
ar
X

iv
:2

21
1.

15
35

0v
2 

 [
cs

.I
T

] 
 6

 D
ec

 2
02

2

Three classes of BCH codes and their duals

Yanhui Zhanga, Li Liua,∗, Xianhong Xieb

aSchool of Mathematics, Hefei University of Technology, Hefei 23009, Anhui, China
bSchool of information and computer science, Anhui Agricultural University, Hefei 230036, Anhui, China

Abstract

BCH codes are an important class of cyclic codes, and have wide applicantions in communication and

storage systems. However, it is difficult to determine the parameters of BCH codes and only a few cases

are known. In this paper, we mainly study three classes of BCH codes with n = qm − 1, q
2s−1
q+1 , qm−1

q−1 .

On the one hand, we accurately give the parameters of C(q,n,δ,1) and its dual codes. On the other hand,

we give the sufficient and necessary conditions for C(q,n,δ,2) being dually-BCH codes.

Keywords: BCH code, Dual code, Coset leader, Dually-BCH

1. Introduction

Let p be a prime and q > 1 be a p-power. An [n, k, d] linear code C over Fq is a k-dimensional

subspace of Fn
q with minimum Hamming distance d. C is said to be cyclic if (c0, c1, ..., cn−1) ∈ C implies

(cn−1, c0, c1, ..., cn−2) ∈ C. Identify any vector (c0, c1, ..., cn−1) ∈ Fn
q with

c0 + c1x+ c2x
2 + ...+ cn−1x

n−1 ∈ Fq[x]/〈x
n − 1〉,

i.e., a code C of length n over Fq corresponds to a subset of Fq[x]/〈x
n − 1〉. Thus C is a cyclic code if

and only if the corresponding subset is an ideal of Fq[x]/〈x
n−1〉. Note that Fq[x]/〈x

n−1〉 is a principal

ideal domain, this means that there exists a monic polynomial g(x) of the smallest degree such that

C=〈g(x)〉 and g(x)|(xn − 1). g(x) is called the generator polynomial of C, and h(x) = (xn − 1)/g(x) is

called the check polynomial of C.

For a code C, its dual code, denoted by C⊥, is defined by

C⊥ := {b ∈ Fn
q : b · cT = 0 for all c ∈ C},

where T denotes the transport and · denotes the standard inner product.

Let m = ordn(q), F∗
qm = 〈α〉 and β = α

qm−1
n . Then β is a primitive n-th root of unity. Let mi(x)

denote the minimal polynomial of βi over Fq, 0 ≤ i ≤ n− 1. For positive integers b and δ, define

g(q,n,δ,b)(x) := lcm (mb(x),mb+1(x), ...,mb+δ−2(x)),
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where 2 ≤ δ ≤ n, lcm denotes the least common multiple of mi(x), b ≤ i ≤ b+ δ− 2. Then C(q,n,δ,b) is

called a BCH code of length n with designed distance δ. For b = 1, C(q,n,δ) := C(q,n,δ,1) is narrow-sense

BCH code. Suppose d(C(q,n,δ,b)) denotes the minimum distance of C(q,n,δ,b), then d(C(q,n,δ,b)) ≥ δ.

The importance of the BCH codes in coding theory and communication is apparent, as can be seen

in [5] and [13]. However, there are many interesting problems about BCH codes or coset leaders. In

[12], Gong et al. proposed the following question:

Question. For a BCH code over Fq, when is its dual code BCH with respect to the same primitive

root of unity?

If the dual of BCH code C is still a BCH code with respect to the same primitive root of unity,

then C is called a dually-BCH code. In [12], the authors gave a necessary and sufficient condition

for C(q,qm−1,δ) being a dually-BCH code. In [19], Wang et al. presented a necessary and sufficient

condition for C(q, qm−1
q−1 ,δ) and C

(q, q
2s−1
q+1 ,δ)

being a dually-BCH codes. But for other lengths or b > 1 and

n = qm − 1, q
2s−1
q+1 , qm−1

q−1 , the condition for C(q,n,δ,b) being a dually-BCH code is still unknown.

It is well known that there is a close relationship between cyclotomic coset leaders and BCH codes.

For this reason, many authors determined the cyclotomic cosets for the study of BCH codes, and

obtained some pretty results.

• For n = qm − 1, Ding et al.[8] presented the first three largest q-cyclotomic coset leaders modulo

n = qm−1. Using those coset leaders, the authors constructed several BCH codes and gave their

dimensions and distances (see [6]-[10],[20]).

• For m = 2s and n = q2s−1
q+1 , Wu et al. [18] gave the largest coset leader δ1 modulo n for

q = 2, 3, and determined the dimension of C(q,n,δ) for 2 ∤ s and 2 ≤ δ ≤ qs + 1 or 2 | s and

2 ≤ δ ≤ ⌈ q
2⌉q

s−1 + 1. Recently, Wang et al. [19] proved that δ1 is still the largest q-cyclotomic

coset leaders modulo n for q ≥ 4.

• For n = qm−1
q−1 , Ding et al. [17] gave the first two largest coset leaders δ1 and δ2 for q = 3, and

determined the parameters of C(q,n,δ) for δ = δ1 and δ2. Zhu et al. [21] gave the largest coset

leaders δ1 for q > 3 and m−1 ≡ 0, 1, q−2 mod q − 1, and determined the parameters of C(q,n,δ1).

Wang et al. [19] presented the largest q-cyclotomic coset leader for any q, and gave the dimension

of C(q,n,δ1).

We shall work on the q-cyclotomic coset leaders modulo n = qm − 1, q
2s−1
q+1 , qm−1

q−1 , and the corre-

sponding BCH codes. Our main contributions are:

(A) When n = qm − 1. Set C̃(q,qm−1,δ,b) := 〈(x − 1)g(q,n,δ,b)(x)〉. We prove that the i-th largest

q-cyclotomic coset leader is δi = (q−1)qm−1−1− q⌊
m−1

2 ⌋+i−2 for m− (
⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
) ≥ i ≥ 3,

and give a sufficient and necessary condition for C̃⊥
(q,qm−1,δ) being a narrow-sense primitive BCH

code. Furthermore, when n ∈ {qm− 1, q
2s−1
q+1 , qm−1

q−1 }, we give a sufficient and necessary condition

for C(q,n,δ,2) being dually-BCH codes.
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(B) When n = q2s−1
q+1 , we obtain the second largest coset leader δ2 modulo n. Moreover,

(B.1) For δ2 ≤ δ ≤ δ1, we completely give the dimension and minimum distance of C(q,n,δ) and

C⊥
(q,n,δ).

(B.2) For 2 | s and ⌈ q
2⌉q

s−1 + 1 ≤ δ ≤ qs+1+1
q+1 , we give the dimension of C(q,n,δ).

(B.3) For δ = a qs−1
q−1 , a qs+1

q+1 if 2 ∤ s and δ = a qs−1
q2−1 if 2 | s, 1 ≤ a ≤ q − 1, we give the dimension

and minimum distance of C(q,n,δ).

(C) When n = qm−1
q−1 . We obtain the second largest coset leader δ2 for some special cases, and present

the dimension of C(q,n,δ) for δ2 ≤ δ ≤ δ1.

2. Preliminaries

2.1. Basic Notations

For any positive integer 0 ≤ s ≤ qm − 2, its q-adic expansion is s =
∑m−1

j=0 sjq
j , write s =

(sm−1, sm−2, ..., s1, s0). For integer 0 ≤ i ≤ m−1, we denote sqi (mod n) by [sqi]n. Then if n = qm−1,

we have

[sqi]qm−1 := (sm−1−i, ..., s0, sm−1, ..., sm−i).

For any 1 ≤ i ≤ n− 1, δi,n denotes the i-th largest q-cyclotomic coset leader modulo n.

Let T = {0 ≤ i ≤ n− 1 : g(q,n,δ,b)(β
i) = 0} and T−1 = {n− i : i ∈ T }. Then T and T⊥ = Zn\T

−1

are called the defining sets of C(q,n,δ,b) and C⊥
(q,n,δ,b) with respect to β, respectively.

2.2. Cyclotomic Cosets and Coset Leaders

For any t with 0 ≤ t ≤ n− 1, the set

{tqi (mod n) : 0 ≤ i < m}

is called the q-cyclotomic coset modulo n of representative t and is denoted by Ct. The number of

elements in Ct is denoted by | Ct |. Set CL(t) := min{i : i ∈ Ct} and MinRepn := {CL(t) : 0 ≤ t ≤

n− 1}. Then CL(t) is called the coset leader of Ct.

It is well known that the coset leaders are very important to evaluate the dimension and minimum

distance of BCH codes. The following four lemmas on coset leaders modulo qm − 1, q2s−1
q+1 and qm−1

q+1

will be useful for demonstrating our results.

Lemma 1. ([2]) Let n be a positive integer such that gcd(n, q) = 1 and q⌊
m
2 ⌋ < n ≤ qm − 1. Then s

is a coset leader and | Cs |= m for all 1 ≤ s ≤ nq
⌈ m

2
⌉

qm−1 , s 6≡ 0 (mod q).

Lemma 2. ([14, 16]) Let n = qm − 1. Then

(a) The first three largest q-cyclotomic coset leaders modulo n are:

δ1,n = (q − 1)qm−1 − 1, δ2,n = (q − 1)qm−1 − 1− q⌊
m−1

2 ⌋, δ3,n = (q − 1)qm−1 − 1− q⌊
m+1

2 ⌋.
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(b) If the Bose distance of C(n,q,δ) is di = qm − qm−1 − qi − 1, where m−2
2 ≤ i ≤ m− ⌊m

3 ⌋− 1. Then

the minimum distance of C(n,q,δ) is di.

(c) Let m = 2s and a be an integer satisfying qs + 1 ≤ a ≤ qs+1 and a 6≡ 0 (mod q).

(c.1) Set a = c(qs + 1), 1 ≤ c ≤ q − 1, then a is a coset leader and | Ca |= m
2 .

(c.2) Set a = asq
s + a0, 1 ≤ a0 < as ≤ q − 1, then a is not a coset leader.

(c.3) Except for (b.1) and (b.2), the remaining of a are coset leaders and | Ca |= m.

Lemma 3. ([19]) Let n = qm−1
q+1 and m = 2s, the first largest q-cyclotomic coset leader δ1,n modulo n

is:

• If 2 ∤ s, then δ1,n = (q−1)qm−1−q
m−2

2 −1
q+1 and | Cδ1,n |= m

2 .

• If 2 | s, then δ1,n = (q−1)qm−1−q
m
2 −1

q+1 and | Cδ1,n |= m.

Furthermore, set (q+1) | h. Then h is a coset leader modulo qm−1 if and only if h
q+1 is a coset leader

modulo qm−1
q+1 .

Lemma 4. ([19],[21]) Let n = qm−1
q−1 . Then

(a) Let q > 3. For any integer 1 ≤ i ≤ n − 1, take i = (im−1, im−2, . . . , i0). If i is a q-cyclotomic

coset leader modulo qm−1
q−1 , then im−1 = 0.

Furthermore, suppose m− 1 = a(q − 1) + b, where a ≥ 1 and 0 ≤ b ≤ q − 2. Let ǫ = a+ 1 when

b = q − 2 and ǫ = a when 0 ≤ b ≤ q − 3. If il = q − 1 for all m − 1 − ǫ ≤ l ≤ m − 2, then

1 ≤ il−1 ≤ il for all 1 ≤ l ≤ m− 2.

(b) Let q ≥ 3 and m ≥ 4.

(b.1) Let q − 1 = mt1 + t2 and
∑q−1

t=1 q⌈
mt
q−1−1⌉ =

∑m−1
i=0 aiq

i, where t1 ≥ 0 and m > t2 ≥ 0.

∗ If t2 = 0, then ai =
q−1
m

for all i ∈ [0,m− 1].

∗ If t2 6= 0, then ai = ⌈ q−1
m

⌉ when i ∈ Υ, where Υ = {⌈mγ
t2

− 1⌉, γ = 1, 2, . . . , t2}.

Otherwise, ai = ⌊ q−1
m

⌋.

(b.2) The first largest q-cyclotomic coset leader modulo n is δ1,n =
qm−1−

∑q−1
t=1 q

⌈ mt
q−1

−1⌉

q−1 and

| Cδ1,n |= m
gcd(m,q−1) .

2.3. Known Results on the Dimension and Minimum Distance of BCH Codes

Given designed distance δ, it is difficult to determine the dimension and minimum distance. But

for some special BCH codes, dim(C(q,n,δ)) and d(C(q,n,δ)) can be given. We list them as follows.

Lemma 5. ([17]) Let n be a positive integer such that q − 1 | n and gcd(n, q) = 1, let δb be a divisor

of n
q−1 . Then for δ = kδb, 1 ≤ k ≤ q − 1, the minimum distance of C(n,q,δ) is δ.

Lemma 6. ([18]) Let n = qm−1
q+1 and m = 2s. Then

4



(a) Suppose 2 ≤ δ ≤ qs + 1. For q, s ≥ 3 and s is odd or q = 2 and s ≥ 5, the dimension k of

C(q,n,δ,1) is given as follows:

(a.1) If 2 ≤ δ ≤ qs+1
q+1 , then

k = n− 2s(δ − 1) + 2s

⌊
δ − 1

q

⌋
.

(a.2) If qs+1
q+1 + 1 ≤ δ ≤ (q − 1) q

s+1
q+1 + 1, then

k = n− 2s(δ − 1) + 2s

⌊
δ − 1

q

⌋
+ s

⌊
(δ − 1)(q + 1)

qs + 1

⌋
.

(a.3) If (q − 1) q
s+1
q+1 + 2 ≤ δ ≤ qs+1−1

q+1 + 2, then

k = n− 2s(δ − 1) + 2s

⌊
δ − 1

q

⌋
+ s(q − 1).

(a.4) If (q − 1)qs−1 + qs+1
q+1 + 1 ≤ δ ≤ qs + 1, then

k = n− 2s(δ − 1) + 2s

⌊
δ − 1

q

⌋
+ 3s(q − 1).

(b) Suppose 2 ≤ δ ≤ ⌈ q
2⌉q

s−1 + 1. For s ≥ 4 and is even, the dimension k of C(q,n,δ) is given as

follows:

(b.1) If 2 | q, then

k = n− 2s(δ − 1) + 2s

⌊
δ − 1

q

⌋
.

(b.2) If 2 ∤ q, then

k =





n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
, if 2 ≤ δ ≤ qs+1

2 ;

n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
+ s, if qs+1

2 + 1 ≤ δ ≤ q+1
2 qs−1 + 1.

2.4. Known Results on Dually-BCH Codes

For special designed distance of narrow-sense BCH codes, the following two lemmas give the suffi-

cient and necessary conditions on dually-BCH codes.

Lemma 7. ([18]) Let n = qm − 1.

• If q = 2 and m ≥ 6, then C(2,2m−1,δ) is a dually-BCH code if and only if

δ = 2, 3, or 2m−1 − 2⌊
m−1

2 ⌋ ≤ δ ≤ n.

• If q ≥ 3 and m ≥ 2, then C(q,qm−1,δ) is a dually-BCH code if and only if

δ = 2 or (q − 1)qm−1 − q⌊
m−1

2 ⌋ ≤ δ ≤ n.

Lemma 8. ([19]) Let n = qm−1
q+1 and δ1,n is given in Lemma 3.

5



(1) If q = 2 and m ≥ 4 is even, then C(q,n,δ) is a dually-BCH code if and only if

δ1,n + 1 ≤ δ ≤ n.

(2) If q > 2 and m = 4, then C(q,n,δ) is a dually-BCH code if and only if

δ = 2, δ1,n ≤ δ ≤ n.

(3) If q > 2 and m 6= 4 is even, then C(q,n,δ) is a dually-BCH code if and only if

δ1,n + 1 ≤ δ ≤ n.

In addition, let q ≥ 3, m ≥ 4, n = qm−1
q−1 and δ1,n is given in Lemma 4. Then C(q,n,δ) is a dually-BCH

code if and only if

δ1,n + 1 ≤ δ ≤ n.

3. The case of n = q
m

− 1

In this section, we always assume n = qm − 1.

3.1. The computation of δi,n

Lemma 9. Let q be a prime power and 3 ≤ i ≤ m− (
⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
),

δi,n = (q − 1)qm−1 − 1− q⌊
m−1

2 ⌋+i−2,

and | Cδi,n |= m.

Proof. Obviously, the case of i = 3 agrees with Lemma 2. By induction, suppose δt,n = (q− 1)qm−1 −

1−q⌊
m−1

2 ⌋+t−2, then we need to prove δt+1,n = (q−1)qm−1−1−q⌊
m−1

2 ⌋+t−1 form−(
⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
) ≥

t+ 1 > t ≥ 2. In order to prove this, we divide it into two steps.

Step 1. We claim that δi,n is a coset leader for 3 ≤ i ≤ m− (
⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
). Clearly,

δi,n = (q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
m−⌊m−1

2 ⌋−i

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
⌊m−1

2 ⌋+i−2

).

Since i ≥ 3, then m−
⌊
m−1
2

⌋
− i <

⌊
m−1
2

⌋
+ i− 2. Note that





[δiq]n = (q − 1, . . . , q − 1︸ ︷︷ ︸
m−⌊m−1

2 ⌋−i

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
⌊m−1

2 ⌋+i−2

, q − 2),

[δiq
2]n = (q − 1, . . . , q − 1︸ ︷︷ ︸

m−⌊m−1
2 ⌋−i−1

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
⌊m−1

2 ⌋+i−2

, q − 2, q − 1),

· · ·

[δiq
m−⌊m−1

2 ⌋−i]n = (q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
⌊m−1

2 ⌋+i−2

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
m−⌊m−1

2 ⌋−i

),

· · ·

[δiq
m−1]n = (q − 1, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸

m−⌊m−1
2 ⌋−i

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
⌊m−1

2 ⌋+i−3

).
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Then [δi,nq
j ]n > δi,n for any 1 ≤ j ≤ m− 1, this implies that δi,n is a coset leader and | Cδi,n |= m for

3 ≤ i ≤ m− (
⌊
m−1
2

⌋
+

⌊
m−3
3

⌋
).

Step 2: For m −
⌊
m−1
2

⌋
− t >

⌊
m−3
3

⌋
, we claim that Ji := δt,n − i is not a coset leader for any

1 ≤ i ≤ (q − 1)q⌊
m−1

2 ⌋+t−2 − 1.

Take h = ⌊m−1
2 ⌋+ t− 2. Note that δt,n − δt+1,n = qh+1 − qh = (q − 1)qh and

(q − 1)qh − 1 = (q − 2)qh + (q − 1)qh−1 + (q − 1)qh−2 + · · ·+ (q − 1)q + q − 1.

For any 1 ≤ i ≤ (q − 1)qh − 1, let

i := ihq
h + ih−1q

h−1 + · · ·+ i1q + i0,

then 0 ≤ ij ≤ q − 1 for any 0 ≤ j ≤ h − 1 and 0 ≤ ih ≤ q − 2, and there is at least an ij 6= 0 for

j ∈ {0, 1, . . . , h}. Thus,

Ji =(q − 2)qm−1 + (q − 1)qm−2 + · · ·+ (q − 1)qh+1 + (q − 2− ih)q
h + (q − 1− ih−1)q

h−1

+ · · ·+ (q − 1− i1)q + (q − 1− i0). (1)

For q = 2, we have ih = 0 and

Ji = 2m−2 + 2m−3 + · · ·+ 2h+1 + (1− ih−1)2
h−1 + · · ·+ (1− i1)2 + 1− i0.

If i0 = 1, then Ji

2 and Ji are in the same cyclotomic coset and Ji

2 < Ji. Hence, Ji cannot be a coset

leader.

If i0 = 0, suppose l is the largest integer such that il = 1, 1 ≤ l ≤ t− 1. Then

Ji = (0, 1, 1, . . . , 1︸ ︷︷ ︸
m−2−h

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
h−l−1

, 0, 1− il−1, . . . , 1− i1, 1︸ ︷︷ ︸
l

).

Note thatm−2−h = m−
⌊
m−1
2

⌋
−t and h−l−1 =

⌊
m−1
2

⌋
+t−3−l. Sincem−(

⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
) ≥ t+1,

then m−
⌊
m−1
2

⌋
− t ≥

⌊
m−3
3

⌋
+ 1 >

⌊
m−3
3

⌋
.

Note that

h− l + 1 + l = m− 3− (m−

⌊
m− 1

2

⌋
− t) < m− 3−

⌊
m− 3

3

⌋
≤ 2

⌊
m− 3

3

⌋
. (2)

Then h− l + 1 ≤
⌊
m−3
3

⌋
if h− l + 1 ≤ l or l ≤

⌊
m−3
3

⌋
if h− l + 1 ≥ l, then m− 2 − h > h− l − 1 or

m− 2− h > l.

If m− 2− h > h− l − 1, then

[Jiq
m−1−h]qm−1 = (0, 1, 1, . . . , 1︸ ︷︷ ︸

h−l−1

, 0, 1− il−1, . . . , 1− i1, 1︸ ︷︷ ︸
l

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
m−2−h

) < Ji. (3)

If m− 2− h > l, then

[Jiq
m−1−l]qm−1 = (0, 1− il−1, . . . , 1− i1, 1︸ ︷︷ ︸

l

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
m−2−h

, 0, 1, 1 . . . , 1︸ ︷︷ ︸
h−l−1

) < Ji. (4)

By Eqs. (3) and (4), we know that Ji cannot be a coset leader.

For q > 2, by Eq. (1),

7



• If ih ≥ 1, we have q − 2 > q − 2− ih, then Jiq
m−1−h mod qm − 1 < Ji.

• If there exists an integer j such that ij ≥ 2, 0 ≤ j ≤ t − 1, we have q − 2 > q − 1 − ij , then

Jiq
m−1−j mod qm − 1 < Ji.

Thus, Ji cannot be a coset leader. Next we consider ih = 0 and ij ∈ {0, 1} for any 0 ≤ j ≤ t− 1.

Note that i ≥ 1, suppose l is the largest index such that il = 1, 1 ≤ l ≤ t− 1. Then

Ji = (q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
m−2−h

, q − 2, q − 1, . . . , q − 1︸ ︷︷ ︸
h−l−1

, q − 2, q − 1− il−1, . . . , q − 1− i1, q − 1− i0︸ ︷︷ ︸
l

).

By Eqs. (2), (3) and (4), Ji cannot be a coset leader. Thus we complete the proof.

In particular, for i = 4, 5, we have

Corollary 10. (1) Let m ≥ 10. Then δ4,n = (q − 1)qm−1 − 1− q⌊
m−1

2 ⌋+2 and | Cδ4,n |= m.

(2) Let m ≥ 14. Then δ5,n = (q − 1)qm−1 − 1− q⌊
m−1

2 ⌋+3 and | Cδ5,n |= m.

Remark 1. The proof of Lemma 9 has been given in [14]. For completeness, we provide a proof which

is different from [14], and we give | δi,n |.

3.2. BCH Codes and Dually-BCH Codes

The following theorem provides the information on the parameters of the BCH code C(q,n,δi,n).

Theorem 11. Let q be a prime power and 3 ≤ i ≤ m−(
⌊
m−1
2

⌋
+
⌊
m−3
3

⌋
), then C(q,n,δi,n) has parameters

[qm − 1, k, δi,n], where

k =






im, if 2 ∤ m;

(i− 1
2 )m, if 2 | m.

Proof. Form Lemmas 2 and 9, we can obtain the results directly.

For b = 1, the conditions of C(q,qm−1,δ) being dually-BCH codes have been given by Lemma 7. For

b = 2, we have

Theorem 12. Let q ≥ 3 and m ≥ 2. Then C(q,n,δ,2) is a dually-BCH code if and only if

(q − 1)qm−1 − q⌊
m−1

2 ⌋ − 1 ≤ δ ≤ qm − 2.

Proof. By the definition, the defining set of C(q,qm−1,δ,2) with respect to α is T = C2 ∪ C3 ∪ · · · ∪ Cδ,

2 ≤ δ ≤ n − 1. Note that 0 /∈ T , i.e., 0 ∈ T⊥, this means C0 ⊂ T⊥. Therefore, if C(q,n,δ,2) is a

dually-BCH code, then there must exist an integer r ≥ 1 such that T⊥ = C0 ∪ C1 ∪ · · · ∪ Cr−1.

If q ≤ δ ≤ n − 1, then C1 = Cq ⊂ T , i.e., T = C1 ∪ C2 ∪ · · · ∪ Cδ. Hence, by Lemma 7, we know

that C(q,qm−1,δ,2) is a dually-BCH code if and only if (q − 1)qm−1 − q⌊
m−1

2 ⌋ − 1 ≤ δ ≤ n− 1.

If 2 ≤ δ ≤ q− 1. Since [1, q − 1] ⊂
[
1, q⌈

m
2 ⌉

]
, then i ∈ MinRepn and | Ci |= m for any 1 ≤ i ≤ q− 1

by Lemma 1. We thus have C2 ⊂ T and C1 6⊂ T , i.e., m ≤ dim(C(q,n,δ,2)) ≤ n − m < n and

CCL(n−1) ⊂ T⊥. Clearly, CL(n− 1) = (q − 1)qm−1 − 1 = δ1,n. Therefore, if C(q,n,δ,2) is a dually-BCH
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code, then T⊥ = C0 ∪ C1 ∪ · · · ∪ Cδ1,n . However, dim(C(q,n,δ,2)) ≤ n −m, which contradicts the fact

that dim(C(q,n,δ,2)) + dim(C⊥
(q,n,δ,2)) = n. Thus we complete the proof.

Theorem 13. Let q = 2 and m ≥ 6. Then C(q,n,δ,2) is a dually-BCH code if and only if

δ = 2 or 2m−1 − 2⌊
m−1

2 ⌋ − 1 ≤ δ ≤ n− 1.

Proof. The proof is very similar to that of Theorem 12, hence we omit it.

For b = 1, we then study the condition of C̃⊥
(2,n,δ) being a narrow-sense BCH code.

Theorem 14. Let q = 2 and m ≥ 6. Then C̃⊥
(2,n,δ) is a narrow-sense BCH code if and only if

δ = 2, 3, or 2m−1 − 2⌊
m−1

2 ⌋ ≤ δ ≤ 2m−1 − 1.

Proof. By definition, the defining set of C̃(2,n,δ) with respect to α is T = C0 ∪ C1 ∪ C2 ∪ · · · ∪ Cδ−1 =

T
′

∪ C0, where T ′ = C1 ∪ C2 ∪ · · · ∪ Cδ−1. Hence,

T⊥ = Zn\T
−1 = (Zn\T )

−1 = ((Zn\(T
′

))−1)\C0.

For δ = 2, 3, we know that T = C0 ∪ C1 and T−1 = C0 ∪ C2m−1−1. Note that 2m−1 − 1 is the

largest coset leader modulo 2m − 1, then

T⊥ = Zn\T
−1 = C1 ∪C2 ∪ · · · ∪ C2m−1−2.

Thus, C̃⊥
(2,n,δ) is a BCH code with b = 1 and designed distance δ = 2m−1 − 1.

For 2m−1 − 2⌊
m−1

2 ⌋ ≤ δ ≤ n, we divide it into two cases:

• If 2m−1 ≤ δ ≤ n, then T = Zn, which leads to C̃⊥
(2,n,δ) = {0}.

• If 2m−1 − 2⌊
m−1

2 ⌋ ≤ δ ≤ 2m−1 − 1, note that δ2,n + 1 = 2m−1 − 2⌊
m−1

2 ⌋. Then

T⊥ = (Zn\T )
−1 = (Zn\(C0 ∪ C1 ∪ C2 ∪ · · · ∪Cδ2,n))

−1 = (Cδ1,n)
−1 = CCL(n−δ1,n) = C1.

Obviously, C̃⊥
(2,n,δ) is a narrow-sense BCH code.

For 3 < δ < 2m−1 − 2⌊
m−1

2 ⌋, we claim that C̃⊥
(2,n,δ) is not a narrow-sense BCH code.

By Lemma 2, we know that δ1,n = 2m−1 − 1 > 2m−1 − 2⌊
m−1

2 ⌋ > δ, then δ1,n /∈ T . Note that

CL(n − δ1,n) = 1, i.e., C1 ∈ T⊥. If C̃⊥
(2,n,δ) is a narrow-sense BCH code, then there must exist an

integer r ≥ 1 such that T⊥ = C1 ∪ C2 ∪ · · · ∪ Cr−1.

By Lemma 7, we know that C(2,n,δ) is not a dually-BCH code for all any 3 < δ < 2m−1 − 2⌊
m−1

2 ⌋,

which means there is no r ≥ 1 such that the defining set of C⊥
(2,n,δ) is equal to C0 ∪ C1 ∪ · · · ∪ Cr−1.

Note that T⊥ = ((Zn\(T
′

))−1)\C0, then there is no integer r ≥ 1 such that T⊥ = C1∪C2 ∪· · ·∪Cr−1.

i.e., C̃⊥
(2,n,δ) is not a narrow-sense BCH code. Thus we complete the proof.

Theorem 15. Let q ≥ 3 and m ≥ 2. Then C̃⊥
(2,n,δ) is a narrow-sense BCH code if and only if

δ = 2 or (q − 1)qm−1 − q⌊
m−1

2 ⌋ ≤ δ ≤ (q − 1)qm−1 − 1.

Proof. The proof is very similar to that of Theorem 14, hence we omit it.
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4. The case of n = q
2s

−1

q+1

In this section, we always assume m = 2s, n = qm−1
q+1 and β1 = αq+1.

4.1. The computation of δ2,n

For s = 2 and 2 ∤ q, δ2,n has been determined in [19]. Next we give δ2,n for s ≥ 3.

Lemma 16. Let q be a prime power, then

δ2,n =






(q−1)q2s−1−qs+1−1
q+1 , if 2 ∤ s and s > 4;

(q−1)q2s−1−qs+2−1
q+1 , if 2 | s and s > 6,

and | Cδ2,n |= 2s.

Proof. If 2 ∤ s, we have (q + 1) | (qs+1 − 1) and

(q + 1) | (q2s − 1)− (q2s−1 + 1)− (qs+1 − 1) = (q − 1)q2s−1 − qs+1 − 1.

Note that by Corollary 10, δ4,qm−1 = (q − 1)q2s−1 − qs+1 − 1, this implies that (q−1)q2s−1−qs+1−1
q+1 ∈

MinRepn by Lemma 3.

We claim that δ2,n = (q−1)q2s−1−qs+1−1
q+1 . Suppose there exists an integer a such that a ∈ MinRepn

and δ2,n < a < δ1,n. So a(q+1) ∈ MinRepqm−1, δ4,qm−1 = δ2,n(q+1) < a(q+1) < δ2,qm−1 = δ1,n(q+1).

This means

a(q + 1) = δ3,qm−1 = (q − 1)q2s−1 − 1− qs. (5)

Note that gcd(q+1, (q−1)q2s−1−1−qs) = gcd(q+1, q−1) < q+1, then (q+1) ∤ (q−1)q2s−1−1−qs.

By Eq. (5), this is impossible. Thus, δ2,n = (q−1)q2s−1−qs+1−1
q+1 .

Let | Cδ2,n |= l, then

q2s−1
q+1 |

( (q−1)q2s−1−qs+1−1
q+1

)
(ql − 1) ⇐⇒ (q2s − 1) |

(
(q − 1)q2s−1 − qs+1 − 1

)
(ql − 1).

Thus l = 2s. The case 2 | s is similar.

Thus we complete the proof.

Lemma 17. Let 2 ∤ q.

(1) If s = 3, then δ2,n = (q−1)q5−q4−1
q+1 and | Cδ2,n |= 6.

(2) If s = 4, then δ2,n = (q−1)q7−q6−1
q+1 and | Cδ2,n |= 8.

(3) If s = 6, then δ2,n = (q−1)q11−q7−1
q+1 and | Cδ2,n |= 12.

Proof. We just give the proof for Case (2), since the proofs for the other cases are similar.

Note that [((q − 1)q7 − q6 − 1)qj ]q8−1 > (q − 1)q7 − q6 − 1 for any 1 ≤ j ≤ 7, this implies that

(q − 1)q7 − q6 − 1 ∈ MinRepq8−1 and | C(q−1)q7−q6−1 |= 8. Since (q + 1) | (q − 1)q7 − q6 − 1, this

implies that (q−1)q7−q6−1
q+1 ∈ MinRepn and | C (q−1)q7−q6−1

q+1

|= 8 by Lemma 3.
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We claim that δ2,n = (q−1)q7−q6−1
q+1 . Suppose there exists an integer a such that a ∈ MinRepn and

δ2,n < a < δ1,n, then a(q + 1) ∈ MinRepq8−1.

Note that all coset leaders modulo q8 − 1 between δ1,n(q+1) = (q− 1)q7− q4− 1 and δ2,n(q+1) =

(q − 1)q7 − q6 − 1 are (q − 1)q7 − q5 − q2 − 1, (q − 1)q7 − q5 − q3 − 1 and (q − 1)q7 − q5 − q3 − q − 1,

this means

(q + 1)a = (q − 1)q7 − q5 − q2 − 1, (q − 1)q7 − q5 − q3 − 1 or (q − 1)q7 − q5 − q3 − q − 1. (6)

Note that (q + 1) ∤ (q − 1)q7 − q5 − q2 − 1, (q + 1) ∤ (q − 1)q7 − q5 − q3 − 1 and (q + 1) ∤

(q − 1)q7 − q5 − q3 − q − 1, this is impossible by Eq. (6). Therefore, δ2,n = (q−1)q7−q6−1
q+1 . Thus we

complete the proof.

4.2. BCH Codes and Dually-BCH Codes

Theorem 18. Let q be a prime power and s > 4. For 2 ∤ s,

• If δ2,n + 1 ≤ δ ≤ δ1,n, then C(q,n,δ) has parameters [ q
2s−1
q+1 , s + 1, d(C(q,n,δ)) ≥ δ] and its dual

C⊥
(q,n,δ) has parameters [ q

2s−1
q+1 , q2s−1

q+1 − s− 1, 2].

• If δ = δ2,n, then C(q,n,δ2,n) has parameters [ q
2s−1
q+1 , 3s+1, d(C(q,n,δ2,n)) ≥ δ2,n] and its dual C⊥

(q,n,δ2,n)

has parameters [ q
2s−1
q+1 , q2s−1

q+1 − 3s− 1, 3 ≤ d(C⊥
(q,n,δ2,n)) ≤ 4].

For 2 | s and s 6= 6,

• If δ2,n + 1 ≤ δ ≤ δ1,n, then C(q,n,δ) has parameters [ q
2s−1
q+1 , 2s + 1, d(C(q,n,δ)) ≥ δ] and its dual

C⊥
(q,n,δ) has parameters [ q

2s−1
q+1 , q2s−1

q+1 − 2s− 1, 3 ≤ d(C⊥
(q,n,δ)) ≤ 4].

• If δ = δ2,n, then C(q,n,δ2,n) has parameters [ q
2s−1
q+1 , 4s+1, d(C(q,n,δ2,n)) ≥ δ2,n] and its dual C⊥

(q,n,δ2,n)

has parameters [ q
2s−1
q+1 , q2s−1

q+1 − 4s− 1, 3 ≤ d(C⊥
(q,n,δ2,n)) ≤ 4].

Proof. Form Lemmas 3 and 16, the parameters of C(q,n,δ) can be obtained directly. Next we consider

the parameters of C⊥
(q,n,δ).

Case 1. For δ2,n + 1 ≤ δ ≤ δ1,n, by definition, we know the defining set of C⊥
(q,n,δ) with respect to

β1 is T⊥ = (Zn\T )
−1 = C0 ∪ CCL(n−δ1,n). Then d(C⊥

(q,n,δ)) ≥ 2.

1.1) If 2 ∤ s, then

n− δ1,n =
q2s − 1− ((q − 1)q2s−1 − qs−1 − 1)

q + 1
=

q2s−1 + qs−1

q + 1
.

Thus CL(n− δ1,n) =
qs+1
q+1 and | C qs+1

q+1
|= s. This means

dim(C⊥
(q,n,δ)) = n− |T⊥| = n− s− 1.

Form the sphere packing bound,

qn−(s+1)

⌊ d−1
2 ⌋∑

i=0

(q − 1)i
(
n

i

)
≤ qn =⇒

⌊ d−1
2 ⌋∑

i=0

(q − 1)i
(
n

i

)
≤ qs+1. (7)
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Suppose d = 3, then by Eq. (7), we have

1 + (q − 1)
q2s − 1

q + 1
≤ qs+1,

which is impossible due to s > 4. Thus d = 2.

1.2) If 2 | s and s 6= 6, then

n− δ1,n =
q2s − 1− ((q − 1)q2s−1 − qs − 1)

q + 1
=

q2s−1 + qs

q + 1
.

Thus CL(n− δ1,n) =
qs−1+1
q+1 and | C qs−1+1

q+1

|= 2s. This means

dim(C⊥
(q,n,δ)) = n− |T⊥| = n− 2s− 1.

Suppose d(C⊥
(q,n,δ)) = 5, by Eq. (7), we know that

1 + (q − 1)
q2s − 1

q + 1
+ (q − 1)2

q2s − 1

q + 1

q2s − q − 2

q + 1
> q2s+1. (8)

Thus 2 ≤ d(C⊥
(q,n,δ)) ≤ 4. Set s1 = qs−1+1

q+1 , then the parity-check matrix of C⊥
(q,n,δ) is

H=


1 1 1 · · · 1

1 βs1
1 β2s1

1 · · · β
(n−1)s1
1


 .

We claim that any two columns are linear independent over Fq. Suppose there exists (c1, c2) ∈

Fq × Fq \ {(0, 0)} such that c1 + c2 = 0 and c1β
is1
1 + c2β

js1
1 = 0 for any 0 ≤ i < j ≤ n− 1, which

equals to

βs1i
1 = βs1j

1 ⇐⇒ α(j−i)(qs−1+1) = 1 ⇐⇒ (j − i)(qs−1 + 1) ≡ 0 (mod q2s − 1). (9)

Since gcd(2s, s− 1) = gcd(s, s − 1) = 1, then gcd(qs−1 + 1, q2s − 1) = qgcd(s−1,2s) + 1 = q + 1.

Eq. (9) holds if and only if i− j ≡ 0 (mod q2s−1
q+1 ), this means i = j. Thus d(C⊥

(q,n,δ)) ≥ 3.

Case 2. For δ = δ2,n, the defining set of C⊥
(q,n,δ2,n)

is T⊥ = (Zn\T )
−1 = C0∪CCL(n−δ1,n)∪CCL(n−δ2,n).

2.1) If 2 ∤ s, then

n− δ2,n =
q2s − 1− ((q − 1)q2s−1 − qs+1 − 1)

q + 1
=

q2s−1 + qs+1

q + 1
.

Clearly, CL(n− δ2,n) =
qs−2+1
q+1 and | C qs−2+1

q+1

|= 2s. We have

dim(C⊥
(q,n,δ2)

) = n− |T⊥| = n− 3s− 1.

By Eq. (8), we know 2 ≤ d(C⊥
(q,n,δ2,n)

) ≤ 4. Take s1 = qs+1
q+1 and s2 = qs−2+1

q+1 , then the parity-

check matrix of C⊥
(q,n,δ2)

is

H=




1 1 1 · · · 1

1 βs1
1 β2s1

1 · · · β
(n−1)s1
1

1 βs2
1 β2s2

1 · · · β
(n−1)s2
1


 .
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Note that d(C⊥
(q,n,δ2,n)

) = 2 if and only if there exist i, j such that 0 ≤ i 6= j ≤ n− 1 and





βis1
1 = βjs1

1

βis2
1 = βjs2

1

=⇒





β
(j−i)s1
1 = 1

β
(j−i)s2
1 = 1

. (10)

Eq. (10) equals to

(i− j)(qs + 1) ≡ 0 (mod q2s − 1) and (11)

(i− j)(qs−2 + 1) ≡ 0 (mod q2s − 1). (12)

By (11), we know that i− j ≡ 0 (mod qs − 1) where 0 ≤ i < j ≤ n− 1. Thus Eq. (12) holds if

and only if there exists an integer k such that 0 ≤ k ≤ qs+1
q+1 − 1 and

k(qs−2 + 1) ≡ 0 (mod qs + 1). (13)

Note that 2 ∤ (s− 2), then gcd(qs + 1, qs−2 + 1) = q + 1, i.e., Eq. (13) holds if and only if k ≡ 0

(mod qs+1
q+1 ), this is impossible. Thus 3 ≤ d(C⊥

(q,n,δ2,n)) ≤ 4.

2.2) The case 2 | s and s 6= 6 is similar to 2.1).

Thus we complete the proof.

Theorem 19. Let q be a prime power and 2 ∤ q, then we have the following.

• If s = 3, then C(q,n,δ) with δ2,n + 1 ≤ δ ≤ δ1,n has parameters [ q
6−1
q+1 , 4, d ≥ δ] and C(q,n,δ2,n) has

parameters [ q
6−1
q+1 , 10, d ≥ δ2,n].

• If s = 4, then C(q,n,δ) with δ2,n + 1 ≤ δ ≤ δ1,n has parameters [ q
8−1
q+1 , 9, d ≥ δ] and C(q,n,δ2,n) has

parameters [ q
8−1
q+1 , 17, d ≥ δ2,n].

• If s = 6, then C(q,n,δ) with δ2,n+1 ≤ δ ≤ δ1,n has parameters [ q
12−1
q+1 , 13, d ≥ δ] and C(q,n,δ2,n) has

parameters [ q
12−1
q+1 , 25, d ≥ δ2,n].

Proof. Form Lemmas 3 and 17, we can obtain the results directly.

Theorem 20. Let q be a prime power and s > 4, then we have the following.

• If 2 ∤ s, then the code C̃⊥
(q,n,δ) with δ2,n + 1 ≤ δ ≤ δ1,n has parameters

[ q
2s−1
q+1 , q2s−1

q+1 − s, 2].

• If 2 | s and s > 6, then the code C̃⊥
(q,n,δ) with δ2,n + 1 ≤ δ ≤ δ1,n has parameters

[ q
2s−1
q+1 , q2s−1

q+1 − 2s, 3].
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Proof. By definition, we know that the defining set of C̃⊥
(q,n,δ) with respect to β1 is T⊥ = (Zn\T )

−1 =

CCL(n−δ1,n), then d(C̃(q,n,δ)) ≥ 2. Note that C̃(q,n,δ) ⊂ C(q,n,δ), which means C̃⊥
(q,n,δ) ⊃ C⊥

(q,n,δ), then

d(C̃⊥
(q,n,δ)) ≤ d(C⊥

(q,n,δ)).

If 2 ∤ s, we have 2 ≤ d(C̃⊥
(q,n,δ)) ≤ d(C⊥

(q,n,δ)) = 2 =⇒ d(C̃⊥
(q,n,δ)) = 2. Since CL(n − δ1,n) =

qs+1
q+1

and | C qs+1
q+1

|= s. This means

dim(C̃⊥
(q,n,δ)) = n− | CCL(n−δ1) |= n− s.

Then the parameters of code C̃⊥
(q,n,δ) are determined.

If 2 | s and s > 6, note that CL(n− δ1,n) =
qs−1+1
q+1 and | C qs−1+1

q+1

|= 2s. This means

dim(C̃⊥
(q,n,δ)) = n− | CCL(n−δ1) |= n− 2s.

Set s1 = qs−1+1
q+1 , then the parity-check matrix is

H=
(
1 βs1

1 β2s1
1 · · · β

(n−1)s1
1

)
.

Since gcd(qs−1+1, q2s−1) = qgcd(s−1,2s)+1 = q+1, then gcd(s1, n) = 1. Therefore, βs1
1 is a primitive

n-th root of unity, then C̃⊥
(q,n,δ) is the Hamming code and d(C̃⊥

(q,n,δ)) = 3. Then the parameters of code

C̃⊥
(q,n,δ) are determined. Thus we complete the proof.

Example 21. Let (q, s) = (2, 5), we have n = 341 then δ1,n = 165 and δ2,n = 149. The BCH code

C(2,341,δ) with 149 ≤ δ ≤ 165 has parameters [341, 6, d ≥ δ], the BCH code C(2,341,149) has parameters

[341, 16, d ≥ 149], the code C⊥
(2,341,149) has parameters [341, 325, 4 ≥ d ≥ 3].

Example 22. Let (q, s) = (3, 3), we have n = 182. Then δ2,n = 101. The BCH code C(3,182,101) has

parameters [182, 10,≥ 101].

For 2 | s and s ≥ 4, we will investigate the dimension of the code C(q,n,δ), where ⌈ q
2⌉q

s−1 ≤ δ ≤

qs+1+1
q+1 .

Lemma 23. Let ⌈ q
2⌉q

s−1 ≤ i < qs+1+1
q+1 and [i]q 6= 0, then we have the following.

(1) If 2 | q and let i = asq
s+a0

q+1 , where as = q − t and a0 = t+ 1 for all 1 ≤ t ≤ q−2
2 , then i is not a

coset leader. Otherwise, i is a coset leader and | Ci |= 2s.

(2) If 2 ∤ q and let i = asq
s+a0

q+1 , where as = q − t and a0 = t+ 1 for all 1 ≤ t ≤ q−3
2 , then i is not a

coset leader. Otherwise, i is a coset leader and | Ci |= 2s.

Proof. We just give the proof for Case (1), since the proof for Case (2) is similar.

Note that i ∈ MinRepn if and only if i(q + 1) ∈ MinRepqm−1 by Lemma 3, then we need to find a

such that a ∈ MinRepqm−1,
qs(q+1)

2 ≤ a ≤ qs+1 and (q + 1) | a.

Note that [ q
s(q+1)

2 , qs+1] ⊂ [qs+1, qs+1], then we divide qs(q+1)
2 ≤ a ≤ qs+1 into the following three

cases by Lemma 2.
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1) a = c(qs + 1) for 1 ≤ c ≤ q − 1. Since 2 | q and 2 | s, then gcd(qs + 1, q2 − 1) = 1, which implies

that gcd(qs +1, q+1) = 1. Hence, q+1 ∤ c(qs +1) for all 1 ≤ c ≤ q− 1, then we do not consider

these values.

2) a = asq
s + a0 for 1 ≤ a0 < as ≤ q − 1. Since a = as(q

s − 1) + as + a0, then q + 1 | a if



as = q − t

a0 = t+ 1

for all 1 ≤ t ≤ q
2 − 1. Note that

asq
s + a0 ≥ (

q

2
+ 1)qs +

q

2
>

qs(q + 1)

2
,

then q+1 | a and a ∈ [ q
s(q+1)

2 , qs+1] if





as = q − t

a0 = t+ 1

for all 1 ≤ t ≤ q
2 −1, but a /∈ MinRepqm−1.

3) Otherwise, for any a ∈ [ q
s(q+1)

2 , qs+1] and q+1 | a, we know that a ∈ MinRepqm−1 and | Ca |= 2s.

For qs(q+1)
2 ≤ a < qs+1+1, we konw that a /∈ MinRepqm−1 and (q+1) | a if and only if a = asq

s+a0

and






as = q − t

a0 = t+ 1

for all 1 ≤ t ≤ q
2 − 1. Combining all the cases above, the desired conclusion then

follows.

Theorem 24. Let 2 | s and s ≥ 4. Then the dimension k of C(q,n,δ) is given as follows, where

⌈ q
2⌉q

s−1 + 1 ≤ δ ≤ qs+1+1
q+1 .

(1) If 2 | q, then we have

k = n− 2s(δ +
q − 2

2
−

⌊
(δ − 1)(q + 1)

qs

⌋
) + 2s

⌊
δ − 1

q

⌋
.

(2) If 2 ∤ q, then we have

k = n− 2s(δ +
q − 1

2
−

⌊
(δ − 1)(q + 1)

qs

⌋
) + 2s

⌊
δ − 1

q

⌋
+ s.

Proof. Form Lemmas 6 and 23, we can obtain the results directly.

Example 25. Let (q, s) = (2, 4), we have n = 85. The BCH code C(2,85,9) has parameters [85, 53,≥ 9].

The code is almost optimal in the sense that the minimum distance of the optimal binary linear code

with length 85 and dimension 53 is 10 according to the tables of best codes known in ([11]) when the

equality holds.

We will give the dimension and the minimum distance for special designed distance in the following

theorem.

Theorem 26. Let a be an integer and 1 ≤ a ≤ q − 1. Then the following holds.

(1) For 2 ∤ s and s ≥ 3 (s ≥ 5 if q = 2),
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(1.1) if δ = a qs−1
q−1 , then C(q,n,δ) has parameters

[
q2s−1
q+1 , k, δ

]
, where

k=





n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
+ s

⌊
(δ−1)(q+1)

qs+1

⌋
, if 1 ≤ a ≤ q − 3;

n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
+ s(q + 1), if a = q − 2;

n− s
(
(q − 1)(2qs−1 − 3)− 2

)
, if a = q − 1.

(1.2) if δ = a qs+1
q+1 , then C(q,n,δ) has parameters

[
q2s−1
q+1 , k, δ

]
, where

k=






n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
, if a = 1;

n− s(2δ − a− 1) + 2s
⌊
δ−1
q

⌋
, if 2 ≤ a ≤ q − 1.

(2) For 2 | s and s ≥ 4, if δ = a qs−1
q2−1 , then C(q,n,δ) has parameters

[
q2s−1
q+1 , k, δ

]
, where

k=n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
.

Proof. We only prove Case (1), since the proof for Case (2) is similar.

Note that q + 1 | qs + 1 and q − 1 | qs − 1 if 2 ∤ s, then qs−1
q−1 and qs+1

q+1 are integers. Since

qs−1 | qs+1
q+1 (q

s−1) and qs+1 | qs−1
q−1 (q

s+1), then qs−1
q−1 | n

q−1 and qs+1
q+1 | n

q−1 . Obviously, q2−1 | q2s−1,

then gcd(n, q−1) = q−1 and gcd(n, q) = 1. Hence, if δ = a qs−1
q−1 and a qs+1

q+1 , then we have d(C(q,n,δ)) = δ

by Lemma 5.

For δ = a qs−1
q−1 , we divide into the following two cases by Lemma 6.

1) For q = 2 and s ≥ 5, then a = 1 and δ = 2s−1
2−1 . Note that, (2 − 1)2s−1 + 2s+1

2+1 + 1 ≤ δ ≤ 2s + 1,

and dim(C(2,n,δ)) = n− s(2s − 5).

2) For q ≥ 3 and s ≥ 3,

• if 1 ≤ a ≤ q − 3, note that

qs + 1

q + 1
+ 1 ≤

qs − 1

q − 1
≤ δ ≤ (q − 3)

qs − 1

q − 1
≤ (q − 1)

qs + 1

q + 1
+ 1,

and dim(C(q,n,δ)) = n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
+ s

⌊
(δ−1)(q+1)

qs+1

⌋
.

• if a = q − 2, note that

(q − 1)
qs + 1

q + 1
+ 2 ≤ (q − 2)

qs − 1

q − 1
≤

qs+1 − 1

q + 1
+ 2,

and dim(C(q,n,δ)) = n− 2s(δ − 1) + 2s
⌊
δ−1
q

⌋
+ s(q + 1).

• if a = q − 1, note that

(q − 1)qs−1 +
qs + 1

q + 1
+ 1 ≤ (q − 1)

qs − 1

q − 1
≤ qs + 1,

and dim(C(q,n,qs−1)) = n− s
(
(q − 1)(2qs−1 − 3)− 2

)
.

For δ = a qs+1
q+1 , we still obtain the dimension by determining the range of δ, i.e., the result corre-

sponds to (1.2). Thus we complete the proof.
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Example 27. We have the following examples for the code of Theorem 26.

• Let (q, s) = (2, 4), we have n = 85. The BCH code C(2,85,69) has parameters [85, 69, 5]. The code is

almost optimal according to the tables of best codes known in ([11]).

• Let (q, s) = (2, 5), we have n = 341. The BCH code C(2,341,206) has parameters [341, 206, 31]. The

BCH code C(2,341,291) has parameters [341, 291, 11].

For b = 1, the conditions of C(q,n,δ) being dually-BCH codes have been given by Lemma 8. For

b = 2, we have

Theorem 28. Let q ≥ 3 and s ≥ 2. Then the following statements hold.

(1) If s = 2, then C(q,n,δ,2) is a dually-BCH code if and only if

δ1,n − 1 ≤ δ ≤ n− 1.

(2) If s 6= 2, then C(q,n,δ,2) is a dually-BCH code if and only if

δ1,n ≤ δ ≤ n− 1.

Proof. We just prove Case (2), as the conclusion for Case (1) can be similarly proved.

By the definition, the defining set of C(q,n,δ,2) with respect to β1 is T = C2 ∪ C3 ∪ · · · ∪ Cδ,

2 ≤ δ ≤ n − 1. Note that 0 /∈ T , i.e., 0 ∈ T⊥, this means C0 ⊂ T⊥. Therefore, if C(q,n,δ,2) is a

dually-BCH code, then there exists r ≥ 1 such that T⊥ = C0 ∪C1 ∪ · · · ∪ Cr−1.

If q ≤ δ ≤ n − 1, then C1 = Cq ⊂ T , i.e., T = C1 ∪ C2 ∪ · · · ∪ Cδ. By Lemma 8, we know that

C
(q, q

2s−1
q+1 ,δ,2)

is a dually-BCH code if and only if δ1,n ≤ δ ≤ n− 1.

If 2 ≤ δ ≤ q − 1, note that nq
⌈m

2
⌉

qm−1 = qs

q+1 . Since s ≥ 2, then [1, q − 1] ⊂
[
1, nq

⌈m
2

⌉

qm−1

]
. Hence,

i ∈ MinRepn and | Ci |= 2s for all 1 ≤ i ≤ q − 1 by Lemma 1. We have C2 ⊂ T and C1 6⊂ T , i.e.,

2s ≤ dim(C(q,n,δ,2)) ≤ n− 2s < n. We consider two cases.

1) If 2 ∤ s, note that qs+1
q+1 is a coset leader modulo n and qs+1

q+1 > q − 1 ≥ δ, i.e., qs+1
q+1 /∈ T .

Since CL(n− qs+1
q+1 ) = CL( q

2s−qs−2
q+1 ) = (q−1)q2s−1−qs−1−1

q+1 = δ1,n, then Cδ1,n ⊂ T⊥. Therefore, if

C(q,n,δ,2) is a dually-BCH code, then T⊥ = C0∪C1∪· · ·∪Cδ1,n . However, dim(C(q,n,δ,2)) ≤ n−2s,

which contradicts the equation of dim(C(q,n,δ,2)) + dim(C⊥
(q,n,δ,2)) = n.

2) If 2 | s, note that qs−1+1
q+1 is a coset leader modulo n and qs−1+1

q+1 > q − 1 ≥ δ, i.e., qs−1+1
q+1 /∈ T .

Since CL(n− qs−1+1
q+1 ) = (q−1)q2s−1−qs−1

q+1 = δ1,n, then Cδ1,n ⊂ T⊥. Hence, if C(q,n,δ,2) is a dually-

BCH code, then T⊥ = C0 ∪C1 ∪ · · · ∪Cδ1,n . However, dim(C(q,n,δ,2)) ≤ n− 2s, which contradicts

the equation of dim(C(q,n,δ,2)) + dim(C⊥
(q,n,δ,2)) = n.

Thus we complete the proof.

Theorem 29. Let q = 2 and s ≥ 2 be even. Then C(q,n,δ,2) is a dually-CBH code if and only if

δ1,n ≤ δ ≤ n− 1.

Proof. The proof is very similar to that of Theorem 28, hence we omit it.
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5. The case of n = q
m

−1

q−1

In this section, we always suppose n = qm−1
q−1 and β2 = αq−1, where q ≥ 3 and m ≥ 4.

5.1. The computation of δ2,n

Lemma 30. Let 0 ≤ t < n and t be of the form

t = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
nq−1

, q − 2, . . . , q − 2︸ ︷︷ ︸
nq−2

, . . . , i, . . . , i︸ ︷︷ ︸
ni

, . . . , 1, . . . , 1︸ ︷︷ ︸
n1

).

• If
∑q−1

i=l ni < j <
∑q−1

i=l+1 ni, where l ∈ {1, 2, . . . , q − 1}, then [tqj ]n > t.

• If j =
∑q−1

i=l ni, q − 1 ≥ l ≥ 1, then

[tqj ]n = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
nl−1

, . . . , q − l + 1, . . . , q − l+ 1︸ ︷︷ ︸
n1+1

, q − l, . . . , q − l︸ ︷︷ ︸
nq−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
nl−1

).

Proof. Note that qm−1
q−1 |tqi − [tqi]qm−1, i.e., [tq

i]qm−1 ≡ [tqj ]n.

1) If
∑q−1

i=l ni > j >
∑q−1

i=l+1 ni, where l ∈ {2, 3, . . . , q − 1}, then [tqj ]n is congruent to

[tqj ]qm−1 = (l, . . . , l︸ ︷︷ ︸
nl−u

, l − 1, . . . , l − 1︸ ︷︷ ︸
nl−1

, . . . , 0, q − 1, . . . , q − 1︸ ︷︷ ︸
nq−1

, . . . , l, . . . , l︸ ︷︷ ︸
u

),

where u = j −
∑q−1

i=l+1 ni − 1, 0 ≤ u < nl − 1. Note that ln > [tqj ]qm−1 > n, then [tqj ]n =

[tqj ]qm−1 − (l − 1)n > qm−1 > t.

If
∑q−1

i=1 ni > j >
∑q−1

i=2 ni, then [tqj ]n is congruent to

[tqj ]qm−1 = (1, . . . , 1︸ ︷︷ ︸
nl−u

, 0, q − 1, . . . , q − 1︸ ︷︷ ︸
nq−1

, . . . , 2, . . . , 2︸ ︷︷ ︸
n2

, l, . . . , l︸ ︷︷ ︸
u

),

where u = j −
∑q−1

i=2 ni − 1, 0 ≤ u < n1 − 1. Note that [tqj ]qm−1 < n, then [tqj ]n = [tqj ]qm−1 >

qm−1 > t.

2) If j =
∑q−1

i=l ni, q − 1 ≥ l ≥ 1, then

[tqj ]n =[tqj ]qm−1 − (l − 1)n

=(0, q − 1, . . . , q − 1︸ ︷︷ ︸
nl−1

, . . . , q − l + 1, . . . , q − l + 1︸ ︷︷ ︸
n1+1

, q − l, . . . , q − l︸ ︷︷ ︸
nq−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
nl−1

). (14)

Thus we complete the proof.

Lemma 31. Let q > 3 and m ≥ q. Suppose m− 1 = a(q − 1) + b, where a ≥ 1 and 0 ≤ b ≤ q − 2.

(1) If a ≥ 3 and b = 0, i.e., m = a(q − 1) + 1, then

δ2,n =
qm−1−qm−1−qm−a−Σq−3

l=1 qal−1

q−1 ,

and | Cδ2,n |= m.
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(2) If b = 1, i.e., m = a(q − 1) + 2, let A =
⌊
q−1
2

⌋
, then

δ2,n =
qm−1−qm−1−ΣA−1

l=1 qal−Σq−2
l=A

qal+1

q−1 ,

and | Cδ2,n |= m.

(3) If b = 2, i.e., m = a(q − 1) + 3, let A =
⌊
q−1
3

⌋
, then

δ2,n=





qm−1−
∑q−1

t=1 q
⌈ mt
q−1

−1⌉

q−1 − q(2A+1)a+1 + q(A+1)a, if q ≡ 0 (mod 3);

qm−1−
∑q−1

t=1 q
⌈ mt
q−1

−1⌉

q−1 − q2Aa+1, if q ≡ 1 (mod 3);

qm−1−
∑q−1

t=1 q
⌈ mt
q−1

−1⌉

q−1 − qAa, if q ≡ 2 (mod 3),

and | Cδ2,n |= m.

Proof. We just provide the proof for Case (1), since the proofs for the other cases are similar.

Note that

qm−1−qm−1−qm−a−Σq−3
l=1

qal−1

q−1 = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
a−1

, q − 2, . . . , q − 2︸ ︷︷ ︸
a+2

, . . . , i, . . . , i︸ ︷︷ ︸
a

, . . . , 1, . . . , 1︸ ︷︷ ︸
a−1

).

It then follows that δ =
qm−1−qm−1−qm−a−Σq−3

l=1 qal−1

q−1 ∈ MinRepn and | Cδ |= m by Lemma 30.

We claim that δ2,n =
qm−1−qm−1−qm−a−Σq−3

l=1 qal−1

q−1 . Suppose there exists an integer s such that

s ∈ MinRepn and δ2,n < s < δ1,n. Let the q-adic expansion of s be
∑m−1

i=1 siq
i. Note that

δ1,n = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
a

, q − 2, . . . , q − 2︸ ︷︷ ︸
a

, . . . , i, . . . , i︸ ︷︷ ︸
a

, . . . , 1, . . . , 1︸ ︷︷ ︸
a

).

Then we have sm−1 = 0, si = q − 1 for all m− a ≤ i ≤ m− 2 and sm−1−a = q − 1 or sm−1−a = q − 2.

1) If sm−1−a = q− 1, then il = q− 1 for all m− 1− a ≤ l ≤ m− 2. By Lemma 4, s must be of the

form

(0, q − 1, . . . , q − 1︸ ︷︷ ︸
a

, q − 2, . . . , q − 2︸ ︷︷ ︸
nq−2

, . . . , i, . . . , i︸ ︷︷ ︸
ni

, . . . , 1, . . . , 1︸ ︷︷ ︸
n1

).

Since [sqj ]n ≥ s for j =
∑q−1

i=l ni, then nl ≥ a for all 2 ≤ l ≤ q − 2 and n1 ≥ a− 1 by Eq. (14).

In addition, m = a(q − 1) + 1, then n1 = a or n1 = a − 1. Hence, if n1 = a then s = δ1,n; if

n1 = a− 1 then s > δ1,n, which contradicts the fact that s < δ1,n.

2) If sm−1−a = q − 2, we divide into two steps to prove.

Step 1. We claim that s is of the form

(0, q − 1, . . . , q − 1︸ ︷︷ ︸
a−1

, q − 2, . . . , q − 2︸ ︷︷ ︸
nq−2

, . . . , i, . . . , i︸ ︷︷ ︸
ni

, . . . , 1, . . . , 1︸ ︷︷ ︸
n1

). (15)

If there exists an integer i such that si 6= 0 and si < si−1, then we have [sqm−1−i]n =

[sqm−1−i]qm−1 − sin < s, which contradicts the fact that s ∈ MinRepn. Hence we konw that

si ≥ si−1 if si 6= 0. Then s = (Ie, Ie−1, . . . , I0), where

It = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
nt,q−1

, q − 2, . . . , q − 2︸ ︷︷ ︸
nt,q−2

, . . . , 1, . . . , 1︸ ︷︷ ︸
nt,1

)
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for all 0 ≤ t ≤ e and nt,j ≥ 0 for all 1 ≤ j ≤ q − 1. Clearly, ne,q−1 = a− 1.

Let k =
∑q−1

j=1 n0,j . Since [sqm−1−k]n ≥ s, then n0,q−1 ≥ ne,q−1 = a− 1. Similarly, we get

nt,q−1 ≥ a− 1 for all e ≥ t ≥ 0. Denote the q-adic expansion of [sqne,q−1 ]n by
∑m−1

i=1 s
′

iq
i, then

(s
′

m−1, s
′

m−2, . . . , s
′

1) must be of the form (I
′

e, I
′

e−1, . . . , I
′

0) by Eq. (14), where

I
′

e = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
ne,q−2

, . . . , 3, . . . , 3︸ ︷︷ ︸
ne,2

, 2, . . . , 2︸ ︷︷ ︸
ne,1+1

, 1, . . . , 1︸ ︷︷ ︸
ne−1,q−1−1

),

I
′

0 = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
n0,q−2

, . . . , 3, . . . , 3︸ ︷︷ ︸
n0,2

, 2, . . . , 2︸ ︷︷ ︸
n0,1+1

, 1, . . . , 1︸ ︷︷ ︸
ne,q−1−1

).

Since [sqne,q−1 ]n ≥ s, then ne,q−2 ≥ a− 1.

Similarly, we have nt,j ≥ a− 1 for all e ≥ t ≥ 0 and 2 ≤ j ≤ q − 2 and nt,1 ≥ a− 2 for all

e ≥ t ≥ 0. Therefore,

m =
e∑

t=0




q−1∑

j=1

nt,j + 1



 ≥ (e + 1)(q − 1)(a− 1).

If e ≥ 1, we have m = a(q − 1) + 1 ≥ 2(q − 1)(a− 1), which contradicts to a ≥ 3. Hence, s is of

the form Eq. (15), where ni ≥ a− 1 for all q − 2 ≥ i ≥ 2 and n1 ≥ a− 2.

Step 2. Since s > δ2,n, then nq−2 ≥ a + 3, or nq−2 = a + 2 and there exists an integer i

such that ni ≥ a+ 1 and nj = a for all q − 3 ≥ j > i.

(2.1) If nq−2 ≥ a+3, since m = a(q− 1)+1, then there exists nj = a− 1 with q− 3 ≥ j ≥ 2,

or nt = a for all q − 3 ≥ t ≥ 2 and n1 = a− 2.

If there exists nj = a − 1 with q − 3 ≥ j ≥ 2. Let | {ni ≥ a + 1 : 1 ≤ i < q − 2} |= k,

then | {ni = a − 1 : 1 ≤ i < q − 2} |≥ k + 2. Hence, there are two integers u and v such that

nu, nv = a− 1 and ni ≤ a for all u ≥ i ≥ v. Note that

[
sq

∑q−1
i=u+1 ni

]

n
= (0, q − 1, . . . , q − 1︸ ︷︷ ︸

a−1

, q − 2, . . . , q − 2︸ ︷︷ ︸
nu−1

, . . . , q + v − u− 1, . . . , q + v − u− 1︸ ︷︷ ︸
a−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
nu+1−1

).

Clearly,
[
sq

∑q−1
i=u+1 ni

]

n
< s, which contradicts the fact that s ∈ MinRepn.

If nt = a for all q − 3 ≥ t ≥ 2 and n1 = a− 2, we have
[
sq

∑q−1
i=2 ni

]

n
< s, which contradicts

the fact that s ∈ MinRepn.

(2.2) If nq−2 = a + 2 and there exists an integer i such that ni ≥ a + 1, nj = a for all

q − 3 ≥ j > i, the case is similar to (2.1).

Thus we complete the proof.

Lemma 32. Let q > 3 and m ≥ q. Suppose m− 1 = a(q − 1) + b, where a ≥ 1 and 0 ≤ b ≤ q − 2.

(1) If b = q − 4, i.e., m = a(q − 1) + q − 3, let A =
⌊
q
2

⌋
, then

δ2,n=
qm−1−

∑q−1
t=1 q

⌈ mt
q−1

−1⌉

q−1 − qA(a+1)−2,
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and | Cδ2,n |= m.

(2) If b = q − 3, i.e., m = a(q − 1) + q − 2, then

δ2,n =
qm−1−

∑q−1
t=1 q

⌈ mt
q−1

−1⌉

q−1 − qa,

and | Cδ2,n |= m.

(3) If b = q − 2, i.e., m = (a+ 1)(q − 1), then

δ2,n =
qm−1−qm−1−qm−1−a−Σq−3

l=1 q(a+1)l−1

q−1 ,

and | Cδ2,n |= m.

Proof. We just give the proof for Case (1), since the proofs for the other cases are similar.

If 2 ∤ q, then δ =
qm−1−

∑q−1
t=1 q

⌈ mt
q−1

−1⌉

q−1 − qA(a+1)−2 is of the form

(0, q − 1, ..., q − 1︸ ︷︷ ︸
a

, . . . , t, . . . , t︸ ︷︷ ︸
a+1

, . . . ,
q + 1

2
, . . . ,

q + 1

2︸ ︷︷ ︸
a

,
q − 1

2
, . . . ,

q − 1

2︸ ︷︷ ︸
a+1

, . . . , i, . . . , i︸ ︷︷ ︸
a+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
a

).

It then follows that δ ∈ MinRepn and | Cδ |= m by Lemma 30.

We claim that δ2,n=
qm−1−

∑q−1
t=1 q

⌈ mt
q−1

−1⌉

q−1 − qA(a+1)−2. Suppose there exists an integer s such that

s ∈ MinRepn and δ2,n < s < δ1,n. Let the q-adic expansion of s be
∑m−1

i=1 siq
i. Note that

δ1,n = (0, q − 1, . . . , q − 1︸ ︷︷ ︸
a

, . . . , t, . . . , t︸ ︷︷ ︸
a+1

, . . . ,
q + 1

2
, . . . ,

q + 1

2︸ ︷︷ ︸
a+1

,
q − 1

2
, . . . ,

q − 1

2︸ ︷︷ ︸
a

, . . . , i, . . . , i︸ ︷︷ ︸
a+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
a

).

Since δ2,n < s < δ1,n, we have si = q − 1 for all m − 1 − a ≤ i ≤ m− 2. By Lemma 4, s must be of

the form

(0, q − 1, . . . , q − 1︸ ︷︷ ︸
a

, . . . , t, . . . , t︸ ︷︷ ︸
a+1

, . . . ,
q + 1

2
, . . . ,

q + 1

2︸ ︷︷ ︸
n q+1

2

,
q − 1

2
, . . . ,

q − 1

2︸ ︷︷ ︸
n q−1

2

, . . . , i, . . . , i︸ ︷︷ ︸
ni

, . . . , 1, . . . , 1︸ ︷︷ ︸
n1

).

Note that

[
sq

∑q−1
i=2 ni

]

n
= (0, q − 1, . . . , q − 1︸ ︷︷ ︸

n1+1

, q − 2, . . . , q − 2︸ ︷︷ ︸
a

, . . . , t, . . . , t︸ ︷︷ ︸
a+1

,
q − 1

2
, . . . ,

q − 1

2︸ ︷︷ ︸
n q+1

2

, . . . , 1, ..., 1︸ ︷︷ ︸
n2−1

),

then n1 ≥ a since
[
sq

∑q−1
i=2 ni

]

n
≥ s. Similarly, we have ni ≥ a for all q+1

2 ≥ i ≥ 1. Since δ2,n < s < δ1,n,

then n q+1
2

= a+ 1 or n q+1
2

= a.

1) When n q+1
2

= a+1. Since δ1,n > s, then there exists an integer l such that nl = a and nj = a+1

for all q−1
2 > j > l > 1. Note that

[
sq

∑q−1

i=
q+1
2

ni

]

n

= (0, q − 1, . . . , q − 1︸ ︷︷ ︸
a

, . . . , t, . . . , t︸ ︷︷ ︸
a+1

, . . . , l +
q − 1

2
, . . . , l+

q − 1

2︸ ︷︷ ︸
a

, . . . , 1, . . . , 1︸ ︷︷ ︸
a

),

Since q− 1− q−1
2 > q− 1− q−1

2 − l, we have

[
sq

∑q−1

i=
q+1
2

ni

]

n

< s, which contradicts the fact that

s is a coset leader.
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2) When n q+1
2

= a.

If n q−1
2

≥ a + 2, there are two integers u and v such that nu, nv = a and ni ≤ a + 1 for all

q−3
2 ≥ u ≥ i ≥ v ≥ 1. Note that

[
sq

∑q−1
i=u+1 ni

]

n
= (0, q − 1, . . . , q − 1︸ ︷︷ ︸

a

, q − 2, . . . , q − 2︸ ︷︷ ︸
nu−1

, . . . , q + v − u− 1, . . . , q + v − u− 1︸ ︷︷ ︸
a

, . . . , 1, . . . , 1︸ ︷︷ ︸
nu+1−1

).

Since q − 1− q+1
2 > u− v, then we have

[
sq

∑q−1
i=u+1 ni

]

n
< s, which contradicts the fact that s is

a coset leader.

If n q−1
2

= a + 1, there must exist an integer l such that nl ≥ a + 2 and ni = a + 1 for all

q−3
2 ≥ i > l > 1. We have | {ni = a : l > i ≥ 1} |≥ 2. Hence, there are two integers u and v such

that nu, nv = a and ni ≤ a + 1 for all l > u ≥ i ≥ v ≥ 1. We can get that
[
sq

∑q−1
i=u+1 ni

]

n
< s,

which contradicts the fact that s is coset leader.

In the same way, we can prove δ2,n is the second largest coset leader when 2 | q. This completes

the proof.

5.2. BCH Codes and Dually-BCH Codes

Then we have the following conclusion when the length of the BCH codes C(q,n,δ) satisfy the cases

of Lemmas 31 and 32.

Theorem 33. Let q > 3 and m be of the form given by Lemmas 31 or 32. Then the BCH code C(q,n,δ)

with δ2,n + 1 ≤ δ ≤ δ1,n has parameters

[ q
m−1
q−1 , m

gcd(m,q−1) + 1, d ≥ δ],

and the BCH code C(q,n,δδ2,n ) has parameters

[ q
m−1
q−1 , m

gcd(m,q−1) +m+ 1, d ≥ δ2,n],

Proof. Form Lemmas 4, 31 and 32, we can obtain the results directly.

Example 34. Let (q,m) = (4, 5), we have n = 341. The BCH code C(4,341,δ) with 230 ≤ δ ≤ 233 has

parameters [341, 6,≥ δ], and the code C(4,341,229) has parameters [341, 11,≥ 229].

Lemma 35. Let q ≥ 3 and m ≥ 4. If 2 ≤ δ ≤ q − 1, then we have δ1,n ∈ T⊥.

Proof. Let m = a(q − 1) + b, a ≥ 0 and 0 ≤ b ≤ q − 2. Since T⊥ = Zn\T
−1, then Cδ1,n ⊂ T⊥ if and

only if C(n−δ1,n) * T . By Lemma 4, we have (q − 1)(n− δ1,n) =
∑q−1

t=1 q
⌈ mt
q−1−1⌉ =

∑m−1
i=0 aiq

i, where

ai =
⌈
q−1
m

⌉
or ai =

⌊
q−1
m

⌋
. Let δ

′

∈ MinRepqm−1 and a ∈ C(q−1)(n−δ1,n).

If a = 0, then q − 1 > m. Note that ai =
⌈
q−1
m

⌉
≥ 2 or ai =

⌊
q−1
m

⌋
≥ 1 for all 0 ≤ i ≤ m− 1, then

δ
′

≥
∑m−1

i=0 qi by Lemma 4. Then

CL(n− δ1,n) =
δ
′

q − 1
≥

∑m−1
i=0 qi

q − 1
> q + 1 > δ.
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If a ≥ 1, similarly, we have CL(n − δ1,n) has the form (. . . , 1, 0, . . . , 0︸ ︷︷ ︸
a

), i.e., CL(n − δ1,n) >

qm−a−1 − 1. It is easy to check that m− a− 1 ≥ a+ 1 when m ≥ 4. We have

CL(n− δ1,n) =
δ
′

q − 1
>

qm−a−1

q − 1
≥

qa+1 − 1

q − 1
> q + 1 > δ.

Therefore, C(n−δ1,n) * T , i.e., δ1,n ∈ T⊥. This completes the proof.

For b = 1, the conditions of C(q,n,δ) being dually-BCH codes have been given by Lemma 8. For

b = 2, we have

Theorem 36. Let q ≥ 3 and m ≥ 4, then C(q,n,δ,2) is a dually-CBH code if and only if

qm−1−
∑q−1

t=1 q
⌈ mt

q−1
−1⌉

q−1 ≤ δ ≤ n− 1.

Proof. The proof is very similar to that of Theorem 28, we omit it.

6. Conclusions

The main contributions of this paper are as follows:

• For the codes of length n = qm − 1, we found the i-th largest q-cyclotomic coset leader is

δi = (q − 1)qm−1 − 1− q⌊
m−1

2 ⌋+i−2. The parameters of C(q,n,δi,n) was investigated (see Theorem

11).

• For the codes of length n = q2s−1
q+1 , we find the second largest coset leader δ2,n. The parameters of

C(q,n,δ) with δ2,n ≤ δ ≤ δ1,n and its dual code was settled (see Theorems 18-20). The dimension

of C(q,n,δ) were determined, where ⌈ q
2⌉q

s−1 ≤ δ ≤ qs+1+1
q+1 and 2 | s(see Theorem 24). Finally, we

gave the dimension and the minimum distance of three subclasses of C(q,n,δ) for δ = a qs−1
q−1 , a

qs+1
q+1

if 2 ∤ s and δ = a qs−1
q2−1 if 2 | s, 1 ≤ a ≤ q − 1 (see Theorem 26).

• For the codes of length n = qm−1
q−1 , we found the second largest coset leader δ2,n for some special

cases. The parameters of C(q,n,δ) with δ2,n ≤ δ ≤ δ1,n were investigated (see Theorem 33).

• Sufficient and necessary conditions for C(q,n,δ,2) being dually-BCH codes were given, where n =

qm − 1, q
m−1
q−1 and q2s−1

q+1 (see Theorems 12, 13, 28, 29, 36). Moreover, we found the sufficient and

necessary conditions for the dual code of C̃(q,qm−1,δ) to be a narrow-sence primitive BCH code

(see Theorems 14 and 15).
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