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ENUMERATION OF PERMUTATIONS BY THE PARITY OF

DESCENT POSITIONS

QIONGQIONG PAN AND JIANG ZENG

Abstract. Noticing that some recent variations of descent polynomials are special cases

of Carlitz and Scoville’s four-variable polynomials, which enumerate permutations by

the parity of descent and ascent positions, we prove a q-analogue of Carlitz-Scoville’s

generating function by counting the inversion number and a type B analogue by enu-

merating the signed permutations with respect to the parity of desecnt and ascent po-

sitions. As a by-product of our formulas, we obtain a q-analogue of Chebikin’s formula

for alternating descent polynomials, an alternative proof of Sun’s gamma-positivity of

her bivariate Eulerian polynomials and a type B analogue, the latter refines Petersen’s

gamma-positivity of the type B Eulerian polynomials.
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1. Introduction

In the past few years of this century, several variations and refinements of permutation

descent, according to the parity of descent positions, have been studied, see [5, 29, 15,

21, 32, 34, 33, 23, 20, 25]. This paper arose from the observation that some of these
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results are related to a work of Carlitz and Scoville [4] dated back to 1973. For example,

Chebikin’s alternating descent polynomial [5] and the bivariate Eulerian polynomials in H.

Sun [32] and Y. Sun and Zhai [34] are both special cases of Carlitz-Scoville’s four-variable

polynomials enumerating the permutations according to the parity of both descents and

ascents. On the other hand, this connection leads immediately to obtain two equivalent

simpler versions of Carlitz-Scoville’s generating function. As Carlitz and Scoville’s original

proof relies on solving a system of differential equations, this prompted us to find a more

conceptuel proof, which led up straightforwardly to a q-analogue.

If π is a permutation of [n] := {1, . . . , n}, an index i ∈ [n − 1] is a descent position

(resp. ascent position) of π if π(i) > π(i + 1) (resp. π(i) < π(i + 1)). Let des π (resp.

des1 π and des0 π) be the number of descents of π (resp. at odd and even positions), i.e.,

des ν(π) = #{i ∈ [n]|π(i) > π(i+ 1) and i ≡ ν (mod 2)} (ν ∈ {0, 1}).

The statistics asc π, asc1 π and asc0 π are defined similarly. For i ∈ {2, 3, . . . , n− 1}, we

say π(i) is a valley (resp. peak) of π, if π(i−1) > π(i) < π(i+1) (resp. π(i−1) < π(i) >

π(i+1)) and π(i) is a double ascent (resp. double descent) of π, if π(i−1) < π(i) < π(i+1)

(resp. π(i − 1) > π(i) > π(i + 1)). Finally we recall that the inversion number of π is

inv π = |{(i, j)|π(i) > π(j), 1 ≤ i < j ≤ n}|.

Define the enumerative polynomial of permutations of Sn by the parity of ascent and

descent positions as

Pn(x0, x1, y0, y1, q) =
∑

σ∈Sn

xasc0 σ0 xasc1 σ1 ydes0 σ0 ydes1 σ1 qinvσ.

Recall the following q-exponential series

expq(x) =
∑

n≥0

xn

n!q
,

where 0!q = 1 and n!q =
∏n

i=1(1 + q + · · ·+ qi−1) for n ≥ 1, and the q-trignometric series

coshq t =
∑

n≥0

t2n

(2n)!q
, sinhq t =

∑

n≥1

t2n−1

(2n− 1)!q
;

cosq x =

∞∑

n=0

(−1)n
x2n

(2n)!q
, sinq x =

∞∑

n=1

(−1)n−1 x2n−1

(2n− 1)!q
.



ENUMERATION OF PERMUTATIONS BY THE PARITY OF DESCENT POSITIONS 3

Theorem 1.1. Let α =
√

(y0 − x0)(y1 − x1). Then

∑

n≥1

Pn(x0, x1, y0, y1, q)
tn

n!q

=
(x1 + y1) coshq(αt) + α sinhq(αt)− y1(cosh

2
q(αt)− sinh2

q(αt))− x1

x0x1 − (x0y1 + x1y0) coshq(αt) + y0y1(cosh
2
q(αt)− sinh2

q(αt))
. (1.1)

Remark 1. When q = 1 Eq. (1.1) reduces to Carlitz-Scoville’s formula [4, Theorem 3.1] 1

∑

n≥1

Pn(x0, x1, y0, y1, 1)
tn

n!
=

(x1 + y1)
∑

n≥1
βn−1t2n

(2n)!
+
∑

n≥1
βn−1 t2n−1

(2n−1)!

1− (x0y1 + x1y0)
∑

n≥1
βn−1t2n

(2n)!

, (1.2)

with β = (y0−x0)(y1−x1). For the homegeous Eulerian polynomials Pn(y, y, x, x, 1), i.e.,∑
σ∈Sn

xdes σyascσ, the corresponding formula reads

∑

n≥1

Pn(y, y, x, x, 1)
tn

n!
=

ext − eyt

xeyt − yext
. (1.3)

Chen and Fu [6] recently gave a context-free grammar proof of (1.3).

Let UDn be the set of up-down permutations of 12 . . . n, i.e., permutations σ :=

σ(1) . . . σ(n) such that σ(1) < σ(2) > σ(3) < · · · . Obviously

Pn(0, 1, 1, 0, q) =
∑

σ∈UDn

qinvσ

and Eq. (1.1) reduces to a q-analogue of André’s classical result (see [31, 16, 18]) :

1 +
∑

n≥1

Pn(0, 1, 1, 0, q)
xn

n!q
=

1 + sinq x

cosq x
. (1.4)

For the following two special cases:

An(x, y, q) := Pn(1, 1, y, x, q) =
∑

σ∈Sn

xdes1 σydes0 σqinvσ, (1.5a)

Ân(x, y, q) := Pn(y, 1, 1, x, q) =
∑

σ∈Sn

xdes1 σyasc0 σqinvσ, (1.5b)

1Carlitz and Scoville counted a conventional rise at the beginning as position 0 and a conventional

descent at the end as position n (mod 2).
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we derive from Theorem 1.1 that

∑

n≥1

An(x, y, q)
tn

n!q
=

(1 + x) coshq(αt) + α sinhq(αt)− x(cosh2
q(αt)− sinh2

q(αt))− 1

1− (x+ y) coshq(αt) + xy(cosh2
q(αt)− sinh2

q(αt))
,

(1.6a)

∑

n≥1

Ân(x, y, q)
tn

n!q
=

(1 + x) cosq(αt)− α sinq(αt)− x(cos2q(αt) + sin2
q(αt))− 1

y − (xy + 1) cosq(αt) + x(cos2q(αt) + sin2
q(αt))

(1.6b)

with α =
√

(1− x)(1− y).

Remark 2. Formulae (1.2), (1.6a) and (1.6b) are actually equivalent. Indeed, for any

σ ∈ Sn it is clear that

des0 σ + asc0 σ = ⌊(n− 1)/2⌋, (1.7a)

des1 σ + asc1 σ = ⌊n/2⌋. (1.7b)

Hence the distribution of the quadruple statistics (asc0 , asc1 , des0 , des1 ) is equivalent to

any pair of the statistics in {des1 , asc1 } × {des0 , asc0 }. In particular, we have

Ân(x, y, q) = y⌊(n−1)/2⌋An(x, 1/y, q), (1.8)

and

Pn(x0, x1, y0, y1, q) = x
⌊(n−1)/2⌋
0 x

⌊n/2⌋
1 An

(
y1
x1
,
y0
x0
, q

)
. (1.9)

The polynomial An(x, x, q) :=
∑

σ∈Sn
xdesσqinvσ is a classical q-analogue of Eulerian poly-

nomials and Eq. (1.6a) yields Stanley’s formula [30, 28],

1 +
∑

n≥1

xAn(x, x, q)
tn

n!q
=

1− x

1− x expq((1− x)t)
, (1.10)

of which another refinement was given in [26].

As a variation of descent, Chebikin [5] introduced the alternating descent set of permu-

tation π ∈ Sn by

D̂(π) = {i ∈ [n− 1]|π(i) > π(i+ 1) and i is odd or π(i) < π(i+ 1) and i is even}.

Hence, the number of alternating descents d̂esπ = |D̂(π)| equals des 1σ + asc 0σ and

formula (1.6b) with x = y and q = 1 reduces to

1 +
∑

n≥1

xÂn(x, x, 1)
tn

n!
=

1− x

1− x(sec(1− x)t + tan(1− x)t)
, (1.11)

which is equivalent to [5, Theorem 4.2 ], see also [15, Eq. (22)]. As Chebikin, being

unaware of the work of Carlitz and Scoville, Sun [32] and Sun and Zhai [34] reconsidered
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the polynomials An(x, y, 1), and a cumbersome formula for (1.6a) is given in [34, Theorem

2.2]. Other proofs of formula (1.11) and generalizations appeared in [29, 15, 20, 25].

As the original proof of (1.2) with q = 1 in [4] is not easy (see also the solution of

Exercise 4.3.14 in [16]), we shall give a more conceptual proof of (1.6a), which is equivalent

to Theorem 1.2, by exploring a sieve method, see [30, 14, 5, 31].

Our second goal is to give a type B analogue of Carlitz and Scoville’s formula, i.e.,

Theorem 1.1 with q = 1. Denote by Bn the collection of type B permutations σ of the

set [±n] := {±1, . . . ,±n} such that σ(−i) = −σ(i) for all i ∈ [n], obviously, |σ| :=

|σ(1)| . . . |σ(n)| ∈ Sn. As usual (see [3, 28]), we always assume that type B permutations

are prepended by 0. That is, we identify an element σ = σ(1) . . . σ(n) in Bn with the

word σ(0)σ(1) . . . σ(n), where σ(0) = 0. We say that σ ∈ Bn has a descent (resp. ascent)

at position i, if σ(i) > σ(i + 1) (resp. σ(i) < σ(i + 1)) for i ∈ {0} ∪ [n − 1]. By abuse

of notation, in this section, we use des σ (resp. des1 σ and des0 σ) to denote the number

of descents of σ (resp. at odd and even positions). The statistics asc σ, asc1 σ and asc0 σ

are defined similarly for the ascents.

Define the enumerative polynomials

Bn(x, y) :=
∑

σ∈Bn

xdes1 σydes0 σ. (1.12)

Theorem 1.2. Let α =
√

(1− x)(1− y). Then

∑

n≥1

B2n(x, y)
t2n

(2n)!
=

(x+ y) cosh(2αt) + (1− x)(1− y) cosh(αt)− (1 + xy)

(1 + xy)− (x+ y) cosh(2αt)
, (1.13a)

∑

n≥1

B2n−1(x, y)
t2n−1

(2n− 1)!
=

α(1 + y) sinh(αt)

(1 + xy)− (x+ y) cosh(αt)
. (1.13b)

Remark 3. When x = y, the polynomial Bn(x, x) :=
∑

σ∈Bn
xdes σ is the usual Eulerian

polynomial of type B and Theorem 1.2 is equivalent to the known generating function,

see [7, Corollary 3.9] or [28, Theorem 13.3],

∑

n≥0

Bn(x, x)
tn

n!
=

(x− 1)et(x−1)

x− e2t(x−1)
. (1.14)

Now, consider the following variant of Bn(x, y)

B̂n(x, y) :=
∑

σ∈Bn

xdes1 σyasc0 σ = y⌊(n+1)/2⌋Bn(x, 1/y). (1.15)

From Theorem 1.2 we derive plainly the generating function of the latter polynomials.
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Theorem 1.3. Let α =
√

(1− x)(1− y). Then

∑

n≥1

B̂2n(x, y)
t2n

(2n)!
=

(1 + xy) cos(2αt)− (1− x)(1 − y) cos(αt)− (x+ y)

(x+ y)− (1 + xy) cos(2αt)
, (1.16a)

∑

n≥1

B̂2n−1(x, y)
t2n−1

(2n− 1)!
=

−α(1 + y) sinh(αt)

(x+ y)− (1 + xy) cos(2αt)
. (1.16b)

Remark 4. Similar to Chebikin’s alternating descent set of type A (see [5]), we can define

the alternating descent set of any σ ∈ Bn by

D̂B(π) = {i ∈ {0} ∪ [n− 1]|π(i) > π(i+ 1) if i is odd or π(i) < π(i+ 1) if i is even}.

Let d̂es B(σ) = |D̂B(σ)|. Clearly B̂n(x, x) =
∑

σ∈Bn
xd̂esB(σ), which is the n-th alternating

Eulerian polynomial of type B in [21], and Theorem 1.3 reduces to the generating function

in [23, 9, 25],

∑

n≥0

B̂n(x, x)
un

n!
=

x− 1

(x− 1) cos(u(1− x)) + (x+ 1) sin(u(1− x))
. (1.17)

Define the general enumerative polynomials of permutations by the parity of the ascent

and descent positions:

PB
n (x0, x1, y0, y1) =

∑

σ∈Bn

xasc0 σ0 xasc1 σ1 ydes0 σ0 ydes1 σ1 . (1.18)

For any σ ∈ Bn we have

des0 σ + asc0 σ = ⌊(n + 1)/2⌋,

des1 σ + asc1 σ = ⌊n/2⌋.
(1.19)

Hence the distribution of the quadruple statistics (asc0 , asc1 , des0 , des1 ) is equivalent to

any of the four pairs in {des1 , asc1 } × {des0 , asc0 }. It follows that

PB
n (x0, x1, y0, y1) = x

⌊(n+1)/2⌋
0 x

⌊n/2⌋
1 Bn

(
y1
x1
,
y0
x0

)
. (1.20)

We derive plainly the following generating function from Theorem 1.2.

Theorem 1.4. We have

∑

n≥1

PB
2n(x0, x1, y0, y1)

t2n

(2n)!
=

(x0y1 + x1y0)
∑

n≥0
αn(2t)2n

(2n)!
+
∑

n≥0
αn+1t2n

(2n)!
− (x1x0 + y0y1)

(x0x1 + y0y1)− (y1x0 + x1y0)
∑

n≥0
αn(2t)2n

(2n)!

,

(1.21)
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and

∑

n≥1

PB
2n−1(x0, x1, y0, y1)

t2n−1

(2n− 1)!
=

(y20 − x20)(y1 − x1)
∑

n≥0
αnt2n+1

(2n+1)!

(x0x1 + y0y1)− (x0y1 + x1y0)
∑

n≥0
αn(2t)2n

(2n)!

, (1.22)

where α = (y0 − x0)(y1 − x1).

In view of (1.15) and (1.20), Theorem 1.2, Theorem 1.3 and Theorem 1.4 are equivalent.

We shall give a proof of Theorem 1.2 in the same vein as the proof of (1.6a) with q = 1.

An important feature of Eulerian polynomials is the gamma-nonnegativity [28]. More

recently, Sun [33] proved that the bivariate Eulerian polynomials (1 + y)A2n(x, y, 1) and

A2n+1(x, y, 1) are γ-positive (see Theorem 2.3). Our third goal is to derive some sym-

metric expansion formulae for bivariate polynomials allied to the above four families of

bi-Eulerian polynomials. This will be done by applying their generating functions and

combinatorics of André permutations [12, 13, 17].

The rest of this paper is organised as follows. We will first study the symmetric and

gamma expansions of the two sequences of bi-polynomials as well as their type analogues

in Section 2 and postpone the proof of (1.6a) and Theorem 1.2 to Section 3 and Section 4,

respectively. We conclude with some open problems in Section 5.

As suggested by a referee, for reader’s convenience, we list the main permutation sta-

tistics of this paper in the following table.

des0 π the number of descents of π at even positions

des1 π the number of descents of π at odd positions

asc0 π the number of ascents of π at even positions

asc1 π the number of ascents of π at odd positions

inv π the number of inversions of π

lpk (π) the number of left peaks of π, see (2.14)

Table 1. Main statistics of π ∈ Sn

2. Symmetric and positive expansions of bi-Eulerian polynomials

Define two families of bi-Eulerian polynomials (Ãn(x, y))n≥1 and (An(x, y))n≥1 by

Ã2n(x, y) = (1 + y)A2n(x, y, 1), Ã2n−1(x, y) = A2n−1(x, y, 1), (2.1a)

A2n(x, y) = (1 + y)Â2n(x, y, 1), A2n−1(x, y) = Â2n−1(x, y, 1); (2.1b)
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and their type B analogues (B̃n(x, y))n≥1 and (Bn(x, y))n≥1 by

B̃2n(x, y) = B2n(x, y), B̃2n−1(x, y) = (1 + y)−1B2n−1(x, y), (2.2a)

B2n(x, y) = B̂2n(x, y), B2n−1(x, y) = (1 + y)−1B̂2n−1(x, y). (2.2b)

By (1.6a) and (1.6b) (resp. Theorem 1.2 and Theorem 1.3) both polynomials Ãn(x, y)

and An(x, y) (resp. B̃n(x, y) and Bn(x, y) ) are symmetric in x and y.

Recall that a polynomial with real coefficients P (x) =
∑n

i=0 aix
i is gamma-positive

(resp. semi-gamma-positive) if there are nonnegative numbers γi such that P (x) =∑
i γix

i(1 + x)n−2i (resp. P (x) = (1 + x)ν
∑

i γix
i(1 + x2)⌊n/2⌋−i with ν = 0 or 1.),

see [28] and [22] respectively. It is known that the gamma-positivity is stronger than the

semi-gamma-positivity [22].

In this section, we shall first derive the semi-gamma-positive formulae for the bi-

Eulerian polynomials Ãn(x, y), An(x, y), B̃n(x, y) and Bn(x, y) from their generating func-

tions and then apply Hetyei-Reiner’s min-max tree model [17] for permutations to derive

the corresponding γ-positive formulae for Ãn(x, y) and An(x, y) as well as their type B

analogues by refining Petersen’s proof for the γ-positivity of type B Eulerian polynomi-

als [28].

2.1. Semi-gamma-positivity of bi-Eulerian polynomials. The following generalizes

the semi-gamma-positivity of Eulerian polynomials to bi-Eulerian polynomials.

Theorem 2.1. Let a(n, j) (resp. ā(n, j)) be the number of permutations in Sn with j

odd descents and without even descents (resp. ascents) for n ≥ 1 and 0 ≤ 2j ≤ n. Then

Ãn(x, y) =

⌊n

2
⌋∑

j=0

a(n, j) (x+ y)j(1 + xy)⌊
n

2
⌋−j ; (2.3a)

An(x, y) =

⌊n

2
⌋∑

j=0

ā(n, j) (x+ y)j(1 + xy)⌊
n

2
⌋−j , (2.3b)

and

ā(n, j) = a(n, ⌊n/2⌋ − j) for 0 ≤ j ≤ ⌊n/2⌋ . (2.3c)

Proof. Let α(x, y) = (1− x)(1 − y). Then

α(x, y) = (1 + xy) · α

(
x+ y

1 + xy
, 0

)
.
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It follows from (1.6) that

Ãn(x, y) = (1 + xy)⌊
n

2
⌋An

(
x+ y

1 + xy
, 0, 1

)
, (2.4a)

An(x, y) = (1 + xy)⌊
n

2
⌋Ân

(
x+ y

1 + xy
, 0, 1

)
, (2.4b)

which are obviously equivalent to (2.3a) and (2.3b), respectively.

Define the completion σc of σ ∈ Sn by σc(i) = n + 1 − σ(i) for 1 ≤ i ≤ n. It is clear

that the mapping ϕ : σ 7→ σc is an involution on Sn and satisfies desi σ = asci σ
c for

i ∈ {0, 1}. Thus

(des 1σ
c, asc 0σ

c) = (asc 1σ, des 0σ) = (⌊n/2⌋ − des 1σ, des 0σ) .

Eq. (2.3c) follows by restricting ϕ on the set of permutations in Sn with j odd descents

and without even descent. �

Remark 5. The combinatorial interpretation of an,j actually follows from the existence

of formula (2.3a), which was first conjectured by Sun [32] and then proved by Sun and

Zhai [34].

Similarly, we have the following B-analogue of Theorem 2.1.

Theorem 2.2. Let b(n, j) (resp. b̄(n, j)) be the number of permutations in Bn with j odd

descents and without even descents (resp. even ascents). Then

B̃n(x, y) =

⌊n

2
⌋∑

j=0

b(n, j) (x+ y)j(1 + xy)⌊
n

2
⌋−j , (2.5a)

Bn(x, y) =

⌊n

2
⌋∑

j=0

b̄(n, j) (x+ y)j(1 + xy)⌊
n

2
⌋−j , (2.5b)

and

b̄(n, j) = b(n, ⌊n/2⌋ − j) for 0 ≤ j ≤ ⌊n/2⌋ . (2.5c)

Proof. Let α(x, y) = (1− x)(1 − y). Then

α(x, y) = (1 + xy) · α((x+ y)/(1 + xy), 0).

We derive from Theorem 1.2 and Theorem 1.3 immediately

B̃n(x, y) = (1 + xy)⌊
n

2
⌋Bn

(
x+ y

1 + xy
, 0

)
, (2.6a)

Bn(x, y) = (1 + xy)⌊
n

2
⌋B̂n

(
x+ y

1 + xy
, 0

)
, (2.6b)
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Figure 1. The action of operator ψ2 at tree M(562314).

which are what (2.5a) and (2.5b) mean.

Consider the negation σ̄ of σ ∈ Bn by σ̄(i) = −σ(i) for 1 ≤ i ≤ n. It is clear that the

mapping φ : σ 7→ σ̄ is an involution on Sn and satisfies desi σ = asci σ̄ for i ∈ {0, 1}.

Thus

(des 1σ̄, asc 0σ̄) = (asc 1σ, des 0σ) = (⌊n/2⌋ − des 1σ, des 0σ) .

Eq. (2.5c) follows by restricting φ on the set of permutations in Bn with j odd descents

and without even descent. �

We note that Eq. (2.3a) does not directly reduce to the known γ-positivity formula

of Eulerian polynomials An(x, x) when x = y. To derive the latter expansion we shall

appeal to the min-max tree representations of permutations due to Hetyei and Reiner [17].

Similarly, to derive gamma-positivity formula of type B Eulerian polynomials Bn(x, x)

from Theorem 2.2 we shall appeal to an action on permutations due to Petersen [28].

2.2. Gamma-positivity of bi-Eulerian polynomials of type A. We define the min-

max tree M(w) associated to a sequence of distincte integers w = w1 . . . wn as follows.

(1) First, M(w) is a binary tree with vertices labelled w1, . . . , wn. Let i be the least

integer for which either wi = min{w1, w2, . . . , wn} or wi = max{w1, w2, . . . , wn}.

Define wi to be the root of M(w).

(2) Then recursively define M(w1, . . . , wi−1) and M(wi+1, . . . , wn) to be the left and

right subtree of wi, respectively.

Conversely, the left-first order reading of the treeM(w) yields the sequence w, see [17, 10]

and [31, pp. 57-61].

An interior vertex inM(w) is called a min (resp. max) vertex if it is the minimum (resp.

maximum) label among all its descendants. LetM(wi) (resp. Ml(wi),Mr(wi)) denote the

subtree (resp. the left subtree, the right subtree) of M(w) with root wi.



ENUMERATION OF PERMUTATIONS BY THE PARITY OF DESCENT POSITIONS 11

For 1 ≤ i ≤ n, we define the operator ψi permuting the labels of M(w) as in the

following.

(1) If wi is a min vertex, then replace wi by the largest element of Mr(wi), permute

the remaining elements of Mr(wi) such that they keep their same relative orders

and all other vertices in M(w) are fixed.

(2) If wi is a max vertex, then replace wi by the smallest element of Mr(wi) such that

they keep their same relative order, and all other vertices in M(w) are fixed.

An illustration of operator ψ2 is given in Figure 1.

Given a permutation π = π(1)π(2) . . . π(n) of Y = {y1, y2, . . . , yn}<, which is a set

of positive integers. The π(i)-factorization of π is the sequence (w1, w2, π(i), w4, w5),

1 ≤ i ≤ n, where

(1) the concatenation product w1w2π(i)w4w5 is equal to π;

(2) w2 is the longest right factor of π(1)π(2) . . . π(i−1), all letters of which are greater

than π(i);

(3) w4 is the longest left factor of π(i + 1)π(i + 2) . . . π(n), all letters of which are

greater than π(i).

Note that above any of w1, w2, w4 or w5 may be empty.

Definition 2.1 (see [13, 10]). A permutation π ∈ Sn is an André permutation (of

kind I) if π has no double descents and ends with ascent, i.e., π(n − 1) < π(n), and if

i ∈ {2, . . . , n} is a valley of π and (w1, w2, π(i), w4, w5) is the π(i)-factorization of π, then

the maximum letter of w2w4 is in w4.

For example, the André permutations of length 4 are 1234, 1324, 2314, 2134 and 3124.

Fact 2.2. The operators ψi are commuting involutions acting on M(w) and generate an

abelien group Gw isomorphic to (Z/2Z)l(w), where l(w) is the number of internal certices of

M(w). Those ψi for which wi is an internal vertex are a minimal set Sw of generators for

Gw. For any subset S ⊆ Gw we define the HR action ψS by ψS(M(w)) =
∏

i∈S ψi(M(w)).

For π ∈ Sn, let Orb(π) be the set of permutations w such that M(w) is in the orbit of

M(π) under the HR-action. Thus, for any π ∈ Sn, there is a unique permutation πA in

Orb(π) such that all its interior vertices in M(πA) are min vertices.

Fact 2.3. A permutation π ∈ Sn is an André permutation if and only if all interior

vertices of min-max tree M(π) are min vertices.

It follows that ∪π∈AndnOrb(π) = Sn, where Andn is the set of André permutations in

Sn. Let S∗
n (resp. Orb∗(π)) be the subset of permutations in Sn (resp. Orb(π)) which

have no even descents. By restriction on the permutations which have only odd-descents



12 QIONGQIONG PAN AND JIANG ZENG

we have

S
∗
n = ∪π∈AndnOrb∗(π). (2.7)

For any subset S ⊆ [n] and André permutation π, since all interior vertices of M(π)

are min vertices, we have desψS(M(π)) ≥ des π.

Let π ∈ Andn. So all the interior vertices of M(π) are min vertices, if π(k) is a valley

of π with the π(k)-factorization (w1, w2, π(k), w4, w5), then the position of the last letter

of w2 is a descent position, and the HR action ψk on M(π) will shift the descent position

k−1 to k, since the vertex inM(π) corresponding to π(k) will be relabelled by the largest

letter of its subtree, and all other vertices keep their same relative order. Thus, the HR

action ψS with S being the set of indices of odd-valley-positions in π will evacuate all

the even descent positions, and the total number of descents will remain the same, let

ψS(π) = π′, clearly π′ ∈ Orb∗(π).

Fact 2.4. For π ∈ Andn we have

Orb∗(π) = Orb∗(π′) =
∏

i∈S

(1 + ψi){π
′},

where S is the set of odd ascent positions of π′. Moreover, as des 0ψi(π
′) = des 0(π

′) + 1,

the folllowing identity holds
∑

σ∈Orb∗(π)

pdesσ = (1 + p)⌊n/2⌋−des πpdesπ. (2.8)

Recall that a(n, j) is the number of permutations inSn with j odd descents and without

even descents.

Lemma 2.5. Let d(n, j) be the number of André permutations in Sn with j descents for

0 ≤ 2j ≤ n. Then

a(n, j) =

j∑

i=0

(
⌊n/2⌋ − i

j − i

)
d(n, i). (2.9)

Proof. Applying the above facts
∑

σ∈S∗

n

pdes (σ) =
∑

π∈Andn

∑

σ∈Orb∗(π)

pdes (σ)

=
∑

π∈Andn

(1 + p)⌊n/2⌋−des πpdes π.

We derive (2.9) by extracting the coefficient of pj . �
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Lemma 2.6. If d̄(n, i) is the number of min-max trees on [n] having i max interior vertices

with two children, then

d̄(n, i) =

⌊n

2
⌋∑

j=i

(
j

i

)
d(n, j). (2.10)

Proof. If π ∈ Sn is an André permutation, then the number of interior vertices with two

children of M(π) equals des (π). Any permutation π ∈ Sn such that M(π) has i max

interior vertices with two children can be obtained from the André permutation πA in

Orb(π) by choosing i interior vertices with two children among the interior vertices with

two children of M(πA) and then applying HR operator on these i vertices (to transform

them into max vertices). Hence, in each orbite of an André min-max tree (i.e., the tree

M(w) associated to an André permutation w) with j interior vertices having two children,

there are
(
j
i

)
min-max trees on [n] having i max interior vertices with two children. The

result follows by summing over all the orbits. �

Recall that a permutation w of [n] is an André permutation of kind II if, for 1 ≤ k ≤ n,

(1) the subsequence of the smallest k elements in w has no double descent ;

(2) the subsequence of the smallest k elements in w ends with an ascent.

The permutation w is called Simsun if it satisfies condition (1), [8, 10, 27]. For ex-

ample, the five Simsun 3-permutations are: 231, 132, 312, 123, 213 and the five André

4-permutations of the second kind are: 1234, 1423, 3124, 3412, 4123.

Actually, the number of n-André permutations and that of (n−1)-simsun permutations

are both equal to the Euler number En, which can be defined by

∑

n≥0

En
xn

n!
= sec x+ tan x.

Let Dn(x) (resp. rsn(x)) be the descent polynomial of André permutations (resp. Simsun

permutations) of length n. By means of generating function argument, Chow and Shiu

[8] proved that the descent number is equidistributed over (n − 1)-simsun permutations

and n-André permutations, i.e.,

Dn(x) = rsn−1(x) =
n−1∑

i=0

d(n, i)xi (n ≥ 2) (2.11)

with D1(x) = 1.

Combining Theorem 2.1 and Lemma 2.5 we obtain an alternative proof of the following

result of H. Sun [33].
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Theorem 2.3. Let d(n, j) be the number of André permutations in Sn with j descents

for 0 ≤ 2j ≤ n and d̄(n, i) be the number of min-max trees on n vertices having i max

interior vertices with two children, then

Ãn(x, y) =

⌊n/2⌋∑

j=0

d(n, j)(x+ y)j(1 + x+ y + xy)⌊
n

2
⌋−j , (2.12a)

An(x, y) =

⌊n/2⌋∑

i=0

(−1)id̄(n, i)(x+ y)i(1 + x+ y + xy)⌊n/2⌋−i, (2.12b)

and rsn−1(1 + x) =
∑⌊n/2⌋

i=0 d̄(n, i)xi, where rsn−1(x) is the descent polynomial of Simsun

permutations.

Proof. Plugging (2.9) in (2.3a) we obtain

Ãn(x, y) =

⌊n/2⌋∑

j=0

j∑

i=0

(
⌊n/2⌋ − i

j − i

)
d(n, i)(x+ y)j(1 + xy)⌊

n

2
⌋−j

=

⌊n/2⌋∑

i=0

d(n, i)(x+ y)i
∑

j≥0

(
⌊n/2⌋ − i

j

)
(x+ y)j(1 + xy)⌊n2⌋−i−j

=

⌊n/2⌋∑

i=0

d(n, i)(x+ y)i(1 + x+ y + xy)⌊n/2⌋−i,

which is the right-hand side of (2.12a) upon replacing i by j.

By (1.8) and (2.1) we have An(x, y) = y⌊n/2⌋Ãn(x, 1/y). Hence

An(x, y) =

⌊n/2⌋∑

j=0

d(n, j)(1 + xy)j(1 + x+ y + xy)⌊n/2⌋−j .

Now, rewriting (1 + xy)j in the last sum as

(1 + xy)j =

j∑

i=0

(−1)i
(
j

i

)
(1 + x+ y + xy)j−i(x+ y)i,

we obtain the right-hand side of (2.12b). �

Remark 6. Comparing (2.13) with [27, Theorem 2] we notice that d(n, j) is also the

number of André permutations of kind II of [n] with j descents. This result is implicit in

[12, 13, 10]. If x = y, Theorem 2.3 plainly reduces to the classical γ-formula of Eulerian
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polynomials, see [27, Theorem 1],

An(x, x) =

⌊n/2⌋∑

j=0

d(n, j) 2j xj(1 + x)n−1−2j . (2.13)

Also, Lin et al. [20, Theorem 1.1] proved the x = y case of (2.12b).

2.3. Gamma-positivity of bi-Eulerian polynomials of type B. We refine Petersen’s

proof of gamma-nonnegativity of type B Eulerian polynomials in [28].

Given a permutation u ∈ Sn we denote by B(u) the set of all permutations ω ∈ B(u)

such that ω(i) = σiu(i) with σi ∈ {−,+} for 1 ≤ i ≤ n. Then we have the following

observations:

• if u(i− 1) < u(i), then ω(i− 1) > ω(i) if and only if σi = −,

• if u(i− 1) > u(i), then ω(i− 1) > ω(i) if and only if σi−1 = +.

To put it another way, the sign σj controls the descent in position j − 1 if and only if

j − 1 is not a descent position of u, and it controls the descent in position j if and only

if j is a descent position of u.

Consider the example of u = 31472865. Then there is a descent in position 0 if and

only if σ1 = − while there is a descent in position 1 if and only if σ1 = +. Since u(2) = 1

is smaller than the elements on either side of it, the sign σ2 has no effect whatever on the

descent set. With u(3) = 4, we find that ω(2) > ω(3) if and only if σ3 = −, but that

σ3 does not control whether ω(3) is greater than ω(4) (σ4 does that). By considering the

sign of each letter in turn.

We summarize the above consideration more precisely in the following

Observation 2.7. Let u ∈ Sn. If ω ∈ Bn(u) with ω(j) = σju(j), then

• If u(j − 1) < u(j) > u(j + 1), then σj controls both the descent in position j − 1

and position j. That is, if σj = +, then in ω, j − 1 is not a descent position, but

j is a descent position. If σj = −, then in ω, j − 1 is a descent position but j is

not. This means, σj does not change the number of descents, but it controls the

parity of descent position.

• If u(j − 1) < u(j) < u(j + 1), then σj controls the descent on position j − 1, but

no effect on position j. That is, if σj = +, then j − 1 is not a descent position, if

σj = −, then j − 1 is a descent position.

• If u(j − 1) > u(j) > u(j + 1), then σj controls the descent on position j, but no

effect on position j−1. That is, if σj = +, then j is a descent position, if σj = −,

then j is not a descent position.

• If u(j − 1) > u(j) < u(j + 1), then σj has no effect on the descent set.
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The number of left peaks of permutation u ∈ Sn is defined by

lpk(u) = |{1 ≤ i < n : u(i− 1) < u(i) > u(i+ 1)}|, (2.14)

where u(0) = 0, u(n+ 1) = n+ 1.

Lemma 2.8. If ω ∈ Bn is a permutation with j odd descents and without even descents,

then |ω| is a permutation in Sn with lpk(|ω|) ≤ j.

Proof. Since ω does not have descents on even positions, we have ω(1) > 0 and ω does not

have double descents. Suppose ω(i) is the first valley with σi = − and ω(k) is the peak

closest to ω(i) on the right. Then ω(i)ω(i+ 1) . . . ω(k) is an increasing subsequence, and

there has no peak in |ω(i)||ω(i+ 1)| . . . |ω(k)|. Let ω0 = ω(1)ω(2) . . . ω(i− 1)|ω(i)||ω(i+

1)| . . . |ω(k)|ω(k + 1) . . . ω(n) then, the difference of peak sets of ω0 and ω happens on

ω(i − 1), |ω(i)| and |ω(k)|, ω(k + 1). As it is not possible that both ω(i − 1) and |ω(i)|

are peaks in ω0 (but ω(i− 1) is a peak in ω). Since |ω(k)| ≥ ω(k) > ω(k + 1), so |ω(k)|

is the only possible peak candidate of |ω(k)| and ω(k + 1) in ω0 (ω(k) is a peak in ω).

In summary, we have lpk(ω0) ≤ lpk(ω). We repeat this process on ω0, finally, we obtain

lpk(|ω|) ≤ lpk(ω) = j. �

Lemma 2.9. Let g(n, i) = |{u ∈ Sn : lpk (u) = i}|. Then

b(n, j) =

j∑

i=0

(
⌊n/2⌋ − i

j − i

)
g(n, i)2i.

Proof. Let u be a permutation in Sn with lpk(u) = i ≤ j. We can use the following

process to transform it to a permutation of Bn with j odd descent and without even

descents.

Process A

(1) Firstly, we sign the i valleys of u with either − or +, which gives ω1.

(2) Secondly, in ω1, we sign the peaks at even positions with −, then we obtain ω2

with all the peaks at odd positions (by Remark 2.7).

(3) Thirdly, choose a j − i elements subset D of C := {1, 3, . . . , 2⌊n
2
⌋ − 1} \ LPK(ω2),

where LPK(ω2) is the position set of peaks of ω2. For l ∈ D, if ω2(l) is a descent

then we do nothing with ω2(l), if ω2(l) is an ascent then we sign ω2(l+1) (it must

be a double ascent in u) with −. For l /∈ D but l ∈ C, if ω2(l) is a descent then

we sign ω2(l) (it must be a double descent in u)with −, if ω2(l) is an ascent, then

we do nothing with ω2(l), which gives ω3.

(4) Lastly, in ω3 we sign all the double descents at even positions with −, which gives

ω4.

By Observation 2.7, we see that ω4 is a permutation in Bn with j odd descents and without

even descents.
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In this process, no letter in u is repeatedly signed. And we can see that for a fixed

u ∈ Sn with i peaks, by Process A, it can produce
(
⌊n/2⌋−i

j−i

)
· 2i different permutations

in Bn with j odd descents and without even descents. By Lemma 2.8, for ω ∈ Bn with

j odd descents and without even descents, we have |lpk(|ω|)| ≤ j and by Remark 2.7,

the descent positions in ω are totally controlled by the signs of peaks, double descents

and double ascents of |ω|, that is ω can be constructed by |ω| through Process A. This

completes the proof. �

Theorem 2.4. Let g(n, j) = |{u ∈ Sn : lpk(u) = j}|. Then

B̃n(x, y) =

⌊n

2
⌋∑

j=0

g(n, j)2j(x+ y)j(1 + x+ y + xy)⌊
n

2
⌋−j , (2.15)

Bn(x, y) =

⌊n

2
⌋∑

j=0

(−1)j ḡ(n, j)2j(x+ y)j(1 + x+ y + xy)⌊
n

2
⌋−j (2.16)

with

ḡ(n, j) =

⌊n/2⌋−j∑

i=0

(
i+ j

j

)
g(n, i+ j)2i. (2.17)

Proof. By Theorem 2.2 and Lemma 2.9, we obtain (2.15). To prove (2.16), by (1.15),

(2.2a) and (2.2b), we first note

Bn(x, y) = y⌊
n

2
⌋B̃n(x, 1/y).

It follows from (2.15) that

Bn(x, y) =

⌊n

2
⌋∑

j=0

g(n, j)2j (1 + xy)j(1 + x+ y + xy)⌊
n

2
⌋−j . (2.18)

The rest of the proof is the same as that of Eq. (2.12b), so it is omitted. �

Remark 7. When x = y identity (2.18) reduces to Proposition 10 in [23]. Identity (2.17)

is equivalent to the polynomial identity:

⌊n/2⌋∑

j=0

ḡ(n, j)xj =

⌊n/2⌋∑

j=0

⌊n

2
⌋−j∑

i=0

(
i+ j

j

)
g(n, i+ j)2ixj

=

⌊n/2⌋∑

k=0

g(n, k)(2 + x)k. (2.19)
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If x = y identity (2.15) reduces to Petersen’s formula for type B Eulerian polynomial

Bn(x, x), see [28, Theorem 13.5],

Bn(x, x) =

⌊n/2⌋∑

j=0

g(n, j) (4x)j(1 + x)n−2j , (2.20)

and Eq. (2.16) reduces to Ma et al.’s formula for type B alternating descent polynomials,

see [23, Theorem 12]

B̂n(x, x) =

⌊n

2
⌋∑

j=0

ḡ(n, j)(−4x)j(1 + x)n−2j . (2.21)

3. Counting permutations of type A by the parity of descent positions

If σ = σ1 · · ·σn is a permutation in Sn, the descent set Des(σ) of σ is Des(σ) = {i :

σi > σi+1} ⊆ [n − 1]. We denote by Des0(σ) (resp. Des1(σ)) the set of even (resp.

odd) descents of σ. For brevity we denote their cardinalities by des0(σ) = |Des0(σ)| and

des1(σ) = |Des1(σ)|.

Any subset S = {s1, . . . , sk}< ⊆ [n − 1] can be encoded by the composition co(S) :=

(s1, s2−s1, · · · , sk−sk−1, n−sk) of n. Clearly this correspondence is a bijection. For any

composition λ = (λ1, . . . , λl) of n, let Sλ be the subset {λ1, λ1 + λ2, . . . , λ1 + · · ·λl−1} of

[n− 1] and define the q-multinomial coefficient
(
n

λ

)

q

:=

(
n

co(Sλ)

)

q

=
n!q

λ1!q · · ·λl!q
.

For any subset S ⊆ [n− 1], let ∆n(S) := {σ ∈ Sn | Des(σ) ⊆ S} and Rn(S) be the set of

rearrangements of word 1λ1 . . . lλl , where λi = si − si−1 for i ∈ [l] with l = k + 1, s0 = 0

and sl = n. There is a bijection ψ : σ 7→ w from ∆n(S) to Rn(S) defined by w(j) = i if

σ(j) ∈ {σ(si−1 + 1), . . . , σ(si)}< for j ∈ [n] and i ∈ [l]. Clearly the number of inversions

of w, i.e., |{i < j | w(i) > w(j), i, j ∈ [n]}|, is equal to invσ. By a theorem of MacMahon

(see [2, p. 41]) we obtain the following known result (see [31, p. 227]).

Lemma 3.1. Let S = {s1, s2, . . . , sk}< ⊆ [n− 1] and αn(S, q) =
∑

σ∈∆n(S)
qinvσ . Then

αn(S, q) =

(
n

co(S)

)

q

.

To prove (1.6a) we need three more lemmas. For convenience, for any subset S ⊆ N

let Se = S ∩ 2N and So = S ∩ (2N + 1) be the subsets of even and odd integers of

S, respectively. For n ∈ N, let O[n] (resp. E[n]) be the collection of odd (resp. even)
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elements of [n]. Consider the polynomial

Pn(x, y, q) :=
∑

S⊆[n−1]

αn(S, q)x
|So|y|Se|. (3.1)

Lemma 3.2. For n ≥ 1 we have

An(x, y, q) = (1− x)⌊
n

2
⌋(1− y)⌊

n−1
2

⌋Pn

(
x

1− x
,

y

1− y
, q

)
. (3.2)

Proof. By Lemma 2.1 we have

Pn(x, y, q) =
∑

σ∈Sn

xdes1(σ)ydes0(σ)qinv (σ)
∑

S⊆[n−1]\D(σ)

x|So|y|Se|

=
∑

σ∈Sn

xdes1(σ)ydes0(σ)qinv (σ)(1 + x)⌊
n

2
⌋−des1(σ)(1 + y)⌊

n−1
2

⌋−des0(σ)

as there are ⌊n
2
⌋ − des1(σ) odd (resp. ⌊n−1

2
⌋ − des0(σ) even) integers in [n− 1] \D(σ). In

other words, we can write Pn(x, y, q) as

Pn(x, y, q) = (1 + x)⌊
n

2
⌋(1 + y)⌊

n−1
2

⌋An

(
x

1 + x
,

y

1 + y
, q

)
,

which is equivalent to (3.2). �

Remark 8. Let Pn(x) =
∑

S⊆[n−1] αn(S, 1)x
|S|. It is not diffucult to see that

Pn(x) =
n−1∑

k=0

(k + 1)!S(n, k + 1)xk,

where S(n, k) denotes the Stirling number of the second kind, i.e., the number of ways to

partition a set of n objects into k non-empty subsets (see [31]). So, when x = y, formula

(3.2) reduces to the Frobenius formula, see [11],

An(x) =

n∑

k=1

k!S(n, k)xk−1(1− x)n−k. (3.3)

Lemma 3.3. We have

B(t, x) : =
∑

n≥1

P2n(x, 0, q)
t2n

(2n)!q
=

(coshq t− 1)(1− x(coshq t− 1)) + x sinh2
q t

1− x(coshq t− 1)
, (3.4)

C(t, x) : =
∑

n≥1

P2n−1(x, 0, q)
t2n−1

(2n− 1)!q
=

sinhq t

1− x(coshq t− 1)
. (3.5)
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Proof. There is a bijection between the set of compositions γ = (γ1, · · · , γl) of 2n such

that γ1, γ1 + γ2, . . . , γ1 + γ2 + · · · + γl−1 are odd numbers and the set of subsets Sγ of

O[2n]. Hence

∑

n≥1

P2n(x, 0, q)
t2n

(2n)!q
=
∑

n≥1


 ∑

S⊆O[2n]

α2n(S, q)x
|S|


 t2n

(2n)!q

=
∑

l≥1

(∑

γ

tγ1

γ1!q
· · ·

tγl

γl!q

)
xl−1

=
∑

i≥1

t2i

2i!q
+ x

∑

l≥2

(∑

i≥1

t2i−1

(2i− 1)!q

)2(
x
∑

i≥1

t2i

2i!q

)l−2

= coshq t− 1 +
x sinh2

q t

1− x(coshq t− 1)
,

which gives (3.4).

In the same vein, wa have

∑

n≥1

P2n−1(x, 0, q)
t2n−1

(2n− 1)!q
=
∑

n≥1

∑

S⊆O[2n−1]

α2n−1(S, q)x
|S| t2n−1

(2n− 1)!q

=
∑

l≥1

(∑

γ

tγ1

γ1!q
· · ·

tγl

γl!q
xl−1

)

=
∑

l≥1

(∑

i≥1

t2i−1

(2i− 1)!q

)(
x
∑

i≥1

t2i

(2i)!q

)l−1

,

which is clearly equal to (3.5). �

Next we generalize (3.4) and (3.5) to the general y.

Lemma 3.4. We have
∑

n≥1

P2n(x, y, q)
t2n

(2n)!q
=

B(t, x)

1− yB(t, x)
, (3.6)

∑

n≥1

P2n−1(x, y, q)
t2n−1

(2n− 1)!q
=

C(t, x)

1− yB(t, x)
. (3.7)

Proof. Consider

Pn(x, y, q) =
∑

(σ,S)

x|So|y|Se|qinvσ (σ ∈ Sn and D(σ) ⊆ S ⊆ [n− 1]).
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There is a bijection between the set of subsets S of [n − 1] with fixed even integers

Se = {m1 < · · · < ml−1} ⊂ E[n−1] and the set of sequences of compositions of mi−mi−1

with odd parts for i ∈ [l] with m0 = 0 and ml = n. Let co(Se) = (n1, . . . , nl) be the

corresponding composition of n. Then

∑

n≥1

P2n(x, y, q)
t2n

(2n)!q
=
∑

l≥1

l−1∏

i=1


 ∑

Si⊆O[2ni]

α2ni
(Si, q)x

|Si|
t2ni

(2ni)!q
y




×


 ∑

Sl⊆O[2nl]

α2nl
(Sl, q)x

|Sl|
t2nl

(2nl)!q


 ,

which is equal to
∑

l≥1 y
l−1 · B(t, x)l = B(t,x)

1−yB(t,x)
.

Similary, we have

∑

n≥1

P2n−1(x, y, q)
t2n−1

(2n− 1)!q
=
∑

l≥1

l−1∏

i=1


 ∑

Si⊆O[2ni]

α2ni
(Si, q)x

|Si|
t2ni

(2ni)!
y




×


 ∑

Sl⊆O[2nl−1]

α2nl−1(Sl, q)x
|Sl|

t2nl−1

(2nl − 1)!q


 ,

which can be written as
∑

l≥1 y
l−1 · B(t, x)l−1 · C(t, x) = C(t,x)

1−yB(t,x)
. �

We obtain (1.6a) by combining Lemma 3.2, Lemma 3.3 and Lemma 3.4.

4. Counting permutations of type B by the parity of descent positions

Let B+
n (resp. B−

n ) be the subset of permutations in Bn whose first entry is positive

(resp. negative). Clearly the doubleton {B−
n ,B

+
n } is a partition of Bn. Introduce the

corresponding enumerative polynomials:

B−
n (x, y) =

∑

σ∈B−

n

xdes1 σydes0 σ, B+
n (x, y) =

∑

σ∈B+
n

xdes1 σydes0 σ.

Then Bn(x, y) = B−
n (x, y) +B+

n (x, y).

For τ ∈ Bn, let τ
− be the permutation in Bn such that τ−(i) = −τ(i) for i ∈ [n]. It is

clear that the mapping ρ : τ 7−→ τ− is an involution on Bn such that

des1 τ + des1 τ
− = ⌊n/2⌋,

des0 τ + des0 τ
− = ⌊(n+ 1)/2⌋.

(4.1)

Besides, the restriction of ρ on B+
n sets up a bijection ρ : B+

n → B−
n , therefore

B−
n (x, y) = x⌊n/2⌋y⌊(n+1)/2⌋B+

n (1/x, 1/y) . (4.2)
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So, we need only to compute the exponential generating functions of B+
n (x, y).

For σ ∈ Bn, we denote by D(σ) the set of descents of σ. If S is a subset of [n− 1] let

α+
n (S) be the number of permutations σ ∈ B+

n such that D(σ) ⊆ S. A set composition of

set Ω is an ℓ-tuple (Ω1, . . . ,Ωℓ) of subsets of Ω such that {Ω1, . . . ,Ωℓ} is a set partition

of Ω.

Lemma 4.1. Let S = {s1 < · · · < sk} ⊆ [n− 1], and s0 = 0 and sk+1 = n. Then

α+
n (S) =

(
n

co(S)

)
2n−s1. (4.3)

Proof. We can construct the permutations σ ∈ B+
n with D(σ) ⊆ S as in the following:

• partition [n] to obtain a set-composition (Ω1, . . . ,Ωk+1) of [n] with |Ωi| = si for

1 ≤ i ≤ k and |Ωk+1| = n− sk,

• sign the elements in Ωi by ǫ ∈ {−1, 1} for i = 2, . . . k + 1.

• arrange the elements in each block Ωi increasingly.

It is clear that the number of such permutations is
(

n

s1 − s0, s2 − s1, . . . , sk+1 − sk

)
2n−s1.

This is the desired formula. �

Similar to permutations of type A (see (3.1)), consider the polynomial

Q+
n (x, y) =

∑

S⊆[n]

α+
n (S)x

|So|y|Se|. (4.4)

Lemma 4.2. We have

B+
2n(x, y) = (1− x)n(1− y)n−1Q+

2n

(
x

1− x
,

y

1− y

)
, (4.5)

B+
2n−1(x, y) = (1− x)n−1(1− y)n−1Q+

2n−1

(
x

1− x
,

y

1− y

)
. (4.6)

Proof. For even index we have

Q+
2n(x, y) =

∑

σ∈B+
2n

∑

S⊆[2n]

∑

Des0(σ)⊆Se

Des1(σ)⊆So

x|So|y|Se|. (4.7)

Now, for any fixed σ ∈ B+
2n, writing T0 = Se \ Des0(σ) and T1 = Se \ Des1(σ), then

|Se| = des0(σ) + |T0| and |So| = des1(σ) + |T1|; hence the inner double sum at the right-

hand side of (4.7) is a sum over the pairs (T0, T1) such that T0 ⊆ E[2n] and T1 ⊆ O[2n],

and thus equal to

ydes0(σ)xdes1(σ)(1 + y)n−1−des0(σ)(1 + x)n−des1(σ). (4.8)
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Therefore

Q+
2n(x, y) = (1 + x)n(1 + y)n−1B+

2n

(
x

1 + x
,

y

1 + y

)
, (4.9)

which is equivelent to (4.5).

For odd index, a similar reasoning can be applied with regard to the sum

Q+
2n−1(x, y) =

∑

σ∈B+
2n−1

∑

S⊆[2n−1]

∑

Des0(σ)⊆Se

Des1(σ)⊆So

x|So|y|Se| (4.10)

and leads to the formula

Q+
2n−1(x, y) = (1 + x)n−1(1 + y)n−1B+

2n−1

(
x

1 + x
,

y

1 + y

)
. (4.11)

which is equivalent to (4.6). �

Lemma 4.3. We have

G :=
∑

n≥1

Q+
2n(x, 0)

t2n

(2n)!
= cosh(t)− 1 +

x sinh(t) sinh(2t)

1− x(cosh(2t)− 1)
, (4.12)

and

H :=
∑

n≥1

∑

S⊆O[2n]

(
2n

co(S)

)
22nx|S|

t2n

(2n)!
= cosh(2t)− 1 +

x sinh2(2t)

1− x(cosh(2t)− 1)
. (4.13)

Proof. By definition, if S = {s1, s2, . . . , sl−1}< ⊆ O[2n], let γ1 = s1, γi = si − si−1 for

i = 2, . . . , l with sl = 2n− 1, then γ1 is odd and γi are even for i = 2, . . . , l. Therefore

G =
∑

n≥1

∑

S⊆O[2n]

(
2n

co(S)

)

B+

x|S|
t2n

(2n)!

=
∑

n≥1

(∑

γ

1

γ1!
· · ·

1

γl!
xl−1

)
22n−γ1t2n (4.14)

=
∑

i≥1

t2i

(2i)!
+
∑

l≥2

(∑

i≥1

(t)2i−1

(2i− 1)!

)(
x
∑

i≥1

(2t)2i−1

(2i− 1)!

)(
x
∑

i≥1

(2t)2i

(2i)!

)l−2

=
∑

i≥1

t2i

(2i)!
+ x

(∑

i≥1

t2i−1

(2i− 1)!

)(∑

i≥1

(2t)2i−1

(2i− 1)!

)
1

1− x
∑

i≥1
(2t)2i

(2i)!

,
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which is the right-hand side of (4.12). Next,

H =
∑

n≥1

(∑

γ

1

γ1!
· · ·

1

γl!
xl−1

)
(2t)2n (4.15)

=
∑

i≥1

(2t)2i

(2i)!
+

1

x

∑

l≥2

(
x
∑

i≥1

(2t)2i−1

(2i− 1)!

)2(
x
∑

i≥1

(2t)2i

(2i)!

)l−2

=
∑

i≥1

(2t)2i

(2i)!
+ x

(∑

i≥1

(2t)2i−1

(2i− 1)!

)2
1

1− x
∑

i≥1
(2t)2i

(2i)!

,

which is the right-hand of (4.13). �

Lemma 4.4. We have

F :=
∑

n≥1


 ∑

S⊆O[2n−1]

(
2n− 1

co(S)

)
x|S|


 22n−1 t2n−1

(2n− 1)!
=

sinh(2t)

1− x(cosh(2t)− 1)
, (4.16)

L :=
∑

n≥1


 ∑

S⊆O[2n−1]

(
2n− 1

co(S)

)

B

x|S|


 t2n−1

(2n− 1)!
=

sinh(t)

1− x(cosh(2t)− 1)
. (4.17)

Proof. By definition, if S = {s1, s2, . . . , sl−1}< ⊆ O[2n − 1], let γ1 = s1, γi = si − si−1

with sl = 2n− 1, then γ1 is odd and γi are even for i = 2, . . . , l. Therefore

F =
∑

n≥1

(∑

γ

1

γ1!
· · ·

1

γl!
xl−1

)
(2t)2n−1

=
∑

l≥1

(∑

i≥1

(2t)2i−1

(2i− 1)!

)(
x
∑

i≥1

(2t)2i

(2i)!

)l−1

=

(∑

i≥1

(2t)2i−1

(2i− 1)!

)
1

1− x
∑

i≥1
(2t)(2i)

(2i)!

,
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which equals the right-hand side of (4.16), besides

L =
∑

n≥1

(∑

γ

1

γ1!
· · ·

1

γl!
xl−1

)
22n−1−γ1t2n−1

=
∑

l≥1

(∑

i≥1

t2i−1

(2i− 1)!

)(
x
∑

i≥1

(2t)2i

(2i)!

)l−1

=

(∑

i≥1

t2i−1

(2i− 1)!

)
1

1− x
∑

i≥1
(2t)2i

(2i)!

,

which is equal to the right-hand side of (4.17). �

Lemma 4.5. We have

∑

n≥1

Q+
2n(x, y)

t2n

(2n)!
=

G

1− yH
, (4.18)

∑

n≥1

Q+
2n−1(x, y)

t2n−1

(2n− 1)!
= L+

yF G

1− yH
. (4.19)

Proof. The left hand side of (4.18) is

∑

n≥1


 ∑

S⊆[2n]

α+
2n(S)y

|Se|x|So|


 t2n

2n!

=
∑

n≥1


 ∑

S1⊆O[2m1]

(
2m1

co(S1)

)

B

x|S1|
t2m1

2m1!
y


 ·

l∏

i=2


 ∑

Si⊆O[2mi]

(
2mi

co(Si)

)
22mix|Si|

t2mi

2mi!
y




=
∑

l≥1

yl−1 ·G ·H l−1,

which equals G
1−yH

. The left-hand side of (4.19) is

∑

n≥1


 ∑

S1⊆O[2m1]

(
2m1

co(S1)

)

B

x|S1|
t2m1

2m1!
y


 ·

l∏

i=2


 ∑

Si⊆O[2mi]

(
2mi

co(S2)

)
22mix|Si|

t2mi

2mi!
y




= L+ yF ·G
∑

l≥0

(yH)l,

which equals L+ yF ·G
1−yH

. �
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Now, combining Lemma 4.2 and Lemma 4.5 we have

∑

n≥1

B+
2n(x, y)

t2n

(2n)!
=

(cosh(at)− 1)(2x cosh(at) + x+ 1)

1 + xy − (x+ y) cosh(2at)
, (4.20)

∑

n≥1

B+
2n−1(x, y)

t2n−1

(2n− 1)!
=

sinh(at)(x− 1)(2 cosh(at)y − y − 1)

a(xy + 1− (x+ y) cosh(2at))
(4.21)

with a2 = (1− x)(1− y). It follows from (4.2) that

∑

n≥1

B−
2n(x, y)

t2n

(2n)!
=
y(cosh(at)− 1)(2 cosh(at) + x+ 1)

1 + xy − (x+ y) cosh(2at)
, (4.22)

∑

n≥1

B−
2n−1(x, y)

t2n−1

(2n− 1)!
=
y sinh(at)(x− 1)(−2 cosh(at) + y + 1)

a(xy + 1− (x+ y) cosh(2at))
. (4.23)

Combining (4.20) with (4.22) and (4.21) with (4.23), we complete the proof of Theo-

rem 1.2.

5. Concluding remarks

In [4] Carlitz and Scoville also considered the more general modulus m > 2 for descents

rather than parity, i.e., m = 2. They obtained a general generating function. However,

apart from m = 2 the generating function is quite explicit only for certain special cases

when m = 4. For the q-analogue, there are some nice generating functions given by

Kurşungöz and Yee [19]. It would be very interesting to have results in this direction.
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