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Abstract

For a given graph R, a graph G is R-free if G does not contain R as an induced

subgraph. It is known that every 2-tough graph with at least three vertices has a

2-factor. In graphs with restricted structures, it was shown that every 2K2-free 3/2-

tough graph with at least three vertices has a 2-factor, and the toughness bound 3/2

is best possible. In viewing 2K2, the disjoint union of two edges, as a linear forest, in

this paper, for any linear forest R on 5, 6, or 7 vertices, we find the sharp toughness

bound t such that every t-tough R-free graph on at least three vertices has a 2-factor.

Keywords: 2-factor, toughness, forbidden subgraphs

1 Introduction

Let G be a simple, undirected graph and let V (G) and E(G) denote the vertex set and the

edge set of G, respectively. We denote the set of neighbors of a vertex x ∈ V (G) by NG(x). The

closed neighborhood of a vertex x in G, denoted by NG[x], is the set {x} ∪NG(x). For any subset

S ⊆ V (G), G[S] is the subgraph of G induced by S, G−S denotes the subgraph G[V (G) \S], and

NG(S) =
⋃

v∈S NG(v). Given disjoint subsets S and T of V (G), we denote by EG(S, T ) the set of

edges which have one end vertex in S and the other end vertex in T , and let eG(S, T ) = |EG(S, T )|.

If S = {s} is a singleton, we write eG(s, T ) for eG({s}, T ). If H ⊆ G is a subgraph of G, and

T ⊆ V (G) with T ∩ V (H) = ∅, we write EG(H,T ) and eG(H,T ) for notational simplicity.

For a given graph R, we say that G is R-free if there does not exist an induced copy of R in

G. For integers a and b with a ≥ 0 and b ≥ 1, we denote by aPb the graph consisting of a disjoint
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copies of the path Pb. When a = 1, 1Pb is just Pb, and when a = 0, 0Pb is the null graph. For two

integers p and q, let [p, q] = {i ∈ Z : p ≤ i ≤ q}.

Denote by c(G) the number of components of G. Let t ≥ 0 be a real number. We say a graph

G is t-tough if for each cutset S of G we have t · c(G − S) ≤ |S|. The toughness of a graph G,

denoted τ(G), is the maximum value of t for which G is t-tough if G is non-complete and is defined

to be ∞ if G is complete.

For an integer k ≥ 1, a k-regular spanning subgraph is a k-factor of G. It is well known,

according to a theorem by Enomoto, Jackson, Katerinis, and Saito [3] from 1998, that every k-

tough graph with at least three vertices has a k-factor if k|V (G)| is even and |V (G)| ≥ k + 1.

In terms of a sharp toughness bound, particular research interest has been taken when k = 2 for

graphs with restricted structures. For example, it was shown that every 3/2-tough 5-chordal graph

(graphs with no induced cycle of length at least 5) on at least three vertices has a 2-factor [1] and

that every 3/2-tough 2K2-free graph on at least three vertices has a 2-factor [5]. The toughness

bound 3/2 is best possible in both results.

A linear forest is a graph consisting of disjoint paths. In viewing 2K2 as a linear forest on 4

vertices and the result by Ota and Sanka [5] that every 3/2-tough 2K2-free graph on at least three

vertices has a 2-factor, we investigate the existence of 2-factors in R-free graphs when R is a linear

forest on 5, 6, or 7 vertices. These graphs R are listed below, where the unions are vertex disjoint

unions.

1. P5 P4 ∪ P1 P3 ∪ P2 P3 ∪ 2P1 2P2 ∪ P1 P2 ∪ 3P1 5P1;

2. P6 P5 ∪ P1 P4 ∪ P2 P4 ∪ 2P1 2P3 P3 ∪ P2 ∪ P1 P3 ∪ 3P1 3P2 2P2 ∪ 2P1

P2 ∪ 4P1 6P1;

3. P7 P6∪P1 P5∪P2 P5∪2P1 P4∪P3 P4∪P2∪P1 P4∪3P1 2P3∪P1 P3∪2P2

P3 ∪ P2 ∪ 2P1 P3 ∪ 4P1 3P2 ∪ P1 2P2 ∪ 3P1 P2 ∪ 5P1 7P1.

Our main results are the following:

Theorem 1. Let t > 0 be a real number, R be any linear forest on 5 vertices, and G be a t-tough

R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

(a) R = P2 ∪ 3P1, and G ∼= H0 or G contains H1, H2 or H3 as a spanning subgraph such

that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [1, 3], where Hi, S and T are

defined in Figure 1.

(b) R = P3 ∪ 2P1 and G contains H1 as a spanning subgraph such that E(G) \ E(H1) ⊆

EG(S, V (G) \ (T ∪ S)).

(2) R = 5P1 and t > 1.
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The graph H4

Figure 1: The four exceptional graphs for Theorem 1(1), where S = {x} and T = {t1, t2, t3}.

(3) R ∈ {P5, P3 ∪ P2, 2P2 ∪ P1} and t = 3/2.

Theorem 2. Let t > 0 be a real number, R be any linear forest on 6 vertices, and G be a t-tough

R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1} and t > 1 unless R = 6P1 and G contains H5 with

p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)), where H5,

S and T are defined in Figure 2.

(2) R ∈ {P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 3P2, 2P2 ∪ 2P1} and t = 3/2.

Theorem 3. Let t > 0 be a real number, R be any linear forest on 7 vertices, and G be a t-tough

R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1} and t > 1 unless

(a) when R 6= P4 ∪ 3P1, G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]), where H5, S and T are defined in

Figure 2.

(b) R = P2 ∪ 5P1 and G contains one of H6, . . . ,H11 as a spanning subgraph such that

E(G) \E(Hi) ⊆ EG(S, V (G) \ (T ∪ S))∪E(G[S]) ∪E(G[V (G) \ (T ∪S)]), where Hi, S

and T are defined in Figure 3 for each i ∈ [6, 11].
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Kp

T

Sx1 x2

t1 t2 t3 t4 t5

y1y2y3 y4 y5

The graph H5

Figure 2: The exceptional graph for Theorem 2(1), where S = {x1, x2}, T = {t1, . . . , t5},

and p = 5.

(2) R = 7P1 and t > 7
6 unless G contains H5 with p = 5 as a spanning subgraph such that

E(G) \E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]).

(3) R ∈ {P7, P6∪P1, P5∪P2, P5∪2P1, P4∪P2∪P1, 2P3∪P1, P4∪P3, P3∪2P2, P3∪P2∪2P1, 3P2∪

P1, 2P2 ∪ 3P1} and t = 3/2.
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Figure 3: The five exceptional graphs for Theorem 3(1)(b), where S = {x1, x2}, T =

{t1, t2, t3, t4, t5}, and “+” represents the join of Hi[S] and Hi[T ], i ∈ [6, 11].

Remark 4 (Examples demonstrating sharp toughness bounds). The toughness bounds in Theo-

rems 1 to 3 are all sharp.
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(1) Theorem 1(1) when R ∈ {P4 ∪P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1. The graph showing that the

toughness 1 is best possible is the complete bipartite Kn−1,n for any integer n ≥ 2. The graph

Kn,n−1 is P4-free and so is R-free, with limn→∞ τ(Kn,n−1) = limn→∞
n−1
n

= 1, but contains

no 2-factor.

(2) Theorem 1(2), Theorem 2(1) and Theorem 3(1) and t > 1. The graph showing that the

toughness is best possible is the graph H12, which is constructed as below: let p ≥ 3, Kp be a

complete graph, and y1, y2, y3 ∈ V (Kp) be distinct, S = {x}, and T = {t1, t2, t3}, then H12 is

obtained from Kp, S and T by adding edges tix and tiyi for each i ∈ [1, 3]. See Figure 4 for

a depiction. By inspection, the graph is 5P1-free and (P4 ∪ 2P1)-free. So the graph is R-free

for any R ∈ {5P1, P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1, P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1}. For any

given p ≥ 3, the graph H12 does not contain a 2-factor, as any 2-factor has to contain the

edges t1x, t2x and t3x. We will show τ(H12) = 1 in the last section.

(3) For Theorem 1(3), Theorem 2(2) and Theorem 3(3) and t = 3
2 : note that all the graphs R in

these cases contain 2K2 as an induced subgraph. Chvátal [2] constructed a sequence {Gk}
∞
k=1

of split graphs (graphs whose vertex set can be partitioned into a clique and an independent

set) having no 2-factors and τ(Gk) =
3k

2k+1 for each positive integer k. As the class of 2K2-

free graphs is a superclass of split graphs, 3
2-tough is the best possible toughness bound for a

2K2-free graph to have a 2-factor.

(4) Theorem 3(2) and t > 7
6 . The graph showing that the toughness is best possible is the graph

H5 with p ≥ 6, which is constructed as below: let p ≥ 5, Kp be a complete graph, and

y1, y2, y3, y4, y5 ∈ V (Kp) be distinct, S = {x1, x2}, and T = {t1, t2, t3, t4, t5}. Then H5

is obtained from Kp, S and T by adding edges tixj and tiyi for each i ∈ [1, 5] and each

j ∈ [1, 2]. See Figure 2 for a depiction. By inspection, the graph is 7P1-free. For any given

p ≥ 5, the graph H5 does not contain a 2-factor, as any 2-factor has to contain at least three

edges from one of x1 and x2 to at least three vertices of T . We will show τ(H5) =
7
6 when

p ≥ 6 in the last section.

Kp

T

x

The graph H12

S

t1 t2 t3

y1 y2 y3

Figure 4: Sharpness example for Theorem 1(2), Theorem 2(1) and Theorem 3(1), where

S = {x} and T = {t1, t2, t3}.

To supplement Theorems 1 to 3, we show that the exceptional graphs in Figures 1 to 3 satisfy

the corresponding conditions below.
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Theorem 5. The following statements hold.

(1) The graph Hi is (P2 ∪ 3P1)-free, contains no 2-factor, and τ(Hi) = 1 for each i ∈ [0, 4], the

graph H1 is also (P3 ∪ 2P1)-free.

(2) The graph Hi is (P2 ∪ 5P1)-free and contains no 2-factor for each i ∈ [5, 11], H5 with p = 5

is (P3 ∪ 4P1)-free and 6P1-free. Furthermore, τ(H5) =
6
5 when p = 5 and τ(Hi) =

7
6 for each

i ∈ [6, 11].

We have explained that H5 andH12 are R-free for the corresponding linear forests R and contain

no 2-factor in Remark 4(2) and (4). The Theorem below is to verify the toughness of the graphs

H5 with p ≥ 6 and H12.

Theorem 6. The following statements hold.

(1) τ(H5) =
7
6 when p ≥ 6;

(2) τ(H12) = 1.

The remainder of this paper is organized as follows. In section 2, we introduce more notation and

preliminary results on proving existence of 2-factors in graphs. In section 3, we prove Theorems 1-3.

Theorems 5 and 6 are proved in the last section.

2 Preliminaries

One of the main proof ingredients of Theorems 1 to 3 is to apply Tutte’s 2-factor Theorem.

We start with some notation. Let S and T be disjoint subsets of vertices of a graph G, and D

be a component of G − (S ∪ T ). The component D is said to be an odd component (resp. even

component) of G− (S ∪ T ) if eG(D,T ) ≡ 1 (mod 2) (resp. eG(D,T ) ≡ 0 (mod 2)). Let h(S, T ) be

the number of all odd components of G− (S ∪ T ). Define

δ(S, T ) = 2|S| − 2|T |+
∑

y∈T

dG−S(y)− h(S, T ).

It is easy to see that δ(S, T ) ≡ 0 (mod 2) for every S, T ⊆ V (G) with S ∩ T = ∅. We use the

following criterion for the existence of a 2-factor, which is a restricted form of Tutte’s f -factor

Theorem.

Lemma 7 (Tutte [6]). A graph G has a 2-factor if and only if δ(S, T ) ≥ 0 for every S, T ⊆ V (G)

with S ∩ T = ∅.

An ordered pair (S, T ), consisting of disjoint subsets of vertices S and T in a graph G, is called

a barrier if δ(S, T ) ≤ −2. By Lemma 7, if G does not have a 2-factor, then G has a barrier. In [4],

a biased barrier of G is defined as a barrier (S, T ) of G such that among all the barriers of G,

6



(1) |S| is maximum; and

(2) subject to (1), |T | is minimum.

The following properties of a biased barrier were derived in [4].

Lemma 8. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then each

of the following holds.

(1) The set T is independent in G.

(2) If D is an even component with respect to (S, T ), then eG(T,D) = 0.

(3) If D is an odd component with respect to (S, T ), then for any y ∈ T , eG(y,D) ≤ 1.

(4) If D is an odd component with respect to (S, T ), then for any x ∈ V (D), eG(x, T ) ≤ 1.

Let G be a graph without a 2-factor and (S, T ) be a barrier of G. For an integer k ≥ 0, let C2k+1

denote the set of odd components D of G − (S ∪ T ) such that eG(D,T ) = 2k + 1. The following

result was proved as a claim in [4] but we include a short proof here for self-completeness.

Lemma 9. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then

|T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1.

Proof. Let U = V (G) \ S. Since (S, T ) is a barrier,

δ(S, T ) = 2|S| − 2|T |+
∑

y∈T

dG−S(y)− h(S, T )

= 2|S| − 2|T |+
∑

y∈T

dG−S(y)−
∑

k≥0

|C2k+1| ≤ −2.

By Lemma 8(1) and Lemma 8(2),

∑

y∈T

dG−S(y) =
∑

y∈T

eG(y, U) = eG(T,U) =
∑

k≥0

(2k + 1)|C2k+1|.

Therefore, we have

−2 ≥ 2|S| − 2|T |+
∑

k≥0

(2k + 1)|C2k+1| −
∑

k≥0

|C2k+1|,

which yields |T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1.

We use the following lemmas in our proof.

Lemma 10. Let t ≥ 1, G be a t-tough graph on at least three vertices containing no 2-factor, and

(S, T ) be a barrier of G. Then the following statements hold.
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(1) If C1 6= ∅, then |S|+ 1 ≥ 2t. Consequently, S = ∅ implies C1 = ∅, and |S| = 1 implies C1 = ∅

when t > 1.

(2)
⋃

k≥1 C2k+1 6= ∅.

Proof. Since G is 1-tough and thus is 2-connected, dG(y) ≥ 2 for every y ∈ T . This together

with Lemma 8(1)-(3) implies |S|+
∑

k≥0 |C2k+1| ≥ 2.

For the first part of (1), suppose to the contrary that |S| + 1 < 2t. Let D ∈ C1 and y ∈ V (T )

be adjacent in G to some vertex v ∈ V (D). As eG(D,T ) = eG(D, y) = 1, |S| +
∑

k≥0 |C2k+1| ≥ 2.

and |T | ≥ |S| + 1 by Lemma 9, we have c(G − (S ∪ {y})) ≥ 2 regardless of whether or not S = ∅.

But c(G− (S ∪{y})) ≥ 2 implies τ(G) < 2t/2 = t, contradicting G being t-tough. The second part

of (1) is a consequence of the first part.

For (2), suppose to the contrary that
⋃

k≥1 C2k+1 = ∅. By Lemma 10(1), |S| + |C1| ≥ 2

implies |S| ≥ 1. Consequently, |T | ≥ 2 by Lemma 9. As every component of G − (S ∪ T ) in

C1 is connected to exactly one vertex of T , S is a cutset of G with c(G − S) ≥ |T |. However,

|T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1 = |S|+ 1, implying τ(G) < 1, a contradiction.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or vPu in

order to specify the two endvertices of P . Let uPv and xQy be two disjoint paths. If vx is an

edge, we write uPvxQy as the concatenation of P and Q through the edge vx. Let G be a graph

without a 2-factor, and let (S, T ) be a barrier of G. For y ∈ T , define

h(y) = |{D : D ∈
⋃

k≥1

C2k+1 and eG(y,D) ≥ 1}|.

Lemma 11. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G. Then the

following statements hold.

(1) If |
⋃

k≥1 C2k+1| ≥ 1, then G contains an induced P4 ∪ aP1, where a = |T | − 2.

(2) If there exists y0 ∈ T with h(y0) ≥ 2, then for some integer b ≥ 7, G contains an induced

Pb ∪ aP1, where a = |T | − 3. Furthermore, an induced Pb ∪ aP1 can be taken such that

the vertices in aP1 are from T and the path Pb has the form y1x
∗
1P1x1y0x2P2x

∗
2y2, where

y0, y1, y2 ∈ T and x∗1P1x1 and x∗2P2x2 are respectively contained in two distinct components

from
⋃

k≥1 C2k+1 such that eG(x, T ) = 0 for every internal vertex x from P1 and P2.

Proof. Lemma 8(1), (3) and (4) will be applied frequently in the arguments sometimes without

mentioning it.

LetD ∈
⋃

k≥1 C2k+1. The existence ofD implies |T | ≥ 3 and |V (D)| ≥ 3 by Lemma 8(3) and (4).

We claim that for a fixed vertex x1 ∈ V (D) such that eG(x1, T ) = 1, there exists distinct x2 ∈ V (D)

and an induced (x1, x2)-path P in D with the following two properties: (a) eG(x2, T ) = 1, and

(b) eG(x, T ) = 0 for every x ∈ V (P ) \ {x1, x2}. Note that the vertex x1 exists by Lemma 8(4).

Let y1 ∈ T be the vertex such that eG(x1, T ) = eG(x1, y1) = 1 and W = NG(T \ {y1}) ∩ V (D).

8



By Lemma 8(4), x1 6∈ W . Now in D, we find a shortest path P connecting x1 and some vertex

from W , say x2. Then x2 and P satisfy properties (a) and (b), respectively. Let y2 ∈ T such

that eG(x2, T ) = eG(x2, y2) = 1. The vertex y2 uniquely exists by the choice x2 and Lemma 8(4).

By Lemma 8(1) and (4), and the choice of P , we know that y1x1Px2y2 and T \ {y1, y2} together

contains an induced P4 ∪ aP1. This proves (1).

We now prove (2). By Lemma 8(3), the existence of y0 implies |
⋃

k≥1 C2k+1| ≥ 2, which in

turn gives |T | ≥ 3 by Lemma 8(3) again. We let D1,D2 ∈
⋃

k≥1 C2k+1 be distinct such that

eG(y0,D1) = 1 and eG(y0,D2) = 1. Let xi ∈ Di such that eG(y0,Di) = eG(y0, xi) = 1. By the

argument in the first paragraph above, we can find x∗i ∈ V (Di) \ {xi} and an (xi, x
∗
i )-path Pi in

Di for each i ∈ {1, 2}. By the choice of Pi and Lemma 8(4), there are unique y1, y2 ∈ T \ {y0}

such that x∗i yi ∈ E(G). If y1 6= y2, by the choice of P1 and P2 and Lemma 8(1) and (4), we

know that y1x
∗
1P1x1y0x2P2x

∗
2y2 and T \ {y0, y1, y2} together contain an induced Pb ∪ aP1 for some

integer b ≥ 7. Thus we assume y1 = y2. Then the vertex y1 can also play the role of y0. Let

W = NG(T \ {y0, y1}) ∩ V (D2). By Lemma 8(4), x2, x
∗
2 6∈ W . Now in D2, we find a shortest path

P ∗
2 connecting some vertex of {x2, x

∗
2} and some vertex from W , say z. If P ∗

2 is an (x2, z)-path, then

y1x
∗
1P1x1y0x2P

∗
2 z and T \{y0, y1, y2} together contain an induced Pb∪aP1. If P

∗
2 is an (x∗2, z)-path,

then y0x1P1x
∗
1y1x

∗
2P

∗
2 z and T \ {y0, y1, y2} together contain an induced Pb ∪ aP1. The second part

of (2) is clear by the construction above.

Let G be a non-complete graph. A cutset S of V (G) is a toughset of G if |S|
c(G−S) = τ(G).

Lemma 12. If G is a connected graph and S is a toughset of G, then for every x ∈ S, x is adjacent

in G to vertices from at least two components of G− S.

Proof. Assume to the contrary that there exists x ∈ S such that x is adjacent in G to vertices

from at most one component of G− S. Then c(G − (S \ {x})) = c(G − S) ≥ 2 and

|S \ {x}|

c(G− (S \ {x}))
<

|S|

c(G− S)
= τ(G),

contradicting G being τ(G)-tough.

3 Proof of Theorems 1, 2, and 3

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also R∗-free for any

supergraph R∗ of R. To prove Theorems 1 to 3, we will show that the corresponding statements

hold for a supergraph R∗ of R, which simplifies the cases of possibilities of R. Let us first list the

supergraphs that we will use.

(1) P4 ∪ 3P1 is a supergraph of the following graphs: P4 ∪ 2P1, P3 ∪ 3P1, and P2 ∪ 4P1;

(2) 6P1 is a supergraph of 5P1;
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(3) P3 ∪ 2P2 is a supergraph of 3P2;

(4) P7 ∪ 2P1 is a supergraph of the following graphs:

(a) P5, P3 ∪ P2, 2P2 ∪ P1;

(b) P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 2P2 ∪ 2P1;

(c) P7, P6 ∪ P1, P5 ∪ 2P1, P4 ∪ P2 ∪ P1, 2P3 ∪ P1, P3 ∪ P2 ∪ 2P1, 2P2 ∪ 3P1.

Those supergraphs above together with the graphsR listed below cover all the 33 R graphs described

in Theorems 1 to 3. Theorems 1 to 3 are then consequences of the theorem below.

Theorem 13. Let t > 0 be a real number, R be a linear forest, and G be a t-tough R-free graph

on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

(a) R = P2 ∪ 3P1, and G ∼= H0 or G contains H1, H2, H3 or H4 as a spanning subgraph

such that E(G) \E(Hi) ⊆ EG(S, V (G) \ (T ∪S)) for each i ∈ [1, 3], where Hi, S and T

are defined in Figure 1.

(b) R = P3 ∪ 2P1 and G contains H1 as a spanning subgraph such that E(G) \ E(H1) ⊆

EG(S, V (G) \ (T ∪ S)).

(2) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1, 6P1} and t > 1 unless

(a) when R 6= P4 ∪ 3P1, G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]), where H5, S and T are defined in

Figure 2.

(b) R = P2 ∪ 5P1 and G contains one of H6, . . . ,H11 as a spanning subgraph such that

E(G) \E(Hi) ⊆ EG(S, V (G) \ (T ∪ S))∪E(G[S]) ∪E(G[V (G) \ (T ∪S)]), where Hi, S

and T are defined in Figure 3 for each i ∈ [6, 11].

(3) R = 7P1 and t > 7
6 unless G contains H5 with p = 5 as a spanning subgraph such that

E(G) \E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]).

(4) R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and t = 3/2.

Proof. Assume by contradiction that G does not have a 2-factor. By Lemma 7, G has a barrier.

We choose (S, T ) to be a biased barrier. Thus (S, T ) and G satisfy all the properties listed in

Lemma 8. These properties will be used frequently even without further mentioning sometimes.

By Lemma 9,

|T | ≥ |S|+
∑

k≥1

k|C2k+1|+ 1. (1)

Since t ≥ 1, by Lemma 10(2), we know that
⋃

k≥1

C2k+1 6= ∅. (2)
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This implies |T | ≥ 3 and so G contains an induced P4 ∪ P1 by Lemma 11 (1). Thus we assume

R 6= P4 ∪ P1 in the rest of the proof.

Claim 1. R 6∈ {P3 ∪ 2P1, P2 ∪ 3P1} unless G falls under one of the exceptional cases as in (a) and

(b) of Theorem 13(1).

Proof. Assume instead that R ∈ {P3 ∪ 2P1, P2 ∪ 3P1}. Thus t = 1. We may assume that G does

not fall under any of the exceptional cases as in (a) and (b) of Theorem 13 (1).

It must be the case that |T | = 3, as otherwise G contains an induced P4 ∪ 2P1 by Lemma 11(1),

and so contains an induced R. By Equation (1), we have |
⋃

k≥1 C2k+1|+ |S| ≤ 2. By Lemma 10(1),

we have that C0 = ∅ if S = ∅. Since G is 1-tough and so δ(G) ≥ 2, Lemma 8(1)-(3) implies that

|
⋃

k≥1 C2k+1|+ |S| = 2. By (2), we have the two cases below.

Case 1: |
⋃

k≥1 C2k+1| = 2 and S = ∅.

Let D1,D2 ∈
⋃

k≥1 C2k+1 be the two odd components of G − (S ∪ T ). Since |T | = 3, Lemma 8(3)

implies that eG(Di, T ) = 3 for each i ∈ [1, 2]. Let y ∈ T and x ∈ V (D1) such that xy ∈ E(G). We

let x1 be a neighbor of x from D1. Then yxx1 is an induced P3 by Lemma 8(3). Let y1 ∈ T \ {y}

such that y1x1 6∈ E(G), which is possible as |T | = 3 and eG(x1, T ) ≤ 1 by Lemma 8(4). We now

let x2 ∈ V (D2) such that eG(x2, {y, y1}) = 0, which is again possible as |NG(T ) ∩ V (D2)| = 3 and

each vertex of D2 is adjacent in G to at most one vertex of T . However, yxx1, y1 and x2 together

form an induced copy of P3 ∪ 2P1. Therefore, we assume R = P2 ∪ 3P1.

We first claim that |V (Di)| = 3 for each i ∈ [1, 2]. Otherwise, say |V (D2)| ≥ 4. Let y ∈ T and

x ∈ V (D1) such that xy ∈ E(G). Take x1 ∈ V (D2) such that eG(x1, T ) = 0, which exists as

|NG(T )∩V (D2)| = 3. Then xy, x1 and T \{y} together form an induced copy of P2 ∪ 3P1, giving a

contradiction. We next claim that Di = K3 for each i ∈ [1, 2]. Otherwise, say D1 6= K3. As D1 is

connected, it follows that D1 = P3. If also D2 6= K3 and so D2 = P3, then deleting the two vertices

of degree 2 from both D1 and D2 gives three components (note that each vertex of T is adjacent

in G to one vertex of D1 and one vertex of D2), showing that τ(G) ≤ 2/3 < 1. Thus D2 = K3.

We let x1, x2 ∈ V (D1) be nonadjacent, y1, y2 ∈ T such that eG(xi, yi) = 1 for each i ∈ [1, 2], and

z1, z2 ∈ V (D2) such that eG(yi, zi) = 1 for each i ∈ [1, 2]. Let y ∈ T \ {y1, y2}. Then z1z2, y, x1 and

x2 together form an induced copy of P2 ∪ 3P1, giving a contradiction.

Thus |V (Di)| = 3 and Di = K3 for each i ∈ [1, 2]. However, this implies that G ∼= H0.

Case 2: |
⋃

k≥1 C2k+1| = 1 and |S| = 1.

Let D ∈
⋃

k≥1 C2k+1 be the odd component of G− (S ∪ T ). Assume first that R = P3 ∪ 2P1. Then

we have |V (D)| = 3. Otherwise, |V (D)| ≥ 4. Let x ∈ V (D) such that eG(x, T ) = 0 and P be a

shortest path of D from x to a vertex, say x1 ∈ V (D)∩NG(T ). Let y ∈ T such that eG(x1, y) = 1.

Then xPx1y and T \ {y} form an induced copy of R, a contradiction.
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SinceG does not containH1 as a spanning subgraph such that E(G)\E(H1) ⊆ EG(S, V (G)\(T∪S)),

it follows that D 6= K3. As D is connected, it follows that D = P3. Now deleting the vertex in S

together with the degree 2 vertex of D produces three components, showing that τ(G) ≤ 2/3 < 1.

Therefore, we assume now that R = P2∪3P1. Since G does not contain H1 as a spanning subgraph

such that E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)), the argument for the case R = P3 ∪ 2P1

above implies that |V (D)| ≥ 4. We claim that |V (D)| = 4. If |V (D)| ≥ 5, we let x1, x2 ∈

V (D) \ NG(T ) be any two distinct vertices. If x1x2 ∈ E(G), then x1x2 together with T form an

induced copy of R, a contradiction. Thus V (D) \ NG(T ) is an independent set in G. However,

c(G− (S ∪ (NG(T ) ∩ V (D)))) = |T |+ |V (D) \NG(T )| ≥ 5, implying that τ(G) ≤ 4/5 < 1.

Thus |V (D)| = 4. Let x ∈ V (D) such that eG(x, T ) = 0. Since G does not contain Hi as a

spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [2, 4], it follows

that either dD(x) ≤ 2 or dD(x) = 3 and D = K1,3. If dD(x) = 3, then as D = K1,3, we have

c(G − (S ∪ {x})) = 3, implying τ(G) ≤ 2/3 < 1. Thus dD(x) ≤ 2. Let V (D) = {x, x1, x2, x3} and

assume xx1 6∈ E(D). Then c(G− (S ∪ {x2, x3})) = 4, implying τ(G) ≤ 3/4 < 1. The proof of Case

2 is complete.

Thus by Claim 1 and the fact that R 6= P4 ∪ P1, we can assume R 6∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1}

from this point on. Therefore we have t > 1. This implies that G is 3-connected and so δ(G) ≥ 3.

Thus |S|+ |
⋃

k≥0 C2k+1| ≥ 3 by Lemma 8(1)-(4).

Claim 2. |T | ≥ 5.

Proof. Equation (2) implies |T | ≥ 3. Assume to the contrary that |T | ≤ 4. We consider the

following two cases.

Case 1: |T | = 3.

Since |S| + |
⋃

k≥0 C2k+1| ≥ 3, we already have a contradiction to Equation (1) if C1 = ∅. Thus

C1 6= ∅, which gives |S| ≥ 2 by Lemma 10(1). However, we again get a contradiction to Equation (1)

as
⋃

k≥1 C2k+1 6= ∅ by Equation (2).

Case 2: |T | = 4.

By Lemma 8 (3), we know that C2k+1 = ∅ for any k ≥ 2. First assume |S| ≤ 1. Then C1 = ∅ by

Lemma 10 (1). By Lemma 8, there are at least 3|T | = 12 edges going from T to vertices in S and

components in
⋃

k≥1 C2k+1. As C2k+1 = ∅ for any k ≥ 2, it follows that |C3| ≥ 4 if |S| = 0 and

|C3| ≥ 3 if |S| = 1, contradicting Equation (1).

Next, assume |S| ≥ 2. By Equations (1) and (2), we have |S| = 2. Let D be the single component

in C3. Define WD to be a set of 2 vertices in D which are all adjacent in G to some vertex from T .

Then S∪WD is a cutset in G such that |S∪WD| = 4 and c(G− (S∪WD)) ≥ |T | = 4, contradicting
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τ(G) ≥ t > 1.

By Claim 2 and Lemma 11 (1), we see that G contains an induced R = P4 ∪ 3P1. Thus we may

assume R 6∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1, P4 ∪ 3P1} from this point on.

Claim 3. R 6∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1} unless G falls under the exceptional cases as in (a)

and (b) of Theorem 13(2).

Proof. We may assume that G does not fall under the exceptional cases as in (a) and (b) of

Theorem 13(2). Thus we show that R 6∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}.

Assume to the contrary that R ∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}. By Lemma 11(1), G contains an

induced P4 ∪ aP1, where a = |T | − 2. If a ≥ 5, then each of P3 ∪ 4P1, P2 ∪ 5P1, 6P1, and 7P1 is an

induced subgraph of P4 ∪ aP1, a contradiction. Thus a ≤ 4 and so |T | ≤ 6. As |T | ≤ 6, we have

that
⋃

k>2 C2k+1 = ∅ by Lemma 8 (3). Since G is more than 1-tough and so is 3-connected, we have

δ(G) ≥ 3. By Claim 2, |T | ≥ 5. Thus, we have two cases.

Case 1: |T | = 5.

As |T | = 5, we have C2k+1 = ∅ for any k ≥ 3. We consider two cases regarding whether or not

|C3 ∪ C5| ≥ 2.

Case 1.1: |C3 ∪ C5| = 1.

Let D ∈ C2k+1 ⊆ C3 ∪ C5. By Equation (1), 5 ≥ |S|+ k + 1, so |S| ≤ 4 − k. If k = 1, let WD be a

set of 2k vertices (which exist by Lemma 8 (4)) from D which are adjacent in G to vertices from

T . Then S ∪WD forms a cutset and we have

t ≤
|S|+ 2k

5
≤

4 + k

5
=

5

5
= 1,

contradicting t > 1. Thus we assume k = 2. We consider two subcases.

Case 1.1.1: |V (D)| ≥ 6.

For R = P3 ∪ 4P1, let x ∈ V (D) such that eG(x, T ) = 0. Let P be a shortest path in D from

x to a vertex, say x∗ from NG(T ) ∩ V (D). Let y∗ ∈ T such that eG(x
∗, y∗) = 1. Then xPx∗y∗

and T \ {y∗} contain P3 ∪ 4P1 as an induced subgraph. We consider next that R = 6P1. Then T

and the vertex of D that is not adjacent in G to any vertex from T for an induced 6P1, giving a

contradiction. For R = 7P1, let WD be the set of 2k+1 vertices (which exist by Lemma 8(4)) from

D which are adjacent in G to vertices from T . Then S ∪WD forms a cutset and we have

t ≤
|S|+ 2k + 1

|T |+ 1
≤

4 + k + 1

6
=

7

6
,

giving a contradiction to t > 7/6.

Lastly, we consider R = P2 ∪ 5P1. For any x ∈ V (D) such that eG(x, T ) = 0, it must be the case

that x is adjacent in G to every vertex from NG(T ) ∩ V (D). Otherwise, let x∗ ∈ NG(T ) ∩ V (D)
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such that xx∗ 6∈ E(G). Let y∗ ∈ T such that eG(x
∗, y∗) = 1. Then x∗y∗ and (T \ {y∗}) ∪ {x}

contain P2 ∪ 5P1 as an induced subgraph. Furthermore, if |V (D)| − |NG(T ) ∩ V (D)| ≥ 2, then

V (D)\ (NG(T )∩V (D)) is an independent set in G. Otherwise, an edge with both endvertices from

V (D) \ (NG(T ) ∩ V (D)) together with T induces P2 ∪ 5P1. Thus if |V (D)| ≥ 7, let WD be the set

of 2k + 1 vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from

T . Then S ∪WD forms a cutset and we have

t ≤
|S|+ 5

|T |+ 2
≤

7

7
,

giving a contradiction to t > 1. Thus |V (D)| = 6. Let x ∈ V (D) be the vertex such that

eG(x, T ) = 0. Then it must be the case that D − x has at most two components. Otherwise, we

have t ≤ |S∪{x}|
3 = 1.

Assume first that c(D−x) = 2. Let D1 and D2 be the two components of D−x, and assume further

that |V (D1)| ≤ |V (D2)|. Then as |V (D − x)| = 5, we have two possibilities: either |V (D1)| = 1

and |V (D2)| = 4 or |V (D1)| = 2 and |V (D2)| = 3. Since δ(G) ≥ 3, if |V (D1)| = 1, then the vertex

from D1 must be adjacent in G to at least one vertex from S. When |V (D2)| = 4 and D2 6= K4,

then D2 has a cutset W of size 2 such that c(D2 − W ) = 2. Then S ∪W ∪ {x} is a cutset of G

such that c(G− (S ∪W ∪{x})) = 5, showing that t ≤ 1. Thus D2 = K4. However, this shows that

G contains H6 as a spanning subgraph. When |V (D2)| = 3 and D2 6= K3, then D2 has a cutvertex

x∗. Then S ∪ {x, x∗} is a cutset of G such that c(G − (S ∪ {x, x∗})) = 4, showing that t ≤ 4
4 = 1.

Thus D2 = K3; however, this shows that G contains H7 as a spanning subgraph.

Assume then that c(D − x) = 1. Let D∗ = D − x. If δ(D∗) ≥ 3, then D∗ is Hamiltonian and so G

contains H10 as a spanning subgraph. Thus we assume δ(D∗) ≤ 2.

Assume first that D∗ has a cutvertex x∗. Then c(D∗ − x) = 2: as if c(D∗ − x) ≥ 3, then c(G −

(S ∪ {x, x∗})) ≥ 4, implying t ≤ 1. Let D∗
1 and D∗

2 be the two components of D∗ − x∗, and assume

further that |V (D∗
1)| ≤ |V (D∗

2)|. Then as |V (D∗ − x∗)| = 4, we have two possibilities: either

|V (D∗
1)| = 1 and |V (D∗

2)| = 3 or |V (D∗
1)| = 2 and |V (D∗

2)| = 2. Since δ(G) ≥ 3, if |V (D∗
1)| = 1,

then the vertex from D∗
1 must be adjacent in G to at least one vertex from S. When |V (D∗

2)| = 3

and D∗
2 6= K3, then D∗

2 has a cutvertex x∗∗. Then S ∪ {x, x∗, x∗∗} is a cutset of G such that

c(G − (S ∪ {x, x∗, x∗∗})) = 5, showing that t ≤ 1. Thus D∗
2 = K3. The vertex x∗ is a cutvertex

of D∗ and so is adjacent in D∗ to a vertex of D∗
1 and a vertex of D∗

2. However, this shows that

G contains H8 as a spanning subgraph. When |V (D∗
2)| = 2, as G does not contain H8 or H9 as

a spanning subgraph, x∗ is adjacent in G to exactly one vertex, say x∗1, of D
∗
1 and to exactly one

vertex, say x∗2, of D
∗
2. Then S ∪ {x, x∗1, x

∗
2} is a cutset of G whose removal produces 5 components,

showing that τ(G) ≤ 1.

Assume then that D∗ is 2-connected. As δ(D∗) ≤ 2, D∗ has a minimum cutset W of size 2. If

c(D∗ −W ) = 3, then we have c(G− (S ∪W ∪{x})) = 5, showing that t ≤ 1. Thus c(D∗ −W ) = 2.

Then by analyzing the connection in D∗ between W and the two components of D∗ −W , we see

that D∗ contains C5 as a spanning subgraph, showing that G contains H10 as a spanning subgraph.

Case 1.1.2: |V (D)| = 5.
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Since G does not contain H5 as a spanning subgraph, we have D 6= K5. As D 6= K5, D has a cutset

WD of size at most 3 such that each component of D −WD is a single vertex. Then

t ≤
|S|+ |WD|

|T |
≤

4− 2 + 3

5
= 1,

a contradiction.

Case 1.2: |C3 ∪ C5| ≥ 2.

By Equation (1), we have

4 ≥ |S|+
∑

k≥1

k|C2k+1|.

So one of the following holds:

1. S = ∅ and either |C5| ≤ 2, |C5| ≤ 1 and |C3| ≤ 2, or |C3| ≤ 4. In this case, C1 = ∅ by

Lemma 10(1). Thus by Lemma 8(3), we have eG(T, V (G) \ T ) ≤ 12 < 3|T | = 15.

2. |S| = 1 and either |C5| = 1 and |C3| = 1 or |C3| ≤ 3. In this case, again C1 = ∅ by Lemma 10(1).

This implies there are a maximum of 14 edges incident to vertices in T , a contradiction.

3. |S| = 2 and |C3| = 2.

Let C3 = {D1,D2}. Note that |V (Di)| ≥ 3 by Lemma 8(4) for each i ∈ [1, 2]. Since |T | = 5,

there exists y0 ∈ T such that eG(y0,Di) = 1 for each i ∈ [1, 2]. If R = P3 ∪ 4P1, then T

together with the two neighbors of y0 from V (D1)∪V (D2) induce R. If R = 6P1, then T \{y0}

together with the two neighbors of y0 from V (D1)∪V (D2) gives an induced 6P1. If R = 7P1,

let WDi
⊆ V (Di)\NG(y0) be the two vertices of Di that are adjacent in G to vertices from T .

Then c(G− (S ∪WD1
∪WD2

∪{y0})) = |T |−1+2 = 6. Thus t ≤ 2+2+2+1
6 = 7

6 , contradicting

t > 7
6 . Lastly, assume R = P2 ∪ 5P1. If one of Di has at least 4 vertices, say |V (D2)| ≥ 4,

then let x ∈ V (D2) such that eG(x, T ) = 0, x∗ ∈ V (D1) and y∗ ∈ T such that eG(x
∗, y∗) = 1.

Then x∗y∗ and (T \ {y∗}) ∪ {x} induce P2 ∪ 5P1. Thus |V (D1)| = |V (D2)| = 3. If one of Di,

say D2 6= K3, then D2 has a cutvertex x. Let W be the set of any two vertices of D1. Then

S ∪W ∪ {x} is a cutset of G such that c(G − (S ∪W ∪ {x})) = 5, showing that t ≤ 5
5 = 1.

Thus D1 = D2 = K3. However, this shows that G contains H11 as a spanning subgraph.

Case 2: |T | = 6.

In this case, by Lemma 11(1), G has an induced P4∪4P1, which contains each of P3∪4P1, P2∪5P1

and 6P1 as an induced subgraph. So we assume R = 7P1 in this case and thus t > 7
6 .

Recall for y ∈ T , h(y) = |{D : D ∈
⋃

k≥1 C2k+1 and eG(y,D) ≥ 1}|. If there exists y0 ∈ T such

that h(y0) ≥ 2, we let x1, x2 be the two neighbors of y0 from the two corresponding components

in
⋃

k≥1 C2k+1, respectively. Then T \ {y0} together with {x1, x2} induces 7P1. Thus h(y) ≤ 1 for

each y ∈ T . This, together with |T | = 6, implies that we have either |C3| ∈ {1, 2} and C2k+1 = ∅

for any k ≥ 2 or |C5| = 1 and C2k+1 = ∅ for any 1 ≤ k 6= 2.
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If |C3| = 1 and C2k+1 = ∅ for any k ≥ 2, then |S| ≤ 4 by Equation (1). Let W be a set of two vertices

from the component in C3 that are adjacent in G to vertices from T . Then c(G − (S ∪W )) ≥ 6,

indicating that t ≤ 4+2
6 < 7

6 . For the other two cases, we have |S| ≤ 3. If |C3| = 2 and C2k+1 = ∅ for

any k ≥ 2, let W be a set of four vertices, with two from one component in C3 and the other two from

the other component in C3, which are adjacent in G to vertices from T . If |C5| = 1 and C2k+1 = ∅

for any 1 ≤ k ≤ 2, let W be a set of four vertices from the component in C5 that are adjacent in G

to vertices from T . Then we have c(G − (S ∪W )) ≥ 6, indicating that t ≤ 3+4
6 = 7

6 .

By Claim 3, we now assume that R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and t = 3/2.

Claim 4. There exists y ∈ T with h(y) > 2.

Proof. Assume to the contrary that for every y ∈ T , we have h(y) ≤ 1. Define the following

partition of T :

T0 = {y ∈ T : eG(y,D) = 0 for all D ∈
⋃

k≥1

C2k+1},

T1 = {y ∈ T : eG(y,D) = 1 for some D ∈
⋃

k≥1

C2k+1}.

Note that |T1| =
∑

k≥1(2k+1)|C2k+1| by Lemma 8(3) and (4). For each D ∈ C2k+1 for some k ≥ 1,

we let WD be a set of 2k vertices that each has in G a neighbor from T . As each D − WD is

connected to exactly one vertex from T and each component from C1 is connected to exactly one

vertex from T , it follows that

W = S ∪
⋃

D∈
⋃

k≥1
C2k+1

WD

satisfies c(G−W ) ≥ |T | ≥ 5, where |T | ≥ 5 is by Claim 2.

By the toughness of G, we have

|S|+
∑

k≥1

2k|C2k+1| = |W | ≥ t|T | = t(|T0|+ |T1|)

= t



|T0|+
∑

k≥1

(2k + 1)|C2k+1|



 . (3)

Since t = 3/2, the inequality above implies that |S| ≥ 3|T0|/2 +
∑

k≥1(k + 3/2)|C2k+1|. Thus

|S|+
∑

k≥1

k|C2k+1| ≥ 3|T0|/2 +
∑

k≥1

(2k + 3/2)|C2k+1| > |T0|+
∑

k≥1

(2k + 1)|C2k+1| = |T |,

contradicting Equation (1).

By Claim 4, there exists y ∈ T such that h(y) ≥ 2. Then as |T | ≥ 5, by Lemma 11(2), G contains an

induced P7 ∪ 2P1. Thus we assume that R 6= P7 ∪ 2P1. We assume first that |
⋃

k≥1 C2k+1| ≥ 3 and

let D1,D2,D3 be three distinct odd components from
⋃

k≥1 C2k+1. Let y0 ∈ T such that h(y0) ≥ 2.
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We assume, without loss of generality, that eG(y0,D1) = eG(y0,D2) = 1. By Lemma 11(2), G

contains an induced Pb ∪ aP1, where b ≥ 7 and a = |T | − 3, and the graph Pb ∪ aP1 can be

chosen such that the vertices in aP1 are from T and the path Pb has the form y1x
∗
1P1x1y0x2P2x

∗
2y2,

where y0, y1, y2 ∈ T and x∗1P1x1 and x∗2P2x2 are respectively contained in D1 and D2 such that

eG(x, T ) = 0 for every internal vertex x from P1 and P2. If one of y1 and y2, say y1 has a neighbor z1
from V (D3), then z1y1x

∗
1P1x1y0x2P2x

∗
2y2 and T \ {y0, y1, y2} induce P8 ∪ 2P1, which contains each

of P5∪P2, P4∪P3, and 3P2∪P1 as an induced subgraph. Let z2 ∈ V (D3) be a neighbor of z1. Then

z2z1y1x
∗
1P1x1y0x2P2x

∗
2y2 contains an induced P3 ∪ 2P2 whether eG(z2, {y0, y2}) = 0 or 1. Thus we

assume eG(yi,D3) = 0 for each i ∈ [1, 2] and so we can find y3 ∈ T \{y0, y1, y2} and z ∈ V (D3) such

that y3z ∈ E(G). Then y1x
∗
1P1x1y0x2P2x

∗
2y2 and zy3 contains an induced P7 ∪ P2, which contains

each of P5 ∪ P2, P3 ∪ 2P2 and 3P2 ∪ P1 as an induced subgraph. We are only left to consider

R = P4 ∪ P3. As eG(yi,D3) = 0 for each i ∈ [1, 2], we can find distinct y3, y4 ∈ T \ {y0, y1, y2} and

distinct z1, z2 ∈ V (D3) such that y3z1, y4z2 ∈ E(G). We let P be a shortest path in D3 connecting

z1 and z2. If eG(y0, V (P )) = 0, then y3z1Pz2y4 and y1x
∗
1P1x1y0x2P2x

∗
2y2 contains an induced

P4 ∪P3. Thus eG(y0, V (P )) = 1. This in particular, implies that |V (P )| ≥ 3. Then y3z1Pz2y4 and

y1x
∗
1P1x1 together contain an induced P4 ∪ P3.

Thus | ∪k≥1 C2k+1| = 2. Let D1,D2 ∈
⋃

k≥1 C2k+1 be the two components. Define the following

partition of T :

T0 = {y ∈ T : eG(y,D1) = eG(y,D2) = 0},

T11 = {y ∈ T : eG(y,D1) = 1 and eG(y,D2) = 0},

T12 = {y ∈ T : eG(y,D1) = 0 and eG(y,D2) = 1},

T2 = {y ∈ T : eG(y,D1) = eG(y,D2) = 1}.

We have either T2 = ∅ or T2 6= ∅. First suppose T2 = ∅. Define the following vertex sets:

W1 = NG(T11) ∩ V (D1) and W2 = NG(T12) ∩ V (D2).

Then |W1| = |T11| = 2k1 +1 and |W2| = |T12| = 2k2 +1, where we assume eG(T,D1) = 2k1+1 and

eG(T,D2) = 2k2 + 1 for some integers k1 and k2. Then W = S ∪W1 ∪ W2 is a cutset of G with

c(G−W ) ≥ |T |. By toughness, |W | ≥ 3
2 |T | = |T |+ 1

2 |T |. Since |T | = |T0|+ |T11|+ |T12|, this gives

us

|W | ≥ |T |+
1

2
|T0|+

1

2
(|T11|+ |T12|)

= |T |+
1

2
|T0|+

1

2
(2k1 + 1 + 2k2 + 1)

= |T |+
1

2
|T0|+ k1 + k2 + 1.

Thus |W | = |S| + |W1| + |W2| = |S| + 2k1 + 2k2 + 2 ≥ |T | + 1
2 |T0| + k1 + k2 + 1, which implies

|S| + k1 + k2 + 1 ≥ |T | + 1
2 |T0|. Hence, by Equation (1), we have |T | ≥ |T | + 1

2 |T0|, giving a

contradiction.

So we may assume T2 6= ∅. Now define the following vertex sets:

W1 = NG(T11) ∩ V (D1), W2 = NG(T12) ∩ V (D2), and W3 = N(T2) ∩ (V (D1) ∪ V (D2)).
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We have that |W1| = |T11|, |W2| = |T12|, and |W3| = 2|T2|. Now let W = S ∪ W1 ∪ W2 ∪ W3.

Then W is a cutset of G with c(G − W ) ≥ |T0| + |T11| + |T12| + 1 since T2 6= ∅. By toughness,

|W | ≥ 3
2(|T0|+ |T11|+ |T12|+1). Since |W | = |S|+ |W1|+ |W2|+ |W3| = |S|+ |T11|+ |T12|+2|T2|,

we have |S|+ |T11|+ |T12|+ 2|T2| ≥
3
2 |T0|+

3
2 |T11|+

3
2 |T12|+

3
2 . This implies

|S| ≥
3

2
|T0|+

1

2
|T11|+

1

2
|T12|+ 1.

Thus,

|S|+ k1 + k2 ≥
3

2
|T0|+

1

2
|T11|+

1

2
|T12|+ 1 + k1 + k2. (4)

We have that either T11∪T12∪T0 = ∅ or T11∪T12∪T0 6= ∅. First suppose T11∪T12∪T0 = ∅. Then

|T | = |T2| =
1
2(2k1 + 1 + 2k2 + 1) = k1 + k2 + 1. Thus |S|+ k1 + k2 ≥ |T |, showing a contradiction

to Equation (1).

So we may assume T11 ∪ T12 ∪ T0 6= ∅. Then

|T | = |T0|+ (2k1 + 1 + 2k2 + 1− |T2|)

= |T0|+ (2k1 + 2k2 + 2)−
1

2
(2k1 + 1 + 2k2 + 1− |T11| − |T12|)

= |T0|+
1

2
(2k1 + 2k2 + 2) +

1

2
|T11|+

1

2
|T12|

= |T0|+ k1 + k2 + 1 +
1

2
|T11|+

1

2
|T12|.

Using the size of T and (4), we get |S|+ k1 + k2 ≥ |T |, showing a contradiction to Equation (1).

The proof of Theorem 13 is now finished.

4 Proof of Theorems 5 and 6

Recall that for a graph G, α(G), the independence number of G, is the size of a largest independent

set in G.

Proof of Theorem 5. For each i ∈ [0, 11], Hi does not contain a 2-factor by Theorem 7. Thus to

finish proving Theorem 13, we are only left to show the three claims below.

Claim 5. The graph Hi is (P2 ∪ 3P1)-free, H1 is (P3 ∪ 2P1)-free, and τ(Hi) = 1 for each i ∈ [0, 4].

Proof. We first show that Hi is (P2 ∪ 3P1)-free for each i ∈ [0, 4]. We only show this for H0,

as the proofs for Hi for i ∈ [1, 4] are similar. In H0, there are two types of edges xy: x, y ∈

V (Dj) or x ∈ V (Dj) and y ∈ V (T ), where j ∈ [1, 2]. Without loss of generality first consider the

edge v1v2 ∈ E(D1) and the subgraph F1 = H0 − (NH0
[v1] ∪ NH0

[v2]). We see α(F1) = 2. Now,

without loss of generality, consider the edge v1t1 and the subgraph F2 = H0 − (NH0
[v1]∪NH0

[t1]).

We see α(F2) = 2. In either case, P2 ∪ 3P1 cannot exist as an induced subgraph in H0. Thus H0 is

(P2 ∪ 3P1)-free.
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Then we show that H1 is (P3 ∪ 2P1)-free. Two types of induced paths abc of length 3 exist: a ∈

S, b ∈ T, c ∈ V (D) or a ∈ T, b, c ∈ V (D). Without loss of generality, consider the path xt1v1 and

the subgraph F1 = H1−(NH1
[x]∪NH1

[t1]∪NH1
[v1]). We see that F1 is a null graph. Now, without

loss of generality, consider the path t1v1v2 and the subgraph F2 = H1−(NH1
[t1]∪NH1

[v1]∪NH1
[v2]).

We see |V (F2)| = 1. In either case, P3 ∪ 2P1 cannot exist as an induced subgraph in H1. Thus H1

is (P3 ∪ 2P1)-free.

Let i ∈ [0, 4]. As δ(Hi) = 2, τ(Hi) ≤ 1. It suffices to show τ(Hi) ≥ 1. Since Hi is 2-connected, we

show that c(Hi −W ) ≤ |W | for any W ⊆ V (Hi) such that |W | ≥ 2. If |W | = 2, by considering all

the possible formations of W , we have c(Hi −W ) ≤ |W |. Thus we assume |W | ≥ 3.

Assume by contradiction that there exists W ⊆ V (Hi) with |W | ≥ 3 and c(Hi−W ) ≥ |W |+1 ≥ 4.

The size of a largest independent set of each H0, H2, H3, and H4 is 4, and of H1 is 3. Since

c(Hi − W ) is bounded above by the size of a largest independent set of Hi, we already obtain a

contradiction if i = 1 or |W | ≥ 4. So we assume i ∈ {0, 2, 3, 4} and |W | = 3.

As c(Hi −W ) ≥ 4, for the graph H0, we must have {v1, v2, v3} ∩W 6= ∅ and {v4, v5, v6} ∩W 6= ∅.

As |W | = 3, we have either W ∩ T = ∅ or |W ∩ T | = 1. In either case, by checking all the possible

formations of W , we get c(H0 −W ) ≤ 2, contradicting the choice of W .

As c(Hi − W ) ≥ 4, for each i ∈ [2, 4], we must have x ∈ W . Thus tj 6∈ W for j ∈ [1, 3], as

otherwise, c(Hi − (W \ {tj})) ≥ 4, contradicting the argument previously that c(Hi −W ∗) ≤ 2 for

any W ∗ ⊆ V (Hi) and |W ∗| ≤ 2. As |W | = 3, we then have |W ∩ {v1, v2, v3, v4}| = 2. However,

c(Hi −W ) ≤ 3 for W = {x, vk, vℓ} for all distinct k, ℓ ∈ [1, 4]. We again get a contradiction to the

choice of W .

Claim 6. The graph H5 with p = 5 is (P3∪4P1)-free, (P2∪5P1)-free, and 6P1-free with τ(H5) =
6
5 .

Proof. Let p = 5 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp = K5.

We first show that H5 is (P3 ∪ 4P1)-free. There are three types of induced paths xyz of length

3 in H5 : x ∈ S, y ∈ T, z ∈ V (D) or x ∈ T, y, z ∈ V (D) or x, z ∈ T, y ∈ S. Without loss of

generality, consider the path x1t1y1 and the subgraph F1 = H5 − (NH5
[x1] ∪ NH5

[t1] ∪ NH5
[y1]).

We see that F1 is a null graph. Now consider the path t1y1y2 and the subgraph F2 = H5 −

(NH5
[t1] ∪ NH5

[y1] ∪ NH5
[y2]). We see α(F2) = 3. Finally consider the path t1x1t2 and the

subgraph F3 = H5 − (NH5
[t1] ∪ NH5

[x1] ∪ NH5
[t2]). We see α(F3) = 3. In any case, an induced

copy of P3 ∪ 4P1 cannot exist in H5. Thus H5 is (P3 ∪ 4P1)-free.

We then show that H5 is (P2 ∪ 5P1)-free. There are three types of edges xy in H5 : x ∈ S, y ∈

T or x ∈ T, y ∈ V (D) or x, y ∈ V (D). Without loss of generality, consider the edge x1t1 and the

subgraph F1 = H5 − (NH5
[x1]∪NH5

[t1]). We see |V (F1)| = 4. Now consider the edge t1y1 and the

subgraph F2 = H5 − (NH5
[t1] ∪NH5

[y1]). We see |V (F2)| = 4. Finally, consider the edge y1y2 and

the subgraph F3 = H5 − (NGH5[y1]∪NH5
[y2]). We see α(F3) = 3. In any case, no induced copy of

P2 ∪ 5P1 can exist in H5. Thus H5 is (P2 ∪ 5P1)-free.

We lastly show that H5 is 6P1-free. There are three types of vertices x in H5 : x ∈ S, x ∈ T , or

19



x ∈ V (D). Without loss of generality, consider the vertex x1 and the subgraph F1 = H5−NH5
[x1].

We see α(F1) = 1. Now consider the vertex t1 and the subgraph F2 = H5 − NH5
[t1]. We see

α(F2) = 4. Finally, consider the vertex y1 and the subgraph F3 = H5−NH5
[y1]. We see α(F3) = 4.

In any case, no induced copy of 6P1 can exist in H5. Thus H5 is 6P1-free.

We now show that τ(H5) = 6
5 . Let W be a toughset of H5. Then S ⊆ W . Otherwise, by the

structure of H5, we have c(H5 −W ) ≤ 3 and |W | ≥ 5. As S ⊆ W and the only neighbor of each

vertex of T in H5 − S is contained in a clique of H5, we have T ∩W = ∅. Since c(H5 −W ) ≥ 2, it

follows that W ∩V (D) 6= ∅. Then c(H5 −W ) = |W ∩V (D)| if |W ∩V (D)| ≤ 3 or |W ∩V (D)| = 5,

and c(H5 −W ) = |W ∩ V (D)| + 1 if |W ∩ V (D)| = 4. The smallest ratio of |W |
c(H5−W ) is 6

5 , which

happens when |W ∩ V (D)| = 4.

Claim 7. The graph Hi is (P2 ∪ 5P1)-free with τ(Hi) =
7
6 for each i ∈ [6, 11].

Proof. We show first that each Hi is (P2 ∪ 5P1)-free. We do this only for the graph H6, as the

proofs for the rest graphs are similar. For any edge ab ∈ E(H6), we see α(H6−(NH6
[a]∪NH6

[b])) ≤

4. Thus no induced copy of (P2 ∪ 5P1) can exist in H6. Thus H6 is (P2 ∪ 5P1)-free.

We next show that τ(Hi) =
7
6 for each i ∈ [6, 10]. We have c(Hi − (S ∪{v1, . . . , v5})) = 6, implying

τ(Hi) ≤
7
6 . Suppose τ(Hi) <

7
6 . Let W be a toughset of Hi. As each Hi is 3-connected, we have

|W | ≥ 3. Thus c(Hi −W ) ≥ 3. We have that either S ⊆ W or S 6⊆ W . Suppose the latter. Then

we have S ∩ V (Hi − W ) 6= ∅. Then all vertices in T \ W are contained in the same component

as the one which contains S \ W . Since c(Hi − W ) ≥ 3, by the structure of Hi, it follows that

we have either T ⊆ W or {v1, . . . , v5} ⊆ W . In either case, we have c(Hi − W ) ≤ 3, implying
|W |

c(Hi−W ) ≥ 5
3 > 7

6 , a contradiction. So S ⊆ W . By Lemma 12, tj 6∈ W for all j ∈ [1, 5]. Thus

each tj ∈ V (Hi − W ). Now either v0 ∈ W or v0 6∈ W . Suppose v0 ∈ W , then we cannot have

all vj ∈ W without violating Lemma 12. In this case, the minimum ratio |W |
c(Hi−W ) occurs when

|W ∩ {v1, v2, v3, v4, v5}| = 3. This implies |W |
c(Hi−W

≥ 6
5 > 7

6 , a contradiction. Thus v0 6∈ W and we

must have v0 ∈ V (Hi −W ). This implies {v1 . . . v5} ⊆ W and |W |
c(Hi−W ) =

7
6 , a contradiction. Thus

τ(Hi) =
7
6 for each i ∈ [6, 10].

Lastly we show τ(H11) =
7
6 . We have c(H11 − (S ∪ {v1, v2, t3, v4, v5})) = 6, implying τ(H11) ≤

7
6 .

Suppose τ(H11) < 7
6 . Let W be a tough set of H11. As H11 is 3-connected, we have |W | ≥ 3.

Thus c(H11 − W ) ≥ 3. We have that either S ⊆ W or S 6⊆ W . Suppose the latter. Then we

have S ∩ V (H11 − W ) 6= ∅. Then all vertices in T \ W are contained in the same component as

the one which contains S \ W . Since c(H11 − W ) ≥ 3, by the structure of H11, it follows that

|W | ≥ 5 and c(H11 −W ) ≤ 4. This implies |W |
c(H11−W ) ≥ 5

4 > 7
6 , a contradiction. So S ⊆ W . By

Lemma 12, ti 6∈ W for i ∈ {1, 2, 4, 5}. Thus ti ∈ V (H11 − W ) for i ∈ {1, 2, 4, 5} and we must

have W ∩ {v1, v2, v3, v4, v5, v6, t3} 6= ∅. If t3 6∈ W , then |W |
c(H11−W ) ≥ 6

5 > 7
6 , a contradiction. Thus

t3 ∈ W . Then v3 and v4 are respectively in two distinct components of H11 − W by Lemma 12.

Thus W ∩ {v1, v2, v5, v6} 6= ∅ as c(H11 − W ) ≥ 3. Furthermore, we have c(H11 − W ) = |W ∩

{v1, v2, v5, v6}|+ 2. The smallest ratio of |W |
c(H11−W ) is 7

6 , which happens when {v1, v2, v5, v6} ⊆ W .

Again we get a contradiction to the assumption that τ(H11) <
7
6 . Thus τ(H11) =

7
6 .
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The proof of Theorem 13 is complete.

Proof of Theorem 6. Let p ≥ 6 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp.

Since c(H5−(S∪{y1, . . . , y5})) = 6, we have τ(H5) ≤
7
6 . We show τ(H5) ≥

7
6 . Let W be a toughset

of H5. Then either S ⊆ W or S 6⊆ W . Suppose the latter. Then we have S ∩ V (H5 − W ) 6= ∅.

Then all vertices in T \W are contained in the same component as the one containing S \W . Since

c(H5 −W ) ≥ 2, by the structure of H5, it follows that we have either T ⊆ W or {y1, . . . , y5} ⊆ W .

In either case, we have c(H5 − W ) ≤ 3, implying |W |
c(H5−W ) ≥ 5

3 > 7
6 . Now suppose S ⊆ W . By

Lemma 12, ti 6∈ W for all i. Thus each ti ∈ V (H5−W ). Furthermore, c(H5−W ) = |W ∩V (D)|+1.

Since W is a cutset of G, we have |W ∩ V (D)| ≥ 2. The smallest ratio of |W |
c(H5−W ) is 7

6 , which

happens when |W ∩ V (D)| = 5.

For the graph H12, we have c(H12 − (S ∪ {y1, y2, y3})) = 4, implying τ(H12) ≤ 4
4 = 1. We show

τ(H12) ≥ 1. Let W be a toughset of H12. Then either S ⊆ W or S 6⊆ W . Suppose the latter. Then

we have S∩V (H12−W ) 6= ∅. Then all vertices in T \W are contained in the same component as the

one containing S \W . Since c(H12−W ) ≥ 2, by the structure of H12, it follows that we have either

T ⊆ W or {y1, y2, y3} ⊆ W . In either case, we have c(H12 −W ) ≤ 2, implying |W |
c(H12−W ) ≥

3
2 > 1.

Now suppose S ⊆ W . By Lemma 12, ti 6∈ W for all i. Thus each ti ∈ V (H12 −W ). This implies

|{y1, y2, y3} ∩W | = 2 or 3. In either case we see |W |
c(H12−W ) = 1.
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