod 3.

2More precisely, Constable [3] proved Corollary 2.5. Subsequently, Wallis and Mullin proved a
generalization that applies to any abelian group having order divisible by three in which the 3-Sylow
subgroup is cyclic.
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Proof. Denote g = 3ht. Let φ : Zg → Z3 be the homomorphism defined as x 7→
x mod 3. Suppose S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a skew frame starter in
G \H, where G = Zg and H is the subgroup of G having order h. Define the type
of an element x ∈ G to be φ(x), and define the type of a pair {x, y} ∈ S to be the
multiset {φ(x), φ(y)}. For 0 ≤ i ≤ j ≤ 2, let a{i,j} denote the number of pairs in S
of type {i, j}.

G \ H contains g/3 − h elements of type 0, g/3 elements of type 1 and g/3
elements of type 2. Thus the following three equations are obtained:

2a{0,0} + a{0,1} + a{0,2} = g/3 − h (5)

2a{1,1} + a{0,1} + a{1,2} = g/3 (6)

2a{2,2} + a{0,2} + a{1,2} = g/3. (7)

There are 1
2(

g
3 − h) pairs in S having a difference of type 0 and there are g/3

pairs in S that have a difference of type 1 or 2. So we obtain two further equations:

a{0,0} + a{1,1} + a{2,2} = (g/3 − h)/2 (8)

a{0,1} + a{0,2} + a{1,2} = g/3. (9)

Finally, there are 1
2(

g
3 − h) pairs in S whose sum has type 0; these are the pairs

of type {0, 0} or {1, 2}. So we obtain the following equation:

a{0,0} + a{1,2} = (g/3 − h)/2. (10)

Computing the sum of equations (5), (8) and (10), we see that

4a{0,0} + a{0,1} + a{0,2} + a{1,1} + a{1,2} + a{2,2} = 2(g/3 − h). (11)

On the other hand, computing the sum of equations (8) and (9), we obtain

a{0,0} + a{0,1} + a{0,2} + a{1,1} + a{1,2} + a{2,2} = (g − h)/2. (12)

Subtracting (12) from (11) and substituting g = 3ht, we have

3a{0,0} = h(t− 3)/2. (13)

Therefore h(t− 3)/2 is divisible by 3 and hence ht ≡ 0 mod 3.

When h = 1, we obtain the following consequence of Theorem 2.8. We note that
this result is weaker than Corollary 2.5.

Corollary 2.9. There does not exist a cyclic skew starter in Z3t if t 6≡ 0 mod 3.

A similar result can be proven when when h = 2 or 4. This result is new.

Corollary 2.10. Suppose t 6≡ 0 mod 3. Then there does not exist a cyclic skew
frame starter of type 23t (in Z6t) or one of type 43t (in Z12t).

9



Here is another result that can be proved in a similar fashion.

Theorem 2.11. There does not exist a cyclic skew strong starter of type h4t in Z4ht

if ht 6≡ 0 mod 4.

Proof. Denote g = 4ht. Let φ : Zg → Z4 be the homomorphism defined as x 7→
x mod 4. Suppose S = {{xi, yi} : 1 ≤ i ≤ (g − h)/2} is a skew frame starter in
G \H, where G = Zg and H is the subgroup of G having order h. Define the type
of an element x ∈ G to be φ(x), and define the type of a pair {x, y} ∈ S to be the
multiset {φ(x), φ(y)}. For 0 ≤ i ≤ j ≤ 3, let a{i,j} denote the number of pairs in S
of type {i, j}.

G \H contains g/4 − h elements of type 0 and g/4 elements each of types 1, 2
and 3. Thus the following four equations are obtained:

2a{0,0} + a{0,1} + a{0,2} + a{0,3} = g/4 − h (14)

2a{1,1} + a{0,1} + a{1,2} + a{1,3} = g/4 (15)

2a{2,2} + a{0,2} + a{1,2} + a{2,3} = g/4 (16)

2a{3,3} + a{0,3} + a{1,3} + a{2,3} = g/4. (17)

There are 1
2(

g
4 − h) pairs in S having a difference of type 0, g/8 pairs in S that

have a difference of type 2, and g/4 pairs in S that have a difference of type 1 or 3.
So we obtain three further equations:

a{0,0} + a{1,1} + a{2,2} + a{23,3} = (g/4 − h)/2 (18)

a{0,2} + a{1,3} = g/8 (19)

a{0,1} + a{1,2} + a{2,3} + a{0,3} = g/4. (20)

Finally, there are 1
2(

g
4 − h) pairs in S whose sum has type 0 and g/8 pairs in S

that have a sum of type 2. We obtain the following equations:

a{0,0} + a{2,2} + a{1,3} = (g/4 − h)/2 (21)

a{0,2} + a{1,1} + a{3,3} = g/8. (22)

Computing the sum of equations (14) and (16), we see that

2a{0,0} + 2a{2,2} + 2a{0,2} + a{0,1} + a{1,2} + a{2,3} + a{0,3} = g/2 − h. (23)

Then, subtracting (20) from (23) and dividing by 2, we obtain

a{0,0} + a{2,2} + a{0,2} = (g/4 − h)/2. (24)

On the other hand, computing the sum of equations (21) and (22), we obtain

a{0,0} + a{0,2} + a{2,2} + a{1,1} + a{1,3} + a{3,3} = g/4 − h/2. (25)

Subtracting (22) from (19), we obtain

a{1,1} + a{3,3} = a{1,3}. (26)
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Substituting (26) into (25), we have

a{0,0} + a{0,2} + a{2,2} + 2a{1,3} = g/4 − h/2. (27)

Subtracting (24) from (27) and dividing by 2, we have

a{1,3} = g/16. (28)

Therefore g = 4ht is divisible by 16 and hence ht ≡ 0 mod 4.

The following is an immediate corollary of Theorem 2.11.

Corollary 2.12. Suppose t is odd. Then there does not exist a cyclic skew frame
starter of type 24t in Z4t.

3 Cyclic skew frame starters in groups of small order

For g = 21, a cyclic skew frame starter of type 37 is not ruled out by Theorem 2.6.
However, an exhaustive search shows that this skew frame starter does not exist.
On the other hand, for g = 39 and 57, we found cyclic skew frame starters of types
313 and 319, resp., by a backtracking algorithm. These starters are presented in
Examples 3.1 and 3.2.

Example 3.1. A cyclic skew frame starter of type 313 in Z39

{29, 30} {32, 34} {6, 9} {36, 1} {37, 3} {19, 25}
{8, 15} {14, 22} {18, 27} {10, 20} {5, 16} {38, 11
{21, 35} {28, 4} {17, 33} {7, 24} {23, 2} {12, 31}

Example 3.2. A cyclic skew frame starter of type 319 in Z57

{1, 2} {3, 5} {4, 7} {6, 10} {8, 13} {9, 15} {11, 18} {17, 25}
{26, 35} {43, 53} {45, 56} {22, 34} {27, 40} {30, 44} {31, 46} {23, 39}
{33, 50} {37, 55} {32, 52} {21, 42} {29, 51} {24, 47} {12, 36} {48, 16}
{28, 54} {14, 41} {49, 20}

Theorem 2.7 does not rule out the existence of a cyclic skew frame starter of
type 55. However, from Theorem 1.10, a strong frame starter of type 55 in Z25 does
not exist (so a cyclic skew starter also does not exist). Cyclic skew frame starters
of types 57 and 511 were found using a backtracking algorithm.

Example 3.3. A cyclic skew frame starter of type 57 in Z35

{1, 2} {29, 31} {8, 11} {18, 22} {33, 3} {6, 12} {19, 27} {16, 25}
{20, 30} {34, 10} {5, 17} {13, 26} {9, 24} {23, 4} {15, 32}

11



Example 3.4. A cyclic skew frame starter of type 511 in Z55

{1, 2} {3, 5} {6, 9} {4, 8} {7, 12} {10, 16} {14, 21} {24, 32}
{26, 35} {19, 29} {41, 53} {38, 51} {34, 48} {39, 54} {31, 47} {28, 45}
{25, 43} {23, 42} {30, 50} {15, 36} {17, 40} {13, 37} {27, 52} {49, 20}
{46, 18}

We also have four small examples of cyclic skew frame starters, in groups of even
order, which were found by backtracking.

Example 3.5. A cyclic skew frame starter of type 45 in Z20

{8, 9} {16, 18} {14, 17} {19, 3} {1, 7} {6, 13} {4, 12} {2, 11}

Example 3.6. A cyclic skew frame starter of type 85 in Z40

{6, 7} {27, 29} {23, 26} {12, 16} {33, 39} {31, 38} {14, 22} {32, 1}
{13, 24} {37, 9} {4, 17} {34, 8} {3, 19} {11, 28} {18, 36} {2, 21}

Example 3.7. A cyclic skew frame starter of type 225 in Z50

{1, 2} {3, 5} {4, 7} {6, 10} {8, 13} {9, 15} {14, 21} {20, 28}
{37, 46} {38, 48} {23, 34} {24, 36} {18, 31} {29, 43} {27, 42} {33, 49}
{30, 47} {26, 44} {22, 41} {12, 32} {19, 40} {45, 17} {16, 39} {11, 35}

Example 3.8. A cyclic skew frame starter of type 413 in Z52

{1, 2} {3, 5} {4, 7} {6, 10} {9, 14} {11, 17} {15, 22} {27, 35}
{24, 33} {28, 38} {31, 42} {29, 41} {20, 34} {36, 51} {21, 37} {43, 8}
{32, 50} {30, 49} {44, 12} {19, 40} {25, 47} {45, 16} {46, 18} {23, 48}

Table 1 summarizes our current knowledge regarding “small” cyclic skew frame
starters of type tu for t > 1. Note that the nonexistence of several cyclic skew frame
starters follow from exhaustive backtracking searches, as indicated in the table.

4 Discussion and summary

In my paper [10], I investigated the existence of strong frame starters in cyclic
groups, but I did not consider skew frame starters in that paper. Shortly after the
completion of [10], Esther Lamken asked me if there is a skew frame starter of type
69. I was not able to answer her question—either positively or negatively—but it
motivated me to study cyclic skew frame starters in detail.

There is an effective hill-climbing algorithm to find strong frame starters (see,
e.g., [5]). In conjunction with nonexistence results proven in [10] and elsewhere, it
turned out that there was fairly compelling empirical evidence to support a conjec-
ture I made in [10] regarding necessary and sufficient conditions for the existence of
strong frame starters in cyclic groups.
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Table 1: Existence of small cyclic skew frame starters1,2

type existence authority

25 yes Theorem 1.83

28 no exhaustive search
29 no exhaustive search
212 no Corollary 2.12
213 yes Theorem 1.83

216 no exhaustive search
217 yes Theorem 1.83

220 no Corollary 2.12
221 no Corollary 2.10
224 no Corollary 2.10
225 yes Example 3.7
228 no Corollary 2.12
229 yes Theorem 1.83

37 no exhaustive search
39 no Corollary 2.6
311 no Corollary 2.6
313 yes Example 3.1
315 no Corollary 2.6
317 no Corollary 2.6
319 yes Example 3.2

45 yes Example 3.5
47 no exhaustive search
48 no exhaustive search
49 no exhaustive search
410 no exhaustive search
411 ?
412 no Corollary 2.10
413 yes Example 3.8

57 yes Example 3.3
59 no Corollary 2.7
511 yes Example 3.4

65 no exhaustive search
68 ?
69 ?

85 yes Example 3.6

1 We only consider cyclic skew frame starters of type tu for t > 1 in this table.
2 Theorems 1.9, 1.10, 1.11 and 1.12 show that various cyclic frame starters of type tu

do not exist. These types tu are omitted from this table.
3 Theorem 1.8 yields a cyclic skew frame starter of type 2q if n = 1 and q is prime.
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The situation is considerably more murky for skew frame starters in cyclic
groups. First, it does not seem that there is a practical way to construct skew frame
starters using hill-climbing. Therefore, the most effective search technique is back-
tracking, and exhaustive searches are impractical even in moderate-sized groups.
The data presented in Table 1 does not seem to me to be sufficient to propose any
obvious general conjectures. However, for the orders considered, skew starters seem
to be somewhat rare, as a number of exhaustive searches ended in failure. This
suggests that there could be additional nonexistence results waiting to be proven,
which is an interesting topic for future research.

Finally, I note that results in noncyclic groups will differ from those obtained
for cyclic groups. For example, there are no cyclic skew frame starters of types 44,
29 and 49, but there are noncyclic skew frame starters of all these types.
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