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Abstract

For a finite connected simple graph, the Terwilliger algebra is a matrix algebra

generated by the adjacency matrix and idempotents corresponding to the distance

partition with respect to a fixed vertex. We will consider algebras defined by two

other partitions and the centralizer algebra of the stabilizer of the fixed vertex in

the automorphism group of the graph. We will give some methods to compute

such algebras and examples for various graphs.
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1 Introduction

In [10, 11, 12], Paul Terwilliger defined a Terwilliger algebra, originally called a subcon-
stituent algebra, for an association scheme. Especially, it was well studied for P - and
Q-polynomial association schemes. In [9], Terwilliger algebras for an arbitrary finite
connected simple graph were also studied. Recently, Shuang-Dong Li, Yi-Zheng Fan,
Tatsuro Ito, Masoud Karimi, and Jing Xu [6] dealt with Terwilliger algebras of trees
motivated by the following conjecture.

Conjecture (J. Koolen). For almost all finite connected simple graphs, the Terwilliger
algebras coincide with the full matrix algebras.

After that, Jing Xu, Tatsuro Ito, and Shuang-Dong Li [14] considered Terwilliger
algebras and centralizer algebras of trees. Then, they investigated when the two algebras
coincide.

∗Supported by JSPS KAKENHI Grant Number JP17K05165.
†Supported by JSPS KAKENHI Grant Number JP20K03557.
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For a graph Γ = (X,E) with the adjacency matrix A and a fixed vertex x0 ∈ X ,
we will consider the following subalgebras Tℓ(Γ, x0) (ℓ = 0, 1, 2, 3, 4) of MX(C), the full
matrix algebra over the complex number field C, rows and columns of whose matrices
are indexed by the set X . We denote by Ex for x ∈ X the matrix in MX(C) whose
(x, x)-entry is 1 and the other entries are 0, and set EY =

∑
y∈Y Ey for Y ⊂ X . Let

G be the automorphism group of the graph Γ and Gx0
the stabilizer of x0 ∈ X in G.

Naturally, G acts on MX(C) by permuting rows and columns.

• (the adjacency algebra) Set T0(Γ, x0) = C〈A〉, the unital C-subalgebra of MX(C)
generated by A.

• Set T1(Γ, x0) = C〈A,Ex0
〉.

• (the Terwilliger algebra) Consider the distance partition of X with respect to
the vertex x0: X = X0 ∪ · · · ∪ XD, where Xk = {x ∈ X : ∂(x0, x) = k} and
D is the diameter of Γ with respect to x0, the maximal distance from x0. Set
T2(Γ, x0) = C〈A,EX0

, EX1
, . . . , EXD

〉.

• Let Y1, . . . , Yr be the Gx0
-orbits on X . Set T3(Γ, x0) = C〈A,EY1

, . . . , EYr
〉.

• (the centralizer algebra) Set T4(Γ, x0) = {M ∈ MX(C) : M
σ = M for any σ ∈ Gx0

}.

The vertex x0 will be called the base vertex. When there is not fear of the confusion,
we omit Tℓ(Γ, x0) with Tℓ. Since the distances are preserved by automorphisms, we can
see that

T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ MX(C).

The aim of this paper is computing examples of these algebras for various simple graphs
and finding examples such that these algebras are different. We remark that all Tℓ are
semisimple, because they are closed by transpose and complex conjugate. Since we are
considering semisimple algebras over an algebraically closed field, they are isomorphic
to direct sums of full matrix algebras. We also remark that the adjacency algebra T0

does not depend on x0 and is commutative.
Since the algebras Tℓ (ℓ = 0, 1, 2, 3, 4) are defined as subalgebras of MX(C), they act

on CX , the vector space with a formal basis X , by right multiplication. The vector
space CX will be called the standard Tℓ-module.

The conjecture by Koolen and the paper [6] are about the relationship between T2

and MX(C). And the paper [14] gives a necessary and sufficient condition for T2 = T4

for trees.
This paper is organized as follows. Section 2 describes notations and terminology

on finite connected simple graphs and idempotents of semisimple algebras. In Section
3, we list basic facts for Tℓ (ℓ = 0, 1, 2, 3, 4). In Section 4, we deal with the structure of
T1. Especially, we determine the structure of T1 for distance-regular graphs. In Section
5, we consider T2 for strongly regular graphs. In Section 6, we consider the structure
of T2 and T3 with respect to the base vertex of valency 1. Proposition 6.2 given in this
section is used for a construction of an infinite family of examples for T2 6= T3 (Section
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9). In Section 7, we show the structures of Tℓ for path graphs, star graphs and cycle
graphs. Finally, we give infinite families of examples for T3 6= T4 in Section 8 (Paley
graphs) and for T2 6= T3 in Section 9.

2 Preliminaries

Let Γ = (X,E) be a finite connected simple graph. LetMX(C) be the full matrix algebra
over the complex number field C, rows and columns of whose matrices are indexed by
the set X . For M ∈ MX(C), Mx,y will be the (x, y)-entry of M . For x, y ∈ X , we
write Ex,y for the matrix unit. The identity matrix in MX(C) will be denoted by I
or IX . The all-one matrix in MX(C) will be denoted by J or JX . The zero matrix in
MX(C) will be denoted by O or OX . We write by A = A(Γ) ∈ MX(C) the adjacency
matrix of Γ, namely, A =

∑
{x,y}∈E (Ex,y + Ey,x). For Y ⊂ X , EY ∈ MX(C) will

be the diagonal matrix whose diagonal entry (EY )x,x is 1 if x ∈ Y and 0 otherwise.
Namely, EY =

∑
y∈Y Ey,y. When Y = {y}, we write Ey instead of E{y}. Let G be the

automorphism group of the graph Γ. For x ∈ X , Gx will be the stabilizer of x in G.
Naturally, G acts on MX(C) by permuting rows and columns.

2.1 Finite connected simple graphs

Let X be a finite set and E be a subset of 2-subsets of X . In this case, we say that
Γ = (X,E) a finite simple graph. An element of X is called a vertex and an element of
E is called an edge. When {x, y} ∈ E, we say that x and y are adjacent in Γ. A walk
of length ℓ in Γ is a finite sequence x0, x1, . . . , xℓ in X such that {xi−1, xi} ∈ E for all
i = 1, 2, . . . , ℓ. In this case, the walk is called a walk from x0 to xℓ. Remark that a walk
can contain the same vertices. For x, y ∈ X , the distance of x and y is the minimal
length of a walk from x to y, and denoted by ∂(x, y). If there is no walk from x to y, we
set ∂(x, y) = ∞. A graph is said to be connected if ∂(x, y) < ∞ for all x, y ∈ X . The
maximal distance will be called the diameter of Γ. For x0 ∈ X , the diameter of Γ with
respect to x0 is the maximal distance from x0 : max{∂(x0, y) : y ∈ X}.

Let Γ = (X,E) be a finite simple connected graph. An automorphism σ of Γ
is a permutation on X such that {x, y} ∈ E if and only if {σ(x), σ(y)} ∈ E. The
automorphism group Aut(Γ) is the group consisting of all automorphisms of Γ. For
x ∈ X , the number of neighbors of x is called the valency of x. A graph Γ is said to
be (k-)regular if all vertices have the same valency k. A graph Γ is said to be vertex-
transitive if Aut(Γ) is transitive on X . A graph Γ is said to be distance-transitive
if, for any x1, x2, y1, y2 ∈ X such that ∂(x1, x2) = ∂(y1, y2), there exists σ ∈ Aut(Γ)
such that σ(x1) = y1 and σ(x2) = y2. A graph Γ is said to be distance-regular if, for
i, j, k = 0, 1, . . . , D, where D is the diameter of Γ, there exists a non-negative integer pkij
such that ♯{z ∈ X : ∂(x, z) = i, ∂(z, y) = j} = pkij for any x, y ∈ X with ∂(x, y) = k.
Clearly, a distance-transitive graph is vertex-transitive and distance-regular.

A k-regular graph with n vertices is said to be strongly regular, with parameters
(n, k, λ, µ) if every adjacent vertices have λ common neighbors, and every non-adjacent
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vertices have µ common neighbors. A strongly regular graph is called primitive if both
of the graph and its complement are connected. In this article, when we say a strongly
regular graph, we mean a primitive strongly regular graph.

The adjacency matrix A of a finite simple connected graph Γ is a matrix in MX(C)
such that Ax,y = 1 if {x, y} ∈ E and 0 otherwise. For the adjacency matrix A and a
non-negative integer k, the (x, y)-entry of Ak is the number of walks of length k from x
to y [1, Lemma 2.5]. Let D be the diameter of Γ. Then A has at least D + 1 distinct
eigenvalues [1, Corollary 2.7]. Remark that all eigenvalues of A are real numbers since
A is a real symmetric matrix. An eigenvalue of A is also called an eigenvalue of the
graph Γ.

2.2 Idempotents of semisimple algebras

In this subsection, we will summarize basic facts on idempotents of algebras. For details,
see [8], for example.

Let K be a field and A a finite dimensional K-algebra. In this article an A-module
means a finite dimensional right A-module. A nonzero element e of A is called an
idempotent if e2 = e. Two idempotents e and f are said to be orthogonal if ef = fe = 0.
An idempotent e is said to be primitive if e is not expressed as a sum of two orthogonal
idempotents. We say that e = e1 + · · ·+ er is an idempotent decomposition of e if all ei
are idempotents and they are orthogonal to each other. An idempotent decomposition
e = e1+ · · ·+er is said to be a primitive idempotent decomposition if all ei are primitive.
Let e = e1 + · · · + er be an idempotent decomposition of e. Then we have a direct
sum decomposition eA = e1A ⊕ · · · ⊕ erA as an A-module. Conversely, a direct sum
decomposition of eA induces an idempotent decomposition. Thus an idempotent e is
primitive if and only if eA is an indecomposable A-module.

By pi(A), we denote the set of all primitive idempotents of A. For e, f ∈ pi(A),
we define e ∼ f if eA ∼= fA as A-modules. Clearly, this is an equivalence relation on
pi(A). By p̃i(A), we denote the set of all equivalence classes of pi(A), and by [e] the
equivalence class containing e ∈ pi(A). For an A-module V and an idempotent e of A,
we have HomA(V, eA) ∼= V e as K-spaces. Thus, for e, f ∈ pi(A), e ∼ f if and only if
eAf 6= 0.

Lemma 2.1. Let A be a finite dimensional algebra over a field K. For an idempotent
e of A, eAe is a K-algebra with the identity element e. For an idempotent f of eAe, f
is primitive in eAe if and only if f is primitive in A. For f, f ′ ∈ pi(eAe), f and f ′ are
equivalent in eAe if and only if they are equivalent in A.

Proof. If f is primitive in A, then clearly it is primitive in eAe. Suppose that f is not
primitive in A, f = g + g′ is an idempotent decomposition of f ∈ eAe in A. Since
f ∈ eAe, it follows that f = fe = ef . Then gf = g(g + g′) = g2 = g, and similarly
fg = g and g′f = fg′ = g′. This means that g = fgf = ege ∈ eAe and g′ ∈ eAe. Thus
f is not primitive in eAe.
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Suppose f, f ′ ∈ pi(eAe). If f and f ′ are equivalent in eAe, then clearly they are
equivalent in A. Suppose that f and f ′ are equivalent in A. Since f, f ′ ∈ eAe, f = fe
and f ′ = ef ′, we have 0 6= fAf ′ = f(eAe)f ′ and so they are equivalent in eAe.

Every idempotent of a finite dimensional algebra has a primitive idempotent decom-
position.

Lemma 2.2. Let e = e1 + · · ·+ er be an idempotent decomposition of an idempotent e,
and ei = f

(i)
1 + · · ·+ f

(i)
ri primitive idempotent decompositions of ei, i = 1, . . . , r. Then

e =
∑r

i=1

∑ri
j=1 f

(i)
j is a primitive idempotent decomposition of e.

Proof. All f
(i)
j are primitive idempotents. It is enough to show that the orthogonality

of them. Suppose (i, j) 6= (i′j′). If i = i′, then f
(i)
j f

(i)
j′ = f

(i)
j′ f

(i)
j = 0 since ei =

f
(i)
1 + · · ·+ f

(i)
ri is a primitive idempotent decomposition. Suppose that i 6= i′. We know

f
(i)
j = eif

(i)
j ei and f

(i′)
j′ = ei′f

(i′)
j′ ei′ . Thus we have f

(i)
j f

(i′)
j′ = eif

(i)
j eiei′f

(i′)
j′ ei′ = 0 and

f
(i′)
j′ f

(i)
j = ei′f

(i′)
j′ ei′eif

(i)
j ei = 0.

Now we suppose that K = C the complex number field and A is semisimple. In
this case, A ∼=

⊕s
i=1Mni

(C) for some positive integers ni by Wedderburn’s Theorem [8,
Theorem 1.8.5]. The projections πi : A → Mni

(C), i = 1. . . . , s, are representatives of
equivalent classes of irreducible representations of A. Also there is a bijection between
p̃i(A) and the set of isomorphism classes of simple A-modules by [e] 7→ eA. Thus every
primitive idempotent belongs to exactly one competent Mni

(C). A primitive idempotent
of A is similar to a diagonal matrix unit of some Mni

(C). Let 1 = e1 + · · · + en be a
primitive idempotent decomposition of 1 in A. Then ni is the number of ej ’s belonging
to Mni

(C) and is equal to the dimension of the corresponding simple module.

3 Basic facts

In this section, we will state some basic facts. We keep the notations in Introduction.
We suppose that Γ = (X,E) is a finite simple connected graph and fix x0 ∈ X . The
automorphism group G = Aut(Γ) also acts on X ×X by σ(x, y) = (σ(x), σ(y)).

Theorem 3.1. [1, p.10] Let Γ be a finite simple connected graph whose adjacency ma-
trix has t distinct eigenvalues. Then it follows that dim T0(Γ, x0) = t and T0(Γ, x0) ∼=⊕t

i=1C.

Lemma 3.2. If there is σ ∈ G such that σ(x0) = y0, then Tℓ(Γ, x0) ∼= Tℓ(Γ, y0). If Γ is
vertex-transitive, then the structure of Tℓ(Γ, x0) (ℓ = 0, 1, 2, 3, 4) does not depend on the
base vertex x0.

Lemma 3.3. If Γ is distance-transitive, then T2(Γ, x0) = T3(Γ, x0).

Proof. In this case, the distance partition with respect to the base vertex x0 is just the
set of Gx0

-orbits.
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Lemma 3.4. Let Y1, . . . , Yr be Gx0
-orbits on X × X. Set AYi

=
∑

(x,y)∈Yi
Ex,y. Then

{AY1
, . . . , AYr

} spans T4(Γ, x0) and dim T4(Γ, x0) = r.

Proof. This is shown by direct calculations.

Lemma 3.5. The following statements are equivalent.

(1) T3(Γ, x0) = MX(C).

(2) T4(Γ, x0) = MX(C).

(3) Gx0
= 1.

Proof. It is clear that (1) implies (2) and (3) implies (1). Also (2) implies (3), by Lemma
3.4, for example.

In [6, Theorem 4], it is shown that Gx0
= 1 if and only if T2(Γ, x0) = MX(C) for

trees. This is not true, in general. For example, see Example 5.3.

Lemma 3.6. Let X = Y1 ∪ · · · ∪ Yr be an arbitrary partition of the vertex set X of
a finite simple connected graph Γ = (X,E). Suppose that |Yi| = 1. We set T =
C〈A,EY1

, . . . , EYr
〉. Then the dimension of the simple T -module EYi

T is at least r.
Moreover, if |Yi| = |Yj| = 1, then EYi

T ∼= EYj
T .

Proof. By the connectivity of Γ, EYi
T EYk

6= 0 for all 1 ≤ k ≤ r. Since |Yi| = 1, EYi
is

a primitive idempotent and every EYk
contains an idempotent equivalent to EYi

. Thus
EYi

has at least r equivalent idempotents in the primitive idempotent decomposition of
1. The last statement is clear.

For the distance partitionX = X0∪· · ·∪XD with respect to the vertex x0, X0 = {x0}
and |X0| = 1. We can apply Lemma 3.6 and the simple module EX0

T2 is called the
principal module.

4 The structure of T1
In this section, we consider the structure of T1 = C〈A,Ex0

〉.
The next lemma is clearly holds.

Lemma 4.1. For v = (vx)x∈X , vEx0
= 0 if and only if vx0

= 0.

Proposition 4.2. Let Γ = (X,E) be a simple connected graph with |X| = n. Fix a
base vertex x0 ∈ X. Suppose that λ is an eigenvalue of the adjacency matrix A of Γ,
and v is a corresponding eigenvector. If the x0-th entry of v is zero, then Cv is a
simple T1(Γ, x0)-module not isomorphic to Ex0

T1(Γ, x0) as a T1(Γ, x0)-module. If w is
an eigenvector corresponding to µ different from λ with the x0-th entry zero, then Cw

is non-isomorphic to Cv as a T1(Γ, x0)-module.
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Proof. Since v is an eigenvector of A, vA = λv ∈ Cv. By assumption, vEx0
= 0.

By T1 = C〈A,Ex0
〉, Cv is a T1-module. The idempotent Ex0

acts on Ex0
T1 as nonzero

and on Cv as 0. Thus Cv is not isomorphic to Ex0
T1. The modules Cv and Cw are

non-isomorphic since the actions of A are different.

Corollary 4.3. Suppose that an eigenvalue λ of A has the eigenspace Vλ of dimension
dλ. Set Wλ := {v ∈ Vλ : vEx0

= 0}. Then dimWλ = dλ − 1 or dλ and Wλ is a direct
sum of isomorphic 1-dimensional simple T1(Γ, x0)-modules.

Proof. Since {v ∈ CX : vEx0
= 0} has dimension n− 1, dimWλ = dλ − 1 or dλ. For an

arbitrary basis {vi} of Wλ, Cvi’s are isomorphic simple T1-modules by Proposition 4.2
and Wλ =

⊕
iCvi.

Proposition 4.4. Set D = max{∂(x0, y) : y ∈ X}, the diameter with respect to x0.
Then dimEx0

T1(Γ, x0) ≥ D + 1.

Proof. For i = 0, . . . , D, we consider Ex0
Ai. The matrix Ex0

Ai contains Ex0,y with
∂(x0, y) = i and no Ex0,y with ∂(x0, y) > i. Thus {Ex0

Ai : i = 0, 1, . . . , D} is a linearly
independent set, and so dimEx0

T1 ≥ D + 1.

The next result can be applied to T1 for distance-regular graphs.

Theorem 4.5. Let Γ = (X,E) be a simple connected graph with diameter D with
respect to the base vertex x0. Suppose that the graph has exactly D + 1 eigenvalues
λ0, . . . , λD with multiplicities m0, . . . , mD, respectively. Set t := ♯{i : mi > 1}. Then
T1(Γ, x0) ∼= MD+1(C)⊕

⊕t
i=1C. Especially, dim T1(Γ, x0) = (D + 1)2 + t.

Proof. By Proposition 4.2 and Corollary 4.3, there are t non-isomorphic simple T1-
modules Si for mi > 1. Set m′

i the multiplicity of Si in CX . Note that m′
i = mi or

mi − 1.
We consider Ex0

T1. By Proposition 4.4, dimEx0
T1 ≥ D + 1. Since the rank of Ex0

is one, the multiplicity of Ex0
T1 in CX is one. Now, considering that CX contains a

submodule isomorphic to Ex0
T1 ⊕

⊕
mi>1m

′
iSi, we have

n =

D∑

i=0

mi = (D + 1) +

D∑

i=0

(mi − 1) ≤ dimEx0
T1 +

∑

mi>1

m′
i ≤ n.

This shows that dimEx0
T1 = D + 1 and {Ex0

T1} ∪ {Si : mi > 1} is the set of all
representatives of simple T1-modules.

5 Terwilliger algebras T2 of strongly regular graphs

The next proposition is essentially proved in [3, Theorem 5.1]. See also [13].
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Proposition 5.1. Let Γ = (X,E) be an (n, k, λ, µ)-strongly regular graph. Fix a vertex
x0 ∈ X. Let X = X0 ∪ X1 ∪ X2 be the distance partition of X with respect to x0.
Then C〈EX1

AEX1
, EX1

JXEX1
〉 = EX1

T2(Γ, x0)EX1
. Especially, EX1

T2(Γ, x0)EX1
is a

commutative algebra. (The same things hold also for X2.)

Proof. It is clear that C〈EX1
AEX1

, EX1
JXEX1

〉 ⊂ EX1
T2(Γ, x0)EX1

.
For convenience, we write A(i,j) for EXi

AEXj
, J(i,j) for EXi

JXEXj
, and I(i,j) for

EXi
IXEXj

. Remark thatA(1,1)J(1,1) = J(1,1)A(1,1) = λJ(1,1) andA(2,2)J(2,2) = J(2,2)A(2,2) =
(k − µ)J(2,2), and so on.

Since EX1
T2EX1

is generated by EX1
AEXs1

AEXs2
· · ·EXst

AEX1
for 0 ≤ su ≤ 2, it

is enough to show that such terms are in C〈A(1,1), J(1,1)〉. We may assume that su 6= 1
for all u because we can divide the term into two parts if su = 1 for some u. Since
A(0,0) = A(0,2) = A(2,0) = O, this term is EX1

AEX0
AEX1

= J(1,1) or O if su = 0 for some
u. Moreover, if su = 2 for some u, then this term is A(1,2)A(2,2)

mA(2,1) (m = 0, 1, . . . )
or O. Thus, we can see that EX1

T2(Γ, x0)EX1
is generated by A(1,1), A(1,2)A(2,2)

mA(2,1)

(m = 0, 1, . . . ) and J(1,1). It is clear that J(1,1), A(1,1) ∈ C〈A(1,1), J(1,1)〉. We will show
that A(1,2)A(2,2)

mA(2,1) ∈ C〈A(1,1), J(1,1)〉.
By a known equation A2 = kI+λA+µ(J−A−I) for an (n, k, λ, µ)-strongly regular

graph, we have

A(1,1)A(1,2) + A(1,2)A(2,2) = (λ− µ)A(1,2) + µJ(1,2) (5.1)

J(1,1) + A(1,1)A(1,1) + A(1,2)A(2,1) = (k − µ)I(1,1) + (λ− µ)A(1,1) + µJ(1,1). (5.2)

Since µJ(1,2) = J(1,1)A(1,2), the equation (5.1) shows that A(1,2)A(2,2) = g(A(1,1), J(1,1))A(1,2)

for some polynomial g(x, y). Thus A(1,2)A(2,2)
m = g(A(1,1), J(1,1))

mA(1,2). The equa-
tion (5.2) shows that A(1,2)A(2,1) = h(A(1,1), J(1,1)) for some polynomial h(x, y). Now
A(1,2)A(2,2)

mA(2,1) = g(A(1,1), J(1,1))
mh(A(1,1), J(1,1)) ∈ C〈A(1,1), J(1,1)〉. The proof is com-

pleted.

Proposition 5.2. Let Γ = (X,E) be an (n, k, λ, µ)-strongly regular graph. Fix a vertex
x0 ∈ X. Then dim T2(Γ, x0) ≤ 2n+ 3.

Proof. Set di = dimEXi
T2EXi

for i = 1, 2. Since EXi
T2EXi

is a commutative semisim-
ple algebra, d1 ≤ k, d2 ≤ n − k − 1, and EXi

is a sum of di non-equivalent primitive
idempotents. Thus EXi

T2 is a direct sum of di non-isomorphic simple T2-modules.
Now EX1

T2EX2

∼= HomT2(EX1
T2, EX2

T2) and thus dimEX1
T2EX2

≤ min{d1, d2}. Sim-
ilarly we have dimEX2

T2EX1
≤ min{d1, d2}. We also remark that dimEX0

T2EXi
=

dimEXi
T2EX0

= 1 for i = 0, 1, 2. By dim T2 =
∑

0≤i,j≤2 dimEX1
T2EX2

, we have

dim T2 ≤ 5 + d1 + d2 + 2min{d1, d2} ≤ 5 + (n− 1) + (n− 1) = 2n+ 3

and the assertion holds.

Our algebra T2(Γ, x0) is just a Terwilliger algebra. A simple T2(Γ, x0)-module W is
said to be thin if dimWEXi

≤ 1 for all i = 0, 1, . . . , D [10, Section 3]. A (distance-
regular) graph is said to be thin with respect to x0 if every irreducible T2(Γ, x0)-module

8



is thin. Now dimWEXi
= dimHom(EXi

T2(Γ, x0),W ) and the condition dimWEXi
≤ 1

means that the modules EXi
T2(Γ, x0) contain at most one simple submodule isomorphic

to W . This condition is satisfied for all simple modules W if EXi
T2(Γ, x0)EXi

(i = 1, 2)
are commutative. As a consequent of Proposition 5.1, we can say that every strongly
regular graph is thin with respect to any vertex. This fact was proved in [13, Lemma
3.3].

Example 5.3. It is known that there are many strongly regular graphs with the trivial
automorphism groups. By Lemma 3.5, dim T3 = dim T4 = n2 for them. By Proposition
5.2, dim T2 ≤ 2n+ 3. Thus T2 ( T3 holds for them if n ≥ 4.

6 A base vertex of valency one

In this section, we consider the structures of T2 and T3 in the case that the valency of the
base vertex x0 is one. There exists the unique neighbor x1 of x0. We set X ′ = X \ {x0},
E ′ = E \ {{x0, x1}}, and consider the graph Γ′ = (X ′, E ′) with the base vertex x1.
Naturally, we can regard MX′(C) as a subset of MX(C).

Lemma 6.1. EX′Tℓ(Γ, x0)EX′ = Tℓ(Γ
′, x1) for ℓ = 2, 3.

Proof. We consider the case ℓ = 2. Let X = X0 ∪ X1 ∪ · · · ∪ XD be the distance
partition with respect to x0 in Γ. Remark that X0 = {x0} and X1 = {x1}. Then
X ′ = X1 ∪ · · · ∪XD is a distance partition with respect to x1 in Γ′. Thus T2(Γ

′, x1) is
generated by EX′AEX′ and EX1

, . . . , EXD
. We have EX′T2(Γ, x0)EX′ ⊃ T2(Γ

′, x1).
To show EX′T2(Γ, x0)EX′ ⊂ T2(Γ

′, x1), it is enough to show that

EX′AEXs1
AEXs2

. . . EXst
AEX′ ∈ T2(Γ

′, x1)

for 0 ≤ su ≤ D. If su 6= 0 for some u, then we can divide the term into two parts.
We may assume that su = 0 for all 1 ≤ u ≤ t. However, EX0

AEX0
= O. Therefore,

it is enough to consider EX′AEX′ and EX′AEx0
AEX′ . Now EX′AEX′ ∈ T2(Γ

′, x1) and
EX′AEx0

AEX′ = Ex1
∈ T2(Γ

′, x1). We have EX′T2(Γ, x0)EX′ ⊂ T2(Γ
′, x1).

We consider the case ℓ = 3. Set G = Aut(Γ). Since Gx0
fixes x1, we can see that the

stabilizer of x1 in Aut(Γ′) coincides with Gx0
. Suppose that X = Y0 ∪ Y1 ∪ · · · ∪ Yr is a

partition of X into Gx0
-orbits where Y0 = {x0} and Y1 = {x1}. Then X ′ = Y1 ∪ · · · ∪ Yr

is a partition of X ′ into Gx0
-orbits. Thus the same arguments as above can be applied

and the statement for T3 holds.

Proposition 6.2. Suppose, for ℓ = 2, 3, that Tℓ(Γ
′, x1) ∼= Mn0

(C) ⊕
⊕r

i=1Mni
(C),

where the primitive idempotent Ex1
belongs to Mn0

(C). Then Tℓ(Γ, x0) ∼= Mn0+1(C) ⊕⊕r
i=1Mni

(C) and the primitive idempotent Ex0
belongs to Mn0+1(C).

Proof. Suppose ℓ is 2 or 3. Let IX′ = e1 + · · ·+ es be a primitive idempotent decompo-
sition of IX′ in Tℓ(Γ

′, x1). By Lemma 2.1 and Lemma 6.1, IX = Ex0
+ e1 + · · ·+ es is a

primitive idempotent decomposition of IX in Tℓ(Γ, x0). Since Ex0
AEx1

6= 0, we can say
that Ex0

and Ex1
are equivalent. The assertion holds.
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7 Some specific graphs

In this section, we investigate the structures of T1, T2, T3, and T4 for path graphs, star
graphs, and cycle graphs.

7.1 Path graphs

Let Pn be the path graph with n vertices for n ≥ 2 [2, Section 1.4.4]. We set the vertex
set {1, 2, . . . , n} and the edge set E = {{i, j} : |i − j| = 1}. Let m be the base vertex.
By symmetry, we may assume that 2m− 1 ≤ n.

Let ζ be a primitive (2n + 2)th root of unity in C. Then the eigenvalues of the
adjacency matrix A of the path graph Pn are

λi := ζ i + ζ−i (i = 1, . . . , n)

and the corresponding eigenvectors are

vi := (ζ i − ζ−i, ζ2i − ζ−2i, . . . , ζni − ζ−ni).

Moreover all eigenvalues are of multiplicity 1. Thus, we know T0(Pn) ∼=
⊕n

i=1C from
Theorem 3.1.

First, we determine the structure of T1.

Theorem 7.1. T1(Pn, m) ∼= Mn−t(C) ⊕
⊕t

i=1C, where t := ♯{s : 1 ≤ s ≤ n, (n +

1)|sm} = ⌊n gcd(m,n+1)
n+1

⌋. Especially, dim T1(Pn, m) = (n− t)2 + t.

Proof. Since CX =
⊕n

i=1Cvi, we can define projections πi : CX → CX such that
πi(vj) = δi,jvi. Let εi be the matrix corresponding to πi, namely πi(w) = wεi for all
w ∈ CX . Then we know εi ∈ C〈A〉 = T0 by theory of linear algebra. Since λi is a
simple root, εi has rank one and is a primitive idempotent in T1.

We will apply Proposition 4.2. The m-th entry of vi is ζmi − ζ−mi, and this is
zero if and only if 2n + 2 | 2mi. Thus we have t non-isomorphic 1-dimensional simple
T1-modules.

We consider the case of ζmi − ζ−mi 6= 0. We remark that Cvi = CXεi. Then
viEx0

6= 0 and hence εiEx0
6= O. This means that εi and Ex0

are equivalent primitive
idempotents. Thus the primitive idempotent decomposition IX =

∑n
i=1 εi has (n − t)

idempotents equivalent to Ex0
. This means that the dimension of the simple T1-module

Ex0
T1 is n− t. The assertion holds.

Next, we consider the structures of Tℓ(Pn, m) (ℓ = 2, 3, 4) of the path graph Pn. Let
X = X0 ∪ · · · ∪XD is the distance partition of Pn with respect to the base vertex m.

Lemma 7.2. The following statements hold.

(1) Em,m ∈ T1(Pn, m).

(2) Em,m−k + Em,m+k ∈ T1(Pn, m) for k = 1, . . . , m− 1.

10



(3) Em−k,m + Em+k,m ∈ T1(Pn, m) for k = 1, . . . , m− 1.

(4) Em−k,m−k′+Em−k,m+k′+Em+k,m−k′+Em+k,m+k′ ∈ T1(Pn, m) for k, k′ = 1, . . . , m−1.

(5) Em−k,m−k′ + Em+k,m+k′ ∈ T2(Pn, m) for k, k′ = 1, . . . , m− 1.

Moreover, elements in the above statements are linearly independent.

Proof. The statement (1) is clear by definition.
We prove (2) by the induction on k. First, we have Em,m−1 + Em,m+1 = EX0

A ∈
T1. Suppose (2) holds for all k′ < k. We have T1 ∋ (Em,m−k+1 + Em,m+k−1)A =
(Em,m−k+2 + Em,m+k−2) + (Em,m−k + Em,m+k) and Em,m−k+2 + Em,m+k−2 ∈ T1 by the
inductive hypothesis. Thus Em,m−k + Em,m+k ∈ T1 holds.

Similarly, (3) holds.
By (2) and (3), we have Em−k,m−k′+Em−k,m+k′+Em+k,m−k′+Em+k,m+k′ = (Em+k,m+

Em−k,m)(Em,m−k′ + Em,m+k′) ∈ T1 and (4) holds.
We have ∂(m − k,m − k′) = ∂(m + k,m + k′) = |k − k′| and ∂(m − k,m + k′) =

∂(m+k,m−k′) = |k+k′| > |k−k′|. Thus T2 ∋ EXk
A|k−k′|EXk′

= Em−k,m−k′+Em+k,m+k′.
(5) holds.

It is easy to see these elements are linearly independent.

Theorem 7.3. Suppose n > 2m − 1. Then T2(Pn, m) = T3(Pn, m) = T4(Pn, m) =
MX(C).

12m− 2m− 1

m

m+ 1 m+ 2 2m− 2 2m− 1 n− 1 n

Proof. It is enough to show that T2 = MX(C). Recall that X = X0 ∪ · · · ∪ Xn−m

is the distance partition with respect to the vertex m. We have T2 ∋ EX0
= Em,m,

T2 ∋ EXk
= Em−k,m−k + Em+k,m+k for 1 ≤ k ≤ m − 1, and T2 ∋ EXk

= Em+k,m+k for
m ≤ k ≤ n−m. For 1 ≤ k ≤ m− 1, we have

Em+k,m+k = Em+k,2mE2m,m+k = (EXk
Am−kE2m,2m)(E2m,2mA

m−kEXk
) ∈ T2.

Consequently, Ek,k ∈ T2 for all 1 ≤ k ≤ n.
Now, for every 1 ≤ i, j ≤ n, we have Ei,iA

|i−j|Ej,j ∈ T2 is a nonzero multiple of Ei,j

and thus Ei,j ∈ T2. This leads to T2 = MX(C).

Since the path graph Pn is a tree and the stabilizer Gm = 1 in the case of n > 2m−1,
Theorem 7.3 holds also by [6, Theorem 4].

Theorem 7.4. Suppose n = 2m − 1. Then T2(Pn, m) = T3(Pn, m) = T4(Pn, m) ∼=
Mm(C) ⊕ Mm−1(C). Especially, dim T2(Pn, m) = dim T3(Pn, m) = dim T4(Pn, m) =
2m2 − 2m+ 1 = (n2 + 1)/4.
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12m− 2m− 1

m

m+ 1 m+ 2 2m− 2 2m− 1

Proof. The set of matrices in Lemma 7.2 are in T2 and linearly independent. Thus
dim T2 ≥ 2m2 − 2m+ 1.

Set g = (1, n)(2, n−1) . . . (m−1, m+1). The stabilizer Gm of m in G = Aut(Pn+1) is
Gm = G = 〈g〉 of order 2. For the permutation character ρ, we have ρ(1) = 2m− 1 and
ρ(g) = 1. Thus ρ = m 1Gm

+(m− 1)χGm
, where 1Gm

is the trivial character and χGm
is

the unique non-trivial irreducible character of Gm. Thus T4
∼= Mm(C)⊕Mm−1(C). We

have dim T2 ≤ dim T3 ≤ dim T4 = 2m2 − 2m+ 1.

7.2 Star graphs

The star graph with n vertices is a complete bipartite graph K1,n−1 [1, p. 49], [2, Section
1.4.2]. We set the vertex set {1, 2, . . . , n} and the edge set {{1, i} : i = 2, 3, . . . , n}. By
symmetry, it is enough to consider the case that the base vertex is 1 or 2. Since the
star graph is equal to the path graph Pn if n ≤ 3, we may assume that n ≥ 4. The
eigenvalues of K1,n−1 are −

√
n− 1, 0,

√
n− 1 with multiplicities 1, n−2, 1, respectively.

Therefore we have T0(K1,n−1) ∼= C⊕ C⊕ C from Theorem 3.1.

Theorem 7.5. For n ≥ 4, Tℓ(K1,n−1, 1) ∼= M2(C)⊕ C for ℓ = 1, 2, 3, 4.

Proof. It is clear that E1,1 ∈ T1,
∑n

i=2E1,i = E1,1A ∈ T1,
∑n

i=2Ei,1 = AE1,1 ∈ T1 and∑n
i=2

∑n
j=2Ei,j = (AE1,1)(E1,1A) ∈ T1. Also we have

∑n
i=2Ei,i = IX −E1,1 ∈ T1. Thus,

we know that dim T1 ≥ 5 since these matrices are linearly independent.
The stabilizer G1 of 1 in G = Aut(K1,n−1) is the symmetric group on {2, 3, . . . , n}.

Therefore the orbits of G1 on X × X are {(1, 1)}, {(1, i) : i = 2, . . . , n}, {(i, 1) : i =
2, . . . , n}, {(i, i) : i = 2, . . . , n}, and {(i, j) : i, j = 2, . . . , n, i 6= j}. Thus dim T4 = 5.
This means that T1 = T2 = T3 = T4. Since Tℓ (ℓ = 1, 2, 3, 4) is a non-commutative
5-dimensional semisimple C-algebra, it follows that Tℓ

∼= M2(C)⊕ C.

Theorem 7.6. For n ≥ 4, Tℓ(K1,n−1, 2) ∼= M3(C)⊕ C for ℓ = 1, 2, 3, 4.

Proof. In this case, we can apply Theorem 4.5. So we obtain that T1
∼= M3(C)⊕C and

dim T1 = 10.
The stabilizer G2 of 2 in G = Aut(K1,n−1) is the symmetric group on {3, 4, . . . , n},

and the orbits of G2 on X × X are {(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(1, i) : i =
3, . . . , n}, {(i, 1) : i = 3, . . . , n}, {(2, i) : i = 3, . . . , n}, {(i, 2) : i = 3, . . . , n}, {(i, i) : i =
3, . . . , n}, and {(i, j) : i, j = 3, . . . , n, i 6= j}. Therefore we know that dim T4 = 10 and
T1 = T2 = T3 = T4.
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7.3 Cycle graphs

Let Cn be the cycle graph with n vertices (n ≥ 3) [2, Section 1.4.3]. The graph Cn

defines a P - and Q-polynomial association scheme and the structure of the Terwilliger
algebra T2 is determined in [12]. We set the vertex set X = {1, 2, . . . , n} and the
edge set {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}. By symmetry, it is enough to consider
only the case that the base vertex is 1. Let ξ be a primitive n-th root of unity in
C. The diameter of Cn is D = ⌊n

2
⌋. The eigenvalues of the adjacency matrix A are

λi := ξi + ξ−i (i = 0, 1, . . . , D). The multiplicity of λ0 is 1 and the multiplicity of λi is
2 for i = 1, . . . , D − 1. The multiplicity of λD is 1 if n is even and 2 if n is odd.

We remark that Cn is a distance-regular graph and so can be applied Theorem 4.5.

Theorem 7.7. T0(Γ, x0) ∼=
⊕D+1

i=1 C and

T1(Γ, x0) ∼=
{
MD+1(C)⊕

⊕D−1
i=1 C if n is even,

MD+1(C)⊕
⊕D

i=1C if n is odd,

where D = ⌊n
2
⌋ is the diameter of Cn.

Proof. It is clear from Theorem 3.1 and Theorem 4.5.

Next, we consider the structures of T2, T3 and T4.

Theorem 7.8. We have

T2(Γ, x0) = T3(Γ, x0) = T4(Γ, x0) ∼=
{
MD+1(C)⊕MD−1(C) if n is even,

MD+1(C)⊕MD(C) if n is odd,
,

where D = ⌊n
2
⌋ is the diameter of Cn.

Proof. By [12, Example 6.1 (23), (24)], we have that T2
∼= MD+1(C)⊕MD−1(C) if n is

even and T2
∼= MD+1(C)⊕MD(C) if n is odd.

We determine the structure of T4. First, we consider the case of n = 2D, namely n
is even. Let g = (2, 2D)(3, 2D − 1) · · · (D,D + 2). Then the stabilizer G1 of 1 in the
group G = Aut(Cn) is 〈g〉. For the permutation character ρ, we know that ρ(1) = 2D
and ρ(g) = 2. So ρ = (D + 1)1G1

+ (D − 1)χG1
, where 1G1

is the trivial character and
χG1

is the non-trivial irreducible character of G1. Therefore, T4
∼= MD+1(C)⊕MD−1(C).

Next, we consider the case of n = 2D+1. Let h = (2, 2D+1)(3, 2D) · · · (D+1, D+2).
Then the stabilizer H1 of 1 in H = Aut(Cn) is 〈h〉. Let ρ be the permutation character.
Since it follows that ρ(1) = 2D + 1 and ρ(h) = 1, we have ρ = (D + 1)1H1

+ DϕH1
,

where 1H1
is the trivial character and ϕH1

is the non-trivial irreducible character of H1.
Thus T4

∼= MD+1(C)⊕MD(C).
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8 Paley graphs: Examples for T3 6= T4
In this section, we consider Paley graphs [1, page 129], [5]. We show in Corollary 8.6
that Paley graphs with p vertices (p is a prime such that p ≥ 7) give examples for
T3 6= T4.

Let Paley(pa) = (X,E) be the Paley graph with |X| = pa ≡ 1 (mod 4), where p is
a prime number. It is a strongly regular graph, and thus we can apply Theorem 4.5 for
T1.

We describe the automorphism group G = Aut(Paley(pa)). The vertex set X is
identified with the finite field GF(pa). We fix a primitive element ξ of GF(pa). The
group G is generated by µα : x 7→ x + α (α ∈ GF(pa)), σ : x 7→ xξ2, and τ : x 7→ xp.
The orders of σ and τ are (pa−1)/2 and a, respectively. The stabilizer of 0 in G is G0 =
〈σ, τ〉. The Paley graph is distance-transitive and so the structure of Tℓ(Paley(p

a), x0)
(ℓ = 0, 1, 2, 3, 4) does not depend on a choice of the base vertex x0. Thus we fix the base
vertex 0 and write Tℓ(Paley(p

a)) for Tℓ(Paley(p
a), 0). We keep these notations in this

section.

Theorem 8.1. T1(Paley(p
a)) ∼= M3(C)⊕ C⊕ C and dim T1(Paley(p

a)) = 11.

Proof. The graph Paley(pa) has eigenvalues (pa − 1)/2, (−1 +
√
pa)/2, (−1 − √

pa)/2
with multiplicities 1, (pa − 1)/2, (pa − 1)/2, respectively. By Theorem 4.5, we have the
result.

Theorem 8.2. dim T4(Paley(p
a)) ≤ 2pa+3. For the case |X| = p, we have the equality

dim T4(Paley(p)) = 2p+ 3 and T4(Paley(p)) ∼= M3(C)⊕
⊕(p−3)/2

i=1 M2(C).

Proof. Set k = (pa − 1)/2. We consider the centralizer algebra U of H = 〈σ〉 ⊂ G0.
Then T4 is a subalgebra of U . We fix an ordering of X = GF(pa) by

{0, 1, ξ2, ξ4, . . . , ξp
a−3, ξ, ξ3, . . . , ξp

a−2}.

Then the permutation matrix given by σ with respect to this ordering is




1
0 1

. . .
. . .
. . . 1

1 0
0 1

. . .
. . .
. . . 1

1 0




.
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Thus the elements in U are of the form



a b . . . . . . b c . . . . . . c
b′ d0 d1 . . . dk−1 e0 e1 . . . ek−1
... dk−1

. . .
. . .

... ek−1
. . .

. . .
...

...
...

. . .
. . . d1

...
. . .

. . . e1
b′ d1 . . . dk−1 d0 e1 . . . ek−1 e0
c′ e′0 e′1 . . . e′k−1 d′0 d′1 . . . d′k−1
... e′k−1

. . .
. . .

... d′k−1

. . .
. . .

...
...

...
. . .

. . . e′1
...

. . .
. . . d′1

c′ e′1 . . . e′k−1 e′0 d′1 . . . d′k−1 d′0




. (8.1)

The number of parameters is 5 + 4k = 2pa + 3 and this is the dimension of U . Thus
dim T4 ≤ 2pa + 3.

Suppose |X| = p. In this case, G0 = H and U = T4, and thus the equality holds.
Remark that all EXi

T4EXj
(i, j = 1, 2) are isomorphic to the group algebra of the cyclic

group of order k, though EXi
T4EXj

are not algebras if i 6= j but we identify them. Let
ε0, . . . , εk−1 be the primitive idempotent of the group algebra, where ε0 corresponds to
the trivial representation, and set

A0 =








a b . . . b c . . . c
b′

... dε0 eε0
b′

c′

... e′ε0 d′ε0
c′








, As =








0 0 . . . 0 0 . . . 0
0
... dεs eεs
0
0
... e′εs d′εs
0








,

for 1 ≤ s ≤ k − 1. Then U =
⊕k−1

s=0 As as algebras, and A0
∼= M3(C), As

∼= M2(C) for

1 ≤ s ≤ k − 1. We have T4
∼= M3(C)⊕

⊕(p−3)/2
i=1 M2(C).

Remark. The equality in Theorem 8.2 does not hold for pa, a > 1. For example,

pa 9 25 49 81 121 125
dim T4 15 33 59 51 135 93

Theorem 8.3. T2(Paley(p
a)) = T3(Paley(p

a)).

Proof. Since Paley(pa) is distance-transitive, the statement holds by Lemma 3.5.

Theorem 8.4. dim T2(Paley(p
a)) ≤ pa + 8.

Proof. By Proposition 5.1, EX1
T2EX1

is commutative and generated by symmetric ma-
trices. Thus all matrices in EX1

T2EX1
are symmetric. By the form (8.1) of matrices,
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EX1
T2EX1

is contained in the adjacency algebra of the cycle C(pa−1)/2. Therefore d :=
dimEX1

T2EX1
≤ (pa+3)/4. The algebra EX1

T2EX1
has d non-isomorphic 1-dimensional

simple modules. The idempotent EX1
is a sum of d non-equivalent primitive idempotents

in EX1
T2EX1

. By Lemma 2.1, EX1
is a sum of d non-equivalent primitive idempotents

in T2, and the same thing holds for EX2
. Now EX1

T2EX2

∼= HomT2(EX1
T2, EX2

T2)
and EX1

T2 and EX2
T2 are sums of d non-isomorphic simple T2-modules. We have

dimEX1
T2EX2

≤ d and similarly dimEX2
T2EX1

≤ d. Now we can conclude that

dim T2 =

2∑

i=0

2∑

j=0

dimEXi
T2EXj

≤ 5 + 4d ≤ pa + 8

and the result holds.

Example 8.5. (1) dim T2 = p + 8 holds for |X| = p = 5, 13, 17, 29, 41, 53, 89, 109,
113, 137, 149.

(2) dim T2 = p+ 4 holds for |X| = p = 37, 61, 73, 97, 101.

(3) dim T2 = pa + 6 for pa = 9, dim T2 = pa for pa = 25, dim T2 = pa − 14 for pa = 49,
dim T2 = pa − 48 for pa = 81, dim T2 = pa − 54 for pa = 121, dim T2 = pa − 72 for
pa = 125,

Corollary 8.6. For Paley(p) with a prime number p ≥ 7, T1(Paley(p)) ( T2(Paley(p)) =
T3(Paley(p)) ( T4(Paley(p)).

Proof. This is clear by Theorems 8.1, 8.2, 8.3, 8.4.

9 Examples for T2 6= T3
We consider the following graph ∆n with n vertices for n ≥ 5. The graph ∆5 with the
base vertex 5 is the example of the minimum vertices for T2 6= T3. (We calculated by
using McKay’s database [7] for connected simple graphs and GAP4 [4]).

n n− 1 6 5
4
3
2
1

We would like to show that T2(∆n, n) ( T3(∆n, n). By Proposition 6.2, it is enough to
show it for the case n = 5.

We set Tℓ := Tℓ(∆5, 5) for ℓ = 0, 1, 2, 3, 4, and X0 := {5}, X1 := {1, 2, 3, 4}. Obvi-
ously T1 = T2 holds. The adjacency matrix of ∆5 is




0 1 0 0 1
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
1 1 1 1 0




.
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We set

B1 =

(
O4

t04

04 1

)
, Bi =

(
O4

t
vi

04 0

)
(i = 2, 3), Bi = BT

i−2 (i = 4, 5),

and

Bi =

(
B′

i
t04

04 0

)
(i = 6, . . . , 13),

where 04 = (0, 0, 0, 0), O4 is the zero matrix of degree 4, v2 = (1, 1, 1, 1), v3 = (0, 1, 1, 0),
and

B′
6 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , B′

7 =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 , B′

8 =




0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0


 ,

B′
9 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , B′

10 =




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 , B′

11 =




0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0


 ,

B′
12 =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , B′

13 =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0


 .

Direct calculation shows the following.

Lemma 9.1. The set {B1, . . . , B11} is a basis of T2(∆5, 5), and {B1, . . . , B13} is a basis
of T3(∆5, 5). Especially, dim T2(∆5, 5) = 11 < 13 = dim T3(∆5, 5).

Lemma 9.2. T1(∆5, 5) = T2(∆5, 5) ∼= M3(C)⊕C⊕C and T3(∆5, 5) ∼= M3(C)⊕M2(C).

Proof. The algebra EX1
T2EX1

contains the adjacency algebra of the path graph of length
4. Thus EX1

is decomposed into four primitive idempotents EX1
= e1 + e2 + e3 + e4 in

EX1
T2EX1

. and thus the identity matrix I is decomposed into five primitive idempotents
I = EX0

+e1+e2+e3+e4 in T2. Since HomT2(EX0
T2, EX1

T2) ∼= EX0
T2EX1

= CB2⊕CB3

has dimension 2, exactly two of {e1, e2, e3, e4}, say e1, e2, are equivalent to EX0
. Thus

T2
∼= M3(C)⊕ C⊕ C if e3 and e4 are non-equivalent, or T2

∼= M3(C)⊕M2(C) if e3 and
e4 are equivalent. However, we know that dim T2 = 11. We have the result for T2.

By the same argument shows T3
∼= M3(C)⊕M2(C).

Now we can determine Tℓ(∆n, n), ℓ = 1, 2, 3, 4.

Theorem 9.3. For n ≥ 5, T1(∆n, n) = T2(∆n, n) ∼= Mn−2(C)⊕C⊕C and T3(∆n, n) =
T4(∆n, n) ∼= Mn−2(C)⊕M2(C). Especially, dim T1(∆n, n) = dim T2(∆n, n) = n2 − 4n+
6 < n2 − 4n+ 8 = dim T3(∆n, n) = dim T4(∆n, n) holds.
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Proof. By Proposition 6.2 and Lemma 9.2, we have the results for T2(∆n, n) and T3(∆n, n).
By induction, we can prove that Ek ∈ T1(∆n, n) for 5 ≤ k ≤ n. Thus T1(∆n, n) =
T2(∆n, n). The automorphism group of ∆n is a cyclic group of order 2. By the similar
argument to the proof of Theorem 7.4 for the permutation character, we have the result
for T4(∆n, n).

Remark. We can find no examples for T3 6= T4 among all connected simple graphs with
vertices less than or equal to 9 (by using the McKay’s database [7] and GAP4 [4]). Thus
we find no examples for T2 6= T3 6= T4.
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