
ar
X

iv
:2

20
7.

12
75

2v
1 

 [
m

at
h.

C
O

] 
 2

6 
Ju

l 2
02

2 On the girth cycles of the bipartite graph

D(k, q) ∗

Ming Xu, Xiaoyan Cheng and Yuansheng Tang†

School of Mathematical Sciences, Yangzhou University, Jiangsu, China‡

Abstract: For integer k ≥ 2 and prime power q, the algebraic bipartite graph

D(k, q) proposed by Lazebnik and Ustimenko (1995) is meaningful not only in

extremal graph theory but also in coding theory and cryptography. This graph is q-

regular, edge-transitive and of girth at least k+4. For its exact girth g = g(D(k, q)),

Füredi et al. (1995) conjectured g = k+5 for odd k and q ≥ 4. This conjecture was

shown to be valid in 2016 when (k + 5)/2 is the product of an arbitrary factor of

q−1 and an arbitrary power of the characteristic of Fq. In this paper, we determine

all the girth cycles of D(k, q) for 3 ≤ k ≤ 5, q > 3, and those for 3 ≤ k ≤ 8, q = 3.

Keywords: Bipartite graph; backtrackless walk; Cycle; Girth; Edge-transitive;

1 Introduction

The graphs considered in this paper are undirected, without loops and mul-
tiple edges. The vertex set and edge set of a graph G are denoted by V (G)
and E(G), respectively. For distinct vertices v, v′ ∈ V (G) we write v ∼G v′,
or v ∼ v′ for brevity, iff they are adjacent in G, that is, {v, v′} ∈ E(G) is
an edge of G. An automorphism of G means a bijection φ from V (G) to
itself such that φ(v) ∼ φ(v′) iff v ∼ v′. If for any two edges {v1, v

′
1}, {v2, v

′
2}

of G there is an automorphism φ of G such that {φ(v1), φ(v
′
1)} = {v2, v

′
2},

then G is said to be edge-transitive. A backtrackless (or non-recurrent) walk
of length k is a sequence v1, v2, . . . , vk in V (G) such that vi ∼ vi+1 for
i = 1, 2, . . . , k − 1, and vj 6= vj+2 for j = 1, 2, . . . , k − 2. Furthermore, a
backtrackless walk v1, v2, . . . , vk is called a backtrackless circuit iff its length
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is greater than 2 and v3, v4, . . . , vk, v1, v2 is still a backtrackless walk. We
note that a k-cycle is indeed a backtrackless circuit v1, v2, . . . , vk consisting
of distinct vertices. Clearly, any backtrackless circuit of length less than
2g(G) must be a cycle, where g(G) is the girth of G, i.e. the length of the
shortest cycles in G.

In literature, graphs with large girth and a high degree of symmetry have
been applied to variant problems in extremal graph theory, finite geometry,
coding theory, cryptography, communication networks and quantum com-
putations (c.f. [1]–[21]). In particular, bipartite garphs are often used to
represent systems in science and engineering, where the two sides of the bi-
partition represent variables and local constraints involving their adjacent
variables, respectively. The cycle distribution of the corresponding graph
plays an important role in those graphical representations. As an exam-
ple, the Tanner graph of a low-density parity-check (LDPC) code can be
represented by a bipartite graph, where the variable nodes represent code
symbols and the constraint nodes represent the parity-check equations. The
performance of iterative decoding algorithms depends highly on the cycle
distribution and the girth of the Tanner graph. Due to this close relation-
ship, it is of great significance to determine the girth cycles of bipartite
graphs with large girth.

In this paper, we concetrate on the girth cycles of the bipartite graph
D(k, q) which was originally proposed by Lazebnik and Ustimenko in [3],
where k is an integer not less than 2 and q is a prime power. The graph
D(k, q) has been investigated quite well (e.g. [3]–[20]), in particular it has
been proved to be edge-transitive and of girth at least k + 4 for k ≥ 3. On
the application of D(k, q) to coding theory and cryptography, we note that
there were quite a few works devoted to constructing LDPC codes based
on D(k, q) (e.g. [12, 17, 18]). For the exact girth of D(k, q), the following
conjecture was proposed in [5]:

Conjecture 1. D(k, q) has girth k + 5 for all odd k and all q ≥ 4.

This conjecture was shown to be valid in [5] for the case that (k+5)/2 divides
q − 1 and in [19] for the case that (k + 5)/2 is a power of the characteristic
of Fq, respectively. The latest result on this conjecture was given in [20],
therein Conjecture 1 was shown to be valid for the case that (k + 5)/2 is
the product of a factor of q − 1 and a power of the characteristic of Fq. To
our knowledge, almost all of the known researches on this conjecture are
constructive, namely the main conclusions were shown by construction of
some girth cycles of the corresponding graphs.
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We will determine all the girth cycles of D(k, q) for a few small k’s in
this paper. Instead of working with the original graph D(k, q), we consider
the bipartite graph Λk,q proposed in [19], which is isomorphic to D(k, q)
and defined as follows. Let Lk be the set of (k + 1)-dimensional vectors
(l0, l1, l2, . . . , lk) over Fq with l1 = l2. Let Rk be the set of (k+1)-dimensional
vectors (r0, r1, r2, . . . , rk) over Fq with r1 = 0. The vectors in Lk and Rk are
denoted by [l] and 〈r〉, respectively. Then Λk,q is the bipartite graph with
vertex set V (Λk,q) = Lk ∪ Rk and edge set E(Λk,q) ⊂ Lk × Rk such that
[l] = (l0, l1, . . . , lk) ∈ Lk and 〈r〉 = (r0, r1, . . . , rk) ∈ Rk are adjacent in Λk,q

if and only if, for 2 ≤ i ≤ k,

li + ri =

{

r0li−2 if i ≡ 2, 3 mod 4,

l0ri−2 if i ≡ 0, 1 mod 4.
(1)

Since Λk,q and D(k, q) are isomorphic graphs [19], Λk,q is also edge-transitive
and of girth at least k + 4 for k ≥ 3.

This paper is arranged as follows. In Section 2 we show a closed-form
expression for the backtrackless walks of Λk,q which are leading by the all-
zero vectors [l] = (0, 0, . . .) and 〈r〉 = (0, 0, . . .). By using this expression,
all the girth cycles in Λ3,q, and those in Λ4,q for q > 3 are determined in
Section 3. In Section 4, we present a necessary and sufficient condition for
some backtrackless walks of length 10 to be circuits of Λ5,q, and thus all
the girth cycles of Λ5,q are determined. For 4 ≤ k ≤ 8, all the girth cycles
of Λk,3 are determined in Section 5. Some concluding remarks are given in
Section 6.

2 Backtrackless Walks in Λk,q

Since Λk,q is edge-transitive, without loss of generality one can deal with only
the cycles which contains the edge [l] = (0, 0, . . . , 0) ∼ 〈r〉 = (0, 0, . . . , 0).
Let Γ = [l(1)]〈r(1)〉[l(2)]〈r(2)〉 · · · be a given backtrackless walk of the bipartite
graph Λk,q leading by the all-zero vectors [l(1)] = (0, 0, . . . , 0) and 〈r(1)〉 =
(0, 0, . . . , 0). Let xi and yi denote the first entries (or colors) of [l(i)] and
〈r(i)〉, respectively. For i ≥ 1, let

ui = xi+1 − xi, vi = yi+1 − yi. (2)

Clearly, we have ui 6= 0 and vi 6= 0. For i ≥ 1 and j ≥ 0, let l
(i)
j and r

(i)
j

denote the (j + 1)-th entries of [l(i)] and 〈r(i)〉 respectively.
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At first, we introduce the notation ρs(ω1, . . . , ωn) proposed in [19] which
is useful for expressing the vertices in the walk Γ with their colors. For
ω1, . . . , ωn ∈ F

∗
q, let

ρ0(ω1, . . . , ωn) = ω1 · · ·ωn

and, for 1 ≤ s ≤ ⌊n2 ⌋, let

ρs(ω1, . . . , ωn) =
∑

1≤i1<···<is≤n−s

∏n
j=1 ωj

∏s
j=1 ωij+j−1ωij+j

,

where each term in the summation is a product of the remaining elements
in the sequence ω1, . . . , ωn after deleting s disjoint pairs {ωi, ωi+1} of con-
secutive elements. If n < 2s or s < 0, ρs(ω1, . . . , ωn) is defined as 0. For the
null sequence η, ρs(η) is defined as

ρs(η) =

{

1 if s = 0,

0 if s 6= 0.

From the definition of ρs(ω1, . . . , ωn), one can show easily

ρs(ω1, . . . , ωn) = ρs−1(ω1, . . . , ωn−2) + ωnρs(ω1, . . . , ωn−1), (3)

and, for 0 ≤ j ≤ n,

ρn−j(ω1, . . . , ω2n) =
∑

0≤s1<t1≤s2<t2≤···≤sj<tj≤n

j
∏

k=1

ω2sk+1ω2tk , (4)

ρn−j(ω1, . . . , ω2n+1) =
∑

0≤s0<t1≤s1<t2≤···≤sj−1<tj≤sj≤n

ω2s0+1

j
∏

k=1

ω2tkω2sk+1.

(5)

By using of the notation ρs(ω1, . . . , ωn), a closed-form expression for the
backtrackless walks leading by the all-zero vector [l(1)] = (0, 0, . . . , 0) was
given in [19]. Since the second vertex in the walk Γ is also the all-zero vector
〈r(1)〉 = (0, 0, . . . , 0), we improve the closed-form expression further in the
following theorem.

Theorem 1. For any i ≥ 1 and j ≥ 0, we have

l
(i+1)
4j = ρi−j−1(u1, v1, . . . , ui−1, vi−1, ui), (6)

l
(i+1)
4j+1 = ρi−j−2(v1, u2, . . . , vi−1, ui), (7)

l
(i+1)
4j+2 = yi+1l

(i+1)
4j − ρi−j−1(u1, v1, . . . , ui, vi), (8)

l
(i+1)
4j+3 = yi+1l

(i+1)
4j+1 − ρi−j−2(v1, u2 . . . , vi−1, ui, vi). (9)
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Proof. Since [l(2)] = (x2, 0, . . .) = (u1, 0, . . .), one can check easily that (6–9)
are valid when i = 1. Assume (6–9) are valid when i = t for some t ≥ 1.
For j ≥ 0, from [l(t+1)] ∼ 〈r(t+1)〉 we see

r
(t+1)
4j+2 = r

(t+1)
0 l

(t+1)
4j − l

(t+1)
4j+2 = ρt−j−1(u1, v1, . . . , ut, vt),

r
(t+1)
4j+3 = r

(t+1)
0 l

(t+1)
4j+1 − l

(t+1)
4j+3 = ρt−j−2(v1, u2, . . . , vt−1, ut, vt).

Furthermore, for j ≥ 1 from [l(t+1)] ∼ 〈r(t+1)〉 ∼ [l(t+2)] and (3) we have

l
(t+2)
4j = l

(t+2)
0 r

(t+1)
4j−2 − r

(t+1)
4j

= (l
(t+2)
0 − l

(t+1)
0 )r

(t+1)
4j−2 + l

(t+1)
4j

= ut+1ρt−j(u1, v1, . . . , ut, vt) + ρt−j−1(u1, v1, . . . , ut−1, vt−1, ut)

= ρt−j(u1, v1, . . . , ut, vt, ut+1), (10)

l
(t+2)
4j+1 = l

(t+2)
0 r

(t+1)
4j−1 − r

(t+1)
4j+1

= (l
(t+2)
0 − l

(t+1)
0 )r

(t+1)
4j−1 + l

(t+1)
4j+1

= ut+1ρt−j−1(v1, u2, . . . , vt−1, ut, vt) + ρt−j−2(v1, u2, . . . , vt−1, ut)

= ρt−j−1(v1, u2, . . . , vt, ut+1). (11)

From l
(t+2)
0 = xt+2 = u1 + · · ·+ ut+1 = ρt(u1, v1, . . . , ut, vt, ut+1) and

l
(t+2)
1 = l

(t+2)
2 = r

(t+1)
0 l

(t+2)
0 − r

(t+1)
2

= (l
(t+2)
0 − l

(t+1)
0 )r

(t+1)
0 + l

(t+1)
2

= ut+1yt+1 + ρt−2(v1, u2, . . . , vt−1, ut)

= ut+1

∑

1≤s≤t

vs +
∑

1≤s1<s2≤t

vs1us2 = ρt−1(v1, u2, . . . , vt, ut+1)

we see (10) and (11) are also valid for j = 0. Hence, for j ≥ 0 we have

l
(t+2)
4j+2 = r

(t+1)
0 l

(t+2)
4j − r

(t+1)
4j+2

= yt+1ρt−j(u1, v1, . . . , ut, vt, ut+1)− ρt−j−1(u1, v1, . . . , ut, vt)

= yt+2l
(t+2)
4j − ρt−j(u1, v1, . . . , ut+1, vt+1),

l
(t+2)
4j+3 = r

(t+1)
0 l

(t+2)
4j+1 − r

(t+1)
4j+3

= yt+1ρt−j−1(v1, u2, . . . , vt, ut+1)− ρt−j−2(v1, u2, . . . , vt−1, ut, vt)

= yt+2l
(t+2)
4j+1 − ρt−j−1(v1, u2, . . . , ut+1, vt+1).

Therefore, according to induction, we see (6–9) are valid for any i ≥ 1.
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The walk Γ will be called of type (u1, v1, u2, v2, . . .). If the first 2i ver-
tices in the walk Γ form a circuit in Λk,q of length 2i, we also say it is a
backtrackless circuit of type (u1, v1, . . . , ui, vi). In the next sections, we will
deduce some conditions for the first vertices in Γ forming a circuit in Λk,q

for some small k’s, and then determine all the girth cycles in these graphs.

3 Girth Cycles of Λ3,q and Λ4,q

Since the graph Λk,q has girth at least k + 4, we see that any backtrackless
circuit of length 8 in Λk,q is a cycle, namely consisting of distinct vertices.
According to Theorem 1, the first vertices of Γ form a cycle of type ǫ =
(u1, v1, . . . , u4, v4) in Λ3,q if and only if v1, v2, v3, u2, u3, u4 ∈ F

∗
q satisfy v4 =

−v1 − v2 − v3 6= 0, u1 = −u2 − u3 − u4 6= 0 and
{

v1u2 + (v1 + v2)u3 + (v1 + v2 + v3)u4 = 0,

v21u2 + (v1 + v2)
2u3 + (v1 + v2 + v3)

2u4 = 0.
(12)

Hence, the cycles of length 8 in Λ3,q can be determined simply by solving
the linear system (12).

If v1 + v2 = 0, then one should set v3 = v1, u4 = −u2, v4 = −v1, and
u1 = −u3. Hence, for any r, s, t ∈ F

∗
q, let

ǫ = (r, s, t,−s,−r, s,−t,−s), (13)

then we get the following backtrackless walk of length 8 in Λ4,q

[0, 0, 0, 0, 0] ∼ 〈0, 0, 0, 0, 0〉 ∼ [r, 0, 0, 0, 0] ∼ 〈s, 0, rs, 0, r2s〉 ∼

[r + t, st, st, s2t, rst] ∼ 〈0, 0,−st,−s2t,−st(2r + t)〉 ∼

[t, st, st, s2t, 2rst] ∼ 〈s, 0, 0, 0,−2rst〉,

which gives a cycle of length 8 in Λ3,q, and a cycle of length 8 in Λ4,q if and
only if the characteristic of Fq is 2.

If v1 + v2 6= 0, then we should have v2 + v3 6= 0, v1 + v2 + v3 6= 0 and
thus there is a t ∈ F

∗
q such that

u2 = t

∣

∣

∣

∣

v1 + v2 v1 + v2 + v3
(v1 + v2)

2 (v1 + v2 + v3)
2

∣

∣

∣

∣

,

u3 = −t

∣

∣

∣

∣

v1 v1 + v2 + v3
v21 (v1 + v2 + v3)

2

∣

∣

∣

∣

,

u4 = t

∣

∣

∣

∣

v1 v1 + v2
v21 (v1 + v2)

2

∣

∣

∣

∣

.
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Hence, for distinct a, b, c ∈ F
∗
q, let

v1 = a, v2 = b− a, v3 = c− b, v4 = −c, (14)

u2 = tbc(c− b), u3 = tac(a− c), u4 = tab(b− a), (15)

u1 = −(u2 + u3 + u4) = t(c− b)(a− c)(b− a), (16)

where t ∈ F
∗
q, then we get a backtrackless walk of length 8 in Λ4,q as the

following

[0, 0, 0, 0, 0] ∼ 〈0, 0, 0, 0, 0〉 ∼ [t(c− b)(a− c)(b− a), 0, 0, 0, 0] ∼

〈a, 0, ta(c− b)(a− c)(b− a), 0, t2a(c− b)2(a− c)2(b− a)2〉 ∼

[ta(c− b)(b+ c− a), tabc(c− b), tabc(c− b), ta2
bc(c− b), t2abc(c− b)2(a− c)(b− a)] ∼

〈b, 0, tab(c− b)(b− a), tabc(c− b)(b− a), t2ab(c− b)2(b− a)(ab− a
2 + c

2)〉 ∼

[tab(a− b), tabc(a− b), tabc(a− b), tabc2(a− b), t2abc(c− b)(b− a)(a− c)(a− b+ c)] ∼

〈c, 0, 0, 0, t2abc(c− b)(b− a)(c− a)(a− b+ c)〉,

which gives a cycle of length 8 in Λ3,q, and a cycle of length 8 in Λ4,q if and
only if a+ c = b.

Thus, according to the symmetry of Λk,q, we have determined all of the
girth cycles in Λ3,q, and those in Λ4,q if q > 3.

Theorem 2. Let ǫ = (u1, v1, . . . , u4, v4) be a tuple over F
∗
q.

(a) In Λ3,q there is a cycle of type ǫ with v1 + v2 = 0 if and only if (13) is
valid for some r, s, t ∈ F

∗
q.

(b) In Λ4,q there is a cycle of type ǫ with v1 + v2 = 0 if and only if the
characteristic of Fq is 2 and (13) is valid for some r, s, t ∈ F

∗
q.

(c) In Λ3,q there is a cycle of type ǫ with v1 + v2 6= 0 if and only if (14–16)
are valid for some t ∈ F

∗
q and distinct a, b, c ∈ F

∗
q.

(d) In Λ4,q there is a cycle of type ǫ with v1 + v2 6= 0 if and only if (14–16)
are valid for some t ∈ F

∗
q and distinct a, b, c ∈ F

∗
q with a+ c = b.

(e) For q > 3, g(Λ3,q) = g(Λ4,q) = 8.

(f) g(Λ3,3) = 8, g(Λ4,3) ≥ 10.

(g) For q ≥ 3, g(Λ5,q) ≥ 10.

Proof. The first six results follow immediately from the argument preceding
this theorem.
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For the last result, though it is a corollary of the known bound given in
[3], here we give a simple proof for it by using the results (a) and (d). We
assume there is a cycle of type ǫ in Λ5,q. If v1 + v2 = 0, according to (a) we
see (13) is vaid for some r, s, t ∈ F

∗
q and then we have

l
(5)
5 = ρ1(v1, u2, v2, u3, v3, u4) = rts2 6= 0,

contradicts the assumption. If v1 + v2 6= 0, according to (d) there are
a, b, t ∈ F

∗
q with (a− b)(2a− b) 6= 0 such that

(v1, v2, v3, v4) = (a, b− a,−a, a− b),

(u1, u2, u3, u4) = (−t(2a− b),−tb, t(2a− b), tb),

and then we have

l
(5)
5 = ρ1(v1, u2, v2, u3, v3, u4) = t2ab(a− b)(2a − b) 6= 0,

contradicts the assumption. Thus, there is no cycle of length 8 in Λ5,q and
then we have g(Λ5,q) ≥ 10.

4 Girth Cycles of Λ5,q

According to (4), (5) and Theorem 1, we see that the first vertices of the
walk Γ form a cycle of type (u1, v1, . . . , u5, v5) in Λ5,q if and only if

y6 = v1 + · · ·+ v5 = 0, (17)

x6 = u1 + · · ·+ u5 = 0, (18)

and

l
(6)
1 = l

(6)
2 = y6l

(6)
0 − ρ4(u1, v1, . . . , u5, v5) =

5
∑

k=2

ykuk = 0, (19)

l
(6)
3 = y6l

(6)
1 − ρ3(v1, u2, . . . , v4, u5, v5) =

5
∑

k=2

y2kuk = 0, (20)

l
(6)
4 = ρ3(u1, v1, . . . , u4, v4, u5) = −

4
∑

k=1

x2k+1vk = 0, (21)

l
(6)
5 = ρ2(v1, u2, . . . , v4, u5) = −

∑

2≤r≤s≤4

yrurvsxs+1 = 0. (22)
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To determine all of the girth cycles in Λ5,q, we assume now that ǫ =
(u1, v1, . . . , u5, v5) is a tuple over F∗

q satisfying (17–22).
From (19), (20) and (22) we have

4
∑

k=2

ykuk(y5 − yk) = 0,

4
∑

k=2

ykuk

4
∑

j=k

vjxj+1 = 0,

and thus there is a t ∈ F
∗
q such that

y2u2 = t

∣

∣

∣

∣

y5 − y3 y5 − y4
v3x4 + v4x5 v4x5

∣

∣

∣

∣

= tv3v4u4,

y3u3 = −t

∣

∣

∣

∣

y5 − y2 y5 − y4
v2x3 + v3x4 + v4x5 v4x5

∣

∣

∣

∣

= −tv4(v2(u3 + u4) + v3u4),

y4u4 = t

∣

∣

∣

∣

y5 − y2 y5 − y3
v2x3 + v3x4 + v4x5 v3x4 + v4x5

∣

∣

∣

∣

= tv2(v3u3 + v4(u3 + u4)),

which can also be rewritten as

v1u2 = tv3v4u4, (23)

(v1,2 + tv2v4)u3 = −tv4v2,3u4, (24)

tv2v3,4u3 = −(v4,5 + tv2v4)u4, (25)

respectively, where vi,j denotes vi + vj for 1 ≤ i < j ≤ 5.
From (24) and (25) we see

(v1,2 + tv2v4)(v4,5 + tv2v4) = tv2v3,4tv4v2,3,

and then, from v2v4 − v2,3v3,4 = −v3(v2 + v3 + v4) = v3v1,5 and v1,2 + v4,5 =
−v3 we see

v2v3v4v1,5t
2 − v2v3v4t+ v1,2v4,5 = 0. (26)

4.1 Discussion on the Case (v2 + v3)(v1 + v5) = 0

In this subsection we deal with the case v2,3v1,5 = 0.
At first, we assume v2,3 = 0. Clearly, we have v1,5 = −v4 6= 0. From

(24) we see

tv2v4 + v1,2 = 0, (27)
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and v1,2 6= 0.
If v3,4 = 0, then we have v4 = v2. From (25) we see v4,5 + tv2v4 = 0 and

thus v5 = v1, v3 = −v2 = v1 + v3 + v4 + v5 = 2v1, 4tv1 = 1. Then, we see
u2 + u4 = 0 from (23), u3 + u5 = 0 from (19), u1 = 0 from (18), contradicts
u1 ∈ F

∗
q.

Hence, we must have v3,4 6= 0. Let β be the element in F
∗
q such that

u4 = v1,2v3,4v1v5β. (28)

Then, from (25) and (27) we see δ = v1 + v1,2 = −(v4,5 + tv2v4) 6= 0 and

u3 = −v4v1v5δβ. (29)

From (23) we see

u2 = v−1
1 tv3v4u4 = v21,2v3,4v5β. (30)

From (19) and (28–30) we have

u5 = v−1
5 (v1u2 + v1,2u3 + v1u4)

= (v1v
2
1,2v3,4 − v1,2v4v1δ + v1,2v3,4v

2
1)β

= v1v1,2(v3,4(v1,2 + v1)− v4δ)β

= v1v1,2v3δβ. (31)

Then, from (18) we have

u1 = −u2 − u3 − u4 − u5

= −(v21,2v3,4v5 − v4v1v5δ + v1,2v3,4v1v5 + v1v1,2v3δ)β

= −(v1,2v3,4v5 − v4v1v5 + v1v1,2v3)δβ

= − (v1,2(v4v5 + v3v1,5)− v4v1v5) δβ

= −(v1,2(v5 − v3)− v1v5)v4δβ

= −(v5 − v3 + v1)v2v4δβ = v3,4v2v4δβ. (32)



11

From (28–32) and v1 + v4 + v5 = −v2,3 = 0 we have

(v1v2v4δβ
2)−1

4
∑

k=1

x2k+1vk

=(v1v2v4δβ
2)−1

(

v1u
2
1 + v4u

2
5 − v2u3(2u1 + 2u2 + u3)

)

=v2δ(v4v
2
3,4 + v1v

2
1,2) + v5(2v3,4v2v4δ + 2v21,2v3,4v5 − v1v4v5δ)

=2v25v
2
1,2v3,4 + v2v4v3,4δ(v3,4 + 2v5)− v1δ

(

v3v
2
1,2 + v4(v1,2 + v3,4)

2
)

=v3,4
(

2v25v
2
1,2 − v2v4δ(δ + v4)− v1δ(v

2
1,2 + v4(δ + v4))

)

=v3,4v1,2
(

2(v1 + v4)
2v1,2 − v4δ(δ + v4)− v1δv1,2

)

=v3,4v1,2
(

(2v1,2 − δ)v24 + (4v1v1,2 − δ2)v4 + (2v1 − δ)v1v1,2
)

=v3,4v1,2v2(v
2
4 − v2v4 − v1v1,2)

=v3,4v1,2v2v5(v1,2 − v4),

and thus, we have v4 = v1,2 and the following lemma.

Lemma 1. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with

v2 + v3 = 0

if and only if there exist c, d, r ∈ F
∗
q with c /∈ {−d,−2d} such that

v1 = c+ d, v2 = −c, v3 = c, v4 = d, v5 = −c− 2d, (33)

u1 = cr, u2 = dr, u3 = −(c+ 2d)r, u4 = (c+ d)r, u5 = −cr. (34)

Proof. ”=⇒”: From v2 + v3 = 0, v4 = v1 + v2 and v1 + v4 + v5 = 0 we have
(33) for some c, d ∈ F

∗
q with c /∈ {−d,−2d}. Furthermore, from (28–32) we

see (34) is valid for r = −d(c+ d)(c + 2d)β.
The if-part follows clearly from the argument preceding this lemma.

Assume now v1,5 = 0. Clearly, we have v2,3 = −v4 6= 0.
From (26) we see v2v3v4t = v1,2v4,5 and v1,2, v4,5 ∈ F

∗
q. Then, from (23)

and (24) we see v2v1u2 = v1,2v4,5u4 and v2v1,2u3 = −v4v4,5u4, respectively.
Let β be the element in F

∗
q such that

u4 = v1v2v1,2β. (35)

Then, we have

u2 = v21,2v4,5β, (36)

u3 = −v1v4v4,5β. (37)
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From (19) and (35–37) we have

u5 = −v−1
1 (v1u2 + v1,2u3 − v4,5u4)

= −(v1,2 − v4 − v2)v1,2v4,5β = v1,2v
2
4,5β. (38)

Then from (18) we have

u1 = −(u2 + u3 + u4 + u5)

= −(v21,2v4,5 − v1v4v4,5 + v1v2v1,2 + v1,2v
2
4,5)β

= − (v1,2v4,5(v1,2 + v4,5) + v1(v4(v1,2 + v3) + v2v1,2)) β

= (v1,2v4,5 + v1(v1,2 − v4)) v3β = v2v4v3β. (39)

From v1,5 = v2 + v3 + v4 = 0 and (35–39) we see β−2
∑4

k=1 x
2
k+1vk is equal

to

β−2
(

v1u
2
1 + v2(u1 + u2)

2 + v3(u4 + u5)
2 + v4u

2
5

)

=v1,2
(

(v2v3v4)
2 + 2v22v3v4v1,2v4,5 + v2v

3
1,2v

2
4,5

+v3v1,2(v1v2 + v24,5)
2 + v4v1,2v

4
4,5

)

=v1,2
(

(v2v3v4)
2 + 2v22v3v4v1,2v4,5 + v3v1,2(v1v2 + v24,5)

2

+(v2v
2
1,2 + v4(v1,2 + v3)

2)v1,2v
2
4,5

)

=v1,2v3
(

v3v
2
2v

2
4 + 2v22v4v1,2v4,5 + v1,2(v1v2 + v24,5)

2

+(v4v3 + 2v4v1,2 − v21,2)v1,2v
2
4,5

)

=v1,2v3
(

(2v4v1,2 + v4v3 − v21,2 + 2v1v2 + v24,5)v1,2v
2
4,5

+2v22v4v1,2v4,5 + (v21v1,2 − v2,4v
2
4)v

2
2

)

=v1,2v3v4,5
(

(2v4v1,2 − v4v2,4 − v21 − v22 + (v4 − v1)
2)v1,2v4,5

+2v22v4v1,2 − ((v21 + v1v4 + v24) + v2(v1 + v4))v
2
2

)

=v1,2v3v4,5v2
(

(v4 − v2)v1,2(v4 − v1) + 2v2v4v1,2 − (v21 + v2,4v1 + v4v2,4)v2
)

=v1,2v3v4,5v2
(

−v4v
2
1 + v4(v4 − v2)v1

)

=v1,2v3v4,5v2v4v1(v4 − v1,2)

and thus, we have v4 = v1,2 and the following lemma.

Lemma 2. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with

v1 + v5 = 0

if and only if there exist b, c, r ∈ F
∗
q with c /∈ {−b,−2b} such that

v1 = −2b− c, v2 = b, v3 = c, v4 = −b− c, v5 = 2b+ c, (40)

u1 = cr, u2 = −(b+ c)r, u3 = (2b+ c)r, u4 = −(2b+ c)r, u5 = br. (41)
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Proof. ”=⇒”: From v2 + v3 + v4 = 0, v4 = v1 + v2 and v1 + v5 = 0 we have
(40) for some b, c ∈ F

∗
q with c /∈ {−b,−2b}. Furthermore, from (35–39) we

see (41) is valid for r = −b(b+ c)β.
The if-part follows clearly from the argument preceding this lemma.

4.2 Discussion on the Case (v2 + v3)(v1 + v5) 6= 0

In this subsection we deal with the case v2,3v1,5 6= 0.
Let β be the element in F

∗
q such that

u3 = −tv4v2,3v1v1,5v5β. (42)

From (24), we see

u4 = (tv2v4 + v1,2)v1v1,5v5β. (43)

From (23) and (26), we have

u2 = tv3v4(tv2v4 + v1,2)v1,5v5β

= (t2v2v3v4v1,5 + tv3v1,2v1,5)v4v5β

= (tv3(v2v4 + v1,2v1,5)− v1,2v4,5)v4v5β. (44)

Then, from (19) we see

u5 =v−1
5 (v1u2 + v1,2u3 − v4,5u4)

=v1 (tv3(v2v4 + v1,2v1,5)− v1,2v4,5) v4β − v1,2tv4v2,3v1v1,5β

− v4,5(tv2v4 + v1,2)v1v1,5β

=(tv4(v3v2v4 + v3v1,2v1,5 − v1,2v2,3v1,5 − v4,5v2v1,5)

−v1,2v4,5(v4 + v1,5)) v1β

=(tv4v2(v3v4 − v1,2v1,5 − v4,5v1,5) + v1,2v4,5v2,3) v1β

=(tv4v2v3(v4 + v1,5) + v1,2v4,5v2,3) v1β

=− (tv2v3v4 − v1,2v4,5)v1v2,3β, (45)
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Furthermore, from (18) we have

u1 =− u2 − u3 − u4 − u5

=− (tv3(v2v4 + v1,2v1,5)− v1,2v4,5)v4v5β + tv4v2,3v1v1,5v5β

− (tv2v4 + v1,2)v1v1,5v5β + (tv4v2v3 − v1,2v4,5)v1v2,3β

=t(−v3v4v5(v2v4 + v1,2v1,5) + v3v4v1v1,5v5 + v2v3v4v1v2,3)β

+ v1,2(v4,5v4v5 − v1v1,5v5 − v4,5v1v2,3)β

=t(−v2v3v
2
4v5 − v3v4v5v1,5v2 + v2v3v4v1v2,3)β

+ v1,2(v4,5v4v5 − v1(v5(v1,5 + v2,3) + v4v2,3))β

=t(v2v3v4v5v2,3 + v2v3v4v1v2,3)β + v1,2v4(v4,5v5 − v1(v2,3 − v5))β

=tv2v3v4v2,3v1,5β + v1,2v4(v5(v1 + v4,5)− v1v2,3)β

=(tv2v3 − v1,2)v4v2,3v1,5β. (46)

Then, from

u1 + u2 =
(

(tv2v3 − v1,2)v2,3v1,5 + (tv3(v2v4 + v1,2v1,5)− v1,2v4,5)v5
)

v4β

=
(

tv3(v2v2,3v1,5 + v2v4v5 + v1,2v1,5v5)− v1,2(v2,3v1,5 + v4,5v5)
)

v4β

=
(

tv3(v2(v2,3v1 − v1,5v5) + v1,2v1,5v5)− v1,2(v2,3v1 − v5v1)
)

v4β

=
(

tv3(v2v2,3 + v1,5v5) + v1,2(v5 − v2,3)
)

v1v4β

and

u1 + u2 + u3 = (u1 + u2)− tv4v2,3v1v1,5v5β

=
(

tv2(v3v2,3 − v1,5v5) + v1,2(v5 − v2,3)
)

v1v4β

we see

β−2
4

∑

k=1

x2k+1vk = β−2
(

v4u
2
5 + v1u

2
1 + v2(u1 + u2)

2 + v3(u1 + u2 + u3)
2
)

=v4(tv2v3v4 − v1,2v4,5)
2v21v

2
2,3 + v1(tv2v3 − v1,2)

2v24v
2
2,3v

2
1,5+

v2
(

tv3(v2v2,3 + v5v1,5) + v1,2(v5 − v2,3)
)2
v21v

2
4+

v3
(

tv2(v3v2,3 − v5v1,5) + v1,2(v5 − v2,3)
)2
v21v

2
4

=v1v2v3v
2
4v2,3ξ2t

2 + 2v1v2v3v
2
4v

2
2,3ξ1t+ v1v4v2,3ξ0, (47)
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where

ξ2 = v1v2v3v4v2,3 + v2v3v2,3v
2
1,5 + v1v2v3v

2
2,3 + v1v

2
5v

2
1,5

= −v1v2v3v2,3v1,5 + v2v3v2,3v
2
1,5 + v1v

2
5v

2
1,5

= v5v1,5(v1v5v1,5 + v2v3v2,3),

ξ1 = −v1v1,2v4,5 − v1,2v
2
1,5 + v1v1,2(v5 − v2,3)

= v1v1,2v1,5 − v1,2v
2
1,5 = −v5v1,2v1,5,

ξ0 = v1v2,3v
2
1,2v

2
4,5 + v4v2,3v

2
1,2v

2
1,5 + v1v4v

2
1,2(v5 − v2,3)

2

= v21,2
(

v1v2,3v
2
4,5 + v4v2,3v

2
1,5 + v1v4(v4,5 + v1,5)

2
)

= v21,2v4,5v1,5(2v1v4 − v1v4,5 − v4v1,5)

= −v21,2v4,5v1,5v5v1,4.

Hence from v2,3v1,5 6= 0, (21) and (47) we have

v2v3v4(v1v5v1,5 + v2v3v2,3)t
2 − 2v2v3v4v2,3v1,2t− v21,2v4,5v1,4 = 0. (48)

If v1,2 = 0, from (26) and (48), we have t = v−1
1,5 and v1v5v1,5+v2v3v2,3 =

0, the later equality is equivalent to v3 = v1,5.

Lemma 3. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with

(v2 + v3)(v1 + v5) 6= 0, v1 + v2 = 0,

if and only if there exist b, c, r ∈ F
∗
q with b /∈ {−c,−2c} such that

v1 = −b, v2 = b, v3 = c, v4 = −b− 2c, v5 = b+ c, (49)

u1 = cr, u2 = −(b+ 2c)r, u3 = (b+ c)r, u4 = −br, u5 = br. (50)

Proof. ”=⇒”: From v1 + v2 = 0, v3 = v1 + v5 and v3 + v4 + v5 = 0 we have
(49) for some b, c ∈ F

∗
q with b /∈ {−c,−2c}. Furthermore, from (42–46) we

see (50) is valid for r = −b(b+ c)(b + 2c)β.
The if-part follows clearly from the argument preceding this lemma.

Now we assume further v1,2 6= 0. From v1,4v1,2×(26)+(48), we get

(v1v5v1,5 + v2v3v2,3 + v1,4v1,2v1,5)t = v1,2(2v2,3 + v1,4). (51)

If 2v2,3 + v1,4 = 0, i.e. v5 = v2,3, from (51) we see

v1v5v1,5 + v2v3v2,3 + v1,4v1,2v1,5

=v1v2,3v1,2,3 + v2v3v2,3 − 2v2,3v1,2v1,2,3

=v2,3(v1v1,2 + v3v1,2 − 2v1,2v1,2,3)

=− v2,3v1,2(v1 + v3 + 2v2) = 0,

and then v1 = −v3 − 2v2, v4 = −v1 − 2v2,3 = −v3.
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Lemma 4. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with

(v1 + v5)(v1 + v2) 6= 0, v5 = v2 + v3, (52)

if and only if there exist b, c, r ∈ F
∗
q with c /∈ {−b,−2b} such that

v1 = −2b− c, v2 = b, v3 = c, v4 = −c, v5 = b+ c, (53)

u1 = cr, u2 = −cr, u3 = (b+ c)r, u4 = −(2b+ c)r, u5 = br. (54)

Proof. ”=⇒”: From v5 = v2 + v3, v1 = −v3 − 2v2 and v4 = −v3 we see
(53) for some b, c ∈ F

∗
q with c /∈ {−b,−2b}. From (43) we see tv2v4 + v1,2 =

−tbc− b− c 6= 0 and thus from (26) and

v2v3v4v1,5t
2 − v2v3v4t+ v1,2v4,5

=b2c2t2 + bc2t− (b+ c)b = b(ct− 1)(bct+ b+ c) (55)

we see t = c−1. Then, from (42–46), we see (54) is valid for r = b(b+c)(2b+
c)β.

”⇐=”: For b, c, r ∈ F
∗
q with c /∈ {−b,−2b}, let (u1, v1, . . . , u5, v5) be

the tuple defined by (53) and (54). Clearly, we have (52). By setting β =
r(b(b+ c)(2b + c))−1 and t = c−1, one can check (42–46) easily. From (55),
2v2,3 = 2(b + c) = −v1,4 and v1v5v1,5 + v2v3v2,3 = (−2b − c)(b + c)(−b) +
bc(b+ c) = 2b(b + c)2 = −v1,4v1,2v1,5, we see (26) and (48) are valid. Then,
one can conclude that in Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with
(52).

Now we assume v5 6= v2 + v3 further. From (51) we see

v1v5v1,5 + v2v3v2,3 + v1,4v1,2v1,5 6= 0, (56)

t = (v1v5v1,5 + v2v3v2,3 + v1,4v1,2v1,5)
−1v1,2(2v2,3 + v1,4). (57)

Below we consider to deduce a simple condition for (57) satisfying both
(26) and (48). From v1,5×(48)−(v1v5v1,5 + v2v3v2,3)×(26) we see

(v1v5v1,5 + v2v3v2,3 − 2v1,2v2,3v1,5)v2v3v4t

=v1,4v4,5v
2
1,2v1,5 + v1,2v4,5(v1v5v1,5 + v2v3v2,3)

=v1,2v4,5(v1,4v1,2v1,5 + v1v5v1,5 + v2v3v2,3). (58)

From v2v3v4×(51)−(58) we see

(2v2,3 + v1,4)v1,2v1,5v2v3v4t

=v1,2 ((v2,3 − v5)v2v3v4 − v4,5(v1,4v1,2v1,5 + v1v5v1,5 + v2v3v2,3))

=v1,2 (v2v3(v2,3v4 − v5v4 − v4,5v2,3)− v4,5v1,5(v1,4v1,2 + v1v5))

=v1,2v1,5 (v2v3v5 − v4,5(v1,4v1,2 + v1v5)) ,
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and thus from v1,2v1,5 6= 0 we see

(2v2,3 + v1,4)v2v3v4t = v2v3v5 − v4,5(v1,4v1,2 + v1v5). (59)

Then, from (51) and (59) we see

(v2v3v2,3 + (v1,4v1,2 + v1v5)v1,5) (v2v3v5 − (v1,4v1,2 + v1v5)v4,5)

=(2v2,3 + v1,4)
2v1,2v2v3v4. (60)

From v1,4v1,2 + v1v5 = v2v4 − v1v3, we see the difference of the two sides of
(60) is

(v2v3v2,3 − (v2v4 − v1v3)v2,3,4) ((v2v4 − v1v3)v1,2,3 − v2v3v1,2,3,4)

− (2v2,3 + v1,4)
2v1,2v2v3v4 = σ3v

3
4 + σ2v

2
4 + σ1v4 + σ0,

where v2,3,4 = v2,3 + v4, v1,2,3 = v1 + v2,3, v1,2,3,4 = v1,2,3 + v4 and

σ3 = (−v2)(v2v1,2)− v1,2v2v3 = −v2v1,2v2,3,

σ2 = (−v2)(−v3v1,2,3v1,2) + (−v2v2,3 + v1v3)(v2v1,2)− 2(2v2,3 + v1)v1,2v2v3

= v2v1,2(v3v1,2,3 − v2v2,3 + v1v3 − 2(2v2,3 + v1)v3)

= −v2v1,2v2,3(3v3 + v2),

σ1 = (−v2v2,3 + v1v3)(−v3v1,2,3v1,2) + (v3v2,3v1,2)(v2v1,2)− (2v2,3 + v1)
2v1,2v2v3

= −v1,2v3
(

(−v2v2,3 + v1v3)v1,2,3 − v2,3v1,2v2 + (2v2,3 + v1)
2v2

)

= −v1,2v3v2,3(−v2v1,2,3 + v21 + v1v3 − v1,2v2 + 4v2,3v2 + 4v1v2)

= −v1,2v3v2,3(v1v1,3 − v1,2v2 + 3v1,2,3v2),

= −v1,2v3v2,3(v
2
1,2 + v3v1,2 + 2v2v3 + v22),

σ0 = (v3v2,3v1,2)(−v3v1,2,3v1,2) = −v23v
2
1,2v2,3v1,2,3.

Then, from v1,2v2,3 6= 0 and (60) we see

v2v
3
4 + v2(3v3 + v2)v

2
4 + v3(v

2
1,2 + v3v1,2 + 2v2v3 + v22)v4 + v23v1,2v1,2,3 = 0

i.e.

(v3v
2
1,2 + v23v1,2 + v2v4(v2 + 2v3 + v4))v3,4 = 0. (61)
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From (46) and (59) we see

(2v2,3 + v1,4)(v2,3v1,5β)
−1u1

=(2v2,3 + v1,4)(tv2v3 − v1,2)v4

=v2v3v5 − v4,5(v1,4v1,2 + v1v5)− v1,2v4(2v2,3 + v1,4)

=(v2v3 − v4,5v1)v5 − (v4,5 − v4)v1,4v1,2 − 2(v2,3 + v1,4)v1,2v4

=(v2v3 − v4,5v1 − v1,4v1,2 + 2v1,2v4)v5

=(v2v3 − v4,5v1 − v1,2v1 + v1,2v4)v5

=(v2v3 + v1v3 + v1,2v4)v5 = v1,2v3,4v5,

and thus we have v3,4 6= 0. Then, from (61) we have

v3v
2
1,2 + v23v1,2 + v2v4(v2,3 + v3,4) = 0. (62)

and thus

v2v3v2,3 + v1,5(v1,4v1,2 + v1v5)

=v2v3v2,3 − (v2,3 + v4)(v4v2 − v1v3)

=v3v2,3(v2 + v1) + (v1v3 − v2,3v2)v4 − v2v
2
4

=v3v1,2(v2,3 + v1,2 + v3) + (v1v3 − v2,3v2 + v2(v2 + 2v3))v4

=v3v1,2(v1 + 2v2,3) + (v1v3 + v2v3)v4

=v3v1,2(v1 + 2v2,3 + v4)

=v3v1,2(2v2,3 + v1,4). (63)
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Then, from (57) we see t = v−1
3 and then, from (62) and (42–46) we have

u1 = (tv2v3 − v1,2)v4v2,3v1,5β = −v1v4v2,3v1,5β, (64)

u2 = (tv3(v2v4 + v1,2v1,5)− v1,2v4,5)v4v5β

= (v2v4 + v1,2(v1 − v4))v4v5β

= −(v1,2 − v4)(v1,2 + v3,4)v1v4β

= −(v21,2 + v3v1,2 − v4v3,4)v1v4β

= v−1
3 (v2(v2,3 + v3,4) + v3v3,4)v1v

2
4β

= v−1
3 v2,3(v2 + v3,4)v1v

2
4β

= −v−1
3 v2,3v1,5v1v

2
4β, (65)

u3 = −tv4v2,3v1v1,5v5β = −v−1
3 v4v2,3v1v1,5v5β, (66)

u4 = (tv2v4 + v1,2)v1v1,5v5β

= −v−1
3 (v2v4 + v3v1,2)(v1,2,3 + v4)v1v1,5β

= −v−1
3 (v3v1,2v1,2,3 + v4(v2v1,2,3 + v2v4 + v3v1,2))v1v1,5β

= −v−1
3 (−v2(v2 + 2v3 + v4) + (v2,3v1,2 + v2v3,4))v4v1v1,5β

= −v−1
3 v2,3v4v

2
1v1,5β, (67)

u5 = −(tv2v3v4 − v1,2v4,5)v1v2,3β

= −(v2v4 + v1,2(v1,2 + v3))v1v2,3β

= −v−1
3 (v3v2v4 − v2v4(v2,3 + v3,4))v1v2,3β

= −v−1
3 v2v4v1,5v1v2,3β. (68)

Let r = −v−1
3 v1v4v2,3v1,5β. From (64–68) we see

u1 = v3r, u2 = v4r, u3 = v5r, u4 = v1r, u5 = v2r, (69)

and thus, we have the following lemma.

Lemma 5. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) with

v2,3v1,2v1,5(v2,3 − v5) 6= 0, (70)

if and only if there are b, c, d, r ∈ F
∗
q with

(b+ c)(c + d)(b+ c+ d) 6= 0 (71)

such that

fb,c,d(x) = cx2 + c(2b+ c)x+ b(c+ d)(b+ c+ d) (72)
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is reducible in Fq and, for a ∈ F
∗
q\{−b,−2b− 2c− d} with fb,c,d(a) = 0,

v1 = a, v2 = b, v3 = c, v4 = d, v5 = −(a+ b+ c+ d), (73)

u1 = cr, u2 = dr, u3 = −(a+ b+ c+ d)r, u4 = ar, u5 = br. (74)

Proof. The proof follows clearly from the argument preceding this lemma.

4.3 Girth and Girth Cycles of Λ5,q

Theorem 3. In Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5) if and only
if (73) and (74) are valid for some a, b, c, d, r ∈ F

∗
q with fb,c,d(a) = 0 and

a+ b+ c+ d 6= 0.

Proof. The only-if-part can be checked easily according to Lemmas 1–5.
To show the if-part, we assume that (73) and (74) are valid for some

a, b, c, d, r ∈ F
∗
q with fb,c,d(a) = 0 and a+ b+ c+ d 6= 0.

If b+ c = 0, from a+ d = a+ b+ c+ d 6= 0 and

fb,c,d(a) = ca2 − c2a− c(c+ d)d = c(a+ d)(a− c− d) = 0

we see a = c+ d 6= 0, c+ 2d = a+ d 6= 0 and thus according to Lemma 1 in
Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5).

If b+ c+ d = 0, from

fb,c,d(a) = ca2 + c(2b+ c)a = ca(a+ 2b+ c) = 0

we see a = −2b− c 6= 0, b+ c = −d 6= 0 and thus according to Lemma 2 in
Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5).

If a+ b = 0, from

fb,c,d(a) = cb2 − c(2b+ c)b+ b(c+ d)(b+ c+ d) = bd(b+ 2c+ d) = 0

we see d = −b − 2c 6= 0, b + c = −c − d = −(a + b + c + d) 6= 0 and thus
according to Lemma 3 in Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5).

If c+ d = 0, from

fb,c,d(a) = ca2 + c(2b+ c)a = ca(a+ 2b+ c) = 0

we see a = −2b − c 6= 0, b + c = −a − b = −(a + b + c + d) 6= 0 and thus
according to Lemma 4 in Λ5,q there is a cycle of type (u1, v1, . . . , u5, v5).
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Assume now (b + c)(b + c + d)(a + b)(c + d) 6= 0. If b + 2c + d = 0, we
have a+ 2b+ 2c+ d = a+ b 6= 0. If b+ 2c+ d 6= 0, from fb,c,d(a) = 0 and

fb,c,d(−2b− 2c− d)

=c(2b+ 2c+ d)2 − c(2b+ c)(2b + 2c+ d) + b(c+ d)(b + c+ d)

=(c+ d)(b + c)(b + 2c+ d) 6= 0

we also have a+2b+2c+d 6= 0. Hence, according to Lemma 5 in Λ5,q there
is a cycle of type (u1, v1, . . . , u5, v5).

Corollary 1. (a) For q > 3, g(Λ5,q) = 10.

(b) g(Λ5,3) ≥ 12.

Proof. (a) If q is a prime power greater than 3, then for c ∈ F
∗
q\{1, 2},

according to Lemma 1 the graph Λ5,q has a cycle of type

(c, c− 1,−1,−c, 2 − c, c, c − 1,−1,−c, 2 − c).

Hence, we have g(Λ5,q) = 10.
(b) For any b, c, d ∈ F

∗
3, we have {b, 2b} = F

∗
3 and (b+c)(c+d)(b+c+d) =

0, and thus from Lemmas 1–5 we see Λ5,3 has no cycle of length 10, this
means g(Λ5,3) ≥ 12.

5 Girth Cycles of Λk,3, 4 ≤ k ≤ 8

We note that F∗
3 = {1, 2} and a2 = 1 for any a ∈ F

∗
3.

At first we conclude that in Λ3,3 there is no cycle of length 10 and thus
g(Λk,3) ≥ 12 for k ≥ 4. Assume in contrast that Λ3,3 has a cycle of type
(u1, v1, . . . , u5, v5). Then we have (17–20). Since y2 = v1 and y5 = −v5 are
nonzero, from (18–20) we see y3y4 = 0.

If y3 = 0, then y4 = v3 6= 0 and thus from (20) we have u2+u4+u5 = 0,
which implies u2 = u4 = u5. Hence, from (19) we see y2 = y4 = y5,
contradicts y5 − y4 = v4 6= 0.

If y4 = 0, then y3 = −v3 6= 0 and thus from (20) we have u2+u3+u5 = 0,
which implies u2 = u3 = u5. Hence, from (19) we see y2 = y3 = y5,
contradicts y3 − y2 = v2 6= 0.

Now we consider to determine all the cycles of length 12 in Λ3,3. Assume
in Λ3,3 there is a cycle of type ǫ = (u1, v1, . . . , u6, v6). Then, according to
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Theorem 1 we have

v1 + v2 + v3 + v4 + v5 + v6 = 0, (75)

u1 + u2 + u3 + u4 + u5 + u6 = 0, (76)

y2u2 + y3u3 + y4u4 + y5u5 + y6u6 = 0, (77)

y22u2 + y23u3 + y24u4 + y25u5 + y26u6 = 0. (78)

From y2y6 = −v1v6 6= 0, (76) and (78), we see y3y4y5 = 0. We note that

yi 6= yi+1, 1 ≤ i ≤ 5. (79)

If two of y3, y4, y5 are zero, then we have y3 = y5 = 0 and y4 6= 0. From
(78) we see u2 + u4 + u6 = 0, i.e. u2 = u4 = u6. Then, from (77) we have
y2 + y4 + y6 = 0, i.e. y2 = y4 = y6. From u2 + u4 + u6 = 0 and (76) we have
u1 + u3 + u5 = 0, i.e. u1 = u3 = u5. Hence, there are a, b, r ∈ F

∗
3 such that

ǫ = (a, r, b,−r, a, r, b,−r, a, r, b,−r). (80)

If y3 = 0 and y4y5 6= 0, then we have u2 + u4 + u5 + u6 = u1 + u3 = 0.
Furthermore, from (75) and (79) we see v1 = −v2, v3 = v4 = −v5 = −v6,
y2 = v1 and y4 = −y5 = y6 = v3. Then, from (77) we have v1u2 + v3(u4 −
u5 + u6) = 0 and thus from u2 + u4 + u5 + u6 = 0 we see (v1 + v3)u5 =
(v3 − v1)(u4 + u6), which implies v1 + v3 = u4 + u6 = 0. Hence, there are
a, b, c, r ∈ F

∗
3 such that

ǫ = (a, r, b,−r,−a,−r, c,−r,−b, r,−c, r). (81)

If y5 = 0 and y3y4 6= 0, then we have u2 + u3 + u4 + u6 = u1 + u5 = 0.
Furthermore, from (75) and (79) we see v1 = v2 = −v3 = −v4, v5 = −v6,
y2 = −y3 = y4 = v1 and y6 = v5. Then, from (77) we have v1(u2 − u3 +
u4) + v5u6 = 0 and thus from u2 + u3 + u4 + u6 = 0 we see (v1 + v5)u3 =
(v1 − v5)(u2 + u4), which implies v1 + v5 = u2 + u4 = 0. Hence, there are
a, b, c, r ∈ F

∗
3 such that

ǫ = (a, r, b, r, c,−r,−b,−r,−a,−r,−c, r). (82)

Assume now y4 = 0 and y3y5 6= 0. Clearly, u2 + u3 + u5 + u6 = 0 and
u1 + u4 = 0. From (75) and (79) we have v1 = v2 = v3, v4 = v5 = v6,
y2 = −y3 = v1 and y5 = −y6 = v4.

If v1 6= v4, from (77) we have u2 − u3 − u5 + u6 = 0 and thus from
u2 + u3 + u5 + u6 = 0 we see u2 + u6 = u3 + u5 = 0. Hence, there are
a, b, c, r ∈ F

∗
3 such that

ǫ = (a, r, b, r, c, r,−a,−r,−c,−r,−b,−r). (83)
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If v1 = v4, from (77) we have u2 − u3 + u5 − u6 = 0 and thus from
u2 + u3 + u5 + u6 = 0 we see u2 + u5 = u3 + u6 = 0. Hence, there are
a, b, c, r ∈ F

∗
3 such that

ǫ = (a, r, b, r, c, r,−a, r,−b, r,−c, r). (84)

By now, we have determined all cycles of length 12 in Λ3,3.

Lemma 6. For any tuple ǫ = (u1, v1, . . . , u6, v6) over F
∗
3, in Λ3,3 there is a

cycle of type ǫ if and only if ǫ is of form among (80–84).

Now we consider to determine all the cycles of length 12 in Λ4,3. Ac-
cording to Theorem 1 and Lemma 6 we see that, in Λ4,3 there is a cycle of
type ǫ = (u1, v1, . . . , u6, v6) if and only if ǫ is of form among (80–84) and
satisfies ∆4(ǫ) = 0, where ∆4(ǫ) = x22v1 + x23v2 + x24v3 + x25v4 + x26v5.

If ǫ is of form (80), we have

∆4(ǫ) = r(a2 − (a+ b)2 + (2a+ b)2 − (2a+ 2b)2 + (2b)2) = 0.

If ǫ is of form (81), from

∆4(ǫ) = r(a2 − (a+ b)2 − b2 − (b+ c)2 + c2) = rb(a+ c)

we see ∆4(ǫ) = 0 is valid if and only if a+ c = 0. Hence, we have

ǫ = (a, r, b,−r,−a,−r,−a,−r,−b, r, a, r). (85)

If ǫ is of form (82), from

∆4(ǫ) = r(a2 + (a+ b)2 − (a+ b+ c)2 − (a+ c)2 − c2) = rc(b− a)

we see ∆4(ǫ) = 0 is valid if and only if a = b. Hence, we have

ǫ = (a, r, a, r, c,−r,−a,−r,−a,−r,−c, r). (86)

If ǫ is of form (83), from

∆4(ǫ) = r(a2 + (a+ b)2 + (a+ b+ c)2 − (b+ c)2 − b2) = ra(b− c)

we see ∆4(ǫ) = 0 is valid if and only if b = c. Hence, we have

ǫ = (a, r, b, r, b, r,−a,−r,−b,−r,−b,−r). (87)

If ǫ is of form (84), from

∆4(ǫ) = r(a2 + (a+ b)2 + (a+ b+ c)2 + (b+ c)2 + c2) = r(ab+ bc− ac)
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we see ∆4(ǫ) = 0 is valid if and only if ab+ bc− ac = 0, which is equivalent
to ab = bc = −ac, i.e. a = c = −b. Hence, we have

ǫ = (a, r,−a, r, a, r,−a, r, a, r,−a, r). (88)

Now, we can determine all the girth cycles of Λk,3 for 4 ≤ k ≤ 8.

Theorem 4. Let ǫ = (u1, v1, . . . , u6, v6) be a tuple over F
∗
3.

1. Λ4,3 has a cycle of type ǫ if and only if ǫ is of form (80) or among
(85–88).

2. For k = 5, 6, Λk,3 has a cycle of type ǫ if and only if there are a, b, c, d ∈
F
∗
3 with (a+ b)(c+ d) = 0 such that

ǫ = (a, c, b, d, a, c, b, d, a, c, b, d). (89)

3. Λ7,3 has a cycle of type ǫ if and only if there are a, b, c ∈ F
∗
3 such that

ǫ = (a, c, b,−c, a, c, b,−c, a, c, b,−c). (90)

4. Λ8,3 has a cycle of type ǫ if and only if there are a, c ∈ F
∗
3 such that

ǫ = (a, c,−a,−c, a, c,−a,−c, a, c,−a,−c). (91)

5. For 4 ≤ k ≤ 8, g(Λk,3) = 12.

6. g(Λ9,3) ≥ 14.

Proof. The first result follows from the argument preceding this theorem.
To show the second result, we assume Λ4,3 has a cycle of type ǫ. By

directly computing, one can get

l
(7)
5 = −

∑

2≤r≤s≤5

yrurvsxs+1 =























0, if ǫ is of form (80) or (88),

r2ab, if ǫ is of form (85),

r2ac, if ǫ is of form (86),

−r2ab, if ǫ is of form (87).

Hence, Λ5,3 has a cycle of type ǫ if and only if ǫ is of form (80) or (88), i.e.
(89) is valid for some a, b, c, d ∈ F

∗
3 with (a+ b)(c+ d) = 0. Furthermore, for

such tuple ǫ we have

l
(7)
6 = −

∑

1≤s1≤t1<s2≤t2≤6

us1vt1us2vt2 = 0,
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which means Λ6,3 also has a cycle of type ǫ.
To show the third result, we assume Λ6,3 has a cycle of type ǫ. From

the second result, we see ǫ is of form (89) for some a, b, c, d ∈ F
∗
3 with

(a+ b)(c+ d) = 0, then we have

l
(7)
7 = −

∑

1≤s1<t1≤s<t2≤s2≤6

vs1ut1vsut2vs2 = −ab(c+ d).

Hence, Λ7,3 has a cycle of type ǫ if and only if c + d = 0, i.e. (90) is valid
for some a, b, c ∈ F

∗
3.

To show the fourth result, we assume Λ7,3 has a cycle of type ǫ. From
the third result, we see ǫ is of form (90) for some a, b, c ∈ F

∗
3, then we have

l
(7)
8 =

∑

1≤t1≤s1<t≤s2<t2≤6

ut1vs1utvs2ut2 = −(a+ b).

Hence, Λ8,3 has a cycle of type ǫ if and only if a + b = 0, i.e. (91) is valid
for some a, c ∈ F

∗
3.

The fifth result is a direct corollary of the first four results.
The last result is a corollary of the known bound given in [3]. However,

here we give a simple proof for it by using the fourth result. We assume Λ8,3

has a cycle of type ǫ, then ǫ is of form (91) and then from

l
(7)
9 =

∑

1≤s1<t1≤s<t≤s2<t2≤6

vs1ut1vsutvs2ut2 = −ac 6= 0

we see there is no cycle of length 12 in Λ9,3. Hence, we have g(Λ9,3) ≥ 14.

We note that g(Λ5,3) = 12 has been pointed out in [5] without proof.

6 Concluding Remarks

Note that one can also rewirte (8) and (9) without use of vi, which is an
information about the vertex 〈r(i+1)〉 next to the present vertex [l(i+1)], as
the following

l
(i+1)
4j+2 = yil

(i+1)
4j − ρi−j−2(u1, v1, . . . , ui−1, vi−1),

l
(i+1)
4j+3 = yil

(i+1)
4j+1 − ρi−j−3(v1, u2 . . . , vi−2, ui−1, vi−1),

respectively.
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Since Λk,q is edge-transitive, the girth cycles in Λk,q containing any given
edge are determined indeed by Theorems 2–4 for a few small k’s. However,
it is still not transparent how to count all the girth cycles in these graphs.

For example, let Φ denote the set of backtrackless walks [l1]〈r1〉[l2]〈r2〉[l3]
of length 5 in Λ3,3. Since g(Λ3,3) = 8 and in Λ3,3 there is a 8-cycle of
type ǫ if and only if (13) is valid for some r, s, t ∈ F

∗
3, according to the

symmetry of Λ3,3 we see that any walk Γ5 = [l1]〈r1〉[l2]〈r2〉[l3] ∈ Φ is a
path, namely consisting of distinct vertices, and there is a unique walk Γ′

5 =
[l1]〈r

′
1〉[l

′
2]〈r

′
2〉[l3] ∈ Φ such that

[l1]〈r1〉[l2]〈r2〉[l3]〈r
′
2〉[l

′
2]〈r

′
1〉

is a girth cycle of Λ3,3. Moreover, such girth cycle is uniquely determined by
the walk Γ5. Since the total number of walks in the set Φ is 33×3×2×2×2 =
648 and each girth cycle of Λ3,3 contains exact 8 walks in Φ, we see there
are 648/8 = 81 girth cycles in Λ3,3.

However, this method is not effective even for Λ3,q with q > 3 since
different girth cycles in such graphs may have a common backtrackless walk
of length 5.
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