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Abstract

Bose-Chaudhuri-Hocquenghem (BCH) codes have been intensively investigated.
Even so, there is only a little known about primitive BCH codes, let alone non-
primitive ones. In this paper, let ¢ > 2 be a prime power, the dimension of a family
of non-primitive BCH codes of length n = ¢™ + 1 (also called antiprimitive) is stud-
ied. These codes are also linear codes with complementary duals (called LCD codes).
Through some approaches such as iterative algorithm, partition and scaling, all coset
leaders of C, modulo n with ¢/ %1 < 2 < 2¢/%1 + 2 are given for m > 4. And for
odd m the first several largest coset leaders modulo n are determined. Furthermore,
a new kind of sequences is introduced to determine the second largest coset leader
modulo n with m even and ¢ odd. Also, for even m some conjectures about the first
several coset leaders modulo n are proposed, whose complete verification would wipe
out the difficult problem to determine the first several coset leaders of antiprimitive
BCH codes. After deriving the cardinalities of the coset leaders, we shall calculate
exact dimensions of many antiprimitive LCD BCH codes.

Index terms: BCH code, cyclotomic coset, coset leader, LCD code, dimension

1 Introduction

Binary BCH codes were introduced by Hocquenghem in 1959 [1], and independently by
Bose and Ray-Chaudhuri in 1960 [2L[3]. Immediately afterwards they were generalized
by Gorenstein and Zierler to general finite fields [4]. Since then, BCH codes have been
deeply studied and widely developed because of their advantages of good error-correcting
capability and efficient encoding and decoding algorithms.

However, as pointed out by Charpin [5] and Ding [6], it is a hard problem to determine
the dimension and minimum distance of BCH codes. Therefore, their parameters are
determined for only some special classes of code lengths.

Actually, the research of the dimension of BCH codes began at the nearly same time
when they were discovered [7]. For narrow-sense primitive BCH codes, many important
conclusions on the dimension have been obtained [8HI7], while only some sparse results
for the nonprimitive case [16HI8,21122]. Thereinto, Liu et al. [16] and Li et al. [17]
successively studied a kind of BCH codes of length n = ¢™ + 1. They acquired some
important achievements about the parameters of BCH codes of length n for designed
distance § < quT_lJ + 3 in [16] and quT_IJ +3 <6< ¢'%1in [17), respectively. Also,
they proved that this kind of BCH codes is LCD codes. LCD codes were initially named
as reversible codes in [19] and introduced in [20] by Massey. Recently, it was found that
they can improve information security, especially against side-channel attacks and fault
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noninvasive attacks in cryptography [23]. Ding pointed out that it is important but not
easy to find the second and third largest coset leaders d2 and d3 modulo n = ¢™ + 1 [6],
which is quite helpful to obtain both the dimension of BCH codes and the Bose distance
(i.e., the maximal designed distance). In [22], we introduced some new techniques to find
out the coset leaders modulo n = 2™ 4+ 1 with m # 0 mod 8. And we determined the first
five largest coset leaders modulo n, as well as all coset leaders for

2i+2 7 if m=2t+1;
x < { 2242 4 924 L3 if m = 4t +2;
Q4+3 4 o2 4 odtHl L1 if ;m = 8t + 4.

Motivated by the cryptographic importance of LCD codes [23] and the valuable report
of Ding in [6], this article aims to study the dimension of nonbinary LCD BCH codes of
length n = ¢™ + 1 based on Refs. [16L[17,22]. It extends our previous work on binary
antiprimitive LCD BCH codes [22], simplifies some of the proofs and generalizes many of
the results to the nonbinary case. The main results are listed as follows.

(1): For m > 4, the coset leaders of C;, modulo n = ¢"™ + 1 are determined for

q"7‘| <z < 2q ; + 2 1fm 2t;
221 +2¢—1 ifm=2t+1.

This doubly extends the corresponding results of Refs. [I6,17] (in detail, z < ¢/ Z 1) about
the cosets leaders modulo n.

(2): A new kind of useful sequences is introduced. Consequently, for even m and odd
q the second largest coset leader modulo n = ¢ + 1 is determined. Also, when m is odd,
the first six (resp. five) largest coset leaders modulo n = ¢™ + 1 are determined with ¢
odd (resp. even). These results above shall solve a majority of the significative problem
proposed by Ding [6] to determine the second and third largest coset leaders.

Furthermore, some conjectures about the first several largest coset leaders modulo n
are proposed for even m. If they could be well verified, the problem about first several
largest coset leaders of antiprimitive BCH codes would be completely settled.

(3): Through calculating the cardinalities of relevant cyclotomic cosets, dimensions of
some nonbinary antiprimitive BCH codes are precisely obtained. Additionally, their Bose
distances are given together.

This article is organized as follows. In Section 2, some basic concepts on cyclotomic
cosets, BCH codes and LCD codes are reviewed. In Section 3, the parameters of BCH
codes of length n = ¢™ + 1(m > 4) with designed distances for g2l <5<22 +2. In
Section 4, the parameters of BCH codes of length n = ¢?*! 4+ 1 with designed distances
0 > 05 (resp. & > dg) are determined when ¢ is even (resp. odd). Some conclusions
and conjectures about the first several coset leaders modulo n = ¢"* + 1 with m even are
presented in Section 5. The final remarks are drawn in Section 6.

2 Preliminaries

In this section, we recall some basic concepts on cyclotomic cosets, cyclic codes, BCH
codes and LCD codes. For more details, one can refer to Refs. [23H25].

Let ¢ be a prime power and F, be the finite field with ¢ elements. A linear [n, k,d],
code C is denoted as a k-dimensional subspace of Fy with minimum (Hamming) distance
d. C is cyclic if (¢g,c1,-++ ,ep—1) € C implies (¢,—1,co,¢1,++ ,¢cn—2) € C. By associating



each vector (co,c1, -+ ,cp1) € Fy with a polynomial ¢(z) = co + c1z + -+ + Cpoqz" 1

€ Fylz]/(2™ — 1), then every cyclic code C is identified with an ideal of F,[z]/(z™ — 1).
Since every ideal of Fy[z]/(z™ — 1) is principal, each cyclic code C can be identified with
C = (g(x)), where g(z) is monic and has the smallest degree among all the generators of
C. This polynomial g(x) is called the generator polynomial of C.

Denote Z,, = {0,1,2,--- ;n — 1}. If ged(q,n) = 1 and = € Z,, a q-cyclotomic coset
modulo n containing z is defined by

Cp ={zq¢" mod n|0 <i<1—1} C Z,,

where [ is the smallest positive integer such that ¢z = z mod n. The cardinality of C, is
denoted by |C,| = I. The smallest integer in C, is called the coset leader of C, modulo n.

If ¢ is a primitive n-th root of unity in some field containing F,, T= {i|g(¢") = 0}
is called the defining set of C = (g(z)). It is well known that 7" is the union of some
g-cyclotomic cosets modulo n. The dimension k& of C is determined by k = n — |T'| and the
minimum distance d can be evaluated by T.

C is called a BCH code of designed distance § if T'= Cp U Cpy1 U -+ U Cpas_9. And
C can be denoted by C(n,q,d,b) as given in [I6l[17]. If b = 1, C is called a narrow-sense
BCH code, and non-narrow-sense, otherwise. If n = ¢™ — 1, C is called primitive, and
non-primitive, otherwise. Particularly, if n = ¢"* + 1, it is called antiprimitive by Ding
in [6].

Given two vectors x = (z1,%2, - ,2,) and y = (y1,¥2," ,Yn)€ Fy, their Euclidean
inner product is denoted by (x,y) = x1y1 + Zay2 + -+ + TnYn.

The Euclidean dual code C* of C is defined by C*+ = {x € Fy | (x,y) =0,VyeC}.C
is called an LCD code if C*+ [ C = {0}, which is equivalent to Ct @ C = Fy.

Below We pay main attention to nonbinary antiprimitive BCH codes with defining

sets T = U C; and Ty = {0} T, which can be denoted by C(n,q,d,1) and C(n,q,d +

1,0), respectlvely As thus they have parameters C(n,q,d,1) = [n,n — |T],d > 6], and
C(n,q,0+1,0) = [n,¢™ — |T|,do > 26],, respectively.

Throughout this paper, let ¢ be a prime power and n = ¢"*+1. Suppose that a,b,c,z €
Zy,, and a < b. We denote {z|a < x < b} by [a,b] and define [a,b] + ¢ = [a + ¢,b + ¢|. Let
“r = 9” denote “z = y mod n” for short unless otherwise noted. The words “modulo n”
are omitted when cyclotomic cosets and coset leaders are mentioned. For example, “z is
a coset leader” means “x is a coset leader of C; modulo n”. It is obvious that if x # 0,
x € Zy and q|z, then % € C, and z is not a coset leader. Therefore, to determine coset
leaders in T', one only needs to consider x with ¢ { .

Notation 3 in [22] shall be naturally generalized to the following result.

Proposition 1. Let n = ¢"+1 and C,, be a cyclotomic coset modulo n containing x € Zy,.
For 0 <k <m—1, define

Yo =4 ¥z mod n with y, . € Zn.

Then (1) Cy can be denoted by Cp = {y, ., n —y, |0 <k <m— 1}
(2) x is the coset leader of Cy if and only if y,, —x >0 andn—vy,, —x >0 for
0<k<m-1.

The proposition above is quite necessary to this article and will be continually utilized
below. For clarity, an example is provided as follows.



Example 1. If n = 32 + 1 = 10, we shall obtain the following cyclotomic cosets by
Proposition [II

Ci={y,,=1y,=3y,=10-1=9y,,=10-3=7}={1,3,9,7} = Cr,

Cy = {yz,o = 273/2,1 = 673/2,2 =10-2= 87y2,3 =10-6= 4} = {2767874} = Cy = Gy,

Cs = {ys,o = 573/5,1 = 573/5,2 =10-5=5,y;, =10-5= 5p = {5},

It is easy to know that 1, 2 and 5 are coset leaders, while 4, 7 and 8 are not. Since 3
and 6 are both divisible by 3, they are out of consideration.

3 Dimensions of BCH codes with relatively small distance

In this section, suppose that n = ¢™ + 1 with m > 4. The coset leaders of C, are

determined for
2q¢t + 2 if m = 2¢;
T < t+1 :
2¢7 4+ 2g—1 ifm=2t+1.

We split into two subsections according to the parity of m. In each subsection, the coset
leaders and the cardinalities of the cyclotomic cosets containing them are firstly deter-
mined. Then the dimension of many BCH codes with relatively small designed distance
shall be naturally calculated.

3.1 BCH codes of length n = ¢™ + 1 for m odd
Throughout this subsection, let n = ¢ + 1 with m =2t +1 > 5.

Theorem 1. If x # 0 mod q, then the following statements hold:

(1) If 1 <z < ¢"*' —q—1, then x is a coset leader (see [16,[17)]).

(2) If ¢t + g+ 1 <2< gt +¢' —2, then  is a coset leader.

(3) Given an integer a € [1,q —2]. If ¢ +a¢' +2 <2 < ¢ + (a + 1)¢t — 2, then
x 15 a coset leader.

(4) If ¢+ (g — )¢t + 2 < 2 < 2¢'TH — 2¢ — 1, then = is a coset leader.

(5) Given three integers a« € [1,q — 1], =1 o0r2 and 1 <~y < fBq—1. If

r=¢+agdt+1 or =8¢+,
then x is not a coset leader.
Proof. See Appendix[A]l O
Lemma 2. If1 <z <2¢'t! —2¢ — 1, then |C,| = 2m.

Proof. Seeking a contradiction, suppose |C,| = k with k < 2m. It follows that z(¢¥ —1) =
0. Since k|2m and m is odd, we have k = m, QTm or k < QTm
— k — _ t+1
(1) If k =m, then (¢" —1,n) = (¢" —1,¢"+1)=2. From 1 <z < ¢ —2¢ -1 < %,
one has z(¢* — 1) # 0, a contradiction.

(2) ImeOmod?)andk:QTm,then(qk—l,n:qm—i-l):q%—i—l. Since 1 <z <

¢t =2 —-1< 52— = q%m —¢% +1, so there holds z(gF —1) #£0.

e
(3) If k < 2% then 1 < z(¢F — 1) < (2¢"*! —2¢ — 1)(q2Tm —1) <nand z(¢"F — 1) #Z0.
Collecting all previous discussions, we have x(qk — 1) # 0, this yields a contradiction.
Hence, |C,| = 2m for 1 <z < 2¢'*t1 —2¢ — 1. O




The previous results on the coset leaders and cardinalities are sufficient to give the
following conclusion.

Theorem 3. Suppose that n = ¢™ + 1 with m = 2t +1 > 5. If a € [1,q — 2], then the

ollowing statements hold:
f g
(1) The narrow-sense BCH codes C(n,q,d,1) have parameters

[n,n—2m[(6 — 1)1 — 1/q)] +4m(q — 1),d > §], T +g+1<8< gt ¢t -2
fr,n=2m[(6 — 1)1 = 1/g)] +4m(a+q—1),d >8], if ¢"T! +ag" +2 <6 < gt 4 (a+ 1)gf —2;
[nsm—2m[(8 — 1)1 - 1/q)] +8m(q —1),d > §], if g+ (g —1)g" +2 <6 <2¢' —2¢—1;
[n,n —2m(2¢*T — 2¢" — 69 4 7),d > 2"+ 4 2q], if 2¢"T —2¢+1< 6 <2¢' Tt 4 2¢.

(2) The BCH codes C(n,q,6 + 1,0) have parameters

[, q™ —2m[(6 —1)(1 —1/q)] + 4m(q — 1),d > 28], Fgt +g+1<86< gt 44t —2;
fn,g™ =2m[(6 —1)(1 = 1/q)] +4m(a+q—1),d > 25, if ¢t +ag" +2 <5< g+ (a+1)g" —2;
[, g™ = 2m[(8 —1)(1 —1/q)] + 8m(q — 1),d > 28], if gt +(g— 1" +2 <8 <2¢" —2¢ - 1;
[, g™ = 2m(g"tt — 2¢* — 69+ 7),d > 4¢"T! + 4q], if2¢'Tt —2¢+ 1 <6 <2+ + 2.

Proof. With the conclusions of the coset leaders and cardinalities in hand, it is natural to
obtain the dimension of BCH codes for given designed distance. Since the proof is very
similar to that of Theorem 3.7 in [22], we have it omitted here. O

Remark: The following theorems about giving the dimension can be also verified in the
similar way to that of Theorem 3.7 in [22], then they will be omitted, too.

3.2 BCH codes of length n = ¢™ + 1 for m even
In this subsection, suppose that n = ¢ + 1 with m = 2t > 4.

Theorem 4. If x # 0 mod q, then the following statements hold:
(1) If 1 <z < ¢' — 1, then z is a coset leader(see [16,[17]).
(2) If ¢ +2 < x < 2¢' — 2, then x is a coset leader.
(3) If v = q* +1,2¢" — 1,2¢" + 1 or 2¢* + 2, then x is not a coset leader.

Proof. See Appendix[A2] O

To calculate the actual dimension of BCH codes, it still needs to get the cardinalities
of the cosets containing the coset leaders below.

Lemma 5. If 1 <x < 2¢' — 2, then |C,| = 2m.

Proof. Seeking a contradiction, suppose that |C,| = k with & < 2m, it follows that
z(q¥ — 1) = 0. Since k[2m and m is even, we have k = m, %, k = QTm or k < QTm

(1) If k = m, %, then (¢"—1,n) = (¢"m—1,¢q"+1)=1or2 From1 <z <2¢"—2< 5
one has z(¢* — 1) # 0, a contradiction.

(2) ImeOmod?)andk:sz,then(qk—l,n:qm—i-l):q%—i—l. Since 1 <z <

2¢" — 2 < 42 :qQTm —q3% +1, we get z(qF —1) #£0.
g3 +1
2m
3) If k < 2Tm, it can be derived that 1 < x(¢* — 1) < (2¢* —2)(¢> — 1) < n and
z(¢" —1) £ 0.
All the three cases contradict z(¢*—1) = 0. Hence, one can easily know that |C,| = 2m
for every 1 < < 2¢'*t1 —2¢ — 1. O

Based on these results above, the dimension of some BCH codes can be obtained.



Theorem 6. Suppose that n = ¢™ + 1 with m = 2t > 4. Then the following statements
hold:
(1) The narrow-sense BCH codes C(n,q,d,1) have parameters

[n,n—=2m[(6 = 1)(1 = 1/q)] +2m,d > 6], ifq" +2<d<2¢" —2;
n,n —4m(qt — ¢t —1),d > 2qt—i—3/q if 2¢* —1 <6 < 2¢* + 3.

(2) The BCH codes C(n,q,6 + 1,0) have parameters

[, g™ —2m[(0 = 1)(1 = 1/q)] +2m,d > 20], ifq' +2<d<2¢" —2;
fn, g™ —4m(qt — ¢t —1),d > 4¢' + 6/, if 2¢' —1 <6 <2¢" + 3.

4 Dimensions of C(¢*™ +1,¢,d,b) with relatively large §

Throughout this section, let n = ¢ + 1 with m = 2t +1 > 5. It will be divided
into two subsections by the parity of ¢g. In every subsection, we first determine the first
several largest coset leaders and calculate the cardinalities of the cosets containing them.
Consequently, it is possible to obtain the exact dimension of some BCH codes in terms of
relatively large designed distances.

4.1 BCH codes over F, of odd characteristic

In this subsection, let ¢ be an odd prime power, we give the following results.

Lemma 7. Let n and q be given as above. Consider

—1)2
01 = 3, 522(12—1-%, 53:52—725%;3 L) and 64 = 03 — (¢ — 1)%.
If m=5, put 05 =04 — (¢ — 1) and dg = 95 — 1;
if m > 17, let 05 = 64 — (¢* — 1)(q — 1)? and 66 = 05 — (¢ — 1)%2. Then 6;(i = 1,2,--- ,6)

are all coset leaders.
Proof. See Appendix[A.3 O

To derive the conclusion of Lemma [8] we first introduce an Iterative algorithm, a
quite useful technology introduced in [22] to determine the fist several largest coset leaders
modulo 2™ + 1. Adopting it, we can partition I®) into 2¢=2 disjoint subintervals, where

o ha=2 if t = 2;
[1,(q —1)%¢*5] ift > 3.

This is a key to settling the very intractable problem.

Iterative Algorithm 1 (IA-1, for short):
1) Ift=2let Iy = Iy = [1,q — 2] = [al,bl];
2)Ift =3, let I = Inn = [qg—1,(q — 1)%¢**171] = [ag, ba];
3) If t = 4, consider that
I3 =Ty =L + by = [a1 + (¢ — 1)%¢, b1 + (¢ — 1)q] = [a3, bs],
Iy = Ipp = [ag + by, (¢ — 1)2¢7* 7] = [ag + (¢ — 1)%¢, (¢ — 1)°¢°] = [aa, ba];
4) Let t > 5. Suppose that a partition of It ig given by
10D =1, (¢ - 1)2¢* " = UL+ - U Iyi-s, where I; = [a;, bj].
For u = 273 + j with 1 < j < 2!=3 — 1, consider
L= I 4+ by-s = [a; + (¢ — 1)?¢* 77, bj + (¢ — 1)2¢* 7).



For u = 2172 let I, = [agt-3 + boi—s, (¢ — 1)2¢* ~]=]agr—2, byr—2].

Consequently, a partition of I®) = [1, (¢ — 1)2¢**~°] can be obtained as

22&72 21572
I = (MUl Uly-s)Ulyayy - Ulpe = IV | L) = | L.
u=2t—34+1 s=1

Using IA-1 above, we can obtain the following crucial result.
Lemma 8. Let §3 and IV be given as above. If z € 65+ 1", then x is not a coset leader.

Proof. Following the discussions and notations of the lterative Algorithm above, one can
derive that

(1): I, = [1,q—2] e
I B (R VI R e N U R Vs I S W S )

(2): When t > 3 and s € [1,2!72 — 1], we have the 2-adic expansion of s:
s =92’ +a12' + a92® + - + 4,327 = (aparag - - ar_3)o.
Set i = iy = min{jla; = 1,0 < j <t —3}. Whence I, can be given by
I = Iy + ais1(q = 12 + aisa(q = 1) + -+ as(g = 1% 77

Below, we split into two cases according to a;41.
Case A: a;41 =0
If a;+1 = 0, then we have

I, = Li+0x(q— 12" 4 aa(g— 1223 + -+ ars(qg— 1)2¢27
Loi 4 (¢ — 2% (aig + aiysq® + - - + ag_3q>772)

A
= Li+(¢g—1)%¢* N\, where 0 < A< 14+¢*+--- + QP70 Pl

Additionally, it is obvious that Iy = Ipi—2 = Iy + (¢ — 1)2¢* T3 - X\ with i = ¢t — 2 and
A = 0. Hence, for each s € [1,2!72], there exist two integers 0 < i = iy < ¢t — 2 and
0< A< q2(t_i_3) such that
I=1, = L+ (g— 1%
For a given integer s € [1,2!72],if l € I, = I, then x = 3 + [ can be denoted by
v =83+ lo+ (¢ —1)°¢* A,

where 0 <i<t—-2,0< A< q2(t7i74) and lg € Iyi.
When k =2t — 2 — 1, we have k£ > 3 and

k

q T = yac,k
k
¢* — . .
= o (=@ gt D+ (e - D
n _ _ _
= 5@ =T+ )T = (T - g+ D) ¢l = (g - 1)



Firstly, we study an upper bound of y_ ,

Vor = g_(q2t_q2t71+___+qk+1)+qk71_(qk73_ c— g+ 1)+ ¥l — (g — 1)2gA
< g_(q2t_q2t71+___+qk+1)+qk71_(qk73_ c— g+ 1)+ ¢
< g_(q2t_q2t71+___+qk+1)+qk71_(qka_ --—q+1)+qk(q—1)2q2i*1
_ g_(q2t_q2t71_|_ o TR RER (22 1) (g — 1)2¢2 2
< g (@ =+ )+ =14 (¢ 1)°¢" *(choose i =t — 2)
= g—th‘1+(q2t‘3— g—1)—q(g-1)%

Next, we will investigate a lower bound of y_
If i =0, then lp € [1,g —2] and 0 < A < @3 we get that

Vi = %(q%+1 ¢+ )+ (o= 1)+ ¢ = (g - A
> %(q2t+1 S )+ (lo— D)@+ 22— (g — 1))
> %(q2t+1 SR )+ (1= D@ g2 (g — 1)
= %(qzm — T P (P -+ - ) — (g - DA,

Ift >3and 1 <i <t—2,thenly € Iy = [b;,e;] = [(g—1)(¢*~
one can infer that

e 1). (=1

n _ _
yzyk — 5_(q2t_q2t 1 +qk}+1)+qk 1_(qk‘ 3_q+1)+qk‘lo_(q_1)2q)\
mn _ _ _ i
> 5_(q2t_q2t 1___+qk+1)+qk 1_(qk 3---—q+1)+qklo—(q—1)2q><q2(t i—4)
n _ _ _ i
> 5 (q2t_q2t 1 __+qk+1)+qk 1_(qk 3---—q—|—1)—|—qkbi—(q—1)2q><q2(t24)
n _ _ _ _ _
_ §_q2t+q2t (@3 g g (P g 1) — (g — 1)
n _ _ _ _ _
> §_q2t+q2t1_(q2t3_”_|_q3_q3 1)_(q3 3”‘_q_|_1)_(q_1)2q36
n _ _ _
= 5T (@ gD g2 (g - 1)
Notice that
qg—1)n/2—4d3
|'( )q/ '| — 2 q2t_|_q2t 1 (th 3 _ “|‘C]—1) and
q—1)n/2+ 43 n
( )q/ _ §_q2t1+(q2t3 1)

It is easy to observe that [%1 <Y, < % for k =2t —2i — 1.
L(q Dn

If [(Q*1)2/2*53 ‘I

_ (g¢=D)n 1)

exists a j, .

<yzk<
qymkGC

2q

Jthen( Ln —03<qy,, < @

o such that 0 <j,, <03.

, We can

infer there



I [(q n "< Y, < (a— 1)7;/2+53 then = 1) <qy,, < (gl 1) + d3, it follows that there

exists a j, . =qy,, — w € Cy_, such that 0<J,, <03

Case B: a;41 =1 ’

For given s € [1,272] and = € d3+ 1, if a; 11 = 1, we still choose k = 2t —2i—1. Similar
(¢+1)n/2—d3 (¢+1)n/2+463
A <y, <
Also, we shall obtain that there exists either j, , = M — qYur O Joro = QY r — @
such that j, , € Cy and 0 <j,, < d3.

Combining Cases A and B, for every x € [63 + 1,83 + (¢ — 1)2¢**~5], there exists an
integer j, , € [0,03 — 1] such that j,, € Cy, i.e., x is not a coset leader. This completes

the proof of this lemma. O

to the case for a;41 = 0, it then can be derived that

Lemma 9. Let 41, 69 and d3 be given as above, if x > 83 and x # 01 or 09, then x is not
a coset leader.

Proof. To attain the desired conclusion, it suffices to verify that there exists y, , < x or
n—y,, <z for some k € [0,m — 1] and z > d3 with z # 1 or d2. We give the following:

(1): fze[§+1,n—1], then x <n < 2z. Clearly, n —y,, =n—xz < .

(2): Ifxe[[(q ;) 1,5 —1], then (¢ —1)x<( Un  ga, it follows that y, , (q;l)":
qm—w<x.

@) Ifzelb+l=_127 ‘12;1 +1, L%J], then gz < @ < (¢ + 1)z, whence
n—ym:(q U gx < .

(4): Ifxe[[%} 92 —1—q+—1 41 — 1], we have (q2—1)x<w<q2x, one

can then infer that y, , = P — % < z.
(5): If x € [[(qfl)QnL L(qflfnj], we have ¢’z < @ <(@F+Dzandn—y,, =

) 2(¢*+1) 2q
7('1_;) n_ qzx < .
(6): If z € [[(q2_1%(q%_1)2n], Lg](q_glfgj], we get that (¢* — 1)z < w < ¢*z, and

theny, , = 'z — 7((1271)(;71)2" <.

(@=1)(g=1)%nq
2q ’
1]\ {01, 02}. It then follows from the lemma above that x is not a coset leader for all x
2 12
with @ € 65 + 10 U[[C=911 5 — 1)\ {61, 6}
Notice that for t = 2,

Summarizing the previous six cases, z is not a coset leader for x € [[

2 2
g —1)(qg—1)*n 1
i )224 )y 5@ = 2" +2¢ — ) +1
1 +1-—-4
< §(q5—2q4+2q2—q)—|—1+qT
and for ¢ > 2, we have
2 2
g —1)(g—1)n 1 _ _
(( )2(q4 ) 1 = §(q2t+1_2q2t+2q2t2_q2t 311

< O3+ (qg—1)%*0.

It is easy to know (3 + 1)) U[[W} ,n—1] = [03 +1,n — 1] and then the desired
conclusion can be obtained. O



Theorem 10. For given n and q, let 61,029,903, 04, 05 and d¢ be given as above, then they
are the first, second, third, fourth, fifth and sixth largest coset leaders, respectively.

Proof. From Lemmas [[H9] it naturally follows that &1, do and d3 are the first, second and
third largest coset leaders, respectively. We now proceed to derive the following results.

For1<i< @bl

N0 —0) = (05— i) — (qztlT—l SR (Y g+ D)n
_ g_q2t+q2t—2_ @4 = — g+ 1) — ¥l
< g_q2t_q2t71+q2t72_(q2t74_._._q+1)<53_Z-.
For (q_21)2 <i<(g—1?%—-1=¢>-2q,
(65— ) = ($ ST (2 g D)) — (6 — i)
i (g S (q2t74_... —q+1))
< ¢ NP —29) - (g — T (P - g 1) <G

This implies that there exists an integer u, < x such that u, € C; for i, < x < d3,
i.e., z is not a coset leader for §4 < z < d3. In a similar way, one can easily infer that x is
not a coset leader for d5 < x < d4 or dg < = < d5. Hence, the lemma holds. O

Lemma 11. If 6;(i = 1,2,--- ,6) are given as above, then |Cs,| = 1, |Cs,| = 2 and
ICs.| = 2m(i = 3,4,5,6).

Proof. From the proof of Lemmal[7l, we have derived that Cs, = {6;} and Cs, = {2, (ng) d2}.
Clearly, |Cs,| = 1 and [Cy,| = 2. And when x € {03,04,05}, y,, > @ for 1 <k <2m — 1,

it immediately follows that x(¢* — 1) # 0. Hence, one can know that |C,| = 2m. O

Theorem 12. Suppose that n = ¢*™ + 1(t > 2) and q is an odd prime power. Let &;
(1=1,2,...6) be given as above, then the following statements hold:
(1) The narrow-sense BCH codes C(n,q,d,1) have parameters

([n,6m+4,d> 65, if d6+1<0 <65
[n,Am +4,d > 84, if 55+ 1< 6 < by
[n,2m+4,d253]q if 64 +1 <0 <d3;

[n.4,d > d], if 03 +1 <0 < g5
[n,2,51:%/q if52+1§5§51;
[n,1,n], if o1 +1<0<n.

(2) The BCH codes C(n,2,6 + 1,0) have parameters

[n,6m+3,d2255]q ifdg+1<6<05;
[, Am + 3,d > 26,] if 85 +1< 6 < b
[n,2m+3,d2253/q ifdg+1 <6 <d3;
[n,3,d2252]q if 03+ 1 <6 <oy
[n,1,251 :n]q ifdo+1<6<46.

10



Remark: Consider n = ¢3 + 1. If §;, 6o and &3 be given as above. Let d; = 03 — 1,
05 = 04 — (¢ — 1) and d = J5 — 1. Ome can show that the lemmas and theorems above
hold, too.

4.2 BCH codes over [, of characteristic two
In this subsection, let ¢ = 2" > 4 and n = ¢***! + 1 with ¢ > 2.

Lemma 13. Suppose that 61 = quLl L5y =4 — 261+(§gfl)q and 83 = 6, — q(q — 1).
If m =5, let 04 = b3 — q and 65 = 01 — 5.
Ifm>7,let 6y =03 —q(¢®> —1)(q — 1) and 65 = 64, — q(q — 1).

Then 1, 02,03, 64 and 05 are all coset leaders.
Proof. See Appendix[A.4] O

To verify Lemma [T4], we first introduce another Iterative Algorithm similar to IA-1.
Adopting it, one can partition J®) = [1, (¢ — 1)¢>*=?)] into 2!~2 disjoint subintervals.

Iterative Algorithm 2 (IA-2, for short):

DIft=2let J; = Joo = [1,(¢ — 1)¢**%) = [1,¢ — 1] = [a1, b1];

2) If t = 3, let Jo = Jo1 = [a1 + (¢ — 1)¢>*Y, (¢ — 1)¢**1] = [ag, ba];

3) If t = 4, consider that

Jy = Jorp = Ji + by = [a1 + (g — 1)g*, b1 + (¢ — 1)¢*] = [as, b],

Ji = Jye = laz + b2, (q — 1)g>?] = laz + (¢ — 1)g®, (¢ — 1)¢"] = las, ba];

4) Let t > 5, a partition of J~1) is given by

Jt=1) = [1, (q — 1)q2(t_3)] = U Jo--- U Jot—3, where Jj = [aj, b]]

For u = 273 + j with 1 < j < 2!=3 — 1, consider

Ju=Jj +bys = [aj + (¢ — 1) b; + (¢ — 1)g>*3)).

For u = 2¢72, consider Jyr—2 = [agt-3 + bor—s, (¢ — 1)q>= 2] =[agi—2, byr—2].

Then, a partition of J® = [1, (¢ — 1)¢>*?)] can be obtained as follows:

21572
JO =g U T =(h U Udps) Udyiagg - U o
u=2t=341

Lemma 14. Let 0, be given as above. If x € 69 + J® = [02 + 1,02+ (¢ — 1)q2(t*2)], then
x 18 not a coset leader.

Proof. For 0 <i <t —2, from [A-2 above, we can infer that
(1)J J— { [17(]_1] = [1,((]—1)(]2@]‘ ) ) lszo,
UL (@ - DA+ 0D 1?0 (g - 1)eY] i1 <<t -2
(2): When t > 3 and s € [1,2!72 — 1], we have the 2-adic expansion of s:

s = a020 + a121 + a222 + -4+ at,32t73 = (a0a1a2 e at,3)2.

Let i = iy = min{jla; = 1,0 < j <t — 3}, then

Jy = Jyi+ai1(qg— D@ 1 ai0(q — )2 4. 4 a,_g(q — 1)g2d)
= Ty + (g — D@ (a1 + aiog® + -+ at—3q2(t*i*4))l
A
= Jy+(q—1)@IN where 0 < A< 1+ g%+ -+ + 279 < 20-173),

11



Clearly, Joi—2 = Jyr—2 + (g —1)¢20+D . X with A = 0. Hence, for each s € [1,2'2], there
exist two integers 0 <i<t—2and 0 < A < q2(t7i73) such that

Js=J,, = Joyi + (g — 1)g* TV,

2t—2
Let 2 =6y +lwithl e JY =[1,(¢—1)¢** D], and JO = |J Jy =Ty UJo--- | S
s=1

be a partition of J® denoted as above.
For some s € [1,2!72],if [ € J, = Joy=Jai +(q— 1)q2(”1))\, then x = ds + [ can be
denoted by = = 8y + (Ip + (¢ — 1)¢>TDN), where 0 < i <t —2,0 < X < ¢*¢*==3) and
21 .
lo € Jyi = [T, (g — )¢
When k =2t — 2¢ — 1, we have k£ > 3 and

k

T = y,,
k 2(i+1) Low w1 ¢ l4g
= ¢ 02+l +(@=1)¢""N) = (5" ¢ = =)+ (a-DA)n
q+1
1 _
— §(q2t+1_q2t"'+Q)_qk+qk 1+qklo—(q—1))\
1 o i
_ §(q2t+1_q2t___+q)+(l0_1)q2t 21 1+q2t 21 2_((1_1))\7
Firstly, we study an upper bound of y_,:
1 i _oi_
yx,k: — §(q2t+1—q2t---+q)+(lo—1)q2t 21 1+q2t 2% 2—((]—1))\
1 o o
< §(q2t+1—q2t---+q)+(lo—1)q2t 21 1+q2t 2i—2
1 A i o
< §(q2t+1_q2t___+q)+[(q_1)q22_1]q2t 27 1+q2t 21—2
1 - - oil
_ 5[th—l—l_'_th_th 1_(q2t 2—---+q2—q)]—(q—1)q2t 21 2.
Next, we will investigate a lower bound of y, ,:
Ifi=0,thenlye[l,g—1] and 0 < A < ¢2=3)  we have
1 _ _
Vo = @ =g+l =g g7 = (g - 1A
1 _ _ _
> S@T = )+ (o= DT T (g - )P
1 _ _ _
> §(q2t+1—q2t---+q)+(1—1)q2t 1+q2t 2_(q_1)q2(t 3)
1 _ _ _ _
_ §[q2t+1—q2t+q2t Ly g2 2+(q2t 3—---+q3—q2)]—(q—1)q2(t 3)
Ift>3and 1 <i<t—2 thenly€ Jy = [q;:rlq, (g — 1)g*], we get that
1 _ _
Vo = @ =)+ o - DT+ = (g DA
1 _ _ _
> §(q2t+1—q2t---+q)+(lo—1)q2t 1+q2t 2_(q_1)q2(t 3)
1 ' +q _ _ _
Z §(q2t+1_q2t__,+q)+(ﬁ_1)q2t 1+q2t 2_(q_1)q2(t 3)

12



1 .
= T 2 (P B g Y

2
+(q2t72i73 L q2 + q) _ (q _ 1)q2(t7i73)
1 _ _ _ _o(t—2)—
> §[q2t+1_q2t+q2t Ly (@22 — 23 4 g2 2(t—2) 2]
_|_(q2t—2(t—2)—3 L q2 + C]) _ (q _ 1)q2(t—(t—2)—3)
1 _ _ _
= ST =T (T =P ) e (- D
Note that
qn/2 — 4, 1 B _ q
— _ 5(q2t+1_q2t+q2t Ly (g 2—---—q3+q2))—§+1 and
qn/2 + 62 1 - -
/q _ §(q2t+1+q2t_q2t L (72— ).
It is easy to get that MT_% <Ypp < WTHQ.
If q"ﬁ% <Y, < oL then L' — 5y < TS @, we can infer there exists a

Jor = = — QY. € Cyzk such that 4 < Jor < 02

If "T‘H <Y,p < WTMQ, then @ < qy,, < % 402, one shall know that there exists

aj, . =Y, —N=qy,, €Cy , suchthat § <j , <d.

22t—4]

Concluding the previous discussions, for all x € [dy + 1,02 + , there exists an

integer % < J,x < 02 such that j , € C,. Therefore, z is not a coset leader for z €
[52 + 1, 52 + 22t_4]. ]

Lemma 15. Let §; and do be given as above, if x > 6o and x # 01, then x is not a coset
leader.

Proof. To attain the desired conclusion, it suffices to verify there exists y,, <z or n —
Y,, <z for some k € [0,m — 1] and = > 03 except that x = ;. We give our discussions
in five cases:

(1): If z € [ n — 1], then 2 < n < 22. Obviously, n —y, , =n— 2z < z.

2 el +1l=_5-9+ 1,251 then gz < L < (¢ + 1)z. It follows that
n—y,, =% —qr<u

(3): If x € [[M],cﬁ —1 =229 -1], then (¢* — 1)z < w < ¢*r and

. 2q q+1
T x — Q(q; n g
(@): Iz e RG] 500, then ¢’z < 958" < (¢? + 1)z, whence y,, =
q(qgl)n _ qQﬂj <
(5): Ifx € [((QQ‘%S‘]‘”"}, Lg(((;g_i)gj], we have (¢* — 1)z < w < ¢*z. Hence,
Yoy = oic — q(quI%(qfl)n <2 2
We then conclude that x is not a coset leader for = € H%], n—1]\ {01}. It

follows from Lemma [I4] that x is not a coset leader for all x with = € [02 + 1,d2 + (¢ —

2_1(ag—1)n n
DU 5= n — 1)\ {5},
Notice that

2
g —1)(g—1)n 1 _ _
[( 2)53 ) 1 _ §(q2t+1_q2t_q2t 1+q2t 2)+1

< b+ (q— 1),

13



The conclusion can be easily derived from the discussions above. O

Theorem 16. Let 61,02,03, 64 and 5 be given as above, then they are the first, second,
third, fourth and fifth largest coset leaders, respectively.

Proof. According to Lemmas [I3I5] it is enough to show d; and do are the first and second
largest coset leaders, respectively.

We can easily derive the following.

For 1 <i< )

)

P10 —0) = (0 — i) — %(th—l - Q(qzqtj:- 1))n
_ %(q%—l—l L P e P (PP ) — 2
< %(q2t+1 3 2 (2 P 1) < 6y — s
For q(q2—1) <i<q(g—1)-1,
NSy —d) = %(qmq P Q(Qth—:’ ;_ 1))71 — 28y — )
. %(q%—i—l S P P (PP )
< %(q2t+1 PP PR (PP P ) < 6y — i

These discussions above imply that there exists an integer u, < x such that u, € C, for
03 < x < 9, i.e., x is not a coset leader for d3 < z < Jo.

Similarly, one can infer that x is not a coset leader for §4 < z < d3 and 05 < x < d4. It
then immediately follows that d1,d9,d3, d4 and &5 are the first, second, third, fourth and
fifth largest coset leaders, respectively. O

Lemma 17. If x € {02,03,04,05}, then |Cy| = 2m except |Cs,| = 2 for m = 5.

Proof. Combining Lemma [[3] one can similarly obtain the desired conclusion. The de-
tailed proof is omitted. O

According to the previous results on the coset leaders and their cardinalities, we can
give the following result.

Theorem 18. Suppose that n = ¢**1 + 1(t > 2) and q is a power of 2. Let &; (i =
1,2,3,4,5) be given as above, then the following statements hold:
(1) The narrow-sense BCH codes C(n,q,d,1) have parameters

[n,6m+3,d254]q if55+1§5§54;
[n,4m+3,d253]q if 64 +1 <9 <d3;
[n,2m+3,d252]q if53+1§5§52;
[n,3,51/q if52+1§5§51;
[n.1,m], if o1 +1<0<n.
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(2) The BCH codes C(n,2,6 + 1,0) have parameters

[n,6m+2,d > 254/q ’if55 +1 <6< dy;
[n,4m—|—2,d2253]q if 04 +1 <6 <635
[n,2m+2,d2252/q ’if53+1§5§52;
[n,2,251]q ifdo+1<6<6.

Remark: Consider n = ¢® + 1. If §; and d3 are given as above. Let 3 = dy — (¢ — 1)2,
0y = 03 — (¢ — 2) and 65 = 64 — 1. Notice that |Cs,| = 2 and |Cys,| = |Cs,| = 2m. The
dimensions of C(n,q,d,1) and C(n, g, d,0) can be also similarly given.

5 Some results of BCH codes for n = ¢ + 1 with m even

This section dedicates to the first largest coset leaders modulo n = ¢™ 4+ 1 with m even.
Notice that the structure of the g-cyclotomic cosets modulo n is extremely complex as
pointed out in [I6]. For investigating the coset leaders, here some new functions and
sequences are introduced. However, we only verify the first and second largest coset
leaders for odd ¢, and the first largest coset leader for even q. Some conjectures are
proposed, which accurately adapt to all magma examples of ¢-cyclotomic cosets we have
calculated.

5.1 BCH codes over F, of odd characteristic

In this subsection, let ¢ be an odd prime power. For giving the main conclusions, we first
define a function by

i
L

(@ -1 =) (¢ -1) if x>0
if z < 0.

| 2o
—_

P(z,q) = {

<
)

When m = 2"t +2"~1 > 6(r > 2,t > 1) is not a power of 2, put
51 = %, 52 = 7q27ﬂ_nl+1 . ‘1)(7” — 2,(]), 53 = 52 -2 7624_(1;(27;_17(1) and

5= os—alg—1?7 ift=1;
YT G5 —20(r—1,q) ift>1.

When m = 2" > 4 is a power of 2, suppose that
01 =4, 02 = qQT—"_H - ®(r—1,q9) = ®(r—1,q), 03 = 93 — 2®(r — 3,q) and
03— 1 if m =4
54 == 2r—2 .
09 —2¢= "®(r—4,q) ifm>8.
Particularly, if m = 2, let 1 = §, 6o = ®(r — 1,q), 03 = d — 1 and 4 = 62 — (¢ — 1).
We now first present two critical results of this subsection: Theorem [[9and Conjecture
The proof of Theorem [I9 will be given after Lemma 211

Theorem 19. Let g be an odd prime power. Suppose that 1 and ds are given as above.
Then d1 and 6o are the first, second largest coset leaders, respectively.

Conjecture 20. Let g be an odd prime power. Suppose that d3 and d4 are given as above.
Then 3 and &4 are the third, fourth largest coset leaders, respectively.
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To verify Theorem[I9] a kind of sequences is introduced below. First of all, we introduce
some notations.

Consider a = (ay, -+ ,a1,a0) and b = (by,--- ,b1,by), where a;,b; € {1, —1}. We define
a lexicographical comparison over these sequences. Set ¢ = a—b = (ay,—by, -+ ,a1—b1,a0—
bo). If ¢ =(0,0,---,0), it is said that a = b. If a # b, define i = max{j|c; # 0}. We say
that a > b if a; — b; > 0, and a < b, otherwise. For instance, (1,1,—1,1) > (1,—-1,—1,1).

Define such a sequence S" = (s;_ Lo 8 ",s0), which can be generated by the
following recursive operations:
St = (1)’ 52 = (1’_1)a 53 = (1’_1’_1’1)’ ) STt = (82:12 A ’8:71’5(7)1 1)?
ST = (Sr—l, _Sr—l) — (82:_12_1, . ,Sq—l’sg—l, —S;__12_1, . g’ 1 g 1)
Lemma 21. Let 8" = (s; R s", O) be defined above. For1 <k <2"~1 —1, denote
two k-Left-Shifts of S™ by F, (fQT - ,ff’k,fgvk) and H(k) (hrrk R ,h:’k, hgvk),
respectively. They can be obtamed as
T s s T — .
Fr. — (827"—1—1—19’”. 781780’ 827“ 1.1’ _827"_1—27... 7_827“_1—k:) Zf 2T 1k 1;
k —_g" o= _ r oo g7 —
* ( 82*—1—1—1@’ ’ S 8 827" 1y’ 82*—1—2’ ’SQT—l—k) if s, or—1_1-k 1
T T T y T — .
Hi, = (82“171%"” ’SI’SO’SW 1 Syt ’S2T*17k) US4 = L
T s T y T —
" _(Szr 1 ’81’80’S2T 1 St 0T S k) WSy, =-L

Hence, (k)>S and H,, > S" forr>2and 1 <k <2—1 -1,

(k)
Proof. Tt can be verified by the mathematical induction. For details, see Appendix[A5l O

For clarity, we provide an example for the case r = 3.

Example 2. If r = 3, note that S3 = (1,—1,—1,1). By definition, we have two k-Left-
Shifts as follows.
(1) =(1,1,-1,1) and Hé”l) (1,1, -1, -1),
(32) =(1,-1,1,-1) and H{)) (1,-1,-1,1),
F% =(1,-1,1,1) and H(3) (1,1,-1,-1).

It is easy to know that F (k) > 83 and Hg’) > S3 fork=1,2,3.

With this result above in hand, Theorem [I9 can be well verified below.
Proof of Theorem[I9: To attain the desired conclusion, it suffices to verify that there exists
Y,, <zorn—y, <z forsomek € [0,m—1] and z > J with x # &; or 5. We give the
following discussions.

Case 1: m has the form m = 2"u + 2" "1 (r > 2,u > 1).

Step 1.1: We prove that s is a coset leader.

ro_ r T rk grk
Let S" = (52T7171,--- ,87, ;) and F (f2r - L, P, f7%)be defined as above.
Hence
)
r r T L e e .
Fr.o— (327"—1—1—k7 781780’ 82* 1.1’ 82*—1—2’ ’ SQT—l—k) if 827"—1—1—k 1
k) — _ T R _ ol T r - r : r — _
N ( Sgre1 4y S 800551405501y ’ 27*1—k) ar=1_1_p 1.
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Utilizing S" = (8;7171, o, 87, s), we get that
n
bg = ——— - O(r—2,
2 q2r—1 _|_ 1 ( q)
n q - 1 27‘72 27‘73 20
— . . 1 ~1)-... -1
1 2 (q )(q ) (g )
n qg—1 7t
o _ r t
- q2T71 + 1 : 2 : Z Stq .
t=0
We then show Ysy o — 0o > 0and n — Ysy o — 62 > 0 by different k for 0 < k < or—1 _

(1): If k =0, it is trivial that y, , = o and n — 252 > 0.

(2): f1<k<271—1and s =1,

2r-1-1-k

or—1_1

D

q—1

qk52 -5

Ysy

one can derive that

r t+k—27"1

stq na

t=2r—1_F

2

n
q2r—1 _|_ 1

qg—1
2

n
q2'r71 + 1

n
q2r—1 _|_ 1

t=

n

qg—1
q2r—1+1

2

n
q2'r71 + 1

(3): If1<k<2~!—1and s’

r=1_1-k —

or—1_1

D

t=2r—1_F

q—l

qk52 5

y52,]€

n

qg—1
q2r—1+1

2

o
(

n
q2r—1 _|_ 1

or—

Ysor — 02

— 5

= Ysy

Std
T_1-k
=0

r t+k
E 5t4q -
t

1 2r—1-1

D

t=2r"1—k

—1—k

r t+k

r t+k—27"1
St4

514

)
q" (see Lemma [21)),

¥ _ s1)¢' > 0 (see Lemma 2T),
0
|
>
=0
2r—1-1

Z 2q =n-—-

—1, we infer that

k
T+ s))q"

27‘71

_1)
|

@ >0

r t+k—27"1

n+n,

or—1_1

D

t=2r—1—fk

r t+k—2r—1

s1q )+n

Z frkqt (see Lemma ),
-0

11
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P4+ s7)g" > 0 (similar to (2)),

r.k

T —s7)q" > 0 (see Lemma E2T]).



Step 1.2: We verify that = is not a coset leader for z > do with x # §; through the
following discussions:
(1): fzeoy+1=5+1,n—1], then z <n <2z. Clearly, n —y,, =n—x <.

(2): Ifx € [Fb(;;&q)nw,él — 1= 2% —1], then (c]20 — Dz < &(—1,9)n < q*’ z, whence

2
n—1y,, :@—q20m<x.
(3): If z € Hq);;olfl)ﬂ, ch(giéq)nj], then ¢2'z < ®(—1,¢)n < (¢%° + 1)z, whence n —
Yoo =5 —Fr <

For each i € [1,r — 2] with r > 3, the following (4) and (5) hold:

(4): If z € [fcb(i}li’q)n}, {q;(;;?’i)lnﬂ, consider that ¢ —1 = (¢ +1)(¢?" " — 1) and

(i —1,9) = (¢ —1)P(i — 2,q). Then we have (2 — Dz < G —1,¢)n < ¢%'z, it
follows that y , —®(i —1,q)n = ?'r—®G—1,9)n < .
(5): If z € Hq)(i;i‘i)n}, ch(i_;’qmj], then ¢z < ®(i — 1,¢)n < (¢* + 1)z, whence
q S ooa
n—y , =®(- Lgn—q¢*z <

6): If = € [[‘I’g‘;%?)"}, L‘I;gi:?;ﬂ" |], then (¢ " = Dz < ®(r — 2,¢)n < ¢ 'z, it
follows that y | — ®(r —2,¢)n = q2T_13: —®(r—2,9)n < x.

(7): T € [0y 1 = PGBt 1, [PO200 )] then ¢ 2 < @(r—2,9)n < (¢ +1)a,
whence n—y = ®(r—2,q)n - & <

Case 2: m = 2". Case 2 is similar to Case 1 above, then we only present the simplified
proof.

Step 2.1: When m = 2", we have dy = qu% - ®(r—1,q9) = ®(r — 1,q9). In a very
similar way to Step 1.1, one can verify that do is a coset leader. The detailed proof is
omitted here.

Step 2.2: We show that x is not a coset leader for x > d9 and x # §; similar to Step
1.2.

(1-6) are the same to (1-6) in Step 1.2. Below, we give the remainder of the proof.

(7): Ifzx € Hiﬁiﬁﬂ"l, ch(;;%,lq)nJL then ¢* 'z < O(r—2,q)n < (qu_1 + 1)z, whence

n=y ., =2(r—2qn- & o<

(8): If z € [6y = ®(r — 1,9)n = cb(;’;ir,?)n7 ch(;;%’lq)nﬂ, then ¢ 'z < ®(r — 2,¢)n <

(q2r71 + 1)z, it follows that n —y = ®(r —2,q)n — ¢ 'z <uz.
Combining Cases 1 and 2, Theorem [I9 holds.

Lemma 22. Let q be an odd prime power. Suppose that 61 and do be given as above. Then
_ 2 ifm=2u+ 2 (r > 2,u > 1);
Cn = {01} and |Cs,| = { 2m ifm=2">2.

Proof. Since 01 = 2 and 2(¢* — 1) = %n = 0, it directly follows that C5, = {01}. Note
that

Ga(q® —1) = (@ =) =2 —2.9) +1)n=0.

When m = 2"u + 2"~!, by the proof of Steps 1.1, we have know that Ysy o > oo for
0 < k < 2" —1. It naturally follows that |Cs,| = 2. Similarly, we can easily get that
|Cs,| = 2T = 2m for m = 27. O

Now it is sufficient to give the following result.
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Theorem 23. Suppose n = q"™+1 and q is an odd prime power. Let ¢; (i = 1,2) be given
as above, then the following statements hold:

(1): m=2"u+2""(r > 2,u > 1)

(1.1) The narrow-sense BCH codes C(n,q,0,1) have parameters

[na2+2rad262/q if 0 = 0a;
[n,2,61], if b2+ 1<6<d;
[n,1,n], ifo1+1<0<n.

(1.2) The BCH codes C(n,2,d + 1,0) have parameters
[n,1+2r,d2252]q l'f(S:(SQ;
[n,1,251:n]q ifdo+1<6<6.

(2): m=2".

2.1) The narrow-sense BCH codes C(n,q,d,1) have parameters

( ) 7q7 ) p

[n,2+2m,d > 6], if § = 0y;
[’I’L,2,51/q if52 +1<6< 51,‘
[n’]"n/q ifor+1<6<n.

(2.2) The BCH codes C(n,2,d + 1,0) have parameters

[n,l +2m,d > 252/q if 6 = 09;
[n,1,251 :n]q if 0o +1 <6 <6y

5.2 BCH codes over F, of characteristic two

In this section, we only give some conclusions with the detailed proof omitted since the
similarity to last subsection.

Q‘ 290_ 290—1_ 20_ . ]
Define ®'(x,q) = { é (a 1)(q 1)---(q 1) if x> 0;

if x < 0.

1 i

When m is not the power of 2, let m = 2"t +2"~!(r > 2,¢ > 1). Suppose that
5149 (r—1,

51 = qgr—nlJrl : (I),(T - 2’q)a 52 = 61 —-2.4 qg: J and

e 0 — (¢ —1)¢? if ¢t = 1;

BT 6—2-9'(r—1,q) ift>1.

When m = 2" > 4. Suppose that §; = ®’'(r — 1,q), d2 = 61 — 29'(r — 3,¢q) and
s [ O—la=D(@-1) ifm=4

LA W 2q2r72<1>’(7° —4,q) ifm>8.
Particularly, if m = 2, then §; = q(q2—1)’ do =01 —(¢—1) and 63 = b2 — 1.

Theorem 24. Let g be a power of 2 and §; be given as above. Then &1 is the first largest
coset leader.

Proof. This result can be obtained similar to verifying that Jo is the second largest coset
leader in last subsection. U

Conjecture 25. Let ¢ be a power of 2. Suppose that ds and 3 are given as above. Then
09 and d3 are the second and third largest coset leaders, respectively.
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Remark: Actually, these conclusions in this section can unify some previous results. All
theorems and conjectures are applicative for either ¢ = 2 or odd m. When ¢ = 2, it has
been verified in [22] for m # 0 mod 8. When m is odd (i.e, m = 2t + 1), m actually has
the form m = 2"t +2"~! and r = 1. And we have proved these results in Section 4.

6 Conclusion

By introducing a new kind of sequences and extending some technologies given in [22],
this article has generalized many conclusions in [22] from binary field to general finite
fields. On one hand, we have determined the coset leaders of C, with double range of x
in [I6L17]. On the other hand, we have derived or guessed the first several largest coset
leaders modulo n = ¢" + 1. Then one shall naturally calculate the dimension of some
antiprimitive BCH codes as well as their Bose distances.

Rather, a table is given to show our main conclusions.

Table 1. Some results on coset leaders modulo n = ¢™ + 1 over I,

m q coset leaders
Section 3 | general | general q[%1 <z < 2q(%1 + 2 | Resolved
odd 51,52,--- 756
Section 4 odd Resolved
even 61,09, ,05
odd 01, 09 Resolved
03, 04 Conjecture
Section 5 | even
even 01 Resolved
02, 03 Conjecture

Remark: d; is the i-th largest coset leader as given in the given section. “resolved” is to say that the corresponding
coset, leader has been resolved, while “conjecture” denotes that there is just a conjecture for the given coset leader.

For these conjectures, their complete solution would wipe out the difficult problem of
determining the largest coset leaders. It is believed that they also hold and can be verified
in the similar way to Section 4, though it would be seriously complicated. The interested
reader is sincerely welcome to solve the remaining parts. In addition, the new kind of
sequences and iterative method adopted in this paper may be useful for other types of
codes. For instance, solve the Open Problems 45 and 46 on BCH codes with projective
length proposed in [I8], calculate the dimension of the LCD negacyclic codes as discussed
in [21], and so on. Many more results on cyclic codes are expected in future work.
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A Appendixes

The following lemma is first provided. It is much useful to some derivation processes later
and can be naturally obtained by generalizing 2 to any prime power ¢ in Lemma A.1 ( [22],
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Appendix).

Lemma 26. Let f(k) = ¢ *a + ¢*b, where a,b and k are positive real numbers. If

ke > ki > log, \/a/b, then f(k2) = f(k1).

A.1 The proof of Theorem [Il

Proof. To prove the conclusion, it is enough to verify (2)-(5).

(2) Let 2 € I = [¢" + ¢+ 1,¢""! + ¢' — 2]. To verify (2), we then show y,, —2 >0
and n —y,, —z > 0 in the following cases.

(2.1): When k =0,1,2,--- ,t — 1, we have 0 < ¢*2 < n. Then Ypro = ¢*z > x and

q2t+1 + 1— (qk‘ + 1)37

1= (DT + - 2)

CT 1@ DO g - 2)

P (P gt gt —2gt ) 43> 0.
(2.2): When k =t,t+ 1, we derive y,, = ¢"xz — ¢"tn. Tt follows that

n—yY,,—T

AVARAY}

(¢" — 1)z —¢"'n

Yo, —T =
> (" =D +q+1)—¢"n
= " la+1-q¢ )= (" +q+1)
> q(q+1-q )= (" +q+1)
= ¢¢—q—2>0.
n—y,,—z = (" +DA+1) - (" + 1z
2 (e ) - D )
— Pt g P —2— Y
> q2t+1 gl — gt — gt+l(gt 2_qt)
= ¢ —¢g"+q+3>0.

(2.3): For each k =t +2,¢t+3,--- ,2t — 1. To determine y_,, we divide I = [¢"T! +
q+1,¢"" + ¢t — 2] into ¢" 1~ disjoint subintervals as follows: ’

I, = [ + g+ 1, gt 4 g2k 1),

I%k — [qt+1 + ()\ _ 1)q2t+1fk + 1’qt+1 + )\q2t+1fk _ 1] for \ € [27qk7t71 _ 1]’

IA,Ic — [qt+1 + ()\ _ 1)q2t+17k 4 1’ qt+1 + qt _ 2] for \ = qkftfli
Given k € [t +2,2t — 1] and A € [1,¢* 7], if z € I, = [l,,,1,.]; it can be inferred
that

Ypro = qu — (qkft +A—1)n.
The further proof is given below. Firstly, we verify that y, , —z > 0.
When A =1, let z € I . We then get that y, , = ¢z — ¢*'n and

Yo~ = (" =Dz—d¢"n
> (¢"—1)(q t+1+¢l+1)—q “'n
= ¢"(q+1-q¢ =" +q+1)
> qt+2(q+1—q D= (""" +q+1)

Gt gt 2 g —1>0.
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When \ € [2,qk_t_1], we have x € [, , = [ZM,ZM] = [ + (A = 1)g?H1— k4 L, .] and
Yps = q"x — (¢"t + X\ — 1)n, it follows that
Ypo =T = (" =Dz — (" "+ 1-1)n

> (" =D+ A=D1 = (T A= DT 1)
_ q gEt 4 IR gl (2R )
> g k b2k gtk (20 lok gkt
_ q2t+1 k g — gt — gDy gt gt
> q2t+1 (t+2) 4 gt+2(1 _ gt — q=(tFD) _ gt _ g1+ (see Lemma )
= ¢ g +d - —qg>0

Secondly, we show n —y_, —z > 0.

For given \ € [1,¢**~! —1], since x € L. =0 =1[, ¢+ AP IF 1], one

can deduce that

(@ + V(@ 1) — (¢F + Da

(@ + N (@2 + 1) — (¢ + 1)(g" 4+ A2k — 1)

¢+ =T 1= (P

¢ gt — g 1 — (PR (gt — 1)

PR b (14 g 4 g D) — gt — gt

S-2) g1 gt x qf(t+1)) —¢' — ¢"" (see Lemma [Z6))

=gt gt P+ > 0.

n—y,, T

AV | AVAR | BN AV2

When A = ¢"*~'~! we have z € I St and

n—y,.—z = (@ "+ +1) = (@ + Da

@+ T+ ) - (E D)@ 4 - 2)
Q4 qt+q ) gt — gt 2
22— g+ g +2> 0.

Y

Y

(2.4): When k = 2t, we divide I = [¢'T! +¢+1, ¢ +¢* — 2] into ¢! — 1 subintervals
as follows:
L, =" + 2+ 1,¢" + (A +1)g—1] for X e [1,¢"" —2],
gt =T A =g+ 1, g -2
For some A € [1,¢"! — 1], if x € I, ,, wehave y , = ¢z — (" + M)n.
Firstly, we verify that y, , —2 > 0.

Yoo —2 = (" =Dz — (""" +Nn
> D@ A D) - @ )
= ¢ —¢ ¢ —1-(g+ 1A
> ¢ —q - -1+ (" -1

q2t _ 2qt _ qt+1 o qtfl +q > 0.

Secondly, we show n —y,_, —x > 0.
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For given A € [1,¢'~! — 2], since = € I, ,, one can deduce that

Ak
n—y,, -z = (@+X+D)(+1) - (* + 1Dz
> (@ + A+ D) (@ + 1) — (@ + D@+ A+ 1)g—1)
= @ +¢ ¢ +2-q—(¢g-1)A
> @' +q —¢dT+2—g-(¢-1)(¢"" -2
g +q 0.
When A = ¢'~! — 1, we have = € I, ,,and
n—y.,.—z = (@+¢ N+ = (* +

(¢ +d D@ +1) = (¢ + 1" +q -2
2qt+2 . qt+1 + qtfl 4 9 > O

v

Summarizing the four cases above, we can deduce that (2) holds.

B)Let 1<a<qg—2,if ¢ +agt+2 <2< ¢t + (a+1)¢" — 2, then z is a coset
leader.

(3.1): When k =0,1,2,--- ,t — 1, we have y,_, = ¢*x > xz, it follows that

2”1+1 (q +1)< Tt (a+ 1) - 2)
(¢"

q
q
1= (" + D@+ ((a-2)+ 1) - 2)
q
q

n—y,,—T

(AVARAVARV]

41— (" D@+ (g - D - 2)
2t+1 _2q2t_|_q2t—1 _2qt+1 _|_2qt—1 _|_qt+3 > 0

(3.2): When k = t, we have Ypio = ¢"x — n, hence

Yopo =% = (qk -1z —

> (¢ =1 +ag +2)— (¥ +1)
— (q2t qt)Oé t+1 + 2qt 3
Z ( 2t qt) 1— t+1 +2q -3
S NI )

n—y,,—r = 2n—(qk+1)x
> 2"+ 1) = (¢ + D)@+ (a+ 1)g" —2)
> 2P+ 1) = (@ + D)@+ (e -2+ 1D)d" - 2)

¢* —2¢" 3¢ +4>0.

(3.3): When k =t+1, for given a € [1,q—2], if z € [¢"' +aq’ +2,¢ T + (a+1)¢" - 2],
we have y, , = ¢"z — (¢ + a)n. It follows that

Yoo =t = (" =Dz —(¢+a)n
> (t+1 D@ 4+ ag" +2) — (g + ) (@ +1)
= ¢ —g-2-(¢'+1a
> ¢ —q-2— (" +1)(¢—2)
= 2¢' —2¢>0,
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n—y,,—T = (+0z+1)n—(qk+1)x
> (g+a+ 1)@ +1) -
= qt+1 ¢ +q+3—(¢" -
> ¢ ¢ +q+3-(d" - 1)(a—2)

' +2¢+1>0.

(3.4): Foreach k=t +2,t+3,---
(a + 1)¢* — 2], we divide I into ¢*~1~* subintervals as follows:

@+ 1)@ + (e + )¢ —2)

2tand a € [1,¢—2],ifx € I = [¢"T' + ag' +2,¢* +

Il,k: — [qt+1 + qut 4 27qt+1 + qut 4 q2t+17k _ 1]’
IA,Ic — [qt+1—}—aqt+()\—1)q2t+1_k+1,qt+1+aqt—}—)\q2t+1_k ] 1] for \ € [ ’qk t—1 _1],
I)\,k — [qt—i—l + qut + ()\ _ 1)q2t+1—k + 1,qt+1 + (a + 1)qt _ 2] for \ = qk 1
For some A € [L,¢" 1] ifz € I,, =l .1, ], we have
Yo = "z — (qk_t +ag" Tt N — 1)n.
First, we will show y_, —z > 0.
IfA=1and z €1, , we get that
Y, —o = (¢" = Dz — (¢* + ag"*)n
> (¢ — (g™ +agt +2) — (@ + agt L) (@2 1)
— b — gt — 2 (T 4 gha
> 2 — g =" =2 (T + )@ -2)
= 2" 2-q" +q ) -2 +2¢' -2
> 221 — gt g ) — 2¢ 42t — 2
= 2(¢" - 1)(¢* —q+1) >0.
Ifxe2,¢" " Nanda el , =, ]=["+a¢ +(A=1)¢* % +1,1 ], then
Yoo =
= (" =Dz — (" "+ad" "+ A-1n
> (" D@ +ag + (A= 1)@ F 1) = (P +ad T A=
_ qk_qt+1 qk t+q2t+1 k ( k—t— 1+q) (q2t+lfk+1))\
> gF— gt qk by IR (Rl gt (2R ) gkt
> gF =g =t PR (T g (g = 2) — (@2 F 1) gt
— PR gk gt gt — 2 t+1+q
> PIRD) y th2() gt gty L 9gtHl 4 ot (see Lemma 26)
2ot f gttt =2 + ¢ > 0,
Next, we will show n —y_ , —x > 0.
Ifxel, "t —1andzel,, =, ,.1,.]=1[,, ¢+ a¢ + A" —1], then
n—=Y, ,—T
= (""" + - (¢ + D
> ("t ad T N(@ 1) — (¢F + D(g + agt £ AR 1)
gt g 1 (¢ = " a— (PE — DA
> g 1= (¢ — ¢ = (¢ — 1) (g — 1)
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gt (g — Y (g - 2) — (R S )t - 1)
PR gk 2g7t — g7ty —2gtt 4 gt

FH2) g 214207t — 1) — 2¢41 4 ¢t (see Lemma [28)

d2 =2 f gt g 282 — g > 0.

AV

Ifx=¢*landzel

Ak

then

n—y,, —

(a4 Y — (¢ £ e

> (qk—t + aqk—t—l + qk—t—l)(th-H + 1) _ (qk + 1)(qt+1 + aqt +qt _ 2)
— PPt gt 2 (¢ — T Ya

> 2F 4"t g gt 2 — (¢f — P (g — 2)

= ¢"2+2¢"—q") = 20" + ¢ +2

> 242 — g ) —2¢" gt 42

= 2% 2 43¢ — g 12> 0.

—4q
—4q

Concluding the previous five cases, we can attain the result of (3).

(4) Let z € T = [¢"* + (¢ — 1)¢ + 2,2¢' ! — 2¢ — 1]. To verify (4), one needs to show
Yo —r>0and n—y, , —x >0 in the following cases:

(4.1) : When k=0,1,2,--- ,t -1, we have y, , = 2kx > x, it follows that

n—y,,—z = n—("+
q2t+1+1_(qk+1)(2qt+1_2q_1)
q2t+1+1_(qt71+1)(2qt+1_2q_1)

q2t+1 . (2q2t+2qt+1 _2qt _qtfl —2(1) +2>0.

AVARAYS

(4.2): When k = t, we have y, , = ¢"z —n. Hence,

Yp =T = (qk—l)x—n
> (¢ =1+ (g—1g" +2) — (¢*T +1)
P2 gt £ 3¢t —3 >0,
nN—Y,,—T = 2n—(qk—|—1)x
> 2"+ 1) = (¢ + )2 —2¢ - 1)

= q2t—|—2q+3>0.

(4.3): When k = ¢+ 1 and z € [2¢"" — ¢' + 2,2¢""! — 2¢ — 1], we have y,, =
q"x — (2¢ — 1)n. It then can be inferred that

Vor =2 = (¢ =Dz —(2¢-1n
> (@ =D ¢ +2) - 20 - D@ +1)
= ¢'—2¢—1>0.

2qn — (¢" + 1)z
2¢(¢* + 1) — (¢ + 1) (2" —2¢ - 1)
202 — ¢ f4g+1>0.

n—y,, —T

Y
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into ¢

(4.4): Foreach k =t+2,t+3,--- ,2t — 1, we divide I = [2¢'"! — ¢’ +2,2¢'T! —2¢ — 1]
k=1-t subintervals as follows:

e = 207 =g+ 2,2¢" — gf PR 1],
IA,Ic — [2qt+1 _ qt + ()\ _ 1)q2t+1—k + 1’ 2qt+1 _ qt + )\q2t+1—k _ 1] for \ € [2, qk—t—l _ 1],
I)\,k — [2qt+1 _ qt + ()\ _ 1)q2t+1fk + 1’ 2qt+1 _ 2C] _ 1] for A = qkftfl.
For some A € [1,¢" 7] ifz €I, = [ly0,05.], we have

~

Yps = Fx— 2"t = = .

First, we will show y_, — 2 > 0.
IfA=landze€l,, =1, then

yx’k —r = (qk ).%' . (2qk t qkftfl)n
> (qk )( t+1 qt + 2) _ (quft . qkftfl)(q2t+1 + 1)
— qk(z 2q +q tfl)_th+1+qt_2
> ¢ -2" +qg ) —2¢" 4" -2

H2 _ ot gt — 242 +q—2>0.

I
DO
3

IfAe€2,¢" " and 2z € L=, h=12¢" — ¢+ (A= 1)g* kg L1,.], we have

(6" — Dz — (26"~ = "= 4 A= 1)n

yz,k -z =
2 ( k 1)(2qt+1 _ qt 4 (}\ _ 1)q2t+1—k‘ 4 1) _ (qu—t _ qk‘—t—l 4 )\ _ 1)n
— q 2qt+1 2qk‘—t 4 q2t+1—k2 4 qk‘—t—l 4 qt _ (q2t+1—k 4 1))\
2 q 2qt+1 2 k—t 4 q2t+1—k2 4 qk‘—t—l 4 qt _ (q2t+1—k 4 1)qk—t—1
— q2t+1 k +q ( 2q—t) _ 2qt+1
> qgt+1 (t+2) 4 ¢ (1 —2¢7 ) — 2¢'*! (see Lemma [26)
— q qt+1+qt 1_2q2>0‘

Next, we will show n —y_ , —x > 0.

n —

IfAel,¢* 1 —1]and z € L= L.=[,2¢"—¢+ A2 1=k 1], then

Ab7 " \e

(d" ' =g = (¢ + Da

Yoo =T =
> (2qk—t gkt )\)(q2t+1 +1)— (qk 4 1)(2qt+1 — g AP 1)
— ot ot 14 gt — gt = (q2t+1—k 1A
> @ 2gFt ot p 14 gt — gt (q2t+1—k _ 1)(qk—t—1 1)
— Pk qk(l +207t) — 9¢t+!
> q2t+17(t+2) + qt+2(1 +2q7h) - 92gt+1 (see Lemma [26)

g2 =2 4 gt 4 2¢% > 0.

IfA=¢" " 1Tand z € I, ,, we obtain that

n—yY,,— (2qk_t - qk_t_1 + A)n — (qk + 1)z

> 20" NPT 1) = (¢F + 1)(2¢"T — 20— 1)
= "2+ 1+2¢7") -2 +2¢+1
> P2 +14+2¢7") 20" +2¢+1

20" 4" = 2¢" 1 2¢° + 2 +1 > 0.
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(4.4): When k = 2t, we partition I = [2¢"*! — ¢’ +2,2¢"! — 2 — 1] into ¢'~! — 2
subintervals as follows:

Il,k: = [2qt+1 _ qt + 2’2qt+1 _ qt + q— 1],

L, =2¢" —¢+(A-1Dg+1,2¢"" —¢" + A\g—1] for A e [2,¢"1 —2].

For some A € [1,¢'"' = 2], ifx e I, =[l,,.1, ], we derive that

Yor = "z — ¢ — ¢ L+ X = 1)n.

Firstly, we will show y_, —x > 0.
fAx=1landzel,, =1, then

1,k

Yoo —7 = (" -1)z—(2¢"—¢" ")n
> (g =D~ 42— (2 — D+ )

— 2q2t_2qt+1_qt+qt—1_2>0‘

Ifxe2,¢ ' —2landw eI, =[2¢"" —¢' + (A= 1)g+ 1,1, ], we have

Yo =T = (qk Dz — (2¢" — Ly - 1)n

(@ =D ="+ (A =1g+1) = 2" ="+ A=) +1)
qt 20 ="+ g+ 47 = (g+ 1A

=20 g +q+d = (a+ 1) -2)

¢ —2¢"t —2¢" +3¢+2 > 0.

v

v

Next, we show n —y,, —x > 0. Forany A € [L,¢""' =2, ifz eI, =[,,.,.] =
[\,2¢" — ¢' + Aq — 1], then
n—y,,—z = (2¢—q¢"~ Yy — (¢® 4 D
(24" qt L@ 1) = (1) — ¢t + Ag— 1)
q2 2¢H +3¢' — ¢+ 1 (g - 1)A
q 20" 43¢ — ¢+ 1 (- 1)(¢" ! - 2)
¢t —2¢" 24P +2¢ -1 > 0.

v

v

According to the four cases above, one can deduce that (4) holds.
(5) It is easy to check the following statements:

—(@" +ag = 1)¢" = (g+a)n— (¢ +ag - )¢
qt+1+q+a<qt+1+aq_1’
(@ +agt + D@t = (@ +agt + )¢t — (¢ + a)n

— T —g—a<qgd +agt+1.
When B =1or2and 1 <+v < fqg—1, fromt > 2, we can easily get (3¢—~)¢" > ¢* > B+7.
It follows that
—(Bg"™ —=v)g" = Bn— (B¢ =g =q" + B < Bg'T -,
Bd™ +9d = BT +)d - B =v¢" - B < BT + 7.

From definition, the congruence expressions above imply that there exists some integer
y € [1,x — 1] satisfying y € C, for each x in (5). Hence, z is not a coset leader and (5)
follows. O

27



A.2 The proof of Theorem (4

Proof. Since (1) has been derived by [16,[17], it suffices to prove (2) and (3).

(2): To verify (2), one only needs to show y_, —2 >0 and n —y,, —x > 0 for all
r €l =g +2,2¢" —2] and k € [0,2¢t — 1]. Next, we will give the proof through the
following subcases by different k.

(2.1): When k =0,1,2,--- ,t — 1, it is easy to get x < ¢*2 < n. Hence, for each = we
have y_, = ¢"z > x and

' +1-(¢"+ 1z

¢ +1- (¢ + e

' +1- (" +1)(2¢ -2

= (¢'—2¢"1=2)¢" +2¢" 1 +3>0.

n—yY,, —<T

AV

(2.2): When k =t, we derive y, , = ¢"x — n, it then follows that

Vo= = ("=Dz—n>(@ -1 +2) - (" +1)=¢-3>0,
n-—y,,—v = 2n—(¢"+ 1)z >2(¢" +1)— (¢ +1)(2¢' —2) =4 > 0.

(2.3): When k =t+1,t+2,---,2t — 1, observing the intractability to determine y
we first partition I = [¢ 4 2,2q" — 2] into ¢*~* disjoint subintervals below.

I, = [¢" +2,¢" + Xg¥F —1] for A =1,

L,=1"+A =D +1,¢ + A F = 1] for A € [2,¢* " — 1],

I, =+ - 1)g? % +1,2¢" — 2] for A = ¢F.

Given k € [t + 1,2t — 1], ifx € I, , = [l,,,l, ] for A € [1,¢""], it is not difficult to
obtain that

z,k?

Ypro = qu — (qkft +A—1)n.
Then we shall further verify the remainder of the proof. Firstly, we will show that
Yy — x> 0.
IfA=1,wehavezel, =1,k = (¢t +2,q" + ¢*% — 1], it follows that

k t

Yp =T = (q —1)x—qk7n
(@" =)' +2) =" (¢ +1)
¢“2-q¢") ¢ -2

¢ 2 — gt — ¢t —2
2qt+1—qt—q—2>0.

v

v

If A € [2,¢"7], then = € L, =L,Ll=+O\- Dg*F + 1,1, ], we get that

Y=t = (F=Dz—(@""+r-1n
> (" =D+ A =D+ 1) = (T HA-D(@* + )
— 2R gk gt gt (R 1)
Zq2tk+q_t ¢t = (PR 1)gbt
= qzt gt 207" - 24"
> gD 4 ¢ (1 —2¢7") — 2¢" (see Lemma 26))
= ¢ —2¢ + ¢t —2¢>0.
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Next, we will show n —y_ , —x > 0.

If A€ [1,¢"t — 1], then = € I, =1L ]=1,,4d+ Ag?~F — 1], we derive that
n—y,, —T = (qkit +A)n — (qk + 1)z
> ("N D) = @+ D+ AT 1)

qk_i_qkft_i_l _qt _ (q2t7k _ 1))\

> ¢+ g = (T -1 -
= PP 207t 24!
> @D L (1 4 2071 — 24 (see Lemma [26)

qt+1 —2¢' + qt_1 + 2¢q > 0.

If A = ¢*t, we have z € I, = qu_t L= [¢" + (A —1)¢® % 4+ 1,2¢" — 2]. Then

2¢*7tn — (¢" + 1)z

20" (@* +1) = (¢" + 1)(2¢" - 2)
20"+ = ¢ +1)

2(qt+1 4 q(t+1)—t g+

20" ¢t +q+1)>0.

n—y,,—T

v

v

This completes the proof of (2.3).
(3) It is easily derived that

(" +1)¢" = ¢*+¢d=¢-1,
(th_l)q?)t — 2q4t_q3teq+2
(2¢' +1)¢" = 20" +q'=q" -2,
20" +1)¢" = 2¢* +2¢" =2(¢" - 1).

Thus, if = ¢ + 1,2¢" — 1,2¢" + 1 or 2¢'t! + 2, it is obvious that there exists an integer
less than z in Cy. That is to say, x is not a coset leader and then (3) holds. O

A.3 The proof of Lemma [7]

Proof. 1t is easy to derive that Cs, = {01} and Cjs, = {92, %352}, which implies that both
61 and do are coset leaders. The remainder of the proof is to verify that d3, d4, 5 and Jg
are also coset leaders by the following steps.

Step 1: Consider that

200+ (q—1)? n _ _
53:52—% =5 (T =T ),

We then show y; , —d3 > 0 and n —y,_ , — d3 > 0 by four cases below.

(2.1): If kK =0, it is obvious that Y, =03 and n—y, , =n—d3 > 0.

(2.2): If k = 1,2, we get

Ysy i



Ysaw —

= Ys.n —

(2.3
y53,]€
y53’k - 53
= Yssr — 03
(2.4
y53,]€
yég,k - 53
n— yag,k

0 = >+ (@@ =+ +q —q)(¢" -1+ " >0,
03 = &= (P-4 —9)(d"+1)—¢

> = (PP g —Q)(q2+1)—

= (q2t_3+---—q2+Q)(q +1)— 22 —g>0.

): If k=3,5,---,2t — 1, then one can deduce that

k -1 k—3
= q53—(T—q7+(q7---—q+1))n
n _ _ _
_ 5_(q2t_q2t1+‘_‘+qk+l)+qk 1_(qk 3_.”_q+1),
_ R (2 2B ) — 1 — g 4 2gh ) — g2
> P (P2 2B ) — 1 — 1y gDl (212
= ot ) —1>0,
B
S 9t _ 21y 21 g1y @12 4 g

— 2(q2t _ q2t 2) +q2t—3 + 1>0.

): If t >3 and k =4,6,---,2t, we can similarly infer that

k -1 k—3
= q53—(T—q7 +(@"7 g —1)n

n _ _ _
§+(q2t_q2t1+‘_‘_qk+l)+qk 1_(qk 3_‘_‘+q_1)’
2q2t_q2t—1_qk+2qk—1_qk‘—2+1

> 92— 2 2o — 22 4
I N C I

Y

e 10 DU S i aac i |

From the four cases above, one can conclude that d3 is a coset leader.

Step 2: Note that 64 = 03— (¢—1)* =2 —¢* +(¢* =+ +¢*—q¢) — (¢— 1)
We can further show Ys,h — 04 >0 and n — Ysyr — d4 > 0 in six cases.
(2.1): If k=0, it is easy to know that y, , =ds and n —y, , =n —ds > 4.
(2.2): If k = 1,2, we get that
k
q 1 _
Yoo = €0—(FH5——d"n
n _ —
= SHE@ =" ) (q3*q2+qfl),
Yspo =00 = &+ (@ =+ D)) NP - - )+ gt
> @@=+ PN ) - TN P a1+ g+
= @ =) 1)+(tz*1)2+1>0,
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= Ys, o — 04

v

(2.3): If t > 3 and

y54,]€

Ysye — 04

Y

n — y64,k — 54 =

(T =P+ = (- D+ 1) -
= (PP =N )~ (- D@+ ) -
== @+ D)+ (- D)2+ 1) — g
== g D@D (1P D+ 1) —¢
2t 1o, 2 2

—ﬁ(q +D+(¢-1)"+1)(¢"+1)—¢q
2 2t—1 2
qt—q;H—q @D+ (- 1D+ D)@ +1) —g > 0.

k=3,5,---,2t — 3, it shall be deduced

kg, (L L e ks

¢°0s — (T ¢+ (q g+1)n

n

5 (@ = —a+1) = ¢ " - 207 + 207 — 29+ 1),
q2t71_2(q2t72_q2t73“. —q3)—q2—q(2t73ﬁ(q4—2q3+2q2—2q+1)
2(q2t75___ _q2+q) _q2t75+q2_2q > O,

20" — "+ (g -1 +1+¢" (¢ - 2¢° +2¢° —2¢+ 1) > 0.

(2.4): If t > 3 and k = 4,6,--- ,2t — 2, we then can similarly obtain that

k
_1 - _
Ysoh = qk54_(qT_qk 1+(qk 3”_+q_1))n
n _
= o =g+ ) =" - 207 + 26" — 20+ 1),
Ysw — 01 = 207 =+ (g —1)?+1-¢"2(¢" —2¢> +2¢° —2¢ + 1)
> 27 — "+ (g =12+ 1 ¢ (¢ -2 + 26" — 29 + 1)
— q2t+q2t—1 _2q2t—2+2q2t—3_qzt—4+(q_1)2+1 >O,
n y647k 54 — q2t—1 _2(q2t—2 _th—g... _qg) _q2 +qk—2(q4 _ 2q3 +2q2 _ 2q+1)
> @ (P2 P ) g gt — 247 + 247 — 2¢ + 1)

2-1 _g(g2t2 _

q P =)+ P - 2¢° + 247 — 29) > 0.

(2.5): If k =2t — 1, it then follows that

y54,k

y54,k - 64

= Ysyk — 04
(2.6): If k = 2t,

Ysyon

= - (I - (g

¢“ —1
= -+ (@ g+ ) - e
n _ _ _
_ §_|_q2t_q2t Ly =2 (24 g )+

— q2t71 _ 2q2t72 _|_ q2t73 _|_ (q _ 1)2 > 0
then one can get that

Pl ks 2
—q =g —q+n

2

n _ _
— __q2t+q2t 1_(q2t3_+q_1)+q_2’

2
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Ypp =01 = B B B
n—ys. =0 = 20— =42 P+ )+ =3¢ +2>0.

Concluding the discussions above, one can infer that d4 is a coset leader.
In the similar way to the proofs of Steps 1 and 2, we can also derive that both d5 and
d¢ are coset leaders. The detailed proofs are omitted here. O

A.4 The proof of Lemma I3

Proof. 1t is easy to derive that C5, = {d1, %61}, which implies that |Cs,| = 2 and 4 is
a coset leader. Next, we will verify that do, 03, 64 and 5 are all also coset leaders by the
following discussions.

Step 1: Notice that

214 (g-1)g 1

5o =61 - :

((q2t+1 _ th) _ (q2t—1 . q2t—2 4= q2 + q))

We then split into five cases to show Ysy o — 09 >0 and n — Ysy o — d9 > 0 by different k:
(1.1): If k=0, it is clear that Ys,x = 02 and n —y, , =n—dy > .
(1.2): If kK =1, we easily get that

-2 _ 1 - -
%M — q52_ 5 nzi((th-i-l_th)_i_(th 1_q2t 2+_q2)_q+2)’
T - SN I Y}
n— Y, —02 = @ +q>0.

(1.3): If k = 2, it is not difficult to obtain that

2
g2
q25_q q n

Ysog = 2 9
1 1 ~ _
_ 5q2t+1_1_5(((1215_(1215 L2 ) g+ 2),
Yo, —02 = ¢ = +q+1>0,
Ny -0 = @ -2 >0

(14): If £ =3,5,---,2t — 1, we shall infer that

1 R Cam )
— ks (. k __ k-1 __H4\4{ T -+
Vo = 4023 —q o
1 _ -
— §(q2t+1_q2t+q2t 1---—q2+q)—qk+qk 1,
Ypp =02 = (@ ="+ =) - (F ")
> (q2t71_q2t72_|_q2t73__‘_q2_'_q)_(q2t71_q2t72)
_ q2t73—q2t74+q2t75---—q2+q>0,
n—y,,—0 = "+ - T+1>2+ (- +1>0.
.0): =4,6,---,2¢t, 1t can be similarly derived that
1.5): If k=4,6 2t, 1 be similarly derived th
1 _ P (U
_ oks Yok k=1 k-2
Ys, o = 2702 2((] q q "+ 1 n+n
1 1 _ —
_ §q2t+1+§(q2t_q2t 1+___+q2_q)_qk+qk 1+1’
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Yoo —02 = ' — (" —d"H+1

Z q2t _ (q2t _ q2t71) _|_ 1 — q2t71 _|_ 1 > 0’
n—y,,—06 = (@@= =P+ +d =
> (= =P+ + (=) >0

Collecting these discussions above, one can conclude that &5 is a coset leader.
Step 2: Observe that

1 - _
03 =02 —qlqg—1) = 5((612”1 — ) = (T -+ )~ (- 9).

We then give the proof by the following three cases:

(2.1): If k£ =0, clearly, Ys,r =03 and n —y, , =n—d3 > d3.
(2.2): If k = 1, we have then

Ys,o = q03— a ; 20
- %((q%+1 — T =T+ = P+ 2 (g - 1),
Yoo =03 = (" +) =)+ —q+1>0,
= Ys, —03 = ¢+ >0
(2.3): If k =2, we get that
sy = 4°03— %n
= %q”“%((q% — T = ) a2 (g - 1),
Yoy — 03 = ' ="'+ +1>0,
n—ys,—0s = (@ ="+ + ) e @+ (g -1) >0.

(24): If t >3 and k = 3,5,--- ,2t — 3, it then follows that

1 — q(qk 2 1)

k k k—1

6 - - - - -

y53,k q 03 2( q q 1 )’I’L
1

yég,k 63

(q2t—1_q2t—2_|_q2t—3 et q)_(qk+2_qk+1 —|—qk—qk_1)+q(q —1)
(21— 22 ) (IR 2823 L )
(@ ="+ +qlg—1) >0,

=y =0 = @ =+ - )+ 1441

(PP -+ P -+ 14 qg - 1)

= A+ - +P—g+1>0.

v

v

(2.5): If t > 3 and k = 4,6,--- ,2t — 2, then one can similarly infer that

1 ko, 4@+
_ oks Yok k-1 k-2
s = 2703 —5(d" —4 ¢+ ) )jn+n,
1 1 _ _
_ §q2t+1+§(q2t_q2t 1+---—|—q2—q)—(qk“—qkﬂ—i—qk—qk 1)_’_1’
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2t_(qk+2_qk+1+qk_qk71)+1+q(q_1)

Ys, o —03 = ¢
> g2 = (qPDFE g2 2002 D=1y L e )
= (@@ +1D(@-q+1) >0,
n—y, =0 = (@@= =)+ (=T - +a(e - D)
> (@ - =P+ - g +ale - D)
(P 4 P+ — P >0

(2.6): If k =2t — 1, we have then

Lo 1 q(¢" 2 +1)

k
Ysgw = 403 5( —T)“JF“
1 _ _ _
— §(q2t+1+q2t_q2t 1+q2t 2+(q2t 3“‘—q2+Q))+1,
s =03 = (@ =" )+ g+ 1>0,
n—yy .~ 0 = B B )

(2.7): If k = 2t, it is not difficult to obtain that

1 _ o ")
k k k—1 k—2
p— 5 _— = _ —_
Ysyon 003 = 5(¢" —q AT )n + qn
1 — —_ —
_ §(q2t+1_q2t+q2t Ly (@23 1 1 ) + ),
y53’k_53 - q2t_1+q2>07
n—yy,—0 = = (=) +elg—1)+1>0.

To sum up, one shall know that d3 is a coset leader.
In the similar way to the proofs of Steps 1 and 2, we can also derive that both d4 and
05 are coset leaders. Therefore, the detailed proofs are omitted here. O

A.5 The proof of Lemma [21]
Proof. It shall be verified by the mathematical induction here.

If 7 = 2, then S* = (1,-1), it is trivial that F{}, = (1,1) and Hjy = (1,~1). This
obviously implies that F (21) > Sy and H (21) > S5,

Now assume that F(”k) > 85" and H(”k) > S"forr>3and 1 < k<21 —1. The

remainder of the proof is to verify F(r];)L1 > S and H(];;l > S8l for1 < k<2 —1. By

143 3 T T T T
definition, if S” = (82#171, -, 87, s7), then
r+1 __ T N _ (T roLT r r r
S _(S ?_S )_(52r,171"" 5515505_82T71715"' 5_81’_50)‘
We split into the following cases.
Case 1: 1<k <21 -1,
Subcase 1.1: If s =" = 1, we obtain that
2T —1—k or—1_1_p
r+1 _ (o7 roor T L ol _oT _or T L e
F(k‘) - (827717}@7 1815805 827‘—1_17 » 51 TS 827‘—1_1’ 821"—1_27 ’ 82m—1_k)
r+1 _ (o1 roor T L. ol T or r r
and H(k) = (SQT_I_k, S8y Sy =St ST S St LSt 732T_1_k)'
: r+1 __ T T\ _ (T rooT r r r
Notice that S™" = (S", -8") = (82#171, S Sg, ST TS, —57).
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According to the assumption, one has known that

T — T ... T r o _ T _ar ... _ar T
F(k‘) - (827"—1—1—k’ 151 50> 827"—1—1’ 827"—1—2’ ’ 82*—1—1&) 2 5"
Clearly, it follows that F{kJ)rl > 87+ and H(gl > gr+l
Subcase 1.2: If /11 = s’ _,_,_, =—1 we have
r+1 _ (_ .r L. ol T or T T r r
F(k) 1_ ( Sor 1 4o » TS 807821"—1_1’ 7817807821"—1_1’827‘—1_27 ’SQT—I_k) and
r+1 _ (_ or RPN LR R & RPN APX SN ¢ T N ¢
H(k) - ( 827"—111@’ » TS 807827'—1_1’ 1815 5g> 821"—1_1’ 821"—1_27 ’ SQT—1_,€)'
Notice that S™! = (57, =8") = (827‘7171’ T ’SI’ Sg’ _5;71,1’ o _57;’ _Sg)'
By assumption, we have known that
y p )
roo__ ([ r L el T or r L er r
F(k) _( 82*—1—1—1%’ T8 80’82f—1—17827"—1—2’ ’S2T—1—k) 2 5"
Consequently, it is easy to know F(rk")'1 > S+ and H(]:;l > S+,
Case 2: k=21
Notice that ngfl,k = —s. _, , = —1. Then we have
(k) — T T T T T T — T '8
F.7 = (821"_1_1,--- PSS St ,87,80) = (8", 8") and
(k) _ T T T T T T J— T T J—
H\ = (52r71,1’ STy Sg,TSE =8, —s0) = (S",=8") = Sry1
It obviously follows that F(’;)rl > 8™ and H (r,;; > gr+t
Case 3: 271 +1<k<2 —1. Putu=k—2"1. Thenl <u <271 -1,
Subcase 3.1 If sT! = —s! =1, we get that
—1= —l-1—u
r4+1 __ ( T r r r T roor r r
- _Sr__a"'7_s7_sa_s _ sttty S8, —S8,S 3 S sty S )
- - - —u
F(k) 121u 1 0 or—1_1 1 07 “9r—1_17 “gr—1_o or—1
r+1 __
and Hyw = (=8, ooe s =80, =808 eS80, 8L TS e =St )
According to the assumption, one has known
r (T .. et e __ T _ar L., T T
H(k) =( S ST =S, =Sl st , sy_l_u) > 8" and
Fr :(—ST cee g7 —gT g7 g7 ce. g7 )>S7"
(k) or—1_1_y’ 77T N0 Tor—1_q7 Tor—1_5’ Pigr=1_y/ — 77
Combining S™! = (87, —8") = (s" N e, —s" —s"), one can
g ) or—1_1" ’919 99 or—1_17 9 19 0/
easily derive that F(rk")'1 > S and H(]:;l > grtl
Subcase 3.2 If s’T1 = —4" = —1, we have
2m—1—k or—1_1_q ’
r+1 _
F(k) - (S;—l—u’ o ’57;’ Sg’ Sgrflq’ o ’57;’ Sg’ _5;*171’ _5;*172’ o _S;*l—u) and
r+1 _ (ar T T o L ol ol T r r
H(k) - (527‘—1—11,’ 1515 50> 827‘71,1’ » TS 80’827‘71,1’827“71,2’ ’527‘71,“)
Similarly, we shall also get that F/t! > §™+1 and H/H > g7+1,
Y & (k) (k)
To sum up, one can conclude that F{k'gl > S§™*+ and H(gl > S™tlforany 1 < k < 271,
This completes the proof. O
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