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THE ASSOCIATIVE-COMMUTATIVE SPECTRUM OF A BINARY OPERATION

JIA HUANG AND ERKKO LEHTONEN

Abstract. We initiate the study of a quantitative measure for the failure of a binary operation to be
commutative and associative. We call this measure the associative-commutative spectrum as it extends
the associative spectrum (also known as the subassociativity type), which measures the nonassociativity

of a binary operation. In fact, the associative-commutative spectrum (resp. associative spectrum) is the
cardinality of the operad with (resp. without) permutations obtained naturally from a groupoid (a set with
a binary operation). In this paper we provide some general results on the associative-commutative spectrum,
precisely determine this measure for certain binary operations, and propose some problems for future study.

1. Introduction

Associativity and commutativity are important properties for binary operations. Although many familiar
operations satisfy both properties, some only satisfy one or neither of them. Moreover, nonassociativity and
noncommutativity arise in many algebraic structures, such as Lie algebras, Poisson algebras, and so on. One
can measure the failure of a binary operation to be associative by its associative spectrum, which we recall
below.

A groupoid is a set G with a single binary operation ∗.1 A bracketing of n variables is a groupoid term
over the set Xn := {x1, . . . , xn} of variables that is obtained by inserting parentheses in the word x1x2 . . . xn

in a valid way. Let P∗(n) denote the set of all n-ary term operations on (G, ∗) induced by the bracketings of
n variables. The cardinality |P∗(n)| measures to some extent the failure of ∗ to be associative. In general,

we have 1 ≤ |P∗(n)| ≤ Cn−1 where Cn := 1
n+1

(
2n
n

)
is the ubiquitous Catalan number.

Csákány andWaldhauser [4] called the sequence (san(∗))n∈N+ , where s
a
n(∗) := |P∗(n)| andN+ := {1, 2, 3, . . .},

the associative spectrum of the binary operation ∗, while Braitt and Silberger [3] named it the subassocia-

tivity type of the groupoid (G, ∗). Independently, Hein and the first author [7] also proposed the study of
san(∗) = |P∗(n)| for a binary operation ∗, and provided an explicit formula when ∗ satisfies k-associativ-
ity (a generalization of associativity). The associative spectra of many other binary operations have been
determined [8, 11, 15, 16, 17].

For each n ≥ 1, let P∗(n) be the set of all n-ary term operations induced on (G, ∗) by full linear terms

of n variables, i.e., groupoid terms over Xn in which each variable x1, . . . , xn occurs exactly once (but in an
arbitrary order, as opposed to bracketings). We call the sequence (sacn (∗))n∈N+ , where s

ac
n (∗) := |P∗(n)|, the

associative-commutative spectrum (in brief, ac-spectrum) of the binary operation ∗, which measures both
the nonassociativity and the noncommutativity of ∗. We will determine the ac-spectra for certain binary
operations and exhibit some connections to other interesting combinatorial objects and results.

It turns out that the associative spectrum and the ac-spectrum have connections with the operad theory,
which models both nonassociativity and noncommutativity by using binary trees. It was developed by
Boardman, May, Vogt, and others, with applications recently found in many branches of mathematics (see,
e.g., Loday and Vallette [18]). We recall some basic definitions below.
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2 THE ASSOCIATIVE-COMMUTATIVE SPECTRUM OF A BINARY OPERATION

An operad without permutations is an indexed family P = {P(n)}n≥1 of sets with an identity element
1 ∈ P(1) and, for all positive integers n,m1, . . . ,mn, a composition map

◦ : P(n)× P(m1)× · · · × P(mn)→ P(m1 + · · ·+mn)(1.0.1)

(P, P1, . . . , Pn) 7→ P ◦ (P1, . . . , Pn)(1.0.2)

satisfying the following conditions: for any P ∈ P(n), Pi ∈ P(ni), Pi,j ∈ P(ni,j) (1 ≤ i ≤ n, 1 ≤ j ≤ ni), we
have P ◦ (1, . . . , 1) = P = 1 ◦ P and

P ◦ (P1 ◦ (P1,1, . . . , P1,m1), . . . , Pn ◦ (Pn,1, . . . , Pn,mn
))

= (P ◦ (P1, . . . , Pn)) ◦ (P1,1, . . . , P1,m1 , . . . , Pn,1, . . . , Pn,mn
).

(An operad without permutations can thus be seen as a many-sorted algebra with a nullary operation 1 and
operations ◦n,m1,...,mn

for all positive integers n,m1, . . . ,mn, but for notational simplicity, the same symbol
◦ is used to denote all of the latter.) The elements of P(n) are called n-ary operations.2 The Hilbert series

of an operad P without permutations is
∑∞

n=1|P(n)|tn.
We call P = {P(n)}n≥1 an operad with permutations if P satisfies all of the above and has an action of

the symmetric group Sn on P(n) for each n ≥ 1 satisfying the following equivariance conditions: for any
P ∈ P(n), w ∈ Sn, Pi ∈ P(mi), and wi ∈ Smi

,

(P · w) ◦ (Pw−1(1), . . . , Pw−1(n)) = (P ◦ (P1, . . . , Pn)) · w,
P ◦ (P1 · w1, . . . , Pn · wn) = (P ◦ (P1, . . . , Pn)) · (w1, . . . , wn).

Here by abuse of notation, the permutation w on the right side of the first equation is the permutation of the
set {1, . . . ,m1+· · ·+mn} that breaks the set into n consecutive blocks of sizesm1, . . . ,mn and then permutes

the n blocks by w. The Hilbert series of an operad P = {P(n)}n≥1 with permutations is
∑∞

n=1
|P(n)|

n! tn.
Given a groupoid (G, ∗), we have an operad P∗ := {P∗(n)}n≥1 without permutations and an operad

P∗ := {P∗(n)}n≥1 with permutations, whose Hilbert series have coefficients given by the associative spectrum
san(∗) and the ac-spectrum sacn (∗), respectively.

It is clear that sacn (∗) ≥ 1; the equality holds for all n ∈ N+ if and only if ∗ is both commutative and
associative. On the other hand, we have the following upper bounds for the ac-spectrum.

(i) Since full linear terms over Xn are in bijection with (ordered) binary trees with n labeled leaves, we
have sacn (∗) ≤ n!Cn−1 for an arbitrary binary operation ∗.

(ii) Since the equivalence classes of full linear terms over Xn modulo the equational theory of associative
groupoids (semigroups) are in bijection with permutations of {1, . . . , n}, we have sacn (∗) ≤ n! if ∗ is
an associative binary operation.

(iii) Since the equivalence classes of full linear terms over Xn modulo the equational theory of com-
mutative groupoids are in bijection with unordered binary trees with n labeled leaves, we have
sacn (∗) ≤ Dn−1 if ∗ is commutative, where Dn := (2n)!/(2nn!) [19, A001147].

The upper bound in the last case is the solution to Schröder’s third problem; see, e.g., Stanley [21, p. 178].
In Section 3 we show that the above upper bounds can be achieved by the free groupoid on one generator,

the free associative groupoid (i.e., the free semigroup) on two generators, and the free commutative groupoid
on one generator, respectively.

In Section 4 we focus on binary operations that are associative or commutative. For an associative
noncommutative binary operation ∗, we show that its ac-spectrum sacn (∗) attains the upper bound n! if
it has a neutral element (i.e., identity element), and give some other examples for which sacn (∗) < n! in
Section 4.1. In Section 4.2 and Section 4.3, we provide some concrete examples of commutative groupoids
whose ac-spectra reach the upper bound Dn−1, but for the arithmetic, geometric, and harmonic means, we
show that their ac-spectra coincide with an interesting sequence that counts ways to express 1 as an ordered
sum of powers of 2 [19, A007178]. The last example shows that the ac-spectrum of a commutative operation
may not achieve the upper bound Dn−1 even if it is totally nonassociative, i.e., its associative spectrum
equals the upper bound Cn−1. However, we show that the converse does hold: a commutative groupoid is
totally nonassociative if its ac-spectrum reaches that upper bound.

2One can obtain an operad without permutations by taking P(n) to be the set of all n-ary operations on a set, or, as another
example, all n-ary term operations of an algebraic structure. This motivates the terminology “n-ary operation” in the context
of operads.
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In Section 5 we show that the ac-spectrum of the bilinear product of some anticommutative algebras over
a field, including the cross product and certain Lie brackets, is exactly two times the upper bound Dn−1 for
the ac-spectrum of a commutative operation.

In Section 6, we determine the ac-spectra of some more examples of totally nonassociative operations,
including the exponentiation, the implication, and the negated disjunction (NOR). The exponentiation and
the converse implication satisfy the identity x(yz) ≈ x(zy) and their ac-spectrum reaches the upper bound
nn−1 for the ac-spectrum of any binary operation satisfying the above identity. Here nn−1 shows up because it
is the number of unordered rooted trees with n labeled vertices. The negated disjunction is commutative and
its ac-spectrum reaches the upper bound Dn−1 for commutative operations. Together with Example 4.1.2,
this completely describes the ac-spectra of all two-element groupoids.

In Section 7, we see that for some groupoids, two full linear terms induce the same term operation if
and only if the corresponding binary trees are equivalent with respect to certain attributes related to the
depths of the leaves. In Section 7.1 we obtain a formula involving the Stirling numbers of the second kind
for the ac-spectrum of a binary operation ∗ satisfying the property that any two full linear terms agree on
∗ if and only if the right depth sequences of their corresponding binary trees are congruent modulo k (this
is also equivalent to the the k-associativity mentioned earlier). An example is given by a ∗ b := a+ e2πi/kb,
which becomes addition and subtraction when k = 1 and k = 2. Related to this example is the operation
a ∗ b := e2πi/k(a + b). When k = 2 this becomes the double minus operation a ⊖ b := −a − b whose
associative spectrum is |P∗(n)| = ⌊2n/3⌋ [19, A000975], as shown by Csákány and Waldhauser [4, § 5.3] and
independently by the first author, Mickey, and Xu [11]. In section 7.2 we show that sacn (⊖) = (2n−(−1)n)/3,
which is the well-known Jacobsthal sequence [19, A001045]. The more general operation a∗ b := e2πi/k(a+ b)
satisfies the k-depth-equivalence studied recently by the second author. Computations show that neither the
associative spectrum nor the ac-spectrum of this operation matches with any existing sequence in OEIS [19]
when k > 2.

In Section 8, we make some concluding remarks and indicate possible directions for further research.
For the reader’s convenience, we provide a summary in Table 1.1, in which we indicate for the different

types of groupoids considered in this paper their ac-spectra and, for the sake of comparison, also their
associative spectra.

2. Preliminaries

In this section we briefly recall some fundamental concepts concerning algebras, terms and identities, as
well as trees, that are necessary for our work. We will also introduce the (fine) associative-commutative

spectrum of a groupoid. This is a modification of the (fine) associative spectrum, introduced by Csákány
and Waldhauser [4] and Liebscher and Waldhauser [17].

Let N+ denote the set of positive integers and let [n] denote the set {1, . . . , n}.
2.1. Algebras, terms, and identities. We recall some basic notions from universal algebra (see, e.g.,
Bergman [1]). An algebra3 is a pair A = (A,F ), where A is a nonempty set (the universe or the base set)
and F = (fi)i∈I is a family of operations on A (the fundamental operations). The mapping τ : I → N that
assigns to each i ∈ I the arity of fi is called the algebraic similarity type (or type) of A. We may take as
the index set a set F of operation symbols. Then an algebra of type τ : F → N is a pair A = (A,FA), where
FA = (fA)f∈F is a family of operations on A, each fA having arity τ(f). An algebra is trivial if its universe
has just one element.

Let us now fix an algebraic similarity type τ : F → N. Let X be a set of variables that is disjoint from F .
We define terms of type τ over X by the following recursion: every variable x ∈ X is a term, and if f ∈ F
and t1, . . . , tτ(f) are terms, then f(t1, . . . , tτ(f)) is a term. Let Tτ (X) denote the set of all terms of type τ
over X . We usually take the set X of variables to be one of the standard sets of variables: for n ∈ N+,
Xn := {x1, . . . , xn} and Xω := {x1, x2, . . . }. Let var(t) denote the set of variables occurring in the term t,
and let |t| denote the total number of occurrences of variables in t.

We can define an algebra Tτ (X) of type τ with universe Tτ (X) and, for each f ∈ F , the τ(f)-ary
fundamental operation fTτ (X) defined as fTτ (X)(t1, . . . , tτ(f)) := f(t1, . . . , tτ(f)). The algebra Tτ (X) is
called the term algebra of type τ over X . Note that Tτ (X) is absolutely free over X , meaning that Tτ (X)
is generated by X and has the universal mapping property, i.e., for any algebra A = (A,FA) of type τ and

3This is not to be confused with an algebra over a field. See Example 2.1.1(vii) and Section 5.
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groupoid (G, ∗) sacn (∗) san(∗) reference

free on one generator n!Cn−1 Cn−1 Proposition 3.1.1

free associative on two generators n! 1 Proposition 3.1.2

free commutative on one generator Dn−1 Cn−1 Proposition 3.2.3

noncommutative associative with identity n! 1 Proposition 4.1.1

G = {0, 1}, x ∗ y is defined as 1, min{x, y},
or x+ y (mod 2)

1 1 Example 4.1.2

G = {0, 1}, x ∗ y := x n 1 Example 4.1.2

implication on {0, 1} nn−1 Cn−1 Proposition 6.2.1

negated disjunction on {0, 1} Dn−1 Cn−1 Proposition 6.3.3

G = {0, 1}, x ∗ y := x+ 1 (mod 2) n for n = 1, 2
2n for n ≥ 3

2 Example 4.1.2

arithmetic/geometric/harmonic mean OEIS A007178 Cn−1 Proposition 4.2.2

rock-paper-scissors operation Dn−1 Cn−1 Proposition 4.2.3

commutative nonassociative with identity Dn−1 Cn−1 Theorem 4.3.1

the cross product on R
3 2Dn−1 Cn−1 Corollary 5.2.3

Lie algebra with an sl2-triple over a field of
characteristic not 2

2Dn−1 Cn−1 Corollary 5.3.3

exponentiation on R≥0 nn−1 Cn−1 Proposition 6.1.5

a ∗ b := a+ e2πi/kb on C k!S(n, k) + n
∑k−2

i=0 i!S(n− 1, i) Ck,n Theorem 7.1.9

a ∗ b := −a− b on R (2n − (−1)n)/3 ⌊2n/3⌋ Theorem 7.2.1

Table 1.1. Summary of results

any map h : X → A, there is a unique homomorphism h♯ : Tτ (X) → A that extends h. In particular, the
term algebra Tτ (Xn) is called a free algebra of type τ on n generators.

Still in regard to the universal mapping property of Tτ (X), let A = (A,FA) be an arbitrary algebra of
type τ , let h : X → A be an arbitrary map, and let h♯ : Tτ (X)→ A be the unique homomorphic extension
of h. We call the map h an assignment of values from A for the variables in X . For a term t ∈ Tτ (X), we
call h♯(t) the value of t in A under h, and we say that t evaluates to h♯(t) in A under the assignment h. For
notational simplicity, we will write also h(t) for h♯(t). Of course, it is only the restriction of an assignment
h to var(t) that matters for the value h♯(t), so we may safely consider just partial assignments var(t)→ A.

Let A = (A,FA) be an algebra of type τ . For each term t ∈ Tτ (Xn), we define an n-ary operation tA

on A by the following recursion. If t is a variable xi ∈ Xn, then tA = pr
(n)
i , where pr

(n)
i is the i-th n-ary

projection, defined by (a1, . . . , an) 7→ ai. If t = f(t1, . . . , tτ(f)), where f ∈ F and t1, . . . , tτ(f) ∈ Tτ (Xn), then

tA(a1, . . . , an) := fA(tA1 (a1, . . . , an), . . . , t
A

τ(f)(a1, . . . , an)). The operation tA is called the term operation

induced by t on A. In other words, the term operation tA provides the evaluations of t in A under all
possible assignments of values for variables: if h : Xn → A is the assignment h(xi) = ai for each xi ∈ Xn,
then h(t) = tA(a1, . . . , an). For a set T ⊆ Tτ (X) of terms, let TA := {tA | t ∈ T }.

An identity of type τ is a pair (s, t) of terms s, t ∈ Tτ (Xω), usually written as s ≈ t. An algebra
A = (A,FA) satisfies the identity s ≈ t, denoted A |= s ≈ t, if sA = tA (here we must assume that
s, t ∈ Tτ (Xn) for some n ∈ N, but this is not a real restriction because it can always be done). In other
words, A satisfies s ≈ t, if, by interpreting the terms s and t in the algebra A, the two terms evaluate to
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the same value for all assignments of values from A for the variables. The set of all identities satisfied by
an algebra A (by every member of a class A of algebras of type τ , resp.) is called the equational theory of
A (of A, resp.). Conversely, the set of all algebras satisfying a set Σ of identities is called the equational

class axiomatized by Σ. It is well known that a class of algebras is an equational class if and only if it is a
variety, i.e., a class of algebras that is closed under homomorphic images, subalgebras, and direct products
(Birkhoff [2]).

In practice, we will often use the usual infix notation for binary operations, i.e., we write a ∗ b instead of
∗(a, b). For unary operations, it is also common to use special notations such as a−1 instead of −1(a) or a
instead of (a). We may also omit some parentheses from terms when there is no risk of misunderstanding.

Example 2.1.1. Examples of familiar algebras include the following.

(i) A groupoid is an algebra (G, ∗) with a single binary operation ∗, i.e., an algebra of algebraic similarity
type τ = (2). A groupoid is commutative if it satisfies the identity x ∗ y ≈ y ∗ x (commutative law),
and it is associative if it satisfies the identity x∗ (y ∗ z) ≈ (x∗ y)∗ z (associative law). An associative
groupoid is called a semigroup.

(ii) A monoid is an algebra (M, ∗, e) of type (2, 0) that satisfies the associative law and the identities
x ∗ e ≈ e ∗ x ≈ x. We call e a neutral element (or identity element).

(iii) A group is an algebra (G, ∗,−1, e) of type (2, 1, 0) such that (G, ∗, e) is a monoid and it satisfies the
identities x ∗ x−1 ≈ x−1 ∗ x ≈ e.

(iv) A ring is an algebra (R,+.·,−, 0) of type (2, 2, 1, 0) such that (R,+,−, 0) is a commutative group,
(R, ·) is a semigroup, and it satisfies the identities x·(y+z) ≈ (x·y)+(x·z) and (y+z)·x ≈ (y·x)+(z·x)
(distributive laws). A ring in which the multiplication is commutative is called a commutative ring.

(v) A ring with identity is an algebra (R,+, ·,−, 0, 1) of type (2, 2, 1, 0, 0) such that (R,+, ·,−, 0) is a
ring and (R, ·, 1) is a monoid. A field is a nontrivial commutative ring with identity in which every
nonzero element has a multiplicative inverse (i.e., for all x ∈ R \ {0}, there is a y ∈ R such that
x · y = y · x = 1).

(vi) Let F = (F,+, ·,−, 0, 1) be a fixed field. A vector space over F is an algebra (V,+,−, 0, (λa)a∈F ) such
that (V,+,−, 0) is a commutative group and, for all a, b ∈ F , the following identities are satisfied:

λ1(x) ≈ x,

λa(x+ y) ≈ λa(x) + λa(y),

λa+b(x) ≈ λa(x) + λb(x),

λa(λb(x)) ≈ λa·b(x).

The unary operation λa is called scalar multiplication by a. One often writes ax for λa(x).
(vii) Let F be a fixed field as above. An algebra over the field F is an algebra (A,+,−, 0, (λa)a∈F , ∗),

where (A,+,−, 0, (λa)a∈F ) is a vector space over F and ∗ is a bilinear binary operation, that is, for
all a, b ∈ F , the following identities are satisfied:

(x+ y) ∗ z ≈ x ∗ z + y ∗ z,
z ∗ (x+ y) ≈ z ∗ x+ z ∗ y,

λa(x) ∗ λb(y) ≈ λa·b(x ∗ y).
2.2. Associative-commutative spectrum. In this paper, we discuss almost exclusively groupoids, i.e.,
algebras of type τ = (2). Therefore, from now on, unless otherwise mentioned, we assume that the algebras
under consideration are groupoids and the algebraic similarity type is not explicitly mentioned and is omitted
from any notation we use. When we speak, for example, of terms, we mean terms in the language of groupoids.
In fact, since we now have only one operation symbol, it does no harm to omit it from terms.

A term is called linear if no variable occurs more than once therein. We call a term t ∈ T (Xn) full over
Xn if var(t) = Xn, i.e., every variable xi ∈ Xn occurs in t. Thus, a full linear term over Xn is a term
that is obtained by inserting n − 1 pairs of parentheses in a valid way into the word xσ(1)xσ(2) . . . xσ(n)

for some permutation σ ∈ Sn. If, in the above, σ is the identity permutation, then we get a bracketing

over Xn. In other words, a full linear term t ∈ T (Xn) is of the form t = t′[xσ(1), . . . , xσ(n)] for some
bracketing t′ (the underlying bracketing of t) and some permutation σ ∈ Sn. (For a term t ∈ T (Xn) and
terms u1, . . . , un ∈ T (Xm), we let t[u1, . . . , un] denote the term in T (Xm) obtained from t by replacing each
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occurrence of xi by ui, for all i ∈ [n].) Let Fn and Bn denote the set of all full linear terms over Xn and
the set of all bracketings over Xn, respectively. It is well known that the number of bracketings over Xn

equals the (n− 1)-st Catalan number Cn−1 = 1
n

(
2n−2
n−1

)
, i.e., |Bn| = Cn−1. Consequently, |Fn| = n!Cn−1. If

s, t ∈ Bn (s, t ∈ Fn, resp.) for some n ∈ N, then we call s ≈ t a bracketing identity (a full linear identity,

resp.).

Example 2.2.1. There are twelve full linear terms over X3, and they form the set

F3 = {((xσ(1)xσ(2))xσ(3)) : σ ∈ S3} ∪ {(xσ(1)(xσ(2)xσ(3))) : σ ∈ S3}.
There are two bracketings over X3, and they form the set

B3 = {((x1x2)x3), (x1(x2x3))},
which is a subset of F3.

Let G = (G, ∗) be a groupoid. The fine associative-commutative spectrum (in brief, fine ac-spectrum)
of G is the sequence (σac

n (G))n∈N+ , where σac
n (G) := {(s, t) ∈ Fn × Fn | G |= s ≈ t}. In other words,

σac
n (G) is the restriction of the equational theory of G to full linear identities over Xn. It is clear that

σac
n (G) is an equivalence relation on Fn. The associative-commutative spectrum (in brief, ac-spectrum) of

G is the sequence (sacn (G))n∈N, where sacn (G) := |Fn/σ
ac
n (G)|, i.e., the number of equivalence classes of

σac
n (G). Equivalently, sacn (G) is the number of distinct term operations on G induced by the full linear

terms over Xn, in symbols, sacn (G) = |FG
n | = |{tG | t ∈ Fn}|. The fine associative spectrum (σa

n(G))n∈N+

and the associative spectrum (san(G))n∈N+ of G were defined analogously by Liebscher and Waldhauser [17]
by taking bracketings instead of full linear terms, i.e., by replacing Fn with Bn in the above definitions.
These numbers satisfy 1 ≤ san(G) ≤ |Bn| = Cn−1 and 1 ≤ sacn (G) ≤ |Fn| = n!Cn−1. We say G is totally

nonassociative if san(G) = Cn−1 for all n ≥ 1. For notational simplicity, we may avoid giving a name to the
groupoid and refer only to its fundamental operation, and hence we may sometimes replace G with ∗ in the
notations introduced above. For example, we may write t∗ for tG or sacn (∗) for sacn (G).

The opposite groupoid (G, ∗)opp of a groupoid (G, ∗) is the groupoid (G, ◦) with a ◦ b := b ∗ a for all
a, b ∈ G. Groupoids A and B are said to be antiisomorphic if A and Bopp are isomorphic. It is easy to see
that isomorphic or antiisomorphic groupoids have the same associative spectrum and the same ac-spectrum.
The following facts follow immediately from the fact that equational classes of groupoids (classes axiomatized
by identities) coincide with varieties of groupoids (classes closed under homomorphic images, subgroupoids,
and direct products).

(i) If A is a homomorphic image of B, then σac
n (A) ⊇ σac

n (B) and sacn (A) ≤ sacn (B).
(ii) If A is a subgroupoid of B, then σac

n (A) ⊇ σac
n (B) and sacn (A) ≤ sacn (B).

(iii) If C = A×B, then σac
n (C) = σac

n (A) ∩ σac
n (B) and sacn (C) ≥ max{sacn (A), sacn (B)}.

2.3. Trees. Now recall that a (finite, undirected) graph is a pair (V,E) where V is a (finite) set whose
elements are called vertices and E is a set of unordered pairs of vertices (i.e., sets of the form {a, b}, where
a, b ∈ V ) called edges. A graph is connected if for any pair of vertices u, v ∈ V , there exists a sequence of
vertices (v0, v1, . . . , vℓ) such that v0 = u, vivi+1 ∈ E for i = 0, 1, . . . , ℓ− 1, and vℓ = v. A cycle is a sequence
of distinct vertices (v0, v1, . . . , vℓ) such that vivi+1 ∈ E for all i = 0, 1, . . . , ℓ − 1 and vℓv0 ∈ E. A tree is a
connected graph without any cycle.

Let T be a rooted tree, i.e., a tree with a distinguished vertex called the root and with edges oriented
away from the root. We usually draw T in such a way that its root appears at the very top and each vertex
v has a nonnegative number of children (i.e., out-neighbors) hanging below v. A vertex in T is a leaf if it
has no children, or an internal vertex otherwise.

A rooted tree T is ordered4 if the children of each internal vertex are linearly ordered, or unordered

otherwise. Given an ordered tree T , the unordered tree obtained from T by simply ignoring the order of
children of each internal vertex is called the underlying unordered tree of T and denoted by T u. A rooted
tree is labeled if all of its vertices are labeled. Given a vertex v in a rooted tree T , the subtree of T rooted at

v is the union of the paths from v to the leaves that v connects to, with v itself as the root.

4Ordered trees are often called plane trees since a plane embedding of a tree induces a cyclic ordering of the neighbours
of each vertex; moreover, if the root is drawn at the top – following our drawing convention – then the embedding specifies a
linear ordering for the children of each internal vertex.



THE ASSOCIATIVE-COMMUTATIVE SPECTRUM OF A BINARY OPERATION 7

A rooted tree T is a binary tree if each internal vertex has exactly two children. A binary tree is leaf-labeled
if its leaves are labeled. The left subtree TL and right subtree TR of an ordered binary tree T are the subtrees
rooted at the left child and at the right child of the root of T , respectively. If S and T are two ordered
binary trees, then S ∧ T is the ordered binary tree whose left and right subtrees are S and T , respectively.
One can naturally extend these definitions to unordered binary trees by not distinguishing left and right.

Let T be a binary tree with n leaves labeled 1, . . . , n in some order. The left depth δT (i), right depth

ρT (i), and depth dT (i) of a leaf i in an ordered binary tree T is the number of left, right, and all steps in the
path from the root to the leaf labeled i. This leads to the left depth sequence δT := (δT (1), . . . , δT (n)), the
right depth sequence ρT := (ρT (1), . . . , ρT (n)) and the depth sequence dT := (dT (1), . . . , dT (n)) of T . If the
leaves of t are labeled 1, . . . , n from left to right, then each sequence above determines the ordered binary
tree T uniquely [4, 7, 11]. The depth sequence can also be defined for unordered leaf-labeled binary trees.

There is a bijection between the set T (X) of all terms over X and the set of ordered binary trees with
leaves labeled by the variables in X (if X = Xω then we may identify a label xi with i), defined recursively
as follows: each variable x ∈ X corresponds to a tree with just one vertex labeled with x, and if the terms
t1 and t2 correspond to trees T1 and T2, respectively, then the term (t1t2) corresponds to the tree T1 ∧ T2.
We write Tt for the binary tree corresponding to the term t via this bijection, and we write tT for the term
corresponding to the binary tree T via its inverse map.

3. Free groupoids

In this section we show that the various upper bounds for the associative-commutative spectra mentioned
in Section 1 can be achieved by certain free groupoids with a small number of generators.5

3.1. Free groupoid on one generator and free semigroup on two generators. We first show that the
upper bound sacn (G) ≤ n!Cn−1 for the ac-spectrum sacn (G) of an arbitrary groupoid G becomes an equality
when G is the free groupoid on one generator.

Proposition 3.1.1. For every n ∈ N+, the n-th term of the ac-spectrum of the free groupoid T(X1) with

one generator is sacn (T(X1)) = n!Cn−1.

Proof. We need to show that distinct full linear terms overXn induce distinct term operations on T(X1). Let
t, u ∈ Fn with t 6= u. If the underlying bracketings of t and u are distinct, say t′ and u′, then the assignment
that maps every variable to x1 yields terms t′[x1, . . . , x1] and u′[x1, . . . , x1], which are distinct terms in
T (X1). Assume now that the underlying bracketings of t and u are equal. Then t = b[xσ(1), . . . , xσ(n)] and
u = b[xτ(1), . . . , xτ(n)] for some bracketing b ∈ Bn and permutations σ and τ of [n], with σ 6= τ . There exists

an i ∈ [n] such that σ−1(i) 6= τ−1(i). Now the assignment xi 7→ (x1x1) and xj 7→ x1 for all j 6= i maps t
and u to terms of the form b[x1, . . . , x1, (x1x1), x1, . . . , x1], where the single occurrence of (x1x1) appears at
distinct positions (namely, σ−1(i) and τ−1(i), respectively); these terms are clearly distinct. This completes
the proof. �

The set Σa
X of all identities over X that are satisfied by all semigroups (the restriction of the equational

theory of semigroups to identities over X) is a congruence of the term algebra T(X), and the quotient
T(X)/Σa

X is referred to as a free semigroup over X . It is isomorphic to the semigroup X+ = (X+, ·) of
nonempty words over X endowed with the operation · of concatenation.

If G is a semigroup then sacn (G) ≤ n! for all n ∈ N+, since all bracketings over Xn induce the same term
operation on G and it is only the order of variables in a full linear term that matters. We show that the
equality in this upper bound holds when G is the free semigroup with two generators.

Proposition 3.1.2. For every n ∈ N+, the n-th term of the ac-spectrum of the free semigroup with two

generators is sacn (T(X2)/Σ
a
X2

) = n!.

Proof. Let t, u ∈ Fn. Then t = t′[xσ(1), . . . , xσ(n)] and u = u′[xτ(1), . . . , xτ(n)] for some bracketings t′, u′ ∈ Bn

and permutations σ, τ ∈ Sn. We need to show that t and u induce distinct term operations on X+
2 = (X+

2 , ·)
if and only if σ 6= τ . By associativity, the valuation of t and u under an assignment h : Xn → X+

2 results
in the words h(t) := h(xσ(1)) . . . h(xσ(n)) and h(u) := h(xτ(1)) . . . h(xτ(n)), respectively. Therefore, it is clear

5We suspect that the free algebras (in a suitable variety) with countably infinitely many generators always have the largest
spectrum possible (among the algebras in the variety).
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Figure 3.1. Binary tree corresponding to the term ξ
(n)
i .

that the term operations coincide whenever σ = τ . If σ 6= τ , then it is easy to find an assignment h such
that h(t) 6= h(u) and hence the term operations are distinct. For example, thinking of the two elements of
X2 as the binary digits 0 and 1, we define, for each i ∈ [n], h(xi) as the binary representation of the number
i with N := ⌈log2 n⌉ bits. Then h(t) (h(u), resp.) is a binary word of length nN , where the i-th block of N
bits is the binary representation of σ(i) (τ(i), resp.). Since σ 6= τ , there is an i ∈ [n] such that σ(i) 6= τ(i);
therefore h(t) and h(u) differ in the i-th block of N bits. �

Remark 3.1.3. Note that we need (at least) two generators for the above proof to work. In fact, the
ac-spectrum of the free semigroup with one generator is the constant 1 sequence.

3.2. Free commutative groupoid with one generator. The set Σc
X of all identities over X that hold in

all commutative groupoids (the restriction of the equational theory of commutative groupoids to identities
over X) is a congruence of the term algebra T(X), and the quotient T(X)/Σc

X is referred to as a free

commutative groupoid over X .
It is clear that if G is a commutative groupoid and s, t ∈ Fn are full linear terms such that Ts and Tt have

the same underlying unordered binary tree, then sG = tG. Consequently, sacn (G) is bounded above by the
number Dn−1 of unordered binary trees with n labeled leaves [19, A001147], i.e., the solution to Schröder’s
third problem; see, e.g., Stanley [21, p. 178]. To show that this upper bound can be achieved by taking G
to be a free commutative groupoid, we need a slightly more complex construction (which we could in fact
have used already for the free groupoids, but there a simpler method works).

Definition 3.2.1. For n ∈ N+ and i ∈ [n], let ξ
(n)
i be the term

(((. . . ((((. . . ((x1x1)x1) . . . )x1)(x1x1))x1) . . . )x1)x1),

where the two subterms (x1x1) appear at depths n and i; see Figure 3.1.

Lemma 3.2.2. The unordered binary trees corresponding to ξ
(n)
i and ξ

(n)
j are isomorphic if and only if i = j.

Proof. In T
ξ
(n)
ℓ

with 1 ≤ ℓ ≤ n− 1, the number of leaves at depth n+ 1 is 2, the number of leaves at depth

ℓ + 1 is 3, and the number of leaves at depth k with k ∈ [n] \ {ℓ} is 1. In T
ξ
(n)
n

, the number of leaves at

depth n+1 is 4 and the number of leaves at depth k with k ∈ [n] is 1. Consequently, T
ξ
(n)
i

and T
ξ
(n)
j

are not

isomorphic if i 6= j. If i = j, then T
ξ
(n)
i

and T
ξ
(n)
j

are equal and hence obviously isomorphic. �
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Proposition 3.2.3. For every n ∈ N+, the n-th term of the ac-spectrum of the free commutative groupoid

T(X1)/Σ
c
X1

with one generator is Dn−1.

Proof. We need to show that for all t, u ∈ Fn such that t ≈ u /∈ Σc
Xn

, the term operations on T(X1)/Σ
c
X1

induced by t and u are distinct. Let t, u ∈ Fn with t ≈ u /∈ Σc
Xn

. Consider the assignment xi 7→ ξ
(n)
n .

The resulting terms t′ := t[ξ
(n)
1 , . . . , ξ

(n)
n ] and u′ := u[ξ

(n)
1 , . . . , ξ

(n)
n ] belong to T (X1). It is easy to verify

that the labeled unordered binary trees corresponding to t′ and u′ are isomorphic if and only if those of
t and u are. Since t ≈ u /∈ Σc

Xn
, the binary trees corresponding to t and u are nonisomorphic as labeled

unordered binary trees; hence so are the trees corresponding to t′ and u′, and we have t′ ≈ u′ /∈ Σc
X1

, so

t′
T(X1)/Σ

c
X1 6= u′T(X1)/Σ

c
X1 . �

4. Associative or commutative groupoids

In this section we study the ac-spectra of some groupoids that are either associative or commutative.

4.1. Associative groupoids (semigroups). Assume first that G is an associative groupoid (a semigroup).
We know that the upper bound sacn (G) ≤ n! for semigroups is reached by the free semigroup with two
generators (Proposition 3.1.2). Now we provide another example of a family of groupoids for which this
upper bound is achieved.

Proposition 4.1.1. If G = (G, ∗) is a noncommutative monoid, then we have sacn (G) = n! for all n ≥ 1.

Proof. Let s, t ∈ Fn. Then s = s′[xπ(1), . . . , xπ(n)] and t = t′[xτ(1), . . . , xτ(n)] for some bracketings s′, t′ ∈ Bn

and permutations π, τ ∈ Sn. We show that sG = tG if and only if π = τ , from which the proposition follows.
If π = τ , then clearly sG = tG because the bracketings s′ and t′ are irrelevant by the associativity of ∗.

Assume now that π 6= τ . Then τ−1π is a nonidentity permutation, and therefore it must have an inversion
pair, say (i, j) with i < j and τ−1π(i) > τ−1π(j). Since ∗ is not commutative, there exist elements a, b ∈ G
such that a ∗ b 6= b ∗ a. Let e be the neutral element of ∗. Assign the value a to xπ(i) = xτ(τ−1π(i)), the
value b to xπ(j) = xτ(τ−1π(j)), and the value e to all remaining variables. Under this assignment, the term s
evaluates to e . . . eae . . . ebe . . . e = ab, where on the left side, a and b occur as the i-th and the j-th factors,
respectively. On the other hand, the term t evaluates to e . . . ebe . . . eae . . . e = ba, where on the left side, a
and b occur as the τ−1π(i)-th and the τ−1π(j)-th factors, respectively. This shows that sG 6= tG. �

The above proposition would no longer be true if we omitted the assumption that the groupoid has a
neutral element, as shown by the following example.

Example 4.1.2. Csákány and Waldhauser [4, Section 4] determined the associative spectrum of every two-
element groupoid. Such a groupoid is isomorphic or antiisomorphic to G = ({0, 1}, ∗), where x ∗ y is defined
as one of the following: (1) 1, (2) x, (3) min{x, y}, (4) x+ y (mod 2), (5) x+ 1 (mod 2), (6) x ↓ y (negated
disjunction, NOR) or (7) x→ y (implication). We now set out to determine their ac-spectra.

We have sacn (G) = 1 for all n ∈ N+ if ∗ defined by (1), (3), or (4), since ∗ is both associative and
commutative in these three cases. The operation ∗ defined by (2) is associative but not commutative, and
we have sacn (G) = n for all n ∈ N+, since for any t ∈ Fn with t = t′[xτ(1), . . . , xτ(n)], where t′ ∈ Bn and

τ ∈ Sn, we have tG = pr
(n)
τ(1). For the operation ∗ defined by (5), we have sac1 (G) = 1, sac2 (G) = 2, and

sacn (G) = 2n for all n ≥ 3, since for any t ∈ Fn with t = t′[xτ(1), . . . , xτ(n)], where t′ ∈ Bn and τ ∈ Sn,

we have tG(a1, . . . , an) = aτ(1) + d (mod 2), where d is the left depth of the leftmost leaf in the binary tree
corresponding to t. The groupoids given by (6) and (7) are totally nonassociative and their ac-spectra will
be determined in Section 6.

4.2. Commutative groupoids. Now we assume that G = (G, ∗) is a commutative groupoid. Recall that
we have an upper bound sacn (G) ≤ Dn−1 which is attained by the free commutative groupoid with one
generator (Proposition 3.2.3). As shown by the following lemma, any commutative groupoid G reaching this
upper bound must be totally nonassociative.

Lemma 4.2.1. Let G = (G, ∗) be a commutative groupoid. If sacn (G) = Dn−1 for n ∈ N+, then G is totally

nonassociative, i.e., san(G) = Cn−1 for all n ∈ N+.
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Proof. The commutativity of ∗ and the hypothesis sacn (G) = Dn−1 imply that terms s, t ∈ Fn induce the same
operation on G if and only if s and t are are congruent modulo the equational theory Σc

Xn
of commutative

semigroups, i.e., the unordered binary trees T u
s and T u

t with labeled leaves corresponding to the terms s
and t are isomorphic. Binary trees corresponding to bracketings of n variables are isomorphic as unordered
leaf-labeled binary trees if and only if the bracketings are equal. Consequently, san(G) = Cn−1. �

The converse of Lemma 4.2.1 does not hold. If ∗ is the arithmetic, geometric, or harmonic mean, then
san(∗) = Cn−1 for all n ≥ 1 (see Csákány, Waldhauser [4]). However, as we are going to show next, its
ac-spectrum agrees with an interesting sequence in OEIS [19, A007178], which enumerates different ways to
write 1 as an ordered sum of n powers of 2 (i.e., compositions of 1 into powers of 2) and is also related to the
so-called prefix codes or Huffman codes (see, e.g., Even and Lempel [5], Giorgilli and Molteni [6], Knuth [12],
Krenn and Wagner [13] and Lehr, Shallit and Tromp [14]).

Proposition 4.2.2. If ∗ is the arithmetic mean on R, the geometric mean on R+, or the harmonic mean

on R+, then sacn (∗) equals the number of ways to write 1 as an ordered sum of n powers of 2 for all n ≥ 1.

Proof. As observed by Csákány and Waldhauser [4], the groupoid R with the arithmetic mean (x + y)/2
is isomorphic to the groupoid R+ with the geometric mean

√
xy via x 7→ ex, and the groupoid R+ with

arithmetic mean (x+ y)/2 is isomorphic to the groupoid R+ with the harmonic mean ((x−1 + y−1)/2)−1 via
x 7→ x−1. Therefore we may assume G = (R, ∗) with x ∗ y := (x+ y)/2.

A bracketing t ∈ Bn induces the operation tG(a1, . . . , an) =
∑n

i=1 2
−diai over the arithmetic mean, where

di is the depth of the i-th leaf in Tt. Thus two bracketings over Xn induce the same operation on G if
and only if their corresponding binary trees have the same depth sequence (which means that the trees
coincide). It follows that the operations on G induced by the full linear terms over Xn are in a one-to-one
correspondence with the sequences belonging to the union of the Sn-orbits of all depth sequences of binary
trees with n leaves. It is known and can be shown by induction that any sequence (d1, . . . , dn) in these
orbits must satisfy the condition 1 = 2−d1 + · · ·+ 2−dn , and any sequence of positive integers satisfying this
condition must be a permutation of the depth sequence of a binary tree. The result follows. �

Next, we consider the rock-paper-scissors operation ∗ defined on the set {rock, paper, scissors} by x ∗ y =
y ∗ x := x if x beats y or x = y. Rock beats scissors, scissors beat paper, and paper beats rock.

Proposition 4.2.3. For the rock-paper-scissors operation ∗, we have sacn (∗) = Dn−1 and san(∗) = Cn−1 for

all n ≥ 1.

Proof. By Lemma 4.2.1, it suffices to prove sacn (∗) = Dn−1 for all n ≥ 1. We proceed by induction on n. Let
s, t ∈ Fn. Since ∗ is commutative, it suffices to show that if T u

s 6= T u
t are distinct then s∗ 6= t∗. The claim

clearly holds for 1 ≤ n ≤ 2. Let now n ≥ 3, and assume that the claim holds for terms with fewer than n
variables. Let xj and xk be two leaves with a common parent in Ts.

First, suppose that xj and xk also share a parent in Tt. Then deleting xj and xk from both Ts and Tt and
labeling their parent with a new variable will yield binary trees Us and Ut with n− 1 labeled leaves. Since
T u
s 6= T u

t implies Uu
s 6= Uu

t , we have (tUs
)∗ 6= (tUt

)∗ by the induction hypothesis. It follows that s∗ 6= t∗.
Next, suppose that xj and xk do not share a parent in Tt. Let a be the first common ancestor of xj and

xk in Tt, let S be the subtree of Tt rooted at a, and let R and R′ be the subtrees of Tt rooted at the two
children of a. We may assume, without loss of generality, that R contains xj and at least one other leaf, and
R′ contains xk. Then using an assignment h with h(xj) = rock, h(xk) = scissors, and h(xi) = paper for all
i ∈ [n] \ {j, k}, we have h(tR) = paper, h(tR′) = scissors, and thus h(t) = scissors. On the other hand, we
have h(s) = paper. Therefore s∗ 6= t∗. �

4.3. Commutative groupoids with a neutral element. For a commutative groupoid G with a neutral
element, we show that there are only two distinct possibilities: G is either associative or totally nonassociative
(see Theorem 4.3.1 below). Examples of nonassociative commutative groupoids with a neutral element
include the Jordan algebras of n×n self-adjoint matrices over R,C, or H (the algebra of quaternions) with a
product defined by x ◦ y := (xy+ yx)/2. The identity matrix In is the neutral element for this commutative
algebra.

Theorem 4.3.1. Let G = (G, ∗) be a commutative groupoid with neutral element e. Then either

(i) G is associative, in which case san(G) = sacn (G) = 1 for all n ∈ N+, or
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(ii) san(G) = Cn−1 and sacn (G) = Dn−1 for all n ≥ 1.

Proof. If G is associative and commutative, then all full terms in Fn induce the same term operation on G
and so san(G) = sacn (G) = 1 for all n ∈ N+.

Assume now that G is not associative. Then there exist elements a, b, c ∈ G such that a(bc) 6= (ab)c.
By Lemma 4.2.1, it suffices to prove sacn (G) = Dn−1 for all n ≥ 1. We are going to show that sG 6= tG

whenever s, t ∈ Fn are noncongruent terms modulo the equational theory Σc
Xn

of commutative groupoids,
i.e., T u

s 6= T u
t . The claim holds trivially for n = 1 and n = 2, so we may assume n ≥ 3.

Consider now the case n = 3. Modulo Σc
X3

, there are three distinct full linear terms over X3, namely
t1 := x1(x2x3), t2 := x2(x1x3), t3 := x3(x1x2), and the term functions they induce on G are distinct because

tG1 (a, c, b) = a(cb) = a(bc) 6= (ab)c = c(ab) = tG2 (a, c, b),

tG1 (a, b, c) = a(bc) 6= (ab)c = c(ab) = tG3 (a, b, c),

tG2 (b, a, c) = a(bc) 6= (ab)c = c(ba) = tG3 (b, a, c).

Assume now that n ≥ 4 and that the claim holds for terms with fewer than n variables. We have
s = (sLsR) and t = (tLtR) for subterms sL, sR, tL, tR. Note that the term t′ := (tRtL) is congruent
to t modulo Σc

Xn
, so we may consider t′ in place of t if necessary. Observe that {var(sL), var(sR)} and

{var(tL), var(tR)} are partitions of [n].
Consider first the case when {var(sL), var(sR)} 6= {var(tL), var(tR)}. By taking, if necessary, the term t′

in place of t, and by changing the roles of s and t, if necessary, it follows that there exist j, k, ℓ ∈ [n] such
that xj ∈ var(sL) ∩ var(tL), xk ∈ var(sR) ∩ var(tL), and xℓ ∈ var(sR) ∩ var(tR). Let h be the assignment
xj 7→ a, xk 7→ b, xℓ 7→ c, and xi 7→ e for all i ∈ [n] \ {i, j, k}. Then h(s) = h(sL) ∗ h(sR) = a(bc) and
h(t) = h(tL) ∗ h(tR) = (ab)c, which shows that sG 6= tG.

Finally, consider the case when {var(sL), var(sR)} = {var(tL), var(tR)}. By taking, if necessary, the term
t′ in place of t, we may assume that var(sL) = var(tL) and var(sR) = var(tR). We must have sL 6= tL or
sR 6= tR, say the former. Then sGL 6= tGL by the induction hypothesis. Hence there is an assignment h for the
variables in var(sL) = var(tL) such that h(sL) 6= h(tL). Extend h into an assignment h′ on Xn by defining
xi 7→ e for all xi ∈ var(sR) = var(tR). Then

h′(s) = h′(sL) ∗ h′(sR) = h(sL) ∗ e = h(sL) 6= h(tL) = h(tL) ∗ e = h′(tL) ∗ h′(tR) = h′(t)

which shows that sG 6= tG. This concludes the proof. �

5. Anticommutative algebras

We now turn our attention to ac-spectra of bilinear products in algebras over a field. An algebra over
a field F of characteristic not 2 is said to be anticommutative if it satisfies the identity xy ≈ −yx, which
implies the identity xx ≈ 0 since xx ≈ −xx.

5.1. Commutative version of a bilinear product. Given an anticommutative algebra over a field, we
can turn the product ∗ into a commutative bilinear product ⊛ as follows.

Definition 5.1.1. Let A = (A,+,−, 0, (λa)a∈F , ∗) be an algebra over a field F. Let g be any choice function
on the collection C := {{a,−a} | a ∈ A} and let f : A→ C, f(a) := {a,−a}. (Recall that a choice function

on a collection C of subsets of some base set X is a mapping g : C → X such that g(S) ∈ S for every
S ∈ C.) Note that any map f arising in this way is even, i.e., it satisfies f(a) = f(−a) for all a ∈ A. Now
we can fix a basis B of the vector space A, and for all basis vectors a, b ∈ B, we define a⊛ b := g(f(a ∗ b)).
This partial operation extends to a commutative bilinear product on A. (It is well known that any partial
operation on A with domain B extends in a unique way to a bilinear product on A, and a bilinear product
is commutative if and only if its restriction to the basis is commutative.) Such a product ⊛ will be referred
to as a commutative version of ∗.
Theorem 5.1.2. Let A = (A,+,−, 0, (λa)a∈F , ∗) be an anticommutative algebra over a field F, and assume

that the commutative version ⊛ of ∗ satisfies s⊛ 6= ±t⊛ for any terms s, t ∈ Fn with T u
s 6= T u

t .

(i) We have sacn (⊛) = Dn−1 and san(⊛) = Cn−1 for all n ≥ 1.
(ii) We have sacn (∗) = 2sacn (⊛) = 2Dn−1 for all n ≥ 2 and san(∗) = Cn−1 for all n ≥ 1.
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Proof. Let A be the universe of the algebra. Since s⊛ 6= ±t⊛ for any terms s, t ∈ Fn with T u
s 6= T u

t , the
ac-spectrum sacn (⊛) of the commutative operation ⊛ must attain the upper bound Dn−1 for commutative
operations. This implies san(⊛) = Cn−1 for all n ≥ 1 by Lemma 4.2.1.

Assume n ≥ 2 below. For any t ∈ Fn, if (t1t2) is a subterm of t and t̃ is the term obtained from t

by replacing (t1t2) by (t2t1), then t̃⊛ = t⊛ and t̃∗ = −t∗. Any terms s, t ∈ Fn such that T u
s = T u

t can
be obtained from each other by a sequence of such swaps of subterms. On the other hand, for any terms
s, t ∈ Fn such that T u

s 6= T u
t , we have s⊛ 6= ±t⊛ by the hypothesis.

It follows that for each f ∈ F⊛
n := {t⊛ | t ∈ Fn}, the terms in Fn that give rise to f induce two distinct

functions on (A, ∗), namely, f and −f , and for distinct f, g ∈ F⊛
n , any terms in Fn giving rise to f and g

induce distinct functions on (A, ∗). Therefore the cardinality of F ∗
n := {t∗ | t ∈ Fn} is exactly two times that

of F⊛
n , i.e., sacn (∗) = 2sacn (⊛) for all n ≥ 2.

Finally, let s and t be distinct bracketings. Let Ts and Tt be the corresponding ordered binary trees with
leaves labeled by x1, . . . , xn from left to right. Then the underlying unordered leaf-labeled trees T u

s and T u
t

must be distinct. Therefore s⊛ 6= t⊛ by our assumption, and hence s∗ 6= t∗ by what we have shown above.
This shows that san(∗) = Cn−1 for all n ≥ 1. �

To apply Theorem 5.1.2 to some familiar anticommutative algebras, we need a lemma.

Lemma 5.1.3. Let A = (A,+,−, 0, (λa)a∈F , ∗) be an anticommutative algebra over a field F, and let ⊛ be

the commutative version of ∗. Suppose the following conditions hold for some U ⊆ A \ {0} and P ⊆ U × U .

(i) For any w ∈ U , there exists u ∈ U such that (u,w) ∈ P ,

(ii) There exists (u, v) ∈ P such that (c(u⊛ v), w) ∈ P for some scalar c 6= 0 and some w ∈ U .

(iii) There exists (u, v) and (u,w) in P such that (c(v⊛w), z) ∈ P for some scalar c 6= 0 and some z ∈ U .

(iv) For any n ≥ 2, t ∈ Fn, j ∈ [n], and (u,w) ∈ P , there exist u1, . . . , un ∈ U such that uj = u and

t⊛(u1, . . . , un) = cw for some scalar c 6= 0.

Then s⊛ 6= ±t⊛ for any terms s, t ∈ Fn with T u
s 6= T u

t .

Proof. We will prove the slightly stronger statement that for any linear terms s, t ∈ T (Xω) with var(s) =
var(t) and T u

s 6= T u
t , there is an assignment h′ : var(s) = var(t) → U such that one of h′(s) and h′(t) is 0

and the other is nonzero. Consequently, s⊛ 6= ±t⊛ for any terms s, t ∈ Fn with T u
s 6= T u

t .
We proceed by induction on n. We must have n ≥ 3 since T u

s 6= T u
t . For n = 3, we have, without

loss of generality, s = (x1x2)x3 and t = x1(x2x3). Let u, v, w, and c be as in (ii), i.e., (u, v) ∈ P and
(c(u⊛v), w) ∈ P ; note that the latter implies that u⊛v ∈ U . By (iv), there exists z ∈ U such that u⊛z = v.
Then s⊛(u, u, z) = (u⊛ u)⊛ z = 0⊛ z = 0 and t⊛(u, u, z) = u⊛ (u⊛ z) = u⊛ v ∈ U .

Assume now that n > 3 and that the lemma holds for linear terms with fewer than n variables. There
exist two leaves labeled by xj and xk with a common parent in Ts. We distinguish cases according to whether
the leaves with these labels have a common parent also in Tt.

Case 1: The leaves labeled by xj and xk also share a parent in Tt. Then deleting xj and xk from both Ts and
Tt and labeling their parent with a new variable y will result in two binary trees Rs and Rt with n−1 labeled
leaves. Since T u

s 6= T u
t implies Ru

s 6= Ru
t , the inductive hypothesis provides an assignment h : var(tRt

) → U
such that one of h(tRs

) and h(tRt
) is 0 and the other is nonzero. Now let h′ : var(t)→ U be an assignment

that coincides with h on var(tRt
) \ {y} and assign values to xj and xk such that h′(xj)⊛ h′(xk) = ch(y) for

some c 6= 0; such values exist by (i) and (iv) with n = 2 and w = h(y). It follows that h′(s) = ch(tRs
) and

h′(t) = ch(tRt
), so one of h′(s) and h′(t) is zero and the other is nonzero.

Case 2: The leaves labeled by xj and xk do not share a parent in Tt. Let S be the subtree of Tt rooted at
the first common ancestor a of xj and xk, and let R and R′ be the subtrees of Tt rooted at the two children
of a. We may assume, without loss of generality, that R contains xj and R′ contains xk.

Case 2.1: Either R or R′, say the former, contains only one leaf. Then the latter must have at least two leaves.
Let u, v, and w be as in (ii). By (iv), there exists an assignment h : var(tS)→ U such that h(xj) = h(xk) = u,
h(tR) = u, h(tR′) = cv, and h(tS) = c(u ⊛ v) ∈ U for some nonzero scalar c. If S = Tt then let h′ := h. If
S 6= Tt then we can use (iv) again to obtain an assignment h′ : var(t)→ U extending h such that h′(t) = cc′w
for some nonzero scalar c′. On the other hand, we have h′(s) = 0 since xj ⊛ xk = u⊛ u = 0.

Case 2.2: Both R and R′ contain at least two leaves. Let u, v, w, and z be as in (iii). By (iv), there exists an
assignment h : var(tS)→ U such that h(xj) = h(xk) = u, h(tR) = cv, h(tR′) = c′w, and h(tS) = cc′(v⊛w) ∈
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U for some nonzero scalars c and c′. If S = Tt then let h′ := h. If S 6= Tt then we can use (iv) again to
obtain an assignment h′ : var(t) → U extending h such that h′(t) = cc′c′′z 6= 0 for some nonzero scalar c′′.
On the other hand, we have h′(s) = 0 since xj ⊛ xk = u⊛ u = 0. �

5.2. The cross product. Since the cross product for a three-dimensional Euclidean vector space is anti-
commutative, we can determine its ac-spectrum by using a commutative operation associated with it.

Definition 5.2.1. Define ⋊⋉ on a three-dimensional real vector space V with a basis {u, v, w} by letting
x ⋊⋉ x := 0 for all x ∈ {u, v, w} and x ⋊⋉ y := z for all distinct x, y ∈ {u, v, w}, where z ∈ {u, v, w} \ {x, y},
and extending this bilinearly from {u, v, w} to V , i.e.,

(αu + βv + γw) ⋊⋉ (α′u+ β′v + γ′w) = (βγ′ + γβ′)u + (γα′ + αγ′)v + (αβ′ + βα′)w

for any scalars α, β and γ. This operation occurs in recent studies of the Norton algebras of certain distance
regular graphs and it is commutative and totally nonassociative [10, Example 3.11, Remark 5.10].

For V = R3 with {u, v, w} being the standard basis {i, j,k}, we have a choice function g satisfying
g({±i}) = i, g({±j}) = j, and g({±k}) = k, and this makes ⋊⋉ a commutative version of the cross product
×.

To apply Theorem 5.1.2, we need to first verify the assumptions in Lemma 5.1.3 for ⋊⋉.

Lemma 5.2.2. The assumptions (i)–(iv) in Lemma 5.1.3 hold for ⋊⋉, U := {u, v, w} and P := {(x, y) :
x, y ∈ U, x 6= y}.
Proof. It is clear that (i) holds. For (ii), we have (u, v) ∈ P and (u ⋊⋉ v, u) = (w, u) ∈ P . For (iii), we have
(u, v), (u,w) ∈ P and (v ⋊⋉ w, v) = (u, v) ∈ P .

It remains to show (iv), that is, for any n ≥ 2, t ∈ Fn, j ∈ [n], and (a, b) ∈ P , there is an assignment of
values from {u, v, w} to the variables occurring in t such that xj gets value a and t evaluates to b. We prove
this by induction on n. For n = 2, this follows from the definition of ⋊⋉.

Assume now that n ≥ 3. Then t = (rs) for some subterms r and s. Assume without loss of generality
that xj occurs in r (the case when xj occurs in s is treated similarly). First suppose that r = xj . By the
inductive hypothesis, there is an assignment h : Xn \ {xj} → {u, v, w} such that h(s) = a ⋊⋉ b. By further
setting h(xj) = a, we get h(t) = a ⋊⋉ (a ⋊⋉ b) = b. Now suppose that r contains at least two variables. By
the inductive hypothesis, there is an assignment h : Xn → {u, v, w} such that h(xj) = a, h(r) = a ⋊⋉ b, and
h(s) = a. Then h(t) = (a ⋊⋉ b) ⋊⋉ a = b. �

Now we can determine the ac-spectra of the cross product × and its commutative version ⋊⋉.

Corollary 5.2.3. For the cross product × on R3 and its commutative version ⋊⋉, we have

• sacn (⋊⋉) = Dn−1 for all n ≥ 1,
• sacn (×) = 2Dn−1 for all n ≥ 2, and
• san(×) = san(⋊⋉) = Cn−1 for all n ≥ 1.

Proof. The result follows immediately from Theorem 5.1.2, Lemma 5.1.3 and Lemma 5.2.2. �

5.3. Lie algebras. A Lie algebra is an algebra over a field F satisfying the identities

xx ≈ 0,

x(yz) + y(zx) + z(xy) ≈ 0.

The first of the above identities implies that the identity xy ≈ −yx is also satisfied, since

0 ≈ (x + y)(x+ y) ≈ xx + xy + yx+ yy ≈ xy + yx.

Hence a Lie algebra over a field of characteristic distinct from 2 must be anticommutative. The second one
is known as the Jacobi identity. The bilinear product of a Lie algebra is often denoted by [−,−] and is called
the Lie bracket. A Lie algebra is abelian if its Lie bracket is constantly zero. Such a Lie algebra is trivially
commutative and associative. In general, a Lie algebra is neither commutative nor associative.

Definition 5.3.1. A triple (e, f, h) of nonzero elements of a Lie algebra is called an sl2-triple if [e, f ] = h,
[h, e] = 2e, and [h, f ] = −2f .
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It is well known that sl2-triples exist in every semisimple Lie algebra over a field of characteristic zero.
Consider a Lie algebra over a field of characteristic distinct from 2 with an sl2-triple (e, f, h). One can check
that e, f, hmust be linearly independent. Thus we can fix a basis containing e, f, h and obtain a commutative
version [[−,−]] of the Lie bracket [−,−] satisfying
(5.3.1) [[e, f ]] = [[f, e]] = h, [[h, e]] = [[e, h]] = 2e, and [[h, f ]] = [[f, h]] = 2f.

Lemma 5.3.2. Let L be a Lie algebra over a field of characteristic distinct from 2 with an sl2-triple (e, f, h).
Then the conditions (i)–(iv) in Lemma 5.1.3 hold for the Lie bracket [−,−] and its commutative version

[[−,−]] with U := {e, f, h} and P := {(e, e), (f, f), (e, h)}.
Proof. Let [L] = (L, [[−,−]]), where L is the universe of L. It is clear that (i) holds. For (ii), we have
(e, h) ∈ P and (12 [[e, h]], e) = (e, e) ∈ P . For (iii), we have (e, e), (e, h) ∈ P and (12 [[e, h]], e) = (e, e) ∈ P . It
remains to show (iv), i.e., for any n ≥ 2, t ∈ Fn, j ∈ [n], and (u,w) ∈ P , there are u1, . . . , un ∈ U such that
uj = u and t[L](u1, . . . , un) = cw for some scalar c 6= 0. We proceed by induction on n.

For n = 2, this holds by Equation (5.3.1). Assume now that n ≥ 3 and that (iv) holds for bracketings
of fewer than n variables. Then t = (t1t2) for subterms t1 and t2. Assume xj ∈ var(t1), without loss of
generality. We distinguish some cases below.

First suppose (u,w) = (e, e). By applying the inductive hypothesis to t1 and t2 (trivial if |t1| = 1 or |t2| =
1), we get elements u1, . . . , un ∈ {e, f, h} such that uj = e, t

[L]
1 (u1, . . . , uℓ) = c1e, and t

[L]
2 (uℓ+1, . . . , un) = c2h

for some nonzero scalars c1, c2. Then t[L](u1, . . . , un) = [[c1e, c2h]] = 2c1c2e. A similar argument is valid for
the case (u,w) = (f, f).

Now suppose (u,w) = (e, h). By the inductive hypothesis (trivial if |t1| = 1 or |t2| = 1), there exist

u1, . . . , un ∈ {e, f, h} such that uj = e, t
[L]
1 (u0, . . . , uℓ) = c1e, and t

[L]
2 (uℓ+1, . . . , un) = c2f for some nonzero

scalars c1, c2. Then t[L](u1, . . . , un) = [c1e, c2f ] = c1c2h. �

Corollary 5.3.3. Let L be a Lie algebra over a field of characteristic distinct from 2 with an sl2-triple. For

the Lie bracket [−,−] of L, it holds that sacn ([−,−]) = 2Dn−1 for all n ≥ 2 and san([−,−]) = Cn−1 for all

n ≥ 1.

Proof. The result follows immediately from Theorem 5.1.2, Lemma 5.1.3 and Lemma 5.3.2. �

6. Totally nonassociative operations

In this section we focus on the ac-spectra of some totally nonassociative operations that are not commuta-
tive or anticommutative. Recall that a binary operation ∗ is said to be totally nonassociative if san(∗) = Cn−1

for all n ≥ 1. The arithmetic, geometric, and harmonic means, the cross product on R3, and the Lie brackets
of Lie algebras over fields of characteristic distinct from 2 with an sl2-triple are all totally nonassociative and
their ac-spectra have been determined in earlier sections. There are many other examples of totally nonas-
sociative operations [4, 10]. We will study the exponentiation, the implication, and the negated disjunction
(NOR) in this section.

6.1. Exponentiation. Recall that any binary operation ∗ satisfies sacn (∗) ≤ n!Cn−1 for all n ≥ 1, and the
equality is achieved by the free groupoid on one generator (Proposition 3.1.1). We show that if ∗ is the
exponentiation then sacn (∗) is strictly less than this upper bound.

We need the following lemma, which applies to the exponentiation.

Lemma 6.1.1 (Csákány, Waldhauser [4, statements 4.2.1 and 4.2.2]). Let G = (G, ∗) be a groupoid, and

assume that the operation ∗ : G×G→ G is surjective. Let t ∈ T (Xω) be a linear term. Then the following

statements hold.

(i) The term operation tG is surjective.

(ii) If ∗ is surjective and its Cayley table has neither two identical columns nor two identical rows,

then tG depends on every variable in var(t), i.e., for every x ∈ var(t), there exist assignments

h, h′ : var(t)→ G such that h(z) = h′(z) for all z ∈ var(t) \ {x} and h(t) 6= h′(t).

Definition 6.1.2. Let t be a term. If t is not a variable, then it is of the form t = (tLtR) for some subterms
tL and tR. If the left subterm tL is not a variable, we can further write it in the form tL = (t′Lt

′
R). Continuing

in this way, always further decomposing left subterms until we reach one that is a variable, we can write the
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term t in the form t = ((· · · ((xit1)t2) · · · )tk), which we will refer to as the leftmost decomposition of t, and
the subterms t1, . . . , tk are called the factors of the decomposition. The variable xi is called the leftmost

variable of t. Denote the leftmost variable of t by L(t).

Note that the number of factors in a leftmost decomposition of t equals the number of opening parentheses
preceding the leftmost variable in t. We can think of this in terms of the binary tree Tt. The factors of the
leftmost decomposition correspond to the subtrees Tt1 , . . . , Ttk rooted at the right children of the internal
vertices along the unique path from the leftmost leaf to the root of Tt.

Definition 6.1.3. Based on leftmost decomposition, we associate with each term t ∈ T (X) an ordered
labeled tree Pt that is defined by the following recursion. If t is a variable xi ∈ X , then Pt is the one-vertex
tree with the single vertex labeled by xi. If t is not a variable and t = ((· · · ((xit1)t2) · · · )tk) is the leftmost
decomposition of t, then Pt is the ordered tree whose root is labeled by xi and has k children at which the
subtrees Pt1 , Pt2 , . . . , Ptk are rooted.

Proposition 6.1.4. Let G = (G, ∗) be a groupoid satisfying the identity (xy)z ≈ (xz)y. If s, t ∈ T (Xω)
are linear terms such that the corresponding ordered labeled trees Ps and Pt have equal underlying unordered

trees, i.e., P u
s = P u

t , then sG = tG. Consequently, sacn (G) ≤ nn−1. Moreover, if the equality holds, then

san(G) = Cn−1.

Proof. Since G satisfies the identity (xy)z ≈ (xz)y, it also satisfies the identity

(6.1.1) ((· · · ((x0x1)x2) · · · )xn) ≈ ((· · · ((x0xσ(1))xσ(2)) · · · )xσ(n))

for every n ∈ N+ and σ ∈ Sn. In other words, permuting the factors of the leftmost decomposition of a
term does not alter the induced term operation on G.

Suppose s, t ∈ T (Xω) with P u
s = P u

t . We prove sG = tG by induction on n := |s| = |t|. This clearly holds
for 1 ≤ n ≤ 2. Assume now that n ≥ 3 and that the claim holds for terms with fewer than n variables. Let
s = ((· · · ((xis1)s2) · · · )sd) and t = ((· · · ((xjt1)t2) · · · )te) be the leftmost decompositions of s and t.

Since P u
s = P u

t , the roots of Ps and Pt are labeled with the same variable and have the same number of
children, that is, xi = xj and d = e. The subtrees rooted at the children of the root of Ps are Ps1 , . . . , Psd ,
and, similarly the subtrees rooted at the children of the root of Pt are Pt1 , . . . , Ptd . Since P u

s = P u
t , there is

a permutation π ∈ Sd such that P u
si = P u

tπ(i)
for all i ∈ [d]. By the induction hypothesis, we have sGi = tGπ(i)

for all i ∈ [d]. Consequently,

sG(a) = ((· · · ((xG

i (a) ∗ sG1 (a)) ∗ sG2 (a)) ∗ · · · ) ∗ sGd (a))

= ((· · · ((xG

i (a) ∗ tGπ(1)(a)) ∗ tGπ(2)(a)) ∗ · · · ) ∗ tGπ(d)(a))
= ((· · · ((xG

i (a) ∗ tG1 (a)) ∗ tG2 (a)) ∗ · · · ) ∗ tGd (a)) = tG(a)

for all a in the domain of sG, so sG = tG. It follows that sacn (G) is bounded above by the number of
unordered rooted trees with n labeled vertices, which is nn−1 (see, e.g., Takács [22, §3]).

Now suppose sacn (G) = nn−1, i.e., P u
s = P u

t if and only if sG = tG for all s, t ∈ T (Xω). If two distinct
binary trees have leaves labeled 1, . . . , n from left to right, then they correspond to distinct ordered trees
with nodes labeled 1, . . . , n in the pre-order (first visit the root and then recursively visit the subtrees rooted
at the children of the root from left to right), so the underlying unordered labeled trees are distinct and they
induce distinct term operations on G. This shows that san(G) = Cn−1. �

Proposition 6.1.5. For G = (R≥0, ∗), where ∗ is the exponentiation operation defined by a ∗ b := ab for all

a, b ∈ R≥0, we have sacn (G) = nn−1 and san(G) = Cn−1.

Proof. Proposition 6.1.4 applies to the groupoid G = (R≥0, ∗) since it satisfies (xy)z ≈ (xz)y by the power
rule of exponents: (ab)c = abc = (ac)b. Thus it suffices to show that sG = tG implies P u

s = P u
t for any linear

terms s, t ∈ T (Xω).
Assume sG = tG, which implies var(s) = var(t) by Lemma 6.1.1. We show P u

s = P u
t by induction on

n := |s| = |t|. This is trivial for 1 ≤ n ≤ 2 and we can assume it holds for linear terms with fewer than
n variables, where n ≥ 3. Let s = ((· · · ((xis1)s2) · · · )sd) and t = ((· · · ((xjt1)t2) · · · )te) be the leftmost
decompositions of s and t.
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Let h : Xω → R≥0 be an assignment of distinct prime numbers to the variables, e.g., xi 7→ pi, where pi is
the i-th prime, for each i ∈ N+. We have

h(s) = ((· · · ((h(xi) ∗ h(s1)) ∗ h(s2)) ∗ · · · ) ∗ h(sd)) = p
h(s1)h(s2)···h(sd)
i ,

h(t) = ((· · · ((h(xj) ∗ h(t1)) ∗ h(t2)) ∗ · · · ) ∗ h(te)) = p
h(t1)h(t2)···h(te)
j .

Since sG = tG, we must have h(s) = h(t). It follows from the fundamental theorem of arithmetic that
pi = pj and h(s1)h(s2) · · ·h(sd) = h(t1)h(t2) · · ·h(te). Therefore xi = xj . Moreover, since s is a linear term,
the sets var(s1), var(s2), . . . , var(sd) are pairwise disjoint and so h(s1), h(s2), . . . , h(sd) are powers of distinct
primes; similarly var(t1), var(t2), . . . , var(te) are pairwise disjoint and so h(t1), h(t2), . . . , h(te) are powers of
distinct primes. It follows again from the fundamental theorem of arithmetic that d = e and there is a
unique permutation π ∈ Sd such that h(sℓ) = h(tπ(ℓ)) for all ℓ ∈ [d]. Now, by considering, for each ℓ ∈ [d],
all assignments that fix xi 7→ 2, xp 7→ 1 for all xp ∈ Xω \ (var(sℓ)∪ {xi}) and let the values for the variables
in var(sℓ) vary, we see that sGℓ = tGπ(ℓ) for all ℓ ∈ [d]. By the induction hypothesis, we have P u

sℓ = P u
sπ(ℓ)

, and

it follows that P u
s = P u

t . �

6.2. Implication. Now we study the implication → defined on the set {0, 1} by x → y = 0 if x = 1 and
y = 0 or x→ y = 0 otherwise. It turns out to be more convenient to use the converse implication ←, which
is defined on {0, 1} by x ← y := y → x. As the groupoids ({0, 1},→) and ({0, 1},←) are antiisomorphic,
their ac-spectra coincide; therefore it suffices to consider only ←.

Note that the implication→ and the converse implication← are surjective operations on {0, 1}, and their
Cayley tables have no two identical columns nor two identical rows. Hence Lemma 6.1.1 applies to → and
←.

Proposition 6.2.1. For G = ({0, 1}, ∗), where ∗ is the converse implication ←, we have sacn (G) = nn−1

and san(G) = Cn−1.

Proof. Observe first that G satisfies the identity (x1x2)x3 ≈ (x1x3)x2. Therefore Proposition 6.1.4 applies
to G. It remains to show that sG = tG implies P u

s = P u
t for any linear terms s, t ∈ T (Xω).

Assume sG = tG, which implies var(s) = var(t) by Lemma 6.1.1. We show P u
s = P u

t by induction on
n := |s| = |t|. This is trivial for 1 ≤ n ≤ 2 and we can assume it holds for linear terms with fewer than n
variables, where n ≥ 3.

Let h : Xω → {0, 1} be the assignment with h(xi) = 0 and h(xk) = 1 for k 6= i. Then clearly

h(s) = ((· · · ((h(xi) ∗ h(s1)) ∗ h(s2)) ∗ · · · ) ∗ h(sd)) = ((· · · ((0 ∗ 1) ∗ 1) ∗ · · · ) ∗ 1) = 0,

h(t) = ((· · · ((h(xj) ∗ h(t1)) ∗ h(t2)) ∗ · · · ) ∗ h(te)) =
{
0, if i = j,

1, if i 6= j.

Since sG = tG, we must have i = j.
We claim that for every k ∈ [d], there exists some ℓ ∈ [e] such that L(sk) = L(tℓ). Suppose, to the

contrary, that L(sk) =: xα is not the leftmost variable of any factor tℓ. Consider the assignment h that maps
xi and xα to 0 and all remaining variables to 1. We now have that h(sk) = 0, h(sm) = 1 for any m 6= k, and
h(t1) = · · · = h(td) = 1. This leads to a contradiction:

h(s) = ((· · · ((((· · · ((0 ∗ 1) ∗ 1) ∗ · · · ) ∗ 1) ∗ 0) ∗ 1) ∗ · · · ) ∗ 1) = 1,

h(t) = ((· · · ((0 ∗ 1) ∗ 1) ∗ · · · ) ∗ 1) = 0.

A similar argument shows that for every ℓ ∈ [e], we have L(tℓ) = L(sk) for some k ∈ [d]. Consequently,
d = e and there exists a bijection π ∈ Sd such that L(sk) = L(tπ(k)) for all k ∈ [d].

Let ℓ ∈ [d], and suppose h : Xω → {0, 1} is an assignment satisfying xi 7→ 0 and L(sk) 7→ 1 for all

k ∈ [d] \ {ℓ}. It is easy to see that then h(s) = 0 ∗ h(sℓ) = h(sℓ), where we use the notation 0 := 1 and

1 := 0. Similarly, if h satisfies xi 7→ 0 and L(tk) 7→ 1 for all k ∈ [d] \ {ℓ}, then h(t) = 0 ∗ h(tℓ) = h(tℓ).
Considering the kind of assignments described above, we can conclude that var(sℓ) = var(tπ(ℓ)) for all

ℓ ∈ [d]. (Suppose, to the contrary, that there is a variable z ∈ var(sℓ)\var(tπ(ℓ)). By Lemma 6.1.1, sGℓ depends
on every variable in var(sℓ), in particular on z; therefore there exist assignments h, h′ : var(sℓ)→ {0, 1} such
that h(x) = h′(x) whenever x 6= z and h(sℓ) 6= h′(sℓ). Extend both h and h′ to Xω by mapping xi 7→ 0 and

xp 7→ 1 for all xp ∈ Xω \ (var(sℓ) ∪ {xi}). Now h(s) = h(sℓ) 6= h′(sℓ) = h′(s). On the other hand, since h
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and h′ only disagree at z and z /∈ var(tπ(ℓ)), it follows that h(t) = h(tπ(ℓ)) = h′(tπ(ℓ)) = h′(t). Consequently,

sG 6= tG, a contradiction. Thus var(sℓ) ⊆ var(tπ(ℓ)). A similar argument shows that var(tπ(ℓ)) ⊆ var(sℓ).)

Now, for all assignments h with h(xi) = 0 and h(L(sk)) = 1 for all k ∈ [d] \ {ℓ} we have h(sℓ) = h(s) =

h(t) = h(sπ(ℓ)), so sGℓ = tGπ(ℓ) for all ℓ ∈ [d]. By the induction hypothesis, P u
sℓ

= P u
tπ(ℓ)

for all ℓ ∈ [d], and,

consequently, P u
s = P u

t . �

6.3. Negated disjunction (NOR). Now we study the ac-spectrum of the groupoid G = ({0, 1}, ↓), where
↓ is the negated disjunction (NOR), defined by the rule x ↓ y = 1 if and only if x = y = 0. Note that the
negated disjunction is surjective and its Cayley table has no two identical columns nor two identical rows.
Hence Lemma 6.1.1 applies thereto.

Definition 6.3.1.

(i) If fi : Ai → B (i ∈ I) are functions with pairwise disjoint domains Ai, then we can define their union⋃
i∈I fi :

⋃
i∈I Ai → B by the condition that for all i ∈ I, the restriction of

⋃
i∈I fi to Ai coincides

with fi. In the case when the index set I is finite, we may use notation such as f ∪ g or f ∪ g ∪ h.
(ii) Let G = (G, ◦) be a groupoid. Let t ∈ T (Xω) be a linear term. If |t| ≥ 2, then t = (t1t2). Since t is

linear, the sets var(t1) and var(t2) are disjoint, and therefore we can write any assignment h : var(t)→
G in a unique way as the union of the two assignments h1 : var(t1)→ G and h2 : var(t2)→ G that
are the restrictions of h to var(t1) and var(t2), respectively. Then it clearly holds that h = h1 ∪ h2

and h(t) = (h1 ∪ h2)(t) = h1(t1) ◦ h2(t2).

Let G = ({0, 1}, ↓). For a term t ∈ T (Xω), let Tt and Ft be the sets of true and false assignments of t,
that is,

Tt := {h : var(t)→ {0, 1} | h(t) = 1},
Ft := {h : var(t)→ {0, 1} | h(t) = 0}.

If t is a linear term with |t| ≥ 2, then t = (t1t2), var(t1) ∩ var(t2) = ∅, and we have

Tt = {h1 ∪ h2 | h1 ∈ Ft1 ∧ h2 ∈ Ft2},
Ft = {h1 ∪ h2 | h1 ∈ Tt1 ∨ h2 ∈ Tt2}.

Lemma 6.3.2. Let k ∈ {2, 3, 4}, let S1, . . . , Sk be nonempty sets, and let S := S1 × · · · × Sk.

(i) If k = 2, let A ⊆ S1, B ⊆ S2, C ⊆ S1, D ⊆ S2, and let U := A×B, V := C ×D.

(ii) If k = 3, let A ⊆ S1 × S2, B ⊆ S3, C ⊆ S1, D ⊆ S2 × S3, and let

U := {(a1, a2, a3) ∈ S | (a1, a2) ∈ A, a3 ∈ B},
V := {(a1, a2, a3) ∈ S | a1 ∈ C, (a2, a3) ∈ D}.

(iii) If k = 4, let A ⊆ S1 × S2, B ⊆ S3 × S4, C ⊆ S1 × S3, D ⊆ S2 × S4, and let

U := {(a1, a2, a3, a4) ∈ S | (a1, a2) ∈ A, (a3, a4) ∈ B},
V := {(a1, a2, a3, a4) ∈ S | (a1, a3) ∈ C, (a2, a4) ∈ D}.

Assume that U = V := S \ V . Then there exists a j ∈ [k] such that for all tuples a = (a1, . . . , ak) and

b = (b1, . . . , bk) in S satisfying ai = bi for all i 6= j, we have {a,b} ⊆ U or {a,b} ⊆ V .

Proof. Suppose, to the contrary, that no such j exists. The argument is slightly different for the different
values of k, and we consider separately the three different cases.

(i) Assume k = 2. There exist pi, qi ∈ Si (i ∈ [2]) and p′1 ∈ S1, q
′
2 ∈ S2 such that (p1, p2), (q1, q2) ∈ U ,

(p′1, p2), (q1, q
′
2) ∈ V . By the definition of the sets U and V , we have p1, q1 ∈ A, p2, q2 ∈ B, p′1, q1 ∈ C,

p2, q
′
2 ∈ D.

Since (q1, q2) ∈ U = V and q1 ∈ C, we must have q2 /∈ D. It follows that (z1, q2) ∈ V = U for all z1 ∈ S1.
Since (p′1, p2) ∈ V = U and p2 ∈ B, we must have p′1 /∈ A. It follows that (p′1, z2) ∈ U = V for all z2 ∈ S2.
Therefore (p′1, q2) ∈ U ∩ V , which is a contradiction to our assumption that U = V .

(ii) Assume k = 3. There exist pi, qi, ri ∈ Si (i ∈ [3]) and p′1 ∈ S1, q
′
2 ∈ S2, r

′
3 ∈ S3 such that

(p1, p2, p3), (q1, q2, q3), (r1, r2, r3) ∈ U,

(p′1, p2, p3), (q1, q
′
2, q3), (r1, r2, r

′
3) ∈ V.
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By the definition of the sets U and V , we have

(p1, p2), (q1, q2), (r1, r2) ∈ A, p3, q3, r3 ∈ B,

p′1, q1, r1 ∈ C, (p2, p3), (q
′
2, q3), (r3, r

′
3) ∈ D.

Since (p1, p2, p3) ∈ U = V and (p2, p3) ∈ D, we must have p1 /∈ C. It follows that (p1, z2, z3) ∈ V = U for
all z2 ∈ S2 and z3 ∈ S3, and, in particular, z3 ∈ B for all z3 ∈ S3, i.e., B = S3. On the other hand, since
(r1, r2, r

′
3) ∈ V = U and (r1, r2) ∈ A, we must have r′3 /∈ B = S3. We have reached a contradiction.

(iii) Assume k = 4. There exist pi, qi, ri, si ∈ Si for all i ∈ [4] and p′1 ∈ S1, q
′
2 ∈ S2, r

′
3 ∈ S3, s

′
4 ∈ S4 such

that

(p1, p2, p3, p4), (q1, q2, q3, q4), (r1, r2, r3, r4), (s1, s2, s3, s4) ∈ U,

(p′1, p2, p3, p4), (q1, q
′
2, q3, q4), (r1, r2, r

′
3, r4), (s1, s2, s3, s

′
4) ∈ V.

By the definition of the sets U and V , we have

(p1, p2), (q1, q2), (r1, r2), (s1, s2) ∈ A, (p3, p4), (q3, q4), (r3, r4), (s3, s4) ∈ B,

(p′1, p3), (q1, q3), (r1, r
′
3), (s1, s3) ∈ C, (p2, p4), (q

′
2, q4), (r2, r4), (s2, s

′
4) ∈ D.

Since (p1, p2, p3, p4) ∈ U = V and (p2, p4) ∈ D, we must have (p1, p3) /∈ C. It follows that (p1, z2, p3, z4) ∈
V = U for all z2 ∈ S2 and z4 ∈ S4, and, in particular, (p1, z2) ∈ A for all z2 ∈ S2.

Since (s1, s2, s3, s4) ∈ U = V and (s1, s3) ∈ C, we must have (s2, s4) /∈ D. It follows that (z1, s2, z3, s4) ∈
V = U for all z1 ∈ S1 and z3 ∈ S3, and, in particular, (z3, s4) ∈ B for all z3 ∈ S3.

Since (r1, r2, r
′
3, r4) ∈ V = U and (r1, r2) ∈ A, we must have (r′3, r4) /∈ B. It follows that (z1, z2, r

′
3, r4) ∈

U = V for all z1 ∈ S1 and z2 ∈ S2, and, in particular, (z1, r
′
3) ∈ C for all z1 ∈ S1.

Since (q1, q
′
2, q3, q4) ∈ V = U and (q3, q4) ∈ B, we must have (q1, q

′
2) /∈ A. It follows that (q1, q

′
2, z3, z4) ∈

U = V for all z3 ∈ S3 and z4 ∈ S4, and, in particular, (q′2, z4) ∈ D for all z4 ∈ S4.
Therefore (p1, q

′
2) ∈ A, (r′3, s4) ∈ B, (p1, r

′
3) ∈ C, and (q′2, s4) ∈ D, so (p1, q

′
2, r

′
3, s4) ∈ U ∩ V . This is a

contradiction to our assumption that U = V . �

Proposition 6.3.3. For G = ({0, 1}, ↓), we have sacn (G) = Dn−1.

Proof. Since ↓ is commutative, we have sacn (G) ≤ Dn−1. In order to prove that the equality holds, we need
to show that for all linear terms s, t ∈ T (Xω), s

G = tG implies that the leaf-labeled unordered binary trees
T u
s and T u

t are isomorphic.
Assume sG = tG, which implies var(s) = var(t) =: Y by Lemma 6.1.1. We proceed by induction on

n := |s| = |t|. The claim is obvious for n ≤ 2. Assume now that n ≥ 3 and that the claim holds for linear
terms with fewer than n variables. Then s = (s1s2) and t = (t1t2).

First consider the case when {var(s1), var(s2)} = {var(t1), var(t2)}; by the commutativity of ↓, we may
assume that var(s1) = var(t1) and var(s2) = var(t2). Suppose, to the contrary, that T u

s and T u
t are not

isomorphic. Then T u
s1 6∼= T u

t1 or T u
s2 6∼= T u

t2 ; without loss of generality, assume that T u
s1 6∼= T u

t1 . By the induction

hypothesis, sG1 6= tG1 , so there exists an assignment h1 : var(s1)→ {0, 1} such that h1(s1) 6= h1(t1); without
loss of generality, assume h1(s1) = 0 and h1(t1) = 1. By Lemma 6.1.1, sG2 is surjective, so there is an
assignment h2 : var(s2) → {0, 1} such that h2(s2) = 0. Now (h1 ∪ h2)(s) = h1(s1) ↓ h2(s2) = 0 ↓ 0 = 1 and
(h1 ∪ h2)(t) = h1(t1) ↓ h2(t2) = 1 ↓ h2(t2) = 0, so sG 6= tG, a contradiction.

Suppose now that {var(s1), var(s2)} 6= {var(t1), var(t2)}. There are pairwise disjoint sets Y1, Y2, Y3, Y4 ⊆ Y
such that var(s1) = Y1 ∪ Y2, var(s2) = Y3 ∪ Y4, var(t1) = Y1 ∪ Y3, var(t2) = Y2 ∪ Y4, and at most one of the
sets Yi is empty; without loss of generality, assume that only Y4 is potentially empty. Let

W := {(h1, h2, h3, h4) ∈ {0, 1}Y1 × {0, 1}Y2 × {0, 1}Y3 × {0, 1}Y4 | h1 ∪ h2 ∪ h3 ∪ h4 ∈ Ts = Tt}.
Note that for all (h1, h2, h3, h4) ∈ W , we have (h1∪h2)(s1) = (h3∪h4)(s2) = (h1∪h3)(t1) = (h2∪h4)(t2) = 0.

Claim: There exist A ⊆ {0, 1}Y1, B ⊆ {0, 1}Y2, C ⊆ {0, 1}Y3, D ⊆ {0, 1}Y4 such that W = A×B × C ×D.

Proof of the Claim: Let A, B, C, and D be the projections of W into the first, second, third, and fourth
components, respectively, i.e., A := {h1 ∈ {0, 1}Y1 | (h1, h2, h3, h4) ∈ W} and similarly for B, C, D. We
clearly haveW ⊆ A×B×C×D. In order to prove the reverse inclusion, let (a, b, c, d) ∈ A×B×C×D. Then
there exist (ai, bi, ci, di) ∈ W for all i ∈ [4] such that a = a1, b = b2, c = c3, d = d4. Now (a1 ∪ c1)(t1) = 0
and (b2 ∪ d2)(t2) = 0, so (a1 ∪ b2 ∪ c1 ∪ d2)(t) = 1, i.e., (a1, b2, c1, d2) ∈ W . Similarly, (a3 ∪ c3)(t1) = 0 and
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(b4 ∪ d4)(t2) = 0, so (a3 ∪ b4 ∪ c3 ∪ d4)(t) = 1, i.e., (a3, b4, c3, d4) ∈ W . It follows that (a1 ∪ b2)(s1) = 0 and
(c3 ∪ d4)(s2) = 0, so (a1 ∪ b2 ∪ c3 ∪ d4)(s) = 1, i.e., (a, b, c, d) ∈ W . ⋄

It now follows from the above claim that

Fs1 = {h1 ∪ h2 | h1 ∈ A, h2 ∈ B}, Fs2 = {h3 ∪ h4 | h3 ∈ C, h4 ∈ D},
Ft1 = {h1 ∪ h3 | h1 ∈ A, h3 ∈ C}, Ft2 = {h2 ∪ h4 | h2 ∈ B, h4 ∈ D}.

Let us focus on s1. Since Y1 and Y2 are nonempty, |s1| ≥ 2, so s1 = (s11s12). For i, j ∈ [2], let Zij :=
var(s1i)∩Yj . Note that Z11 and Z12 are not both empty, and Z21 and Z22 are not both empty; without loss
of generality, assume that Z11 and Z22 are nonempty. Let

T := {(a, b, c, d) ∈ {0, 1}Z11 × {0, 1}Z12 × {0, 1}Z21 × {0, 1}Z22 | a ∪ b ∪ c ∪ d ∈ Ts1},
F := {(a, b, c, d) ∈ {0, 1}Z11 × {0, 1}Z12 × {0, 1}Z21 × {0, 1}Z22 | a ∪ b ∪ c ∪ d ∈ Fs1}.

We clearly have T = F := ({0, 1}Z11 × {0, 1}Z12 × {0, 1}Z21 × {0, 1}Z22) \ F. Moreover,

T = {(a, b, c, d) ∈ {0, 1}Z11 × {0, 1}Z12 × {0, 1}Z21 × {0, 1}Z22 | a ∪ b ∈ Fs11 , c ∪ d ∈ Fs12},
F = {(a, b, c, d) ∈ {0, 1}Z11 × {0, 1}Z12 × {0, 1}Z21 × {0, 1}Z22 | a ∪ c ∈ A, b ∪ d ∈ B}.

It now follows from Lemma 6.3.2 (statement (i) if Z12 = Z21 = ∅; statement (ii) if one of Z12 and Z21 is
empty and the other is nonempty; statement (iii) if both Z12 and Z21 are nonempty) that there is a variable
xj ∈ var(s1) on which sG1 does not depend. This is in direct contradiction to Lemma 6.1.1, which asserts
that sG1 depends on every variable in var(s1). Therefore the case when {var(s1), var(s2)} 6= {var(t1), var(t2)}
does not occur. �

7. Depth equivalence relations

In this section we study binary operations ∗ satisfying the property that two full linear terms agree on
∗ if and only if their corresponding binary trees are equivalent with respect to certain attributes related to
the depths of the leaves. More precisely, two binary trees are considered equivalent if their (right) depth
sequences are congruent modulo some positive integer k. Here all binary trees are ordered and their leaves
are unlabeled unless otherwise stated.

7.1. The k-right-depth-equivalence.

Definition 7.1.1. A groupoid G = (G, ∗) and the corresponding binary operation ∗ are said to be right

k-associative if G satisfies the identity

([x1x2 · · ·xk+1]Rxk+2) ≈ (x1[x2 · · ·xk+2]R),

where [· · · ]R is a shorthand for the rightmost bracketing of the variables occurring between the square
brackets, e.g., [x1x2 · · ·xk+1]R = (x1(x2(· · · (xkxk+1) · · · ))). One can also define the left k-associativity
similarly. The left or right k-associativity becomes the usual associativity when k = 1.

Example 7.1.2. Typical examples of k-associative operations are the ones defined by a ∗ b := a+ωb for all
a, b ∈ C, where ω = e2πi/k is a k-th primitive root of unity. This reduces to addition and subtraction when
k = 1, 2, respectively.

Previous work [7] showed that the equivalence relation on binary trees induced by the left k-associativity
is the same as the congruence relation on the left depth sequences of binary trees modulo k; this is called
the k-left-depth-equivalence relation by the second author. The number of equivalence classes is called the
k-modular Catalan number, which counts many restricted families of Catalan objects and has interesting
closed formulas [7]. Of course, the right k-associativity corresponds to the k-right-depth-equivalence relation,
whose equivalence classes are also counted by the k-modular Catalan number.

Definition 7.1.3. The k-right-depth-equivalence relation extends immediately from binary trees with un-
labeled leaves to ones with labeled leaves. Let T and T ′ be binary trees with n leaves labeled by x1, . . . , xn

(in an arbitrary order). We say that T and T ′ are k-right-depth-equivalent if ρT (xi) ≡ ρT ′(xi) (mod k) for
all i ∈ [n], i.e., the right depth sequences ρT and ρT ′ (see Subsection 2.3 for the definition of the right depth
sequence) are componentwise congruent modulo k.
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Now we consider a stronger form of the right k-associativity. Suppose that a binary operation ∗ satisfies
the property that any two full linear terms agree on ∗ if and only if Ts and Tt are k-right-depth-equivalent,
i.e.,

(7.1.1) ∀s, t ∈ Fn, s∗ = t∗ ⇐⇒ ρTs
(xi) ≡ ρTt

(xi) (mod k), i = 1, 2, . . . , n.

It is clear that such a binary operation ∗ must be k-right-associative. The above example a ∗ b := a+ e2πi/kb
satisfies property (7.1.1) and another example is given by f ∗ g := xf + yg for all x, y ∈ C[x, y]/(yk − 1) [8].
The associative spectrum of these examples is given by the k-modular Catalan numbers mentioned above.
Our goal here is to determine the ac-spectrum sacn (∗) of a binary operation ∗ satisfying property (7.1.1) and
its exponential generating function. If k = 1 then we clearly have sacn (∗) = 1 for all n ≥ 1 with exponential
generating function

∑
n≥1 t

n/n! = et − 1. Thus we assume k ≥ 2 in the remainder of this section.

Example 7.1.4. Let us consider the subtraction operation − on C. For n ≥ 2, one can check that the term
operations in F−

n are precisely the operations of the form (a1, . . . , an) 7→ ±a1 ± a2 · · · ± an with at least one
plus sign and at least one minus sign. Hence sacn (−) = 2n − 2 and

∞∑

n=1

sacn (−)
n!

tn = t+
∑

n≥2

2n − 2

n!
tn

= t+ e2t − 1− 2t− 2(et − 1− t)

= t+ e2t − 2et + 1

= t+ (et − 1)2.

Definition 7.1.5. Let T be any binary tree with n ≥ 2 leaves. For i ∈ [k], let nT (i) be the number of leaves
in T whose right depth is congruent to i modulo k. We say a sequence (n1, . . . , nk) of nonnegative integers
is (right) (n, k)-admissible if it satisfies

(i) n1 ≥ 1, nk ≥ 1, and n1 + n2 + · · ·+ nk = n ≥ 2,
(ii) if ni = 0 for some i ∈ {2, 3, . . . , k − 2} then ni+1 = 0, and
(iii) if nk−1 = 0 then nk = 1.

Lemma 7.1.6. Let T be any binary tree with n ≥ 2 leaves. Then (nT (1), . . . , nT (k)) is (n, k)-admissible.

Proof. (i) We have nT (1) ≥ 1 and nT (k) ≥ 1 since the two leftmost leaves in T have right depth 0 and 1,
respectively. We have nT (1) + nT (2) + · · ·+ nT (k) = n since T has n leaves.

(ii) Let i ∈ {2, 3, . . . , k − 2}. Suppose there exists a leaf v in T whose right depth is congruent to i + 1
modulo k. If v is a right child then the leftmost leaf of the subtree rooted at the left sibling u of v has right
depth congruent to i modulo k. If v is a left child then it must have an ancestor u whose right depth is one
less than that of v (otherwise the right depth of v would be zero), and the leftmost leaf in the subtree rooted
at u has right depth congruent to i modulo k. Therefore nT (i+1) > 0 implies nT (i) > 0, or in other words,
nT (i) = 0 implies nT (i+ 1) = 0.

(iii) Similarly to (2), one can show that if a leaf of T is different from the leftmost leaf but has right depth
congruent to k, then there exists a leaf with right depth congruent to k− 1 modulo k. Hence nT (k − 1) = 0
implies nT (k) = 1. �

Lemma 7.1.7. Let (n1, . . . , nk) be any (n, k)-admissible sequence. Then there exists a binary tree T with n
leaves such that nT (i) = ni for all i ∈ [k].

Proof. We prove this lemma by induction on n. There is no (n, k)-admissible sequence for n = 1, and the
claim is trivial for n = 2. Assume n ≥ 3 and let (n1, . . . , nk) be an (n, k)-admissible sequence.

If n1 > 1 then applying the induction hypothesis to the (n− 1, k)-admissible sequence (n1− 1, n2, . . . , nk)
gives a binary tree T ′ with n− 1 leaves such that nT ′(1) = n1 − 1 and nT ′(i) = ni for i ∈ {2, 3, . . . , k}, and
the binary tree T := T ′ ∧ 1 satisfies nT (i) = ni for all i, where 1 is the one-vertex tree.

Assume now n1 = 1. We must have n2 ≥ 1, since n2 = 0 would imply n3 = · · · = nk−1 = 0 and nk = 1;
hence n = 2 < 3, a contradiction. Therefore we can apply the induction hypothesis to the (n−1, k)-admissible
sequence (n2, n3, . . . , nk−1, nk − 1, 1) and get a binary tree T ′ with nT ′(i − 1) = ni for i ∈ {2, 3, . . . , k − 1},
nT ′(k − 1) = nk − 1, and nT ′(k) = 1. Then the binary tree T := 1 ∧ T ′ satisfies nT (1) = nT ′(k) = 1,
nT (i) = nT ′(i− 1) = ni for i ∈ {2, 3, . . . , k − 1}, and nT (k) = nT ′(k − 1) + 1 = nk. �
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Remark 7.1.8. If i ∈ {1, k} then letmT (i) := nT (i)−1; otherwise letmT (i) := nT (i). It follows immediately
from the previous two lemmas that the sequences (mT (1), . . . ,mT (k)) obtained from binary trees T with n
leaves are precisely those sequences (m1, . . . ,mk) of nonnegative integers such that

(i) m1 +m2 + · · ·+mk = n− 2, and
(ii) if mi = 0 for some i ∈ {2, 3, . . . , k − 1} then mi+1 = 0.

By removing the trailing zeros, one sees that either (m1, . . . ,mk) corresponds to a composition (i.e., an
ordered partition) of n− 2 with length at most k if m1 > 0, or (m2, . . . ,mk) corresponds to a composition
of n− 2 with length at most k − 1 if m1 = 0.

Recall that the number of partitions of the set [n] = {1, 2, . . . , n} into k (unordered) blocks is the Stirling

number of the second kind S(n, k) whose exponential generating function is

∑

n≥1

S(n, k)
tn

n!
=

(et − 1)k

k!
.

Theorem 7.1.9. Let ∗ be a binary operation satisfying property (7.1.1) with k ≥ 2. Then

sacn (∗) = k!S(n, k) + n
∑

0≤i≤k−2

i!S(n− 1, i), ∀n ≥ 1,

∞∑

n=1

sacn (∗)
n!

tn = (et − 1)k +
∑

0≤i≤k−2

t(et − 1)i.

Proof. We prove the desired formula for sacn (∗) by induction. It is trivial when n = 1. Assume n ≥ 2 below.
Property (7.1.1) asserts that two terms s, t ∈ Fn induce the same term operation on ∗ if and only if the

right-depth sequences ρTs
:= (ρTs

(x1), . . . , ρTx
(xn)) and ρTt

:= (ρTt
(x1), . . . , ρTt

(xn)) are componentwise
congruent modulo k. Therefore sacn (∗) equals the number of possible right-depth sequences modulo k of
binary trees with n leaves labeled with x1, . . . , xn.

By Lemmas 7.1.6 and 7.1.6, a sequence (d1, . . . , dn) with 1 ≤ d1, . . . , dn ≤ k is congruent modulo k to
the right depth sequence of a binary tree with n leaves labeled by x1, . . . , xn if and only if the sequence
(n1, . . . , nk) is (n, k)-admissible, where

ni := #{j ∈ [n] : dj = i} for i = 1, . . . , k.

First, assume that n1, . . . , nk ≥ 1. Then (n1, . . . , nk) is (n, k)-admissible if and only if n1 + · · ·+ nk = n.
Thus the sequences (d1, . . . , dn) belonging to this case are in bijection with partitions of [n] into ordered
blocks {j ∈ [n] : dj = i} for i = 1, . . . , k, and they are counted by k!S(n, k).

Next, assume that there exists i ∈ [k − 2] such that ni+1 = 0, where i is as small as possible. We have
ni+1 = · · · = nk−1 = 0 and nk = 1. Thus the number of sequences (d1, d2, . . . , dn) belonging to this case is

n
∑

1≤i≤k−2

i!S(n− 1, i)

Combining the above two cases we have

sacn (∗) = k!S(n, k) + n
∑

1≤i≤k−2

i!S(n− 1, i)

= k!S(n, k) + n
∑

0≤i≤k−2

i!S(n− 1, i).

Consequently, we have the exponential generating function
∞∑

n=1

sacn (∗)
n!

tn =
∑

n≥1

k!S(n, k)
tn

n!
+

∑

n≥1

∑

0≤i≤k−2

i!S(n− 1, i)
tn

(n− 1)!

= (et − 1)k +
∑

0≤i≤k−2

i!
∑

n≥1

S(n− 1, i)
tn

(n− 1)!

= (et − 1)k +
∑

0≤i≤k−2

t(et − 1)i. �
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Remark 7.1.10. When k = 3 we have n
∑

1≤i≤k−2 i!S(n−1, i) = n for all n ≥ 2. When k = 4, the sequence

n
∑

1≤i≤k−2 i!S(n− 1, i) is recorded in OEIS [19, A058877] and has the following simple closed formulas:

n2n−1 − n =
∑

1≤j≤n

(n− 2 + j)2n−j−1 =
∑

1≤j≤n−1

(
n

j

)
(n− j).

Recently, Hein and the first author [8] generalized the k-associativity to the (k, ℓ)-associativity, based on
the example f ∗ g := xf + yg for all x, y ∈ C[x, y]/(xk − 1, yℓ − 1), which satisfies
(7.1.2)
∀s, t ∈ Fn, s∗ = t∗ ⇐⇒ δTs

(xi) ≡ δTt
(xi) (mod k), ρTs

(xi) ≡ ρTt
(xi) (mod ℓ), i = 1, 2, . . . , n.

Computations give the following ac-spectra for any operation ∗ satisfying the above property (7.1.2), which
do not appear in OEIS.

• (k, ℓ) = (2, 2): 1, 2, 12, 54, 260, 1080, . . .
• (k, ℓ) = (3, 2): 1, 2, 12, 84, 590, 4110, . . .
• (k, ℓ) = (4, 2): 1, 2, 12, 84, 770, 7080, . . .
• (k, ℓ) = (3, 3): 1, 2, 12, 108, 960, 9240, . . .

7.2. The k-depth-equivalence. We now consider the operation on C defined by a ∗ b := e2πi/ℓa+ e2πi/kb,
which generalizes the example a ∗ b := a+ e2πi/kb mentioned earlier. When k = ℓ, one sees that any two full
linear terms agree on ∗ if and only if their corresponding binary trees are k-depth-equivalent, i.e.,

(7.2.1) ∀s, t ∈ Fn, s∗ = t∗ ⇐⇒ dTs
(xi) ≡ dTt

(xi) (mod k).

Further generalizations of depth equivalence were studied in recent work of the second author.
For k = 2, the resulting operation is the double minus operation a⊖ b := −a− b. The first author, Mickey,

and Xu [11] showed that if san(⊖) = 1 if n = 1 and

san(⊖) =
⌊
2n

3

⌋
=






2n − 1

3
, if n is even,

2n − 2

3
, if n is odd

if n ≥ 2. This coincides with an interesting sequence in OEIS [19, A000975] (except for the first term). Now
we show that sacn (⊖) agrees with the well-known Jacobsthal sequence [19, A001045].

Theorem 7.2.1. For n ≥ 1 we have sacn (⊖) = (2n − (−1)n)/3.

Proof. Note first that every term operation in B⊖
n is of the form (a1, . . . , an) 7→ ±a1±· · ·±an. On the other

hand, not every operation of this form is in B⊖
n . Consider operations of this form with exactly r plus signs

in the defining expression; there are
(
n
r

)
such operations. It was shown in [11, Theorem 8] that

(i) all operations of this form are in B⊖
n if n+ r ≡ 2 (mod 3) and n 6= 2r − 1,

(ii) all but the one with alternating signs are in B⊖
n if n+ r ≡ 2 (mod 3) and n = 2r − 1, and

(iii) none of them is in B⊖
n if n+ r 6≡ 2 (mod 3).

Now, let us consider term operations in F⊖
n . They are again of the form (a1, . . . , an) 7→ ±a1 ± · · · ± an.

We get no new operations in the first and third cases above, but one more in the second case: the operation
with alternating signs is in F⊖

n . Taking the sum over all possible values of r, we have sacn (⊖) = san(⊖) if n is
even and sacn (⊖) = san(⊖) + 1 if n is odd. This implies that sacn (⊖) = (2n − (−1)n)/3. �

One sees that this theorem holds for any binary operation ∗ satisfying property (7.2.1) with k = 2. For
k ≥ 3, neither san(∗) nor sacn (∗) occurs in OEIS.

• san(∗) for k = 3: 1, 2, 5, 14, 42, 129, 398, 1223, 3752, 11510, . . .
• san(∗) for k = 4: 1, 2, 5, 14, 42, 132, 429, 1429, 4849, 16689, . . .
• sacn (∗) for k = 3: 1, 3, 13, 35, 101, 315, . . .
• sacn (∗) for k = 4: 1, 3, 13, 75, 285, 1099, . . .
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8. Remarks and questions

Csákány and Waldhauser [4, Section 4] examined the associative spectrum of every two-element groupoid.
We obtain the ac-spectra of all two-element groupoids in Example 4.1.2 and Propositions 6.2.1 and 6.3.3.

As possible directions for further research, one could study the associative spectra and the ac-spectra of
groupoids satisfying some properties weaker than associativity. We would like to mention a few examples of
such properties that have emerged in different branches of algebra.

A groupoid (G, ∗) is left alternative (resp., right alternative) if it satisfies the identity (x∗x)∗y ≈ x∗(x∗y)
(resp., y∗(x∗x) = (y∗x)∗x). A groupoid is alternative if it is both left and right alternative. An associative
groupoid must be alternative, but not vice versa.

A Lie algebra is neither commutative nor associative, but it is flexible in the sense that it satisfies the
identity x ∗ (y ∗ x) ≈ (x ∗ y) ∗ x. Any commutative or associative operation must be flexible. So flexibility
becomes important when a binary operation is neither commutative nor associative, such as the multiplication
of the sedenions, which is not even alternative (the same for all higher Cayley–Dickson algebras). For
example, the multiplication of the octonions is alternative but not associative. In 1954, Richard Schafer [20]
examined the algebras generated by the Cayley–Dickson process over a field and showed that they satisfy
the flexible identity.

A groupoid (G, ∗) is power associative if the subgroupoid generated by any element is associative. Power
associativity and alternativity are unrelated properties in the sense that neither implies the other, as shown,
e.g., by the examples provided by Holin [9, Appendix A.1.1].

Recall that the Jordan algebra of n × n self-adjoint matrices over R, C, or H with a product defined by
x ◦ y := (xy + yx)/2 is commutative and thus flexible. Although it is not associative, it is power associative
and satisfies the Jordan identity

(x ◦ y) ◦ (x ◦ x) ≈ x ◦ (y ◦ (x ◦ x)).
We showed in Section 4.3 that the associative spectrum san(◦) of the Jordan algebra achieves the upper
bound Cn−1 for an arbitrary binary operation and its ac-spectrum sacn (◦) reaches the upper bound Dn−1 for
commutative operations.

Another interesting example is the Okubo algebra, which consists of all 3-by-3 trace zero complex matrices
with product defined as

x ◦ y := axy + byx− tr(xy)I3/3.

Here I3 is the 3-by-3 identity matrix and a, b ∈ C satisfy a+ b = 3ab = 1. The Okubo algebra is flexible and
power associative but not associative nor alternative.
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