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Abstract

Radial Moore graphs and digraphs are extremal graphs related to
the Moore ones where the distance-preserving spanning tree is pre-
served for some vertices. This leads to classify them according to their
proximity to being a Moore graph or digraph. In this paper we deal
with mixed radial Moore graphs, where the mixed setting allows edges
and arcs as different elements. An exhaustive computer search shows
the top ranked graphs for an specific set of parameters. Moreover, we
study the problem of their existence by providing two infinite families
for different values of the degrees and diameter 3. One of these families
turns out to be optimal.

Mathematics Subject Classifications: 05C35.
Keywords: Mixed graph, degree/diameter problem, Moore bound, diameter.

1 Introduction

Given the values of the maximum out-degree z and the diameter k, there is
a natural upper bound nz,k for the largest order of a digraph with these two
parameters,

n(z, k) = 1 + z + · · · + zk,

referred to as the Moore bound for digraphs. Digraphs attaining such a
bound are called Moore digraphs. In particular, all vertices of a Moore
digraph have the same degree (d) and the same eccentricity (k). It is well
known that Moore digraphs do only exist in the trivial cases, d = 1 or k = 1,
which correspond to the directed cycle of order k + 1 and the complete di-
graph of order d+ 1, respectively (see [16, 2]). This has led to the study of
digraphs ‘close’ to the Moore ones. One way to do it is by allowing the exis-
tence of vertices with eccentricity just one more than the value they should
have. In this context, regular digraphs of degree z, radius k, diameter at
most k + 1 and order equal to n(z, k) are known as radial Moore digraphs.
These extremal digraphs were first studied by Knor [12] and they exist for
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any value of z and k (see also Gimbert and López [9]).

Lately, the definition of radial Moore digraph was extended to undireted
graphs. In this undirected case, given the values of the maximum degree r
and the diameter k of a graph, there Moore bound is given by N(r, k) where

N(r, k) = 1 + r + r(r − 1) + · · ·+ r(r − 1)k−1, (1)

Graphs attaining such a bound are referred to as Moore graphs. From its
definition, all vertices of a Moore graph have the same degree (d) and the
same eccentricity (k). So, the definition of radial Moore graphs as regular
graphs of degree r, radius k, diameter k + 1 and order equal to N(r, k) is
just an undirected version of the same definition for digraphs.

Curiously enough, the undirected version of this problem has proved to
be much more difficult and it is not obvious whether or not there exists
a radial Moore graph for all possible values of degree and diameter. First
Capdevila et al. [5] proved the existence of radial Moore graphs for radius
2 and any degree. They also considered some ranking measures of how well
a radial Moore graph approximates a Moore graph. Later on, Exoo et al.
[8] gave a construction of radial Moore graphs of diameter 3 for all degrees
d ≥ 22 and some other sporadic values of k and d. In 2015, Gomez and
Miller [10] presented a construction technique that produces radial Moore
graphs for every value of diameter and degree large enough (depending on
the diameter). Nevertheless, there exist infinitely many values of r and k
for which the problem of existence of radial Moore graphs remains open.

Terminology and notation

A mixed (or partially directed) graph G with vertex set V may contain a set
E of (undirected) edges as well a set A of directed edges (also known as arcs).
From this point of view, a graph [resp. directed graph or digraph] has all its
edges undirected [resp. directed]. The set of vertices which are adjacent
from [to] a given vertex v is denoted by Γ+(v) [Γ−(v)]. The undirected
degree of a vertex v, denoted by d(v) is the number of edges incident to v.
The out-degree [resp. in-degree] of vertex v, denoted by d+(v) [resp. d−(v)],
is the number of arcs emanating from [resp. to] v. If d+(v) = d−(v) = z and
d(v) = r, for all v ∈ V , then G is said to be totally regular of degrees (r, z)
(or simply (r, z)-regular). A walk of length ℓ ≥ 0 from u to v is a sequence
of ℓ + 1 vertices, u0u1 . . . uℓ−1uℓ, such that u = u0, v = uℓ and each pair
ui−1ui, for i = 1, . . . , ℓ, is either an edge or an arc of G. A directed walk is
a walk containing only arcs. An undirected walk is a walk containing only
edges. A walk whose vertices are all different is called a path. The length
of a shortest path from u to v is the distance from u to v, and it is denoted
by dist(u, v). Note that dist(u, v) may be different from dist(v, u), when
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shortest paths between u and v involve arcs. The sum of all distances from
a vertex v, s(v) =

∑

u∈V d(v, u), is referred to as the status of v (see [3]). We
define the status vector of G, s(G), as the vector constituted by the status
of all its vertices. Usually, when the vector is long enough, we denote it
with a short description using superscripts, that is, s(G) : sn1

1 , sn2

2 , . . . , snk

k ,
where s1 > s2 > · · · > sk, and ni denotes the number of vertices having si
as its local status, for all 1 ≤ i ≤ k. The out-eccentricity of a vertex u is the
maximum distance from u to any vertex in G. A central vertex is a vertex
having minimum out-eccentricity. The maximum distance between any pair
of vertices is the diameter of G.

Mixed graphs can be seen as a generalization of both, undirected and
directed graphs, see for instance the works by Nguyen and Miller [14] and
Buset et al. [4].

Organization of the paper

This paper is organized as follows: In section 2 the reader will find a gener-
alization of radial Moore graphs to the mixed case. A closeness measure is
also presented there. We find all mixed radial Moore graphs for the case of
(r, z, k) = (2, 1, 2), and we present the closest ones to being a mixed Moore
graph in section 3. Next, in section 4, we study the problem of the existence
of mixed radial Moore graphs of diameter 3. To this end, we provide two
infinite families Hr (for r ≥ 1 and z = 1) and Gz (for r = 1 and z ≥ 1). We
use an algebraic method to design Hr. Besides, Gz is constructed perform-
ing a convinient swap to a pair of arcs of the family of Kautz digraphs. Next
we prove the optimality of this family. Some open problems and concluding
remarks are presented in final section 5.

2 Mixed radial Moore graphs

The degree/diameter problem for mixed graphs asks for the largest possible
number of vertices n(r, z, k) in a mixed graph with maximum undirected
degree r, maximum directed out-degree z, and diameter k. A natural upper
bound for n(r, z, k) is derived by counting the number of vertices at every
distance from any given vertex v in a mixed graph with given maximum
undirected degree r, maximum directed out-degree z, and diameter k. This
bound is known as the Moore bound for mixed graphs (see [4] and [7]):

M(r, z, k) = A
λk+1
1 − 1

λ1 − 1
+B

λk+1
2 − 1

λ2 − 1
, (2)
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where

τ = (z + r)2 + 2(z − r) + 1, (3)

λ1 =
1

2
(z + r − 1−

√
τ), λ2 =

1

2
(z + r − 1 +

√
τ), (4)

A =

√
τ − (z + r + 1)

2
√
v

, B =

√
τ + (z + r + 1)

2
√
τ

. (5)

It is a matter of routine to check thatM(0, z, k) = n(z, k) andM(r, 0, k) =
N(r, k). So the mixed Moore bound is a generalization of both undirected
Moore bound and directed Moore bound, as expected. Mixed Moore graphs
are those with order attaining (2), which means that between any pair of
vertices there is a unique shortest path of length not greater than the di-
ameter. Mixed Moore graphs must be totally regular of degree (r, z) (see
Bosák [1]) and the distance-preserving spanning tree, also known as Moore
tree, hanging at any vertex v does not depend on the chosen vertex. (see
Fig. 1).

Figure 1: Moore tree of a radial Moore graph of diameter 2.

Next, we define a mixed radial Moore graph as a natural generalization
of both radial Moore graph and radial Moore digraph.

Definition 2.1. A totally (r, z)-regular graph of radius k, diameter k + 1
and order M(r, z, k) is a (r, z, k)-mixed radial Moore graph.

Notice that a (0, z, k)-mixed radial Moore graph is simply a radial Moore
digraph and a (r, 0, k)- mixed radial Moore graph is a radial Moore graph.
The vertex set of any (r, z, k)-mixed radial Moore can be partitioned in
two sets where one set contains all central vertices (those vertices with out-
eccentricity k, that is, their corresponding distance preserving spannig tree
is a Moore tree) and the other set has all non-central vertices (with out-
eccentricity k + 1).

Mixed radial Moore graphs can be seen as an approximation of mixed
Moore graphs where the diameter constraint has been relaxed a bit. This re-
laxation may produce a significative number of graphs (as we will see later)
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that we want to rank in order to see which one is the ’closest’ graph to being
a Moore graph. The number of central vertices could be a first attempt to
measure this closeness, but, as we will see later, this measure is not finer
since there are many mixed radial Moore graphs with the same number of
central vertices.

Two different ranking measures were introduced in [5] for the undirected
case. One ranking measure is related to the girth, since Moore (undirected)
graphs attain the minimum order allowed by the girth. But this measure
is no longer useful for the mixed case where short directed cycles appear in
mixed Moore graphs. The other ranking measure is based on the status of a
vertex in a Moore graph. First we give a characterization of a mixed Moore
graph in terms of the statuses of their vertices.

Proposition 2.2. Given three positive integers r > 1, z > 1 and k > 1, let
G be a (r, z, k)-mixed radial Moore graph. Then, for every vertex v of G we
have

s(v) ≥ A

(

kλk+2
1 − (k + 1)λk+1

1 + λ1

(λ1 − 1)2

)

+B

(

kλk+2
2 − (k + 1)λk+1

2 + λ2

(λ2 − 1)2

)

where λ1, λ2, A,B are defined in equations (4) and (5). Moreover, this bound
is attained for every vertex if and only if G is a mixed Moore graph.

Proof. The distance-preserving spanning tree of any central vertex v in G
is completely determined (see Figure 1 for the case k = 2). Let Ni be the
number of vertices at distance i from v, with Ni = Ri +Zi, where Ri is the
number of vertices that, in the corresponding tree rooted at v, have an edge
with their parents; and Zi is the number of vertices that have an arc from
their parents. Then,

Ni = Ri + Zi = Ri−1((r − 1) + z) + Zi−1(r + z). (6)

Besides, Zi = z(Ni−1 − Zi−1) + zZi−1 = zNi−1 and, hence,

Ni = (r + z)Ni−1 −Ri−1 = (r + z)Ni−1 − (Ni−1 − Zi−1)

= (r + z − 1)Ni−1 + zNi−2, i = 2, 3, . . . (7)

with initial values N0 = 1 and N1 = r + z. Hence, the status of vertex v is
given by

s(v) =

k
∑

i=0

iNi

Taking into account that Ni is defined by the linear recurrence relation (7),
we have that Ni = Aλi

1 +Bλi
2. Hence,

k
∑

i=0

iNi = A

k
∑

i=0

iλi
1 +B

k
∑

i=0

iλi
2
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Denote S =
∑k

i=0 iλ
i
1. Notice that

λ1S − S = kλk+1
1 −

k
∑

i=1

λi
1 = kλk+1

1 − λk+1
1 − 1

λ1 − 1
+ 1

As a consequence,

S =
kλk+2

1 − (k + 1)λk+1
1 + λ1

(λ1 − 1)2

The calculation for
∑k

i=0 iλ
i
2 is equivalent, obtaining,

s(v) = A

(

kλk+2
1 − (k + 1)λk+1

1 + λ1

(λ1 − 1)2

)

+B

(

kλk+2
2 − (k + 1)λk+1

2 + λ2

(λ2 − 1)2

)

(8)
A non-central vertex u of G has vertices at distance k+1, so s(u) ≥ s(v),

completing the proof.

From now on, let sr,z,k be the vector of dimension n = M(r, z, k) whose
components are all equal to s(v), where s(v) denotes de status of any vertex
in a mixed Moore graph (see Eq. (8)). Notice that sr,z,k represent the status
vector of a mixed Moore graph.

Let us denote by RM(r, z, k) the set of all nonisomorphic (r, z, k)-mixed
radial Moore graphs. Our purpose is to rank each mixed graph of this ‘pop-
ulation’ in terms of how close is of being a mixed Moore graph, generalizing
one ranking measure given in [5] for the undirected case.

Let G ∈ RM(r, z, k). For every positive integer p we define

Np(G) = ‖s(G) − sr,z,k‖p.

In particular, N1(G) measures the difference between the total status of G
and the one corresponding to a mixed Moore graph.

Given two mixed graphs G1, G2 ∈ RM(r, z, k), we define G1 and G2 to
be status-equivalent , G1 ∼ G2, if they have the same status vector. In the
quotient set of RM(r, z, k) by ∼, RM(r, z, k)/ ∼, we will say that G1 is
closer than G2 to be a mixed Moore graph if there exists a positive integer
l such that

Np(G1) = Np(G2), p = 1, . . . , l − 1 and Nl(G1) < Nl(G2),

in which case it is denoted by G1 < G2. Notice that this relation induces a
total order in RM(r, z, k)/ ∼, since

s(G1) = s(G2) ⇐⇒ Np(G1) = Np(G2), for every p = 1, . . . , n.
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3 Ranking of (2, 1, 2)-mixed radial Moore graphs.

To find all mixed radial Moore graphs for r = 2, z = 1 and k = 2, we
begin by constructing the mixed Moore tree anchored at a distinguished
vertex 0. It has 11 vertices. It remains to consider the arcs and the edges
joining vertices at distance 2 from 0 (see figure 2). The directed part of
the Moore tree can be completed by a bijection between the set of vertices
with zero outdegree {4, 5, 6, 7, 8, 9, 10} and the set of vertices with zero in-
degree {0, 1, 3, 4, 6, 8, 10}. Of course, there are some bijections that are not
valid in order to complete the directed part (for instance, those contain-
ing fixed points or the assignation 5 → 1, among others). However, the
number of bijections to be taken into account at this step is < 7!. Once a
valid bijection b is found, we proceed with the exhaustive search to com-
plete the undirected part. To this end we consider the multiset of vertices
{4, 5, 5, 6, 7, 7, 8, 9, 9, 10} with undirected degree less than 2, taking into ac-
count that those vertices with zero undirected degree appears twice in the
set. By considering all possible non ordered pairs of elements of this multiset
we get the remainig edges of the mixed graph. Again some of these com-
binations will be not valid (for instance the ones containing the unordered
pair {5, 5}). A combination turns out to be fair depending also on the bijec-
tion b, since if some unordered pair matches with an element of b then such
combination is dismissed. The total number of pairs of sets of directed arcs
and undirected arcs to check is at most 7!

(

10

2,2,2,2,2

)

= 10!7!

2!5
, but due to the re-

strictions, only about 106 are valid. Then, these sets are added to the Moore
tree and the diameter of the resulting graph is computed. There are about
3 · 105 mixed graphs with diameter 3, but only 9486 are not isomorphic.

Figure 2: Moore tree used as a basis to construct every (2, 1, 2)-mixed radial
Moore graph.

It turns out that RM(2, 1, 2) contains exactly 9486 mixed graphs. Ac-
cording to their number of central vertices c, they are distributed as indi-
cated in Table 1.

Notice that the number of central vertices only takes four distinct values
being 4 their maximum. It would be interesting to find an upper bound for
the cardinality of the center of a mixed radial Moore graph as a fraction
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c = 1 c = 2 c = 3 c = 4 Total

8529 (89.91%) 906 (9.55%) 13 (0.14%) 38 (0.40%) 9486 (100%)

Table 1: Distribution of mixed radial Moore graphs according to their num-
ber of central vertices.

of its order. On the other hand, we remark that around 90% of the mixed
graphs have just one central vertex.

The first two mixed graphs G1 and G2 in the status ranking are shown in
Figure 3. Both graphs have the same status sequence: s(G1) : 17

4, 186, 191,
so G1 ∼ G2. They attain the minimum value for the status norm N1(G1) =
8. The undirected part of both graphs is the union of two cycles of lengths
5 and 6, but their directed part is different: G1 has three directed cycles
of lengths 4, 4 and 3, meanwhile G2 has two directed cycles of lengths 7
and 4. Curiously enough, G1 has a non trivial automorphism (as it can be
seen in figure 3, where G1 shows an axial symmetry) but G2 has none. The

spectrum of both G1 and G2 is {31, 12, (−1)2, λ3
1, λ

3
2}, where λ1 = −1+

√
5

2

and λ2 =
−1−

√
5

2
. The set of eigenvalues {3, λ1, λ2} is precisely the one that

a mixed Moore graph should have in this case. G2 is cospectral with G1,
and it can be obtained by applying a recent method to obtain cospectral
digraphs with a locally line digraph. For more details, see Dalfó and Fiol
[6].

Figure 3: The first two graphs G1 and G2 according to the status ranking.

Proposition 3.1. The mixed graphs G1 and G2 depicted in Fig. 3 have
status vector s(G1) : 174, 186, 191 and hence status norm N1(G1) = 18.
They are the first two ranked (2, 1, 2)-mixed radial Moore graphs according
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to the status norm.

4 Existence of (r, z, 2)-mixed radial Moore graphs

4.1 A family of (r, 1, 2)-mixed radial Moore graphs.

We begin by constructing the mixed Moore tree anchored at a distinguished
vertex 0. The out-neighbors of 0 is the set of integers {1, 2, . . . , r+1} being
r + 1 adjacent with an arc from 0. The vertices at distance 2 from the root
are labelled with as an ordered pair of integers (i, j) where i indicates that
the vertex is pending from vertex i and j is used to establish an order among
the vertices pending from i. Note that the subtree that pends from vertex
r+ 1 has an extra vertex compared with the other subtrees pending from 1
to r (see figure 4).

Figure 4: Moore tree for r > 2, z = 1 and k = 2, rooted at vertex 0.

The proposed graph family Hr is constructed through the addition of
the following edges to the Moore tree for r > 2, z = 1 and k = 2:

1. Edges (i, j) ∼ (u, v) such that

j − i ≡ v − u (mod r + 1),

where i, u = 1, 2, . . . , r + 1 and j, v = 1, 2, . . . , r. Notice that vertex
(r + 1, r + 1) is not included in this list.

2. (i, r) ∼ (r + 1, r + 1) for every i = 1, . . . , r.

The following arcs are also included in Hr:

3. The arc (r + 1, r + 1) → 0.

4. Arcs (r + 1, i) → r + 1− i, for every i = 1, . . . , r.

5. Arcs from (i, r) to (r + 1, r + 1− i), for every i = 1, . . . , r.

9



6. (i, j) → (r + i − j, r − j), for every i = 1, . . . , r and j = 1, . . . , r − 1
such that j − i 6≡ r (mod r+1), where indices in the last vertex must
be taken modulus r + 1.

7. (i, j) → (i− 1, j), for every i = 1, . . . , r and j = 1, . . . , r − 1 such that
j − i ≡ r (mod r + 1).

Figure 5: Graph H3. In order to keep the figure clean some adjacencies
are indicated through colors (distinct from black). There is an edge joining
vertices of the same color.

Proposition 4.1. Let r > 2 be a positive integer. Then Hr is a totally
(r, 1)-regular mixed graph.

Proof. Let us start proving the undirected regularity. In the Moore tree it
is clear that vertices i = 0, 1, . . . , r+1 have indeed undirected degree r. All
vertices (i, j) such that i = 1, . . . , r + 1 and j = 1, . . . , r − 1 and (r + 1, r)
have undirected degree 1. Finally (i, r) vertices such that i = 1, . . . , r and
(r + 1, r + 1) have undirected degree 0. The edges added in step 2 increase
the undircted degree of (i, r) vertices such that i = 1, . . . , r to 1, and the
undirected degree of (r+1, r+1) to r. By now all vertices have degree r but
(i, j) s.t. i = 1, 2, . . . , r+1 and j = 1, 2, . . . , r which have undirected degree
1. This set has cardinal r(r + 1). Precisely, the relationship stated in step
1 is an equivalence relation in this set and thus, it establishes a partition of
r + 1 classes, each one made up of r vertices. For every element, an edge
is drawn to the other members of the class, adding r − 1 to the undirected
degree, resulting a total of r.

The only vertex with indegree and outdegree equal to 1 in the Moore tree
is r+1. Step 3 completes the directed degrees of vertices 0 and (r+1, r+1).
Vertices i for i = 1, . . . , r already have outdegree 1, and the indegree turns
1 after step 4. This step also increases by 1 the outdegree of all vertices
(r+1, j). Step 5 completes the directed degrees of these vertices, since every
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(r + 1, j) receives an arc, and also completes vertices (i, r) for i = 1, . . . r,
since they already had indegree 1 and after step 5 their outdegree is also
1. It is easy to see that steps 6 and 7 make the outdegree of (i, j) vertices
s.t. i = 1, . . . , r and j = 1, . . . , r − 1 to be 1, but it is less obvious that it
also increases the indegree to 1. To prove so, it is only necessary to show
that there are not different arcs in steps 6 and 7 that are incident to the
same vertex. Suppose that (a, b) and (c, d) with the conditions of step 6 are
different vertices incident to the same vertex through the assignation of step
6. Then,

r + a− b ≡ r + c− d (mod r + 1) and r − b ≡ r − d (mod r + 1).

The second equivalence implies b = d since 1 ≤ b, d ≤ r − 1 are integers
that cannot differ by r+1. Introducing b = d in the first equivalence entails
a ≡ c (mod r+1). Again this implies a = c, since 1 ≤ a, c ≤ r are integers
that cannot differ by r+1. Thus (a, b) and (c, d) represent the same vertex,
a contradiction that proves the statement. To end the proof, it is enough
to see that the set of vertices that receive the arcs in step 6 are different
from the ones that receive the arcs of step 7. In step 7 arcs are incident to
vertices (α, β) = (i − 1, j) s.t. j − i ≡ r (mod r + 1) and thus, they belong
to the class of vertices such that β −α ≡ j − i+1 ≡ 0 (mod r+1) while in
step 6 arcs are incident to vertices (γ, δ) = (r + i − j, r − j) s.t. j − i 6≡ r
(mod r + 1) and thus δ − γ ≡ −i 6≡ 0 (mod r + 1) since 1 ≤ i ≤ r.

Proposition 4.2. For every r > 2, Hr is a (r, 1, 2)-mixed radial Moore
graph with status vector:

s(Hr) : (2r2 + 3r + 3)2, (2r2 + 3r + 4)r−1, (2r2 + 4r + 2)2, (3r2 + 5)r
2−2r−1,

(3r2 + 6)5, (3r2 + 7)2r−3, (3r2 + r + 5)r−3, (3r2 + r + 6)2.

Proof. The proof will proceed as follows. For every vertex u ∈ V (Hr) we
will find the number of vertices v ∈ V (Hr) such that d(u, v) ≤ 2 trough a
sketch of the first and second neighbors. Then, every vertex which is not
present in the sketch w ∈ V (Hr) such that d(u,w) > 2 is listed and we proof
that, indeed, d(u,w) = 3 identifying the explicit u− w path.

We will proceed in the mentioned manner, lumping vertices in subsets if
the calculation can be made analogously. The number associated to a given
edge in figures 6, 7 and 8 indicates the step in the construction of Hr where
this connection was added.

• Vertex 0 is clearly a central vertex, so it status is sr,1,2 = 2r2 +3r+3.

• For vertices i = 1, . . . , r the sketch is shown in figure 6. Vertex 1 is a
central vertex, but it is not the case for i = 2, . . . , r, where only vertex
(i− 1, r) remains at distance three through the path:

i
0−→ 0

0−→ i− 1
0−→ (i− 1, r).

11



Figure 6: Neighbors at distance two of vertex i = 2, . . . , r.

Hence, this contributes to the status vector in 2r2+3r+3, (2r2+3r+
4)r−1.

• For vertices (i, r) s.t. i = 2, . . . , r − 1 the sketch is shown in figure 7.

Figure 7: Neighbors at distance one and two of vertex (i, r) with i =
2, . . . , r − 1.

Remaining vertices:

– Vertex (i, i):

(i, r)
5−→ (r + 1, r + 1− i)

4−→ i
0−→ (i, i)

– Vertices (r+1, j) s.t. j = 1, . . . , r and j 6= r− i, r+1− i, a total
of r − 2 vertices:

(i, r)
5−→ (r + 1, r + 1− i)

0−→ r + 1
0−→ (r + 1, j)

12



– Vertices (i− 1, j) s.t. j = 1, . . . , r − 2, a total of r − 2 vertices:

(i, r)
1−→ (i− 1, r − 1)

0−→ i− 1
0−→ (i− 1, j)

– Vertices (i+ 1, j) s.t. j = 2, . . . , r, a total of r − 2 vertices:

(i, r)
1−→ (r + 1, r − i)

0−→ i+ 1
0−→ (i+ 1, j)

– Vertices (α, β) s.t. α = 1, . . . , r− 1; β = 1, . . . , r− 1 and β−α 6≡
r − i, r − i + 1 (mod r + 1) and α 6= i − 1, i, i + 1, a total of
(r − 3)(r − 3) vertices:

(i, r)
1−→ (α,α + r − i)

0−→ α
0−→ (α, β)

There is a total of r2−3r+4 vertices at distance 3. So, they contribute
in (3r2 + 7)r−2 to the status vector.

Figure 8: Neighbors at distance one and two of vertex (i, i − 1) with i =
3, . . . , r− 1. The stars point out the fact that there are repeated vertices in
the tagged subsets.

• For vertices (i, i− 1) s.t. i = 3, . . . , r− 1 the sketch is shown in Fig. 8.

Remaining vertices:

– Vertex (1, j) s.t. j = 2, . . . , r, a total of r − 1 vertices:

(i, i − 1)
1−→ (r + 1, r)

4−→ 1
0−→ (1, j)

– Vertices (r+1, j) s.t. j = 1, . . . , r− 1, r+1, a total of r vertices:

(i, i− 1)
1−→ (r + 1, r)

0−→ r + 1
0−→ (r + 1, j)
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– Vertices (α, β) s.t. α = 2, . . . , r− 1; β = 1, . . . , r and β−α 6≡ 0, r
(mod r+1) and (α, β) 6= (r, r+1− i), a total of (r−2)(r−2)−1
vertices:

(i, i− 1)
1−→ (α,α − 1)

0−→ α
0−→ (α, β)

There is a total of r2 − 2r + 2 vertices at distance 3.

Analogously, one should proceed for every subset Vi presented in table 2.
Column 3 contains the cardinal of each subset, and column 4 contains the
number of vertex at distance 3 from every vertex in Vi, denoted as n3(Vi).
The collection of all subsets Vi constitutes a partition of the vertex set. The
status vector of Hr can easily computed from this table, obtaining

s(Hr) : (2r2 + 3r + 3)2, (2r2 + 3r + 4)r−1, (2r2 + 4r + 2)2, (3r2 + 5)r
2−2r−1,

(3r2 + 6)5, (3r2 + 7)2r−3, (3r2 + r + 5)r−3, (3r2 + r + 6)2.

N1(Hr) can be also obtained from table 2 throughN1(Hr) =
∑

0≤i≤9

|Vi| · n3(Vi)

obtaining N1(Hr) = r4 − 2r3 + 8r − 2.

i Vi |Vi| n3(Vi)

0 {0, 1} 2 0
1 {i |i = 2, . . . , r} r − 1 1
2 {r + 1, (r + 1, r + 1)} 2 r − 1
3 {(i, i) | i = 2, . . . , r − 1} r − 2 r2 − 3r + 2
4 {(i, j)6=(1, r−1) | j−i 6≡ 0, r (mod r+1)} r2 − 3r + 1 r2 − 3r + 2
5 {(r + 1, r), (1, r), (r, r), (1, 1), (1, r − 1)} 5 r2 − 3r + 3
6 {(r + 1, j) | j = 1, . . . , r − 1} r − 1 r2 − 3r + 4
7 {(i, r) | i = 2, . . . , r − 1} r − 2 r2 − 3r + 4
8 {(i, i − 1) | i 6= 2, r} r − 3 r2 − 2r + 2
9 {(2, 1), (r, r − 1)} 2 r2 − 2r + 3

Table 2: Partition of the vertices set of Hr showing the number of vertices
at distance 3 for any given vertex of Vi.

4.2 An optimal family of (1, z, 2)-mixed radial Moore graphs.

Since mixed radial Moore graphs are presented as a kind of approximation of
mixed Moore graphs, it is natural to think that their existence is guaranteed
in the cases when a mixed Moore graph indeed exists. Moreover, the ‘closest’
mixed radial Moore graph to being a mixed Moore graph could be obtained
through a slight modification of the latter.
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s(G) : 86 s(G∗) : 84, 92

N1(G
∗) = 2

Figure 9: The unique mixed Moore graph G on 6 vertices and a mixed radial
Moore graph G∗ obtained by an arc swap to G. Moreover, G∗ is the closest
graph to G according to the status norm.

For instance, the mixed graph depicted in Fig. 9 is precisely the unique
mixed Moore graph for parameters (r, z, k) = (1, 1, 2), which corresponds
to the Kautz digraph on six vertices. It is not difficult to check that the
mixed graph on its right is a mixed radial Moore graph and moreover, it is
the closest mixed graph according to the status norm. This mixed graph
has been obtained by a simple swap of two arcs of the Moore graph. In
this new graph only two vertices have a slight modification of their status,
incrementing just in one unit the value that they had in the original graph.
The remaining vertices preserve the status that they had.

This particular result can be generalized. To see this, let (u, u′, v, v′) be
four (ordered) vertices of a mixed graph D = (V,E,A) so that uv, u′v′ ∈ A
and uv′, u′v /∈ A∪E. The arc swap operation removes the two arcs uv, u′v′

and adds uv′ and u′v to A (Fig. 10). Notice that this operation preserves
the degrees of the vertices in the resulting mixed graph.

Figure 10: Arc swap operation.

It turns out that, under certain conditions, every mixed graph con-
structed by an arc swapping to a proper mixed Moore graph of diameter
2 is a (r, z, 2)-mixed radial Moore graph, and moreover, this mixed graph is
the closest graph to being a Moore graph.
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Theorem 4.3. Let G∗ be the mixed graph obtained by an arc swapping of
some vertices (u, u′, v, v′) in a proper mixed Moore graph G of diameter 2,
such that Γ−(u) = Γ−(u′) and Γ+(v) = Γ+(v′). Then G∗ is a (r, z, 2)-mixed
radial Moore graph with N1(G

∗) = 2.

Proof. Assume that (u, u′, v, v′) are four different vertices such that Γ−(u) =
Γ−(u′) and Γ+(v) = Γ+(v′). Let us see what happens with the shortest paths
in G∗. We divide the proof according to the length of the shortest paths in
G:

• Let w0, w1, w2 be a shortest path (of length 2) in G. Once the arc swap
(u, u′, v, v′) is done, we will see that either the same path w0, w1, w2

is a shortest path in G∗ or there is an alternative path with length
≤ 2. For the case w0 = u [w0 = u′] and w2 = v′ [w2 = v], then
the arc swap produces a shortest path. For the remaining cases, we
will see that the length of the path is preserved. Indeed, if wi 6= u, u′

for i = 0, 1 then the same path is a shortest path in G∗. If w1 = u
and w2 6= v the same path is also a shortest path in G∗, and the
shortest path w0, u, v in G becomes w0, u

′, v in G∗ since w0 ∈ Γ−(u)
and by assumption Γ−(u) = Γ−(u′). The same argument applies when
w1 = u′ by exchanging u by u′. It remains to consider the case when
w0 = u or w0 = u′ (again, by symmetry, we can consider just one case,
say w0 = u): when w1 6= v, v′ the same shortest path is valid and for
w1 = v or v′ we obtain a shortest path in Gz just exchanging v by v′

(due to the arc swapping) since Γ+(v) = Γ+(v′).

• For shortest paths of length one, we only have to consider paths u, v
and u′, v′ (of length 1) in G, which no longer exist in G∗. We will
prove that there is a path of length three from u to v and there is no
one of length 2 (the proof for the case u′, v′ follows the same ideas).
Since Γ+(v) = Γ+(v′) and r ≥ 1, then it exists w ∈ Γ+(v) such that
vw is an edge and v′w is an arc. So u, v′, w, v is the desired path.
Assume that there is a path of length 2 in G∗ from u to v, then it
exists w ∈ Γ+(u)∩Γ−(v). Notice that this is only possible if w = v′ or
w = u′, since otherwise the shortest path from u to v in G would have
length 2. But if the path u, v′, v exists in G∗ then we would have the
arc v′v in G contradicting the fact that Γ+(v) = Γ+(v′). The same
applies to the case u, u′, v where we would have a contraction with
Γ−(u) = Γ−(u′).

Notice that under the assumption Γ−(u) = Γ−(u′) and Γ+(v) = Γ+(v′) there
are only two paths of length 3 in G∗, those starting at u and u′ and ending
at v and v′, respectively. As a consequence, every vertex in G∗ is a central
vertex, except u and u′, having just one vertex at distance 3 each, that is,
G∗ has radius 2, diameter 3 and N1(G

∗) = 2.
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Theorem 4.3 can be applied at least at the unique infinite family of proper
mixed Moore graphs known until now. The family of Kautz digraphs. The
vertices of the Kautz digraph Ka(d, k), d ≥ 1, k ≥ 1, are words of length k on
the alphabet Σ = {0, 1, . . . , d} without two consecutive identical numbers.
There is an arc from vertex (v0, v1, . . . , vk−1) to vertices (v1, . . . , vk−1, x),
where x ∈ S \ {vk−1}. It is known that Ka(d, k) has order (d + 1)dk−1 and
diameter k. Kautz digraphs Ka(d, 2) are the unique mixed Moore graph of
diameter 2 for every d ≥ 2 (taking into account that every oriented digon is
replaced by an edge, that is, r = 1 and z = d− 1) as noted in [15].

We may construct a new family of (1, z, 2)-mixed radial Moore graphs
by performing a convinient arc swap to Ka(1+z, 2) such that the conditions
of theorem 4.3 are fullfilled. Moreover, this is the best possible, as we will
see later. First we provide a helpful lemma.

Lemma 4.4. Let G be a (r, z, k)-mixed radial Moore graph and w ∈ V (G)
be a central vertex of G. Suppose w is adjacent to a non-central vertex
u ∈ V (G) through an edge. Then there exists another vertex in the out-
neighborhood of w different from u which is non-central.

Proof. Let Γ+(w) = {a1, . . . , az , e1, . . . , er−1, u} be the out-neighborhood of
w, such that vertices ai are adjacent from w through an arc and vertices ej
are adjacent from w through an edge. By contradiction suppose all vertices
in Γ+(w) \ {u} are central vertices.

Since u is a non-central vertex and G is a (r, z, k)-mixed radial Moore
graph there must exist a vertex v ∈ V (G) such that d(u, v) = k+1 and thus
d(w, v) = k. The distance preserving spanning tree rooted at w must be a
Moore tree, and v must be located at distance k, belonging to any of the
subtrees rooted at Γ+(w) \ {u}. Without loss of generality, we can suppose
that it hangs from the subtree rooted at a1. Since all vertices in Γ+(w)\{u}
are central there must be a path of length not greater than k from every ai
and ei to v. For a1 it already exists a (k− 1)-path in the Moore Tree but it
is forced that for every vertex ai [resp. ei] in Γ+(w) \ {u, a1} there exists a
vertex a′i [resp. e′i] such that d(ai, a

′
i) = k − 1 [resp. d(ei, e

′
i) = k − 1] and

there is an adjacency (arc or edge) from ai [resp. ei] to v (see figure 11).
These forced adjacencies increase in r + z − 2 the in-degree of v, and

counting the arc or edge that keeps v hanging from the tree it results that
the total in-degree of v is r+ z− 1. Since G is a totally (r, z)-regular graph,
there must be another vertex v′ adjacent to v but:

• Vertex v′ must hold d(w, v′) = k, otherwise w would not be a central
vertex.

• It cannot pend from the subtree rooted at u. This would mean d(u, v) =
k, which would be a contradiction.

17



Figure 11: Distance preserving spanning tree rooted at w. Dashed lines are
used to represent adjacencies that might be either arcs or edges.

• It cannot pend from a vertex at distance k − 1 from a1, since a1 is a
central vertex and there would be two different (a1, v)-paths of length
less than k.

• It cannot pend from vertex ai [resp. ei] in Γ+(w) \ {u, a1}, since ai
[resp. ei] is a central vertex and there would be two different (ai, v)-
paths [resp. (ei, v)-paths] of length k.

Corollary 4.5. Let Gz be a mixed graph obtained by an arc swapping of ver-
tices 01, 03, 12, 32 in Ka(z+1, 2), z ≥ 2. Then Gz is a (1, z, 2)-mixed radial
Moore graph, which is the closest graph to a mixed Moore graph (according
to the status norm).

Proof. Clearly Γ−(01) = Γ−(03) = {x0 |x ∈ Σ, x 6= 0} and Γ+(12) =
Γ+(32) = {2y | y ∈ Σ, y 6= 2}. By theorem 4.3 we have that Gz is a (1, z, 2)-
mixed radial Moore graph with N1(Gz) = 2. According to lemma 4.4,
every mixed radial Moore graph G has at least 2 non-central vertices, so
N1(G) ≥ 2, and the result follows.

For the undirected case, every infinite family of radial Moore graphs
of diameter 2 constructed until know has a norm status that polinomialy
increases with the degree. The family of mixed radial Moore graphs Gz has
a constant norm status equal to 2, independently of z. This family of mixed
graphs is cospectral with the Kautz digraphs and preserve some symmetries,
as the one depicted in Fig. 12.
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Figure 12: The digraph Gz for z = 2, obtained from the Kautz digraph
Ka(3, 2) (the dashed arcs are replaced by the green ones in the optimal
swap).

5 Final remarks and open problems

Mixed radial Moore graphs are extremal graphs that are interesting by its
own definition, but they are also a nice approximation to the well known
Moore graphs. In this paper we provide two infinite families Hr and Gz of
mixed radial Moore graphs of diameter 2, but it would be very interesting
to know if they exist for any combination of the parameters (r, z, k), even
for diameter greater than two.

Question 1. Are there (r, z, k)-mixed radial Moore graphs for any r, z ≥ 1
and k ≥ 2?

The arc swap method used in subsection 4.2 provides an optimal family
Gz of (1, z, 2)-mixed radial Moore graphs, but in could be useful for other
set of parameters (r, z, k) where mixed Moore graphs exist. For instance, we
have applied this method to the unique mixed Moore graph on 18 vertices,
the one for the case (3, 1, 2) (described in [1]). This mixed Moore graph B18

has an status vector of s(B18) : 30
18. It turns out that an optimal arc swap

produces a mixed graph B′
18 with status vector s(B′

18) : 30
10, 316, 322, that

is, N1(B
′
18) = 10. It is known that B18 contains many copies of the Kautz

digraph on 6 vertices (see [13]). It turns out that B′
18 is constructed from

B18 by the arc swap depicted in Fig. 9 to any of this inside copies, that is,
the optimal arc swap to the family of kautz digraphs described in subsection
4.2 produces the closest mixed radial Moore graph to B18 so far (among
all possible arc swaps that in can be done). Nevertheless, we do not know
if B′

18 is the top ranked graph in RM(3, 1, 2), since we only have checked
those graphs obtained by a single arc swap to B18. This method has been
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applied also to the two mixed Moore graphs of order 108 known until know
(see [11]) with status vector s3,7,2 : 204108, obtaining a mixed radial Moore
graph with status vector 20498, 2058, 2092, that is, norm status equal to 18.

Problem 5.1. Find those mixed radial Moore graphs best ranked in RM(r, z, k)
for specific values r, z ≥ 1 and k ≥ 2, in those cases where mixed radial
Moore graphs exist.

We have answered to this question for the cases (2, 1, 2) and (1, z, 2) in
this paper, but there are infinitely many open cases. So, table 3 is presented
below with the best results found so far.

z\r 1 2 3 4 5 6 7 . . .

1 2 8 10 158 413 910 1769 . . .
2 2 ? ? ? ? ? ? . . .
3 2 ? ? ? ? ? 18 . . .
4 2 ? ? ? ? ? ? . . .
...

...
...

...
...

...
...

...

Table 3: Values of N1(G) of the closest mixed radial Moore graphs G found
so far. Red numbers correspond to optimal values. Blue numbers show
the status norm of the closest mixed radial Moore graphs obtained by arc
swapping to a Moore graph. Green values are the status norm values of the
Hr family.
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