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Abstract

We consider the Maker–Breaker positional game on the vertices of the n-dimensional

hypercube {0, 1}n with k-dimensional subcubes as winning sets. We describe a pairing

strategy which allows Breaker to win if n is a power of 4 and k ≥ n/4 + 1. Our results

also imply that for all n ≥ 3 there is a Breaker’s win pairing strategy if k ≥
⌊

3
7n

⌋

+ 1.

1 Introduction

A positional game can be thought of as a generalization of Tic-Tac-Toe played on a hyper-
graph (V,H) where the vertices can be considered the “board” on which the game is played,
and the hyperedges can be considered the “winning sets.” More formally, a positional game on
(V,H) is a two-player game where at every turn each player alternately occupies a previously
unoccupied vertex from V . In a strong positional game, the first player to occupy all vertices
of some hyperedge A ∈ H wins. If at the end of play no hyperedge is completely occupied by
either player, that play is declared a draw. Normal 3× 3 Tic-Tac-Toe is a strong positional
game where the vertices of the hypergraph are the nine positions and the hyperedges are
the eight winning lines. In a Maker–Breaker positional game, the first player, Maker, wins if
Maker occupies all vertices of some hyperedge A ∈ H, otherwise the second player, Breaker,
wins. Therefore, by definition there are no draw plays in Maker–Breaker games. We say that
a player P has a winning strategy if no matter how the other player plays, player P wins by
following that strategy. It is well-known that in a finite Maker–Breaker game, exactly one
player has a winning strategy. (For a nice introduction to positional games, please see [5],
[6], and [22].)

Recall that the n-dimensional (Boolean) hypercube Qn is a bipartite graph whose vertex
set is {0, 1}n and whose edge set is the set of all pairs of vertices that differ in exactly one
coordinate. A k-dimensional subcube of Qn is a subgraph of Qn that is isomorphic to Qk.
Let Q(n, k) denote the hypergraph whose vertex set is {0, 1}n and whose hyperedge set is
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the set of all k-dimensional subcubes of Qn (technically, each hyperedge is the set of vertices
of some k-dimensional subcube). For example, Q(n, 1) = Qn.

In [23], Kruczek and Sundberg initiated the study of the Maker–Breaker game played
on Q(n, k). Using a general Breaker’s win criterion (Erdős–Selfridge theorem [16]) and
Maker’s win criterion (Theorem 1.2 [5]), they showed that Breaker has a winning strategy
for the Q(n, k) game when k ≥ log2(n) + 1 and Maker has a winning strategy when k ≤
log2 log2(n) − 1. They also studied the specific question, “when can Breaker win by using
a pairing strategy?” A pairing strategy for Breaker is a set P of pairwise disjoint pairs
of vertices in Qn. Breaker uses P as a strategy by playing as follows: each time Maker
occupies a vertex x, if there is an unoccupied vertex y such that {x, y} ∈ P , then Breaker
immediately responds by occupying y; otherwise, Breaker occupies an arbitrary unoccupied
vertex. This guarantees that Breaker occupies at least one vertex from each pair in P . If
every k-dimensional subcube of Qn contains at least one pair from P , then Breaker wins, and
we say P is a Breaker’s win pairing strategy. (We note that substantial work has been done
on Maker–Breaker games on graphs where players occupy edges. However, in the Q(n, k)
game, players occupy vertices. We are unaware of any papers, other than [23], which study
the Q(n, k) game.) The goal of this paper is to improve upon the results in [23] pertaining
to Breaker’s win pairing strategies.

Let p(n) be the smallest value of k such that Breaker can win the positional game
on Q(n, k) by using a pairing strategy. Proposition 9 in [14] implies that p(n) > ln(n).
(Indeed, each pair can block at most

(

n−1
k−1

)

subcubes and there are at most 2n−1 pairs. When

k = ⌊ln(n)⌋,
(

n−1
k−1

)

2n−1 <
(

n

k

)

2n−k, which is the total number of k-dimensional subcubes.)
Kruczek and Sundberg [23] showed that p(n) ≤ n−3. We improve on their result by proving
the following:

Theorem 4 For each n ≥ 3, there is a Breaker’s win pairing strategy for Q(n,
⌊

3
7
n
⌋

+ 1).

All pairs of vertices in the Breaker’s win pairing strategies that we construct are edges; thus,
our pairing strategies are matchings in Qn.

The remainder of the paper is organized as follows. In Section 2, we give some basic
definitions and explain the main techniques behind constructing our Breaker’s win pairing
strategies through an illustrative example. In Section 3, we state and prove a theorem which
uses those techniques and can be used to show p(n) ≤ n/3 + 1 if n = 6 · 4d or n = 9 · 4d

for some d ≥ 1. In Section 4, we enhance the techniques from Section 3 to prove that
p(n) ≤ n/4+1 when n is a power of 4. In Section 5, we briefly discuss Breaker’s win pairing
strategies for specific values of n and k, including the result that p(n) ≤

⌊

3
7
n
⌋

+ 1 for all
n ≥ 3. In Section 6, we prove p(n) ≤ n/3 + 1 when n is a power of 3. In Section 7, we
briefly mention how some of our results can be viewed as a variation of d-polychromatic edge
colorings of Qn.

2 The Basic Strategy

The basic idea of our technique is to “combine” a Breaker’s win pairing strategy for Q(4, 2)
with one for Q(n, k) to create a Breaker’s win pairing strategy for Q(4n, b), where b =
max{4k − 3, n+ k}.

2



We represent each k-dimensional subcube of Qn by a list of n symbols such that k of
the symbols are stars (∗) and each of the remaining n − k symbols is 0 or 1. For example,
(∗, 0, 1, ∗) represents the set

{0, 1} × {0} × {1} × {0, 1} = {(0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 1, 0), (1, 0, 1, 1)}

which is the vertex set of a 2-dimensional subcube of Q4. We call 0-dimensional and 1-
dimensional subcubes vertices and edges, respectively. We abuse terminology and refer to
(∗, 0, 1, ∗) as a “vector” with four “coordinates.”

The following set of edges (vectors) is a Breaker’s win pairing strategy for Q(4, 2) (veri-
fying this is straightforward and left to the reader):

PS(4, 2) = {(∗, 0, 0, 0), (0, ∗, 1, 0), (0, 0, ∗, 1), (0, 1, 0, ∗),

(∗, 1, 1, 1), (1, ∗, 0, 1), (1, 1, ∗, 0), (1, 0, 1, ∗)}.

We make use of the following properties in our proofs.

Properties of PS(4, 2):

1. For each pair of indices 1 ≤ i < j ≤ 4 and each ordered pair (bi, bj) ∈ {0, 1}2, there is a
vector in PS(4, 2) with bi (not a star) in coordinate i and bj (not a star) in coordinate j,
because every 2-dimensional subcube in Q(4, 2) contains an edge from PS(4, 2).

2. For each j ∈ [4], PS(4, 2) has exactly two vectors with a star in coordinate j and
those two vectors are complements of each other (where we consider 0 and 1 to be
complements of each other and a star to be its own complement).

Given a Breaker’s win pairing strategy Pn for Q(n, k), we combine Pn, as explained
below, with each edge in PS(4, 2) to obtain a set of edges BinPS(4 × n), which we later
prove is a Breaker’s win pairing strategy for Q(4n, b) with b = max{4k − 3, n + k}. Let 0n

be the set of even parity vectors from {0, 1}n, i.e., the sum of the coordinates of each vector
is even. Let 1n be the set of odd parity vectors from {0, 1}n. (When it is clear from the
context, we drop the subscript n, and just write 0 or 1.) We take each edge in PS(4, 2)
and replace each 0, 1, or ∗ with an element of 0n, 1n, or Pn, respectively, to obtain an edge
in BinPS(4 × n). For example, (0, 1, 0, ∗) ∈ PS(4, 2) yields the following set of edges in
BinPS(4× n):

(0n × 1n × 0n ×Pn) = {(~x1, ~x2, ~x3, ~x4) : ~x1 ∈ 0n, ~x2 ∈ 1n, ~x3 ∈ 0n, ~x4 ∈ Pn}, (1)

where (~x1, ~x2, ~x3, ~x4) represents an edge in Q4n, because ~x4 is an edge in Qn and ~xi is a vertex
in Qn for i ∈ [3]. We call the set in equation (1) a product-set. Doing this for each element of
PS(4, 2), and taking the union of the resulting product-sets, gives the following set of edges:

BinPS(4× n) = (Pn × 0n × 0n × 0n) ∪ (0n ×Pn × 1n × 0n)∪

(Pn × 1n × 1n × 1n) ∪ (1n ×Pn × 0n × 1n)∪

(0n × 0n ×Pn × 1n) ∪ (0n × 1n × 0n ×Pn)∪

(1n × 1n ×Pn × 0n) ∪ (1n × 0n × 1n ×Pn), (2)
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which we later prove is a Breaker’s win pairing strategy for Q(4n, b) with b = max{4k −
3, n+ k}.

Each subcube S ofQ4n can be represented as a length 4n vector with entries from {0, 1, ∗}.
We partition the coordinates of that vector into four bins, where bin j contains coordinates
(j − 1)n + 1 through jn. For each subcube S of Q4n and each j ∈ [4], let S|bin j denote S
restricted to bin j, i.e., if S = (x1, . . . , x4n), then S|bin j = (x(j−1)n+1, . . . , xjn). For an edge
~e ∈ BinPS(4× n), the sets 0n, 1n, Pn determine the possible values for ~e|bin j; thus, we call
0n, 1n, Pn bin-sets.

We say that a subcube S1 blocks a subcube S2, if S1 ⊆ S2. For example, the edge
~e = (1, 0, 1, ∗) blocks the subcube (∗, 0, 1, ∗) since (1, 0, 1, ∗) ⊂ (∗, 0, 1, ∗). Moreover, ~e blocks
exactly three 2-dimensional subcubes of Q4, namely (∗, 0, 1, ∗), (1, ∗, 1, ∗), and (1, 0, ∗, ∗). We
say that a set of subcubes T blocks a subcube S, if T contains a subcube that blocks S. For
example, since Qn is a bipartite graph with partite sets 0n and 1n, for each edge ~e, there
exist vertices ~v0 ∈ 0n and ~v1 ∈ 1n such that ~v0 blocks ~e and ~v1 blocks ~e. Thus, 0n blocks
every 1-dimensional subcube of Qn, as does 1n.

Example 1: We can form BinPS(4 × 1) by using 01 = {0}, 11 = {1}, P1 = {∗}, where
∗ is the edge {0, 1}, thus, P1 is a Breaker’s win pairing strategy for Q(1, 1). In this case,
b = max{4(1)− 3, 1 + 1} = 2, and BinPS(4× 1) is precisely PS(4, 2).

Example 2: We can form BinPS(4× 2) by using 02 = {(0, 0), (1, 1)}, 12 = {(0, 1), (1, 0)},
P2 = {(∗, 0)}, where P2 is a Breaker’s win pairing strategy for Q(2, 2). In this case, b =
max{4(2)− 3, 2 + 2} = 5. Theorem 1 implies that BinPS(4× 2) is a Breaker’s win pairing
strategy for Q(8, 5). (We directly justify this fact below.)

Each product-set has cardinality 8, for example,

(02 × 12 × 02 ×P2) = {(0, 0, 0, 1, 0, 0, ∗, 0), (1, 1, 0, 1, 0, 0, ∗, 0)

(0, 0, 0, 1, 1, 1, ∗, 0), (1, 1, 0, 1, 1, 1, ∗, 0)

(0, 0, 1, 0, 0, 0, ∗, 0), (1, 1, 1, 0, 0, 0, ∗, 0)

(0, 0, 1, 0, 1, 1, ∗, 0), (1, 1, 1, 0, 1, 1, ∗, 0)},

(we include extra spaces in the vectors to highlight the four bins) and |BinPS(4× 2)| = 64.
Let us show that BinPS(4× 2) is a Breaker’s win pairing strategy for Q(8, 5). Let S be

a 5-dimensional subcube of Q8. Recall that 02 and 12 each block any subcube of Q2 with
positive dimension, and P2 blocks the 2-dimensional subcube of Q2.

Case 1: For each j ∈ [4], the dimension of S|bin j is positive. Then, for some j1, j2, j3, j4
with {j1, j2, j3, j4} = [4], S|bin ji has dimension 1 for i ∈ [3] and S|bin j4 has dimension 2.
We select a product-set that has P2 in bin j4 because P2 is only guaranteed to block the
2-dimensional subcube of Q2. In each of the other bins, the product-set has 02 or 12. This
product-set blocks S. For example, if S = (∗, 1, 0, ∗, ∗, ∗, 0, ∗), then j4 = 3, and we can
use (02 × 02 ×P2 × 12) to block S. Indeed, (1, 1, 0, 0, ∗, 0, 0, 1) ∈ (02 × 02 ×P2 × 12) and
(1, 1, 0, 0, ∗, 0, 0, 1) ⊂ S. We could also use (12 × 12 ×P2 × 02) to block S.

Case 2: Suppose S|bin j1 has dimension 0 for some j1 ∈ [4]. Then for some j2, j3, j4
such that {j1, j2, j3, j4} = [4], S|bin j2 has dimension 1, while S|bin j3 and S|bin j4 both have
dimension 2. Because P2 is only guaranteed to block the 2-dimensional subcube of Q2, we
must select a product-set that has P2 in bin j3 or j4. W.l.o.g., we will select a product-set
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with P2 in bin j4. By Property 2 of PS(4, 2), there is a product-set A that has P2 in bin j4
and has a bin-set (02 or 12) whose parity equals the parity of S|bin j1 in bin j1. We claim that
A blocks S. Bins j2 and j3 of A each contain either 02 or 12, thus, A blocks S. For example,
if S = (∗, ∗, ∗, ∗, 1, 0, ∗, 1), then j1 = 3 and j4 ∈ {1, 2}. Thus, we use the product-set
(P2 × 12 × 12 × 12) to block S because it has 12 in bin 3 and P2 in bin 1, or we could use
(02 ×P2 × 12 × 02) since it has 12 in bin 3 and P2 in bin 2.

Example 3: We can form BinPS(4× 3) by using 03 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},
13 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, P3 = {(∗, 0, 0), (1, ∗, 1), (0, 1, ∗)}, where P3 is a
Breaker’s win pairing strategy for Q(3, 2). In this case, b = max{4(2) − 3, 3 + 2} = 5.
Theorem 1 implies that BinPS(4× 3) is a Breaker’s win pairing strategy for Q(12, 5).

3 Main Theorem

In this section, we prove that BinPS(4× n) is a matching and that it blocks all subcubes of
dimension b = max{4k − 3, n+ k}.

Observe that two subcubes of Qn are disjoint if and only if for some j ∈ [n], one of the
subcubes has 0 and the other has 1 in coordinate j of their vector representations.

Lemma 1 For each n ≥ 1, the set of edges BinPS(4× n), as defined in equation (2), is a
matching.

Proof of Lemma 1: Let ~e1, ~e2 ∈ BinPS(4× n) satisfy ~e1 6= ~e2. Then ~e1|bin j 6= ~e2|bin j for

some j ∈ [4]. Let (x
(i)
1 , . . . , x

(i)
4n) be the vector representation of ~ei for i ∈ {1, 2}.

Case 1: Suppose ~e1|bin j and ~e2|bin j are 0-dimensional. Since ~e1|bin j 6= ~e2|bin j, then

clearly there is some k ∈ [n] such that {x
(1)
(j−1)n+k

, x
(2)
(j−1)n+k

} = {0, 1}, thus, ~e1 and ~e2 are
disjoint.

Case 2: Suppose ~e1|bin j and ~e2|bin j are 1-dimensional. Then ~e1|bin j , ~e2|bin j ∈ Pn. Since

Pn is a matching and ~e1|bin j 6= ~e2|bin j , there is some k ∈ [n] such that {x
(1)
(j−1)n+k

, x
(2)
(j−1)n+k

} =

{0, 1}, thus, ~e1 and ~e2 are disjoint.
Recall that BinPS(4× n) is the union of eight pairwise disjoint product sets, as defined

in equation (2). If ~e1 and ~e2 are in the same product-set, then either Case 1 or Case 2
occurs. If they are in distinct product-sets (which correspond to different edges in PS(4, 2)),
then because PS(4, 2) is a matching in Q4, we are guaranteed that Case 1 occurs for some
(possibly other) j ∈ [4]. �

Theorem 1 If there exists a Breaker’s win pairing strategy for Q(n, k), then there exists a
Breaker’s win pairing strategy for Q(4n, b), where b = max{4k − 3, n+ k}.

Proof of Theorem 1: Let S be a subcube of Q4n. Let i ∈ [4]. Suppose that S|bin i has
dimension c. If c ≥ k, then we say that S|bin i is higher dimensional (HD).

We use BinPS(4×n) as our pairing strategy, where 0 = 0n, 1 = 1n, and P is a Breaker’s
win pairing strategy for Q(n, k). Recall that 0 and 1 can each block any subcube of Qn with
positive dimension, and P can block any HD subcube of Qn.
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Let S be a b-dimensional subcube of Q4n. Since b ≥ 4k − 3 > 4(k − 1), S|bin j is HD for
some j ∈ [4]. Since b ≥ n + k and k ≥ 1, S|bin j has dimension 0 for at most two values of
j ∈ [4].

Case 1: Suppose that S|bin j has positive dimension for each j ∈ [4], and that S|bin i is
HD for some i ∈ [4]. Let A be a product-set with P in bin i. Since S|bin i is HD, P blocks
S|bin i. In each of the other bins, A has either 0 or 1. Since S|bin j has positive dimension
for all j 6= i, 0 and 1 can each block S|bin j for all j 6= i. Thus, A blocks S.

Case 2: Suppose instead that S|bin i and S|bin j both have dimension 0 for some pair
{i, j} ⊂ [4]. Because of Property 1 of PS(4, 2), there is a product-set A whose bin-sets in
bins i and j match the parities of S|bin i and S|bin j , respectively. There are b coordinates
in the vector representation of S that are stars. Since b ≥ n + k, S|bin ℓ is HD for each
ℓ ∈ [4]− {i, j}, and can be blocked by any bin-set 0, 1, or P. Therefore, A blocks S.

Case 3: Suppose that j is the unique value in {1, 2, 3, 4} such that S|bin j has dimension 0.
Also suppose that S|bin i is HD for some i ∈ [4]. By Property 2 of PS(4, 2), we can deduce
that there is a product-set A that has P in bin i and a bin-set in bin j whose parity matches
that of S|bin j . In each of the other two bins, A has either 0 or 1. Since S|bin ℓ has positive
dimension for each ℓ ∈ [4]− {i, j}, A blocks S.

In light of Lemma 1, we conclude that BinPS(4× n) is a Breaker’s win pairing strategy
for Q(4n, b). �

Corollary 1 Suppose there exists a Breaker’s win pairing strategy for Q(n, k).

(a) If k ≥ n/3 + 1, then there exists a Breaker’s win pairing strategy for Q(4n, 4k − 3).

(b) If k = ⌊n/3⌋+1, then there exists a Breaker’s win pairing strategy for Q(4n, ⌊4n/3⌋+1).

4 Rotating the Pairing Strategies

Under certain conditions, we are able to improve upon Theorem 1 using a technique we call,
“rotating pairing strategies.”

To illustrate the idea, we construct a Breaker’s win pairing strategy for Q(9, 4) using
the rotating pairing strategy idea. (The reader may choose to skip to Theorem 2.) For
simplicity, we have chosen an example based on P3 = {(∗, 0, 0), (1, ∗, 1), (0, 1, ∗)} (instead of
PS(4, 2)) which has only three bins, each of size three. We obtain four different Breaker’s
win pairing strategies for Q(3, 2) which together partition the set of edges of Q3, by using
translations of P3, namely,

P(0) = {(∗, 0, 0), (1, ∗, 1), (0, 1, ∗)}= P3,

P(1) = {(∗, 0, 1), (0, ∗, 0), (1, 1, ∗)}= P3 + (1, 0, 1),

P(2) = {(∗, 1, 0), (0, ∗, 1), (1, 0, ∗)}= P3 + (1, 1, 0),

P(3) = {(∗, 1, 1), (1, ∗, 0), (0, 0, ∗)}= P3 + (0, 1, 1).

(We will use the fact that P(0) ∪P(1) ∪P(2) ∪P(3) contains every edge in Q3.) We partition
03 and 13 into four sets each as follows:

0(0) = {(0, 0, 0)}, 1(0) = {(0, 0, 1)},
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0(1) = {(0, 1, 1)}, 1(1) = {(0, 1, 0)},

0(2) = {(1, 0, 1)}, 1(2) = {(1, 0, 0)},

0(3) = {(1, 1, 0)}, 1(3) = {(1, 1, 1)}.

(In higher dimensions, 0(j) and 1(j) will not be singletons.) Our pairing strategy is

BinPSR(3× 3) = (P× 0× 0)R ∪ (1×P× 1)R ∪ (0× 1×P)R,

where we define the “rotating” product-sets as follows:

(P× 0× 0)R =
⋃

i,j

(P(i+j) × 0(i) × 0(j)),

(1×P× 1)R =
⋃

i,j

(1(j) ×P(i+j) × 1(i)),

(0× 1×P)R =
⋃

i,j

(0(i) × 1(j) ×P(i+j)),

where i, j, and i + j are all evaluated modulo 4. Notice, for example, that (0 × 1 × P)R is
the union of 42 sets, such as,

(0(2) × 1(3) ×P(1)) = {(1, 0, 1)} × {(1, 1, 1)} × {(∗, 0, 1), (0, ∗, 0), (1, 1, ∗)}

and
(0(3) × 1(1) ×P(0)) = {(1, 1, 0)} × {(0, 1, 0)} × {(∗, 0, 0), (1, ∗, 1), (0, 1, ∗)}.

We present an equivalent description of the “rotating” product-sets. For ~x ∈ 0(j) or
~x ∈ 1(j), let Index(~x) = j. Then we can write the “rotating” product-sets as

(P× 0× 0)R = {(~x, ~y, ~z) : ~x ∈ P(j), ~y ∈ 0, ~z ∈ 0,where j = Index(~y) + Index(~z) (mod 4)},

(1×P× 1)R = {(~x, ~y, ~z) : ~x ∈ 1, ~y ∈ P(j), ~z ∈ 1,where j = Index(~x) + Index(~z) (mod 4)},

(0× 1×P)R = {(~x, ~y, ~z) : ~x ∈ 0, ~y ∈ 1, ~z ∈ P(j),where j = Index(~x) + Index(~y) (mod 4)}.

Theorem 5 implies that BinPSR(3 × 3) is a Breaker’s win pairing strategy for Q(9, 4).
In contrast,

BinPS(3× 3) = (P3 × 03 × 03) ∪ (13 ×P3 × 13) ∪ (03 × 13 ×P3),

is a Breaker’s win pairing strategy for Q(9, 5) (proof omitted), but not for Q(9, 4). For
example, let S be a 4-dimensional subcube of Q9 so that S|bin 1 is 0-dimensional, S|bin 2 is 1-
dimensional, and S|bin 3 is 3-dimensional. If S|bin 1 has even parity, then both BinPS(3× 3)
and BinPSR(3 × 3) block S using the product-sets (03 × 13 × P3) and (0 × 1 × P)R,
respectively. (This is because 13 = 1 blocks subcubes with positive dimension, and any
subcube of Q3 blocks S|bin 3 because it is 3-dimensional.) However, if S|bin 1 has odd parity,
then (1×P× 1)R blocks S, but (13 ×P3 × 13) might not (because S|bin 2 is 1-dimensional,
but bin 2 contains P3). For example, suppose S = (0, 1, 0, ∗, 1, 0, ∗, ∗, ∗). Observe that
(1(1)×P(2)×1(1)) ⊂ (1×P×1)R, and (0, 1, 0, ∗, 1, 0, 0, 1, 0) ∈ (1(1)×P(2)×1(1)), which blocks
S. However, since S|bin 2 = (∗, 1, 0), which is not blocked byP3 = {(∗, 0, 0), (1, ∗, 1), (0, 1, ∗)},
(13 ×P3 × 13) does not block S.
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Theorem 2 Suppose there exists a set of matchings {P(0), . . . ,P(m−1)} such that each P(j)

is a Breaker’s win pairing strategy for Q(n, k) and
⋃

j P
(j) equals the set of edges of Qn.

Moreover, suppose that there is a partition of 0n (of 1n) of size m such that every subcube
of Qn of dimension n − k + 2 contains at least one vertex from each of the sets in the
partition of 0n (of 1n). Then there exists a Breaker’s win pairing strategy for Q(4n, b),
where b = max{4k − 3, n+ 1}.

Proof of Theorem 2:
Let {0(0), . . .0(m−1)} and {1(0), . . . , 1(m−1)} be the given partitions of 0n and 1n, respec-

tively. For every ~x ∈ 0(j) ∪ 1(j), we define Index(~x) to be j. Let

BinPSR(4× n) =

(P× 0× 0× 0)R ∪ (0×P× 1× 0)R ∪

(P× 1× 1× 1)R ∪ (1×P× 0× 1)R ∪

(0× 0×P× 1)R ∪ (0× 1× 0×P)R ∪

(1× 1×P× 0)R ∪ (1× 0× 1×P)R

where, for example,

(0× 0×P× 1)R = {(~x, ~y, ~z, ~w) : ~x ∈ 0, ~y ∈ 0, ~z ∈ P(j), ~w ∈ 1,

where j = Index(~x) + Index(~y) + Index(~w) (mod m)}.

Let b = max{4k − 3, n+ 1}, and let S be a b-dimensional subcube of Q4n. Suppose that
S|bin i has dimension c for some i ∈ [4]. If 1 ≤ c ≤ k − 1, then we say that S|bin i is lower
dimensional (LD). (Note: if S|bin i has dimension 0, it is not LD.) Recall, if c ≥ k, then
S|bin i is HD.

Since b ≥ 4k − 3, S|bin i is HD for at least one i ∈ [4]. Since b ≥ n + 1, S|bin i has
dimension 0 for at most two values of i ∈ [4].

We can follow the proof of Theorem 1 for Case 1 and Case 3 in that proof. For Case 2
in that proof, if S|bin i1 and S|bin i2 both have dimension 0, and S|bin i3 and S|bin i4 are both
HD, where {i1, i2, i3, i4} = [4], then we can follow the proof of Theorem 1. Therefore, we
may assume that S|bin i1 and S|bin i2 both have dimension 0, S|bin i3 is LD, and S|bin i4 is
HD. Property 1 of PS(4, 2) implies that there is a product-set A whose bin-sets in bins i1
and i2 match the parities of S|bin i1 and S|bin i2 , respectively. If A has 0 or 1 in bin i3,
then A blocks S because 0 and 1 each block subcubes with any positive dimension, and
P blocks HD subcubes. Suppose instead that A has P in bin i3, and w.l.o.g., A has 0 in
bin i4. Since

⋃

j P
(j) equals the set of edges of Qn and S|bin i3 has positive dimension, there

is a bin-set P(j) which contains an edge that blocks S|bin i3. Let c ∈ {0, . . . , m − 1} satisfy
Index(S|bin i1) + Index(S|bin i2) + c = j (mod m). Since, by assumption, every subcube of
Qn of dimension n − k + 2 contains at least one vertex from 0(c), there is a vertex ~x ∈ 0(c)

that blocks S|bin i4 as long as S|bin i4 has dimension at least n − k + 2. Since S|bin i3 is LD
and the sum of the dimensions of S|bin i3 and S|bin i4 is b ≥ n + 1, S|bin i4 has dimension at
least n + 1− (k − 1) = n− k + 2. Therefore, we can find an edge in A that blocks S. �

For Theorem 2 to be useful, we need there to exist, for some Q(n, k) with k < n/3+ 1, a
set of Breaker’s win pairing strategies whose union is the set of edges of Qn; for if k ≥ n/3+1,
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then 4k− 3 ≥ n+ k, and hence b = 4k− 3 in both Theorems 1 and 2. The existence of such
sets of pairing strategies is proved in Theorem 3, which states that, for d ≥ 0, the edges of
Q4d+1 can be partitioned into 4d+1 Breaker’s win pairing strategies for Q(4d+1, 4d + 1). We
prove Theorem 3 by induction on d. To introduce definitions and techniques we use in that
proof, let us consider here the cases d = 0 and d = 1.

We have seen that PS(4, 2) is a Breaker’s win pairing strategy for the case d = 0. To
obtain four different Breaker’s win pairing strategies for Q(4, 2) which together partition the
set of edges of Q4, we use translations of PS(4, 2), namely,

PS0(4, 2) = PS(4, 2) = {(∗, 0, 0, 0), (0, ∗, 1, 0), (0, 0, ∗, 1), (0, 1, 0, ∗),

(∗, 1, 1, 1), (1, ∗, 0, 1), (1, 1, ∗, 0), (1, 0, 1, ∗)},

PS1(4, 2) = PS(4, 2) + (0, 0, 1, 1) = {(∗, 0, 1, 1), (0, ∗, 0, 1), (0, 0, ∗, 0), (0, 1, 1, ∗),

(∗, 1, 0, 0), (1, ∗, 1, 0), (1, 1, ∗, 1), (1, 0, 0, ∗)},

PS2(4, 2) = PS(4, 2) + (0, 1, 0, 1) = {(∗, 1, 0, 1), (0, ∗, 1, 1), (0, 1, ∗, 0), (0, 0, 0, ∗),

(∗, 0, 1, 0), (1, ∗, 0, 0), (1, 0, ∗, 1), (1, 1, 1, ∗)},

PS3(4, 2) = PS(4, 2) + (0, 1, 1, 0) = {(∗, 1, 1, 0), (0, ∗, 0, 0), (0, 1, ∗, 1), (0, 0, 1, ∗),

(∗, 0, 0, 1), (1, ∗, 1, 1), (1, 0, ∗, 0), (1, 1, 0, ∗)}.

Since every translation is an automorphism, PSj(4, 2), for 0 ≤ j ≤ 3, is a Breaker’s win
pairing strategy for Q(4, 2) that satisfies Properties 1 and 2 of PS(4, 2). Thus, we now have
four Breaker’s win pairing strategies from which to construct our rotating product-sets for
d > 0.

For the case d = 1, we can obtain one Breaker’s win pairing strategy for Q(16, 5) by
applying Theorem 2, with P(j) = PSj(4, 2) for 0 ≤ j ≤ 3 and using any partitions of 04

and 14 with four nonempty parts each (since n − k + 2 = 4). However, to obtain sixteen
Breaker’s win pairing strategies for Q(16, 5) which together partition the set of edges of Q16,
Theorem 3 generalizes the idea of Theorem 2 by using “shifted” rotating product-sets, which
we define below.

Suppose
⋃m−1

0 P(j) equals the set of edges in Qn, with each P(j) a Breaker’s win pairing
strategy for Q(n, k), and {0(0), . . .0(m−1)} and {1(0), . . . , 1(m−1)} are partitions of 0n and 1n,
respectively. An example of a rotating product-set shifted by s, where 0 ≤ s ≤ m− 1, is

(0× 0×P× 1)R(s) = {(~x,~y, ~z, ~w) : ~x ∈ 0, ~y ∈ 0, ~z ∈ P(i), ~w ∈ 1,

where i = s+ Index(~x) + Index(~y) + Index(~w) (mod m)}.

Note that when s = 0, we obtain (0× 0×P× 1)R(0) = (0× 0×P× 1)R.

For each s ∈ {0, . . . , m−1}, we define four pairing strategies BinPS
R(s)
0 (4×n), BinPS

R(s)
1 (4×

n), BinPS
R(s)
2 (4× n), BinPS

R(s)
3 (4× n) based on PS0(4, 2), PS1(4, 2), PS2(4, 2), PS3(4, 2),

respectively. For example,

BinPS
R(s)
3 (4× n) =
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(P× 1× 1× 0)R(s) ∪ (0×P× 0× 0)R(s) ∪ (0× 1×P× 1)R(s) ∪ (0× 0× 1×P)R(s)

∪ (P× 0× 0× 1)R(s) ∪ (1×P× 1× 1)R(s) ∪ (1× 0×P× 0)R(s) ∪ (1× 1× 0×P)R(s).

Thus, the sixteen Breaker’s win pairing strategies for Q(16, 5) which result from Theo-

rem 3 are BinPS
R(s)
j (4 × 4) for 0 ≤ j ≤ 3 and 0 ≤ s ≤ 3, where we use the bin-sets 04, 14

and P(j) = PSj(4, 2) in the definition of each BinPS
R(s)
j (4× 4).

Theorem 3 requires the following lemma.

Lemma 2 For all k ≥ 1, the sets 02k and 12k can be partitioned into subsets A1, . . . , A2k

and B1, . . . , B2k , respectively, so that every subcube of Q2k of dimension 2k−1 + 1 contains a
vertex in every Aj and Bj.

Proof of Lemma 2: We proceed by induction on k. The case k = 1 is trivial. Suppose for
some k ≥ 1 we have A1, . . . , A2k and B1, . . . , B2k as in the statement of the lemma. For each
ℓ ∈ [2k], let

Gℓ =
⋃

i+j≡ℓ

(Ai × Aj)

Hℓ =
⋃

i+j≡ℓ

(Bi × Bj)

Iℓ =
⋃

i+j≡ℓ

(Ai ×Bj)

Jℓ =
⋃

i+j≡ℓ

(Bi × Aj)

where all the equivalencies are taken modulo 2k. We will show that {G1, . . . , G2k , H1, . . . , H2k}
is the desired partition of 02k+1. A similar proof shows that {I1, . . . , I2k , J1, . . . , J2k} is the
desired partition of 12k+1.

We can write any vertex v ∈ Q2k+1 as v = (v1, v2) with vi ∈ Q2k . Let v ∈ 02k+1 ; then v1
and v2 must have the same parity, so (v1, v2) is in either (Ai × Aj) or (Bi × Bj) for some
i, j ∈ [2k], and hence v is in either Gℓ or Hℓ, where i + j ≡ ℓ (mod 2k). As these sets are
pairwise disjoint, {G1, . . . , G2k , H1, . . . , H2k} partitions 02k+1.

Given a subcube S of Q2k+1 , divide its coordinates into two bins, with coordinates
1, . . . , 2k in bin 1, and 2k + 1, . . . , 2k+1 in bin 2. If S has dimension 2k + 1, then S|bin 1

or S|bin 2, say S|bin 1, has dimension at least 2k−1 + 1. So S|bin 1 contains a vertex in every
Ai and Bi. And S|bin 2 has dimension at least one, so it contains a vertex in each of 02k

and 12k , i.e., in some Aj and some Bj′. Now, for every ℓ ∈ [2k] there exist i and i′ such
that i + j ≡ i′ + j′ ≡ ℓ (mod 2k). So S contains a vertex in each of (Ai × Aj), (Bi × Aj),
(Ai′ ×Bj′), and (Bi′ × Bj′). So S contains a vertex in every Gℓ and Hℓ. �

Theorem 3 For each d ≥ 0, there exist 4d+1 pairwise disjoint Breaker’s win pairing strate-
gies for Q(4d+1, 4d + 1) with equal cardinalities which partition the set of edges of Q4d+1.
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Proof of Theorem 3: We proceed by induction on d. The Breaker’s win pairing strategies
PSj(4, 2) for 0 ≤ j ≤ 3 handle the case d = 0. Let d ≥ 1. By the inductive hypothesis, there

exist 4d disjoint Breaker’s win pairing strategies P(0), . . . ,P(4d−1) for Q(n, k) = Q(4d, 4d−1 +
1) with equal cardinalities which partition the set of edges of Q4d . We will show that

BinPS
R(s)
j (4 × n) is a Breaker’s win pairing strategy for Q(4d+1, 4d + 1) for 0 ≤ j ≤ 3 and

0 ≤ s ≤ 4d− 1, where we use 04d, 14d, and the Breaker’s win pairing strategies P(i) from the
inductive hypothesis in the definitions of the product-sets. Moreover, we will show that the
Breaker’s win pairing strategies BinPS

R(s)
j (4× n) form a partition of the edges of Q4d+1 . To

do so, we follow the proof of Theorem 2, with m = n = 4d, and with one minor change, as
follows.

By Lemma 2, there is a partition of 04d (of 14d) of size m such that every subcube of Qn of
dimension 1

2
4d+1 contains at least one vertex from each of the sets in the partition of 04d (of

14d). Since n−k+2 = 3
4
4d+1 > 1

2
4d+1, the hypotheses for Theorem 2 are satisfied. We can

substitute BinPS
R(s)
j (4×n) for BinPSR(4×n) throughout the proof of Theorem 2 and reach

the conclusion that BinPS
R(s)
j (4× n) is a Breaker’s win pairing strategy for Q(4n, n+ 1) =

Q(4d+1, 4d + 1) (since max(4k − 3, n + 1) = n + 1 = 4k − 3). The only minor change we
make is to write “let c ∈ {0, . . . , m− 1} satisfy (s+ Index(S|bin i1) + Index(S|bin i2) + c) = j
(mod m).”

It remains to show that the sets BinPS
R(s)
j (4 × n) form a partition of E(Q4d+1). Let

E(Q4d+1) be the set of edges of Q4d+1 . We will first show that

E(Q4d+1) ⊆
⋃

j,s

BinPS
R(s)
j (4× n),

which implies
⋃

j,sBinPS
R(s)
j (4× n) = E(Q4d+1).

Let S ∈ E(Q4d+1). Suppose that S|bin i1 , S|bin i2 , S|bin i3 are all vertices in Q4d , and S|bin i4

is an edge in E(Q4d). Let ~x be the edge in E(Q4) such that coordinate iℓ of ~x matches the
parity of S|bin iℓ for 1 ≤ ℓ ≤ 3, and coordinate i4 of ~x is a star. Since PS0(4, 2), PS1(4, 2),
PS2(4, 2), PS3(4, 2) partition E(Q4), ~x ∈ PSj(4, 2) for some 0 ≤ j ≤ 3.

Since P(0), . . . ,P(4d−1) partition E(Q4d), S|bin i4 ∈ P(t) for some 0 ≤ t ≤ 4d − 1. Let
s ∈ {0, . . . , 4d − 1} satisfy

s + Index(S|bin i1) + Index(S|bin i2) + Index(S|bin i3) = t (mod 4d).

Let As be the product-set from BinPS
R(s)
j (4 × n) which corresponds to ~x. Then S ∈ As

because of how ~x was chosen. Therefore, E(Q4d+1) ⊆
⋃

j,sBinPS
R(s)
j (4× n), as desired.

It remains to show that the sets BinPS
R(s)
j (4 × n) with 0 ≤ j ≤ 3 and 0 ≤ s ≤

4d − 1 are pairwise disjoint. Since every P(i) has the same cardinality and P(0), . . . ,P(4d−1)

partition E(Q4d), which has cardinality 4d(24
d
−1), |P(i)| = 24

d
−1 for 0 ≤ i ≤ 4d − 1. Each

BinPS
R(s)
j (4×n) is the union of eight product-sets. Since |0| = |1| = 24

d
−1, each product-set

has cardinality
(

24
d
−1
)3

(24
d
−1). Thus,

∣

∣

∣
BinPS

R(s)
j (4× n)

∣

∣

∣
≤ 8

(

24
d
−1
)4

= 24
d+1

−1, and

∣

∣

∣

∣

∣

⋃

j,s

BinPS
R(s)
j (4× n)

∣

∣

∣

∣

∣

≤
∑

j,s

∣

∣

∣
BinPS

R(s)
j (4× n)

∣

∣

∣
≤ 4d+124

d+1
−1 = |E(Q4d+1)| .
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Therefore the inequalities must in fact be equalities, and hence the Breaker’s win pairing
strategies BinPS

R(s)
j (4× n) form a partition of E(Q4d+1). �

5 Pairing Strategies for Specific Values of n and k

Both Theorems 1 and 2 require the existence of a Breaker’s win pairing strategy for a game
played on the vertices of Qn to construct a Breaker’s win pairing strategy for a game played
on the vertices of Q4n. The following two lemmas allow us to construct Breaker’s win pairing
strategies for games played on the vertices of Qd where d is not divisible by 4.

Lemma 3 ([23]) If there is a Breaker’s win pairing strategy for the Maker–Breaker game
played on Q(n, k), then there is a Breaker’s win pairing strategy for the Maker–Breaker game
played on Q(n + 1, k + 1).

Lemma 4 If there exists a matching which is a Breaker’s win pairing strategy for the Maker–
Breaker game played on Q(N, k), then there is a matching which is a Breaker’s win pairing
strategy for the Maker–Breaker game played on Q(n, k) for all n ≤ N .

Both lemmas are fairly easy to justify. For a full proof of Lemma 3, see [23]. To under-
stand the idea behind Lemma 4, for example, observe that there is a natural correspondence
between the set of k-dimensional subcubes of Qn and the set of k-dimensional subcubes of
QN whose last N − n coordinates are fixed at 0. The set of edges from our Breaker’s win
pairing strategy which blocks those k-dimensional subcubes must also have their last N − n
coordinates fixed at 0. If we truncate each of those edges after their nth coordinate, we will
obtain a Breaker’s win pairing strategy for the set of k-dimensional subcubes of Qn.

So far we have exhibited Breaker’s win pairing strategies for Q(3, 2), Q(4, 2) and Q(9, 4).
Let us provide a Breaker’s win pairing strategy for Q(6, 3) in order to help us construct
Breaker’s win pairing strategies for other values of n and k.

To construct a Breaker’s win pairing strategy for Q(6, 3), we will use sets of edges that
resemble cyclic permutations. For example, let

〈(∗, 0, 1, 0, 0, 0)〉 = {(∗, 0, 1, 0, 0, 0),

(0, ∗, 0, 1, 0, 0),

(0, 0, ∗, 0, 1, 0),

(0, 0, 0, ∗, 0, 1),

(1, 0, 0, 0, ∗, 0),

(0, 1, 0, 0, 0, ∗)}.

Then,
〈(∗, 0, 1, 0, 0, 0)〉 ∪ 〈(∗, 1, 0, 1, 1, 1)〉 ∪ 〈(∗, 0, 1, 1, 0, 0)〉 ∪ 〈(∗, 1, 0, 0, 1, 1)〉 (3)

is a Breaker’s win pairing strategy for Q(6, 3) consisting of 24 edges (verified by computer).
If we start with our Breaker’s win pairing strategy for Q(6, 3) and repeated apply Corol-

lary 1(b), then we obtain a Breaker’s win pairing strategy for Q(6 ·4n, 2 ·4n+1) for all n ≥ 0.
Likewise, if we start with our Breaker’s win pairing strategy for Q(9, 4) and repeated apply
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Corollary 1(b), then we obtain a Breaker’s win pairing strategy for Q(9 · 4n, 3 · 4n+1) for all
n ≥ 0. Theorem 3 states that there is a Breaker’s win pairing strategy for Q(4n+1, 4n + 1)
for all n ≥ 0.

For each n ≥ 0, there remain three intervals for which we have not yet described a
Breaker’s win pairing strategy, namely, for games played on the vertices of Qd where 4n+1 <
d < 6 · 4n, or 6 · 4n < d < 9 · 4n, or 9 · 4n < d < 4n+2. To establish the existence of Breaker’s
win pairing strategies for these values of d, we can use Lemmas 3 and 4. We use the same
approach for each interval. Specifically, for an interval of the form N1 < d < N2, we have a
Breaker’s win pairing strategy for Q(N1, k1) and Q(N2, k2). When d = N1+j for 1 ≤ j ≤ 4n,
we use Lemma 3 and our Breaker’s win pairing strategy for Q(N1, k1) to obtain a Breaker’s
win pairing strategy for Q(N1 + j, k1 + j). When d = N1 + j for 4n + 1 ≤ j < N2, we use
Lemma 4 and our Breaker’s win pairing strategy for Q(N2, k2) to obtain a Breaker’s win
pairing strategy for Q(N1 + j, k2).

After applying this technique to all three intervals, we obtain Breaker’s win pairing
strategies for

Q(4n+1 + 0 · 4n + j, 1 · 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(4n+1 + 1 · 4n + j, 2 · 4n + 1), 1 ≤ j ≤ 4n,

Q(4n+1 + 2 · 4n + j, 2 · 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(4n+1 + 3 · 4n + j, 3 · 4n + 1), 1 ≤ j ≤ 2 · 4n,

Q(4n+1 + 5 · 4n + j, 3 · 4n + 1 + j), 1 ≤ j ≤ 4n,

Q(4n+1 + 6 · 4n + j, 4 · 4n + 1) 1 ≤ j ≤ 6 · 4n.

Using the results stated in this section, we have established the existence of a non-trivial
Breaker’s win pairing strategy for Q(N,K) for each N ≥ 3. When N = 4n+1, we have that
K is N/4 + 1. When N = 6 · 4n or N = 9 · 4n, we have that K is N/3 + 1. We can ask the
following question. What is the largest value that the ratio K/N attains using the results
above? We observe that as N increases from 4n+1 to 5 · 4n, the ratio K/N increases from
1
4
+ 1

N
to 2

5
+ 1

N
. As N increases from 5 · 4n to 6 · 4n, K/N decreases from 2

5
+ 1

N
to 1

3
+ 1

N
.

As N increases from 6 · 4n to 7 · 4n, K/N increases from 1
3
+ 1

N
to 3

7
+ 1

N
. As N increases

from 7 · 4n to 9 · 4n, K/N decreases from 3
7
+ 1

N
to 1

3
+ 1

N
. As N increases from 9 · 4n to

10 · 4n, K/N increases from 1
3
+ 1

N
to 2

5
+ 1

N
. As N increases from 10 · 4n to 4n+2, K/N

decreases from 2
5
+ 1

N
to 1

4
+ 1

N
. The largest value K/N achieves is 3

7
+ 1

N
, when N = 7 · 4n

and K = 3 · 4n + 1. One can check that for each N ≥ 3, there is a Breaker’s win pairing
strategy for K =

⌊

3
7
N
⌋

+ 1. Thus, we have the following theorem:

Theorem 4 For each N ≥ 3, there is a Breaker’s win pairing strategy for Q(N,
⌊

3
7
N
⌋

+1).

We present the values of N and K corresponding to the (locally) minimum and (locally)
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maximum values achieved by K/N in the following table.

N K (local) max/min

4n N/4 + 1 min
5 · 4n (2/5)N + 1 max
6 · 4n N/3 + 1 min
7 · 4n (3/7)N + 1 max
9 · 4n N/3 + 1 min
10 · 4n (2/5)N + 1 max

6 Extra Results

In Lemma 5, we state a generalization of Lemma 2. Lemma 5 is used to prove Theorem 5,
but it is also interesting in its own right. Theorem 5 provides additional pairing strategies
that are not covered in Section 5.

Lemma 5 For all n ≥ 1 and all c ≥ 2, the sets 0cn and 1cn can each be partitioned into
subsets A1, . . . , A(2c−1)n and B1, . . . , B(2c−1)n, respectively, so that every subcube S of Qcn of
dimension cn − cn−1 + 1 contains a vertex from each Aj and each Bj.

Proof of Lemma 5: We proceed by induction on n. The case n = 1 is trivial. Suppose for
some n ≥ 1 we have A1, . . . , A(2c−1)n and B1, . . . , B(2c−1)n as in the statement of the lemma.

For each vector (b1, . . . , bc) ∈ {0, 1}c and each vector of indices (i1, . . . , ic) ∈ [(2c−1)n]c,
define the set (Di1 × · · · × Dic) where Dij = Aij if bj = 0 and Dij = Bij if bj = 1. For
example, if c = 3 and n = 1, we could have (1, 1, 0) ∈ {0, 1}3 and (4, 1, 2) ∈ [4]3 which result

in the set (B4 ×B1 × A2). Then for each ~b ∈ 0c and each ℓ ∈ [(2c−1)n], we define the set

A(~b,ℓ) =
⋃

i1+···+ic≡ℓ

(Di1 × · · · ×Dic),

where the congruence is taken modulo (2c−1)n. For example, in the case c = 3, we define
4n+1 sets

A((0,0,0),ℓ) =
⋃

i1+i2+i3≡ℓ

(Ai1 × Ai2 ×Ai3), 1 ≤ ℓ ≤ 4n,

A((0,1,1),ℓ) =
⋃

i1+i2+i3≡ℓ

(Ai1 × Bi2 ×Bi3), 1 ≤ ℓ ≤ 4n,

A((1,0,1),ℓ) =
⋃

i1+i2+i3≡ℓ

(Bi1 × Ai2 ×Bi3), 1 ≤ ℓ ≤ 4n,

A((1,1,0),ℓ) =
⋃

i1+i2+i3≡ℓ

(Bi1 × Bi2 ×Ai3), 1 ≤ ℓ ≤ 4n,

where the congruences are taken modulo 4n.
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For each ~b ∈ 1c and each ℓ ∈ [(2c−1)n], we define the sets B(~b,ℓ) similarly. We show that

the (2c−1)n+1 sets A(~b,ℓ) form the desired partition of 0cn+1. A similar proof shows that the

(2c−1)n+1 sets B(~b,ℓ) form the desired partition of 1cn+1 .
Let ~x ∈ 0cn+1. We partition the coordinates of ~x into c bins of size cn and write ~x =

(~x1, . . . , ~xc), where ~xj is ~x restricted to bin j. Let bj be the parity of ~xj for each j ∈ [c]. Since
~x ∈ 0cn+1, (b1, . . . , bc) ∈ 0c. Since

⋃

Ai = 0cn and
⋃

Bi = 1cn , there exists an ℓ ∈ [(2c−1)n]
such that ~x ∈ A((b1,...,bc),ℓ). As the sets A(~b,ℓ) are pairwise disjoint, they partition 0cn+1.

Let S be a subcube of Qcn+1 of dimension cn+1 − cn + 1. Partition the coordinates of
S into c bins each of size cn. Since cn+1 − cn + 1 = (c − 1)cn + 1, S|bin j has dimension at
least 1 for every j ∈ [c]. Since cn+1− cn +1 = c(cn − cn−1) + 1, S|bin j has dimension at least
cn − cn−1 + 1 for some j ∈ [c]. W.l.o.g., S|bin c has dimension at least cn − cn−1 + 1. Thus,
S|bin c contains a vertex in every Ai and Bi. For each j ∈ [c− 1], since S|bin j has dimension
at least 1, S|bin j contains a vertex in each of 0cn and 1cn . Thus, there exist two sequences,
k1, k2, . . . , kc−1 and m1, m2, . . . , mc−1 such that ki, mi ∈ [(2c−1)n] for each i ∈ [c − 1] and
S|bin j contains a vertex from Akj and Bmj

for each j ∈ [c− 1].
Let (b1, . . . , bc) ∈ 0c and let ℓ ∈ [(2c−1)n]. Let E = {j ∈ [c − 1] : bj = 0} and let

F = {j ∈ [c−1] : bj = 1}. For each j ∈ [c−1], let Dj = Akj if j ∈ E and Dj = Bmj
if j ∈ F ,

where Akj and Bmj
are as defined above. Let i ∈ [(2c−1)n] satisfy i+

∑

j∈E kj+
∑

j∈F mj ≡ ℓ

(mod (2c−1)n). If bc = 0, let Dc = Ai, otherwise, let Dc = Bi. Since S|bin j contains a vertex
from Dj for each j ∈ [c], S contains a vertex from (D1×· · ·×Dc). Thus, S contains a vertex

from A(~b,ℓ) for all
~b ∈ 0c and all ℓ ∈ [(2c−1)n]. �

Theorem 5 For each d ≥ 0, there exist 4d+1 disjoint Breaker’s win pairing strategies for
Q(3d+1, 3d + 1) with equal cardinalities which partition the set of edges of Q3d+1.

The proof of Theorem 5 (which we omit) is very similar to the proof of Theorem 3, except
we use the following pairing strategies, which use rotating product-sets shifted by s:

BinPS
R(s)
0 (3× n) = (P× 0× 0)R(s) ∪ (1×P× 1)R(s) ∪ (0× 1×P)R(s),

BinPS
R(s)
1 (3× n) = (P× 0× 1)R(s) ∪ (0×P× 0)R(s) ∪ (1× 1×P)R(s),

BinPS
R(s)
2 (3× n) = (P× 1× 0)R(s) ∪ (0×P× 1)R(s) ∪ (1× 0×P)R(s),

BinPS
R(s)
3 (3× n) = (P× 1× 1)R(s) ∪ (1×P× 0)R(s) ∪ (0× 0×P)R(s),

where, for example,

(0× 1×P)R(s) = {(~x, ~y, ~z) : ~x ∈ 0, ~y ∈ 1, ~z ∈ P(i),

where i = s+ Index(~x) + Index(~y) (mod m)},

where we assume that we have m = 4d matchings P(i) (of equal cardinality) which partition
the edges of Q3d and each P(i) is a Breaker’s win pairing strategy for Q(3d, 3d−1+1) in order
to produce 4d+1 Breaker’s win pairing strategies for Q(3d+1, 3d + 1).

We use P(0),P(1),P(2),P(3) from the beginning of Section 4 for the case d = 0.
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7 Conclusion

Let p(n) be the smallest value of k such that Breaker wins the positional game on Q(n, k) by
using a pairing strategy. We have proven the following upper bounds. If n ∈ {4d+1 : d ∈ N},
then p(n) ≤ n

4
+ 1. If n ∈ {3d+1 : d ∈ N} ∪ {6 · 4d : d ∈ N} ∪ {9 · 4d : d ∈ N}, then

p(n) ≤ n
3
+ 1. In general, for all n ≥ 3, p(n) ≤ 3

7
n + 1. To obtain a lower bound on p(n),

we cite Proposition 9 in [14], which implies that p(n) > ln(n). Thus, there is a large gap
between the upper and lower bounds on p(n) for most values of n. It would be interesting
to improve any of these bounds. With regards to small specific values of n, because Maker
has a winning strategy for Q(5, 2) (see [23]) and Q(2, 1), we know that p(3) = p(4) = 2 and
p(5) = p(6) = 3. It would be nice to also determine the exact values of, say, p(7) and p(8).

We note that there is no direct analogue to Theorems 3 and 5 for Q(cd+1, cd + 1) for
c ≥ 5 using our proof method. Indeed, Theorems 3 and 5 rely on the Breaker’s win pairing
strategies for Q(4, 2) and Q(3, 2) in order to create BinPS

R(s)
j (4×n) and BinPS

R(s)
j (3× n).

Since Maker has a winning strategy forQ(c, 2) for all c ≥ 5, there are no Breaker’s win pairing

strategies for Q(c, 2) from which we would create the product-sets for BinPS
R(s)
j (c× n) for

all c ≥ 5.
As a final note, we mention that some of our results can be viewed as being related to a

Turán-type problem on Qn. Let ex(G,H) be the maximum number of edges in a subgraph
of G which does not contain a copy of H . In [15], Erdős discussed some problems that he
believed deserved more attention, including determining ex(Qn, C4), which he conjectured
to be (1

2
+ o(1))|E(Qn)|. Much work has been done related to determining ex(Qn, C2t), see

for example, [2], [3], [4], [7], [8], [9], [11], [12], [13], [17, 18], [27].
In [1], Alon, Krech, and Szabó change the focus to studying ex(Qn, Qd). In particular, let

c(n, d) be the minimum number of edges that must be deleted from Qn so that no copy of Qd

remains, and let cd = limn→∞ c(n, d)/|E(Qn)|. (For a study of c(n, d) in a computer science
context, see [20].) In their approach, Alon, Krech, and Szabó used a “Ramsey-type frame-
work,” which involved studying d-polychromatic colorings of the edges of Qn, i.e., colorings
in which every d-dimensional subcube of Qn contains an edge from every color class. They
define pc(n, d) to be the largest integer p such that there exists a d-polychromatic coloring of
the edges of Qn in p colors, and pd = limn→∞ pc(n, d). They also define higher-dimensional
analogues, where the definition of pc(ℓ)(n, d) is based on coloring each ℓ-dimensional subcube
of Qn so that each d-dimensional subcube contains an ℓ-dimensional subcube of each color.
Thus, pc(n, d) is the special case ℓ = 1. They proved upper and lower bounds for pd for all

d ≥ 1 and that p
(0)
d = d + 1 for all d ≥ 0. In [24], Offner proved that pd equals the lower

bound given by Alon, Krech, and Szabó. Much work related to polychromatic colorings on
the hypercube has been done, for example, [10], [19], [21], [25], and [26].

We note that Theorems 5 and 3 provide a (3d+1)-polychromatic proper coloring of Q3d+1

and a (4d + 1)-polychromatic proper coloring of Q4d+1 for all d ≥ 0, both using 4d+1 colors,
i.e., each color class forms a matching. It would be interesting to determine for which values
of n and d there exists a d-polychromatic proper coloring of Qn.

We also note that Lemma 5 provides a (cn−cn−1+1)-polychromatic coloring of the vertices
of Qcn using (2c−1)n colors and only vertices from 0cn (or 1cn). If we let A1, . . . , A(2c−1)n be the
partition of 0cn andB1, . . . , B(2c−1)n be the partition of 1cn , thenA1∪B1, . . . , A(2c−1)n∪B(2c−1)n
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works as a sort of (cn − cn−1 + 1)-polychromatic double-coloring of the vertices of Qcn using
(2c−1)n colors, i.e., every (cn − cn−1 + 1)-dimensional subcube contains two vertices from
each color class. It could be interesting to ask for which values of n, d, and p do there exist
d-polychromatic double-colorings of Qn using p colors.
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[2] N. Alon, R. Radoiǒić, B. Sudakov, and J. Vondraák, A Ramsey-type result for the
hypercube, J. Graph Theory 53 (2006), 196–208.

[3] M. Axenovich and R. Martin, A note on short cycles in a hypercube, Discrete Math.
306, no. 18 (2006), pp. 2212–2218.
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