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Abstract

For a given graph R, a graph G is R-free if G does not contain R as an induced
subgraph. It is known that every 2-tough graph with at least three vertices has a
2-factor. In graphs with restricted structures, it was shown that every 2Ks-free 3/2-
tough graph with at least three vertices has a 2-factor, and the toughness bound 3/2
is best possible. In viewing 2K5, the disjoint union of two edges, as a linear forest, in
this paper, for any linear forest R on 5, 6, or 7 vertices, we find the sharp toughness
bound ¢ such that every t-tough R-free graph on at least three vertices has a 2-factor.
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1 Introduction

Let G be a simple, undirected graph and let V(G) and E(G) denote the vertex set and the
edge set of G, respectively. We denote the set of neighbors of a vertex z € V(G) by Ng(z). The
closed neighborhood of a vertex x in G, denoted by Ng[z], is the set {z} U Ng(x). For any subset
S C V(Q), G[S] is the subgraph of G induced by S, G — S denotes the subgraph G[V(G) \ S], and
Ng(S) = Uyes Na(v). Given disjoint subsets S and 1" of V/(G), we denote by Eq(S,T') the set of
edges which have one end vertex in S and the other end vertex in 7', and let eq(S,T") = |Eq(S,T)|.
If S = {s} is a singleton, we write eg(s,T) for eq({s},T). If H C G is a subgraph of G, and
T CV(GQ) with TNV (H) =0, we write Eq(H,T) and eq(H,T) for notational simplicity.

For a given graph R, we say that G is R-free if there does not exist an induced copy of R in
G. For integers a and b with @ > 0 and b > 1, we denote by aP, the graph consisting of a disjoint


http://arxiv.org/abs/2204.03630v1

copies of the path P,. When a =1, 1P, is just Py, and when a = 0, 0P, is the null graph. For two
integers p and ¢, let [p,q] ={i € Z: p <i < q}.

Denote by ¢(G) the number of components of G. Let t > 0 be a real number. We say a graph
G is t-tough if for each cutset S of G we have t - ¢(G — S) < |S|. The toughness of a graph G,
denoted 7(G), is the maximum value of ¢ for which G is t-tough if G is non-complete and is defined
to be oo if G is complete.

For an integer £ > 1, a k-regular spanning subgraph is a k-factor of G. It is well known,
according to a theorem by Enomoto, Jackson, Katerinis, and Saito [3] from 1998, that every k-
tough graph with at least three vertices has a k-factor if k|V(G)| is even and |V(G)| > k + 1.
In terms of a sharp toughness bound, particular research interest has been taken when k& = 2 for
graphs with restricted structures. For example, it was shown that every 3/2-tough 5-chordal graph
(graphs with no induced cycle of length at least 5) on at least three vertices has a 2-factor [1] and
that every 3/2-tough 2Ks-free graph on at least three vertices has a 2-factor [5]. The toughness
bound 3/2 is best possible in both results.

A linear forest is a graph consisting of disjoint paths. In viewing 2K as a linear forest on 4
vertices and the result by Ota and Sanka [5] that every 3/2-tough 2Ks-free graph on at least three
vertices has a 2-factor, we investigate the existence of 2-factors in R-free graphs when R is a linear
forest on 5, 6, or 7 vertices. These graphs R are listed below, where the unions are vertex disjoint

unions.

1. P, PUP PsUP, PaU2P 2PbUP P,U3P; 5P

2. Py PsU P PiU P, PiU2P, 2P; PRUBPUP P3U3P 3P 2P, U2P;
P,Uu4P, 6P

3. P, FPUP PUP, PU2P PUP; PUPRUP PU3P 2P3UP, P3U2P
PRuUuP,U2P, Pau4P, 3P UP 2PbU3P, P,UbP 7P .
Our main results are the following:

Theorem 1. Let t > 0 be a real number, R be any linear forest on 5 vertices, and G be a t-tough
R-free graph on at least 8 vertices. Then G has a 2-factor provided that

(1) Re {P,UP,,PsU2P;,P,U3P1} and t =1 unless

(a) R=P,U3P, and G = Hy or G contains Hy, Ho or Hs as a spanning subgraph such
that E(G) \ E(H;) C Eq(S,V(G)\ (T'UNS)) for each i € [1,3], where H;, S and T are
defined in Figure 1.

(b) R = P3U2P; and G contains Hy as a spanning subgraph such that E(G) \ E(H;) C
Eg(S,V(G)\ (T'US)).

(2) R=5P; andt > 1.
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Figure 1: The four exceptional graphs for Theorem 1(1), where S = {z} and T' = {t1, t2,t3}.
(3) Re {P5,P3 Upb,2PU Pl} and t = 3/2.

Theorem 2. Let t > 0 be a real number, R be any linear forest on 6 vertices, and G be a t-tough
R-free graph on at least 8 vertices. Then G has a 2-factor provided that

(1) Re€ {P,U2P;,PsU3P;,P,U4P;,6P;} and t > 1 unless R = 6P, and G contains Hs with
p =5 as a spanning subgraph such that E(G) \ E(Hs) C Eq(S,V(G) \ (T'US)), where Hs,
S and T are defined in Figure 2.

(2) R e {PG,P5UPl,P4UP2,2P3,P3UP2 UP,3P, 2P, U2P1} and t = 3/2.

Theorem 3. Let t > 0 be a real number, R be any linear forest on 7 vertices, and G be a t-tough
R-free graph on at least 8 vertices. Then G has a 2-factor provided that

(1) Re {P,U3P,,PsU4P;,P,U5P} and t > 1 unless

(a) when R # Py U 3Py, G contains Hs with p = 5 as a spanning subgraph such that
E(G)\ E(Hs) C Eqg(S,V(G)\ (T'US))U E(G[S]), where Hs, S and T are defined in
Figure 2.

(b) R = P, UbP, and G contains one of Hg,...,Hi1 as a spanning subgraph such that

E(G)\E(H;) C Eg(S,V(G)\(TUS))UE(G[S])UE(GIV(G)\ (TUS)]), where H;, S
and T are defined in Figure 3 for each i € [6,11].
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Figure 2: The exceptional graph for Theorem 2(1), where S = {1,220}, T = {t1,...,t5},
and p = 5.

(2) R ="TP and t > % unless G contains Hs with p = 5 as a spanning subgraph such that

E(G)\ E(Hs) € Eg(S,V(G)\ (T'US))UE(G[S)).

(3) R e {P7,PﬁUPl,Pg,UPQ,P5U2P1,P4UP2UP1,2P3UP1,P4UP3,P3U2P2,PgUP2U2P1,3P2U
P1,2P2U3P1} andt:3/2.
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Figure 3: The five exceptional graphs for Theorem 3(1)(b), where S = {1,292}, T =
{t1,t2,t3,t4,t5}, and “+” represents the join of H;[S] and H,[T], i € [6, 11].

Remark 4 (Examples demonstrating sharp toughness bounds). The toughness bounds in Theo-
rems 1 to 8 are all sharp.



(1) Theorem 1(1) when R € {PyU Py, P3sU2P;,P,U3P,} andt = 1. The graph showing that the
toughness 1 is best possible is the complete bipartite K1, for any integer n > 2. The graph

n—1

Ky -1 is Py-free and so is R-free, with lim, o 7(Kp p—1) = lim;, oo =1, but contains

no 2-factor.

(2) Theorem 1(2), Theorem 2(1) and Theorem 3(1) and t > 1. The graph showing that the
toughness is best possible is the graph Hy2, which is constructed as below: let p > 3, K, be a
complete graph, and yi1,y2,y3 € V(Kp) be distinct, S = {z}, and T = {t1,t2,t3}, then Hiy is
obtained from K,, S and T by adding edges t;x and t;y; for each i € [1,3]. See Figure j for
a depiction. By inspection, the graph is 5P;-free and (PyU2P;)-free. So the graph is R-free
for any R € {5P1,P4 U22pP,PsU3P,P,bU4P,6P,P,U3P,,P3U4P, P, U 5P1} For any
given p > 3, the graph Hio does not contain a 2-factor, as any 2-factor has to contain the
edges t1x,tox and tzz. We will show 7(Hi2) =1 in the last section.

(3) For Theorem 1(3), Theorem 2(2) and Theorem 3(3) and t = 3: note that all the graphs R in
these cases contain 2Ky as an induced subgraph. Chvdtal [2] constructed a sequence {G}32
of split graphs (graphs whose vertex set can be partitioned into a clique and an independent
set) having no 2-factors and 7(Gy) = %ﬁl for each positive integer k. As the class of 2Ks-
free graphs is a superclass of split graphs, %—tough is the best possible toughness bound for a
2Ky-free graph to have a 2-factor.

(4) Theorem 3(2) and t > %. The graph showing that the toughness is best possible is the graph
Hs with p > 6, which is constructed as below: let p > 5, K, be a complete graph, and
Y1, Y2, Y3, Ya,ys € V(Kp) be distinct, S = {x1,z2}, and T = {t1,t2,t3,t4,t5}. Then Hs
is obtained from K,, S and T by adding edges t;x; and t;y; for each i € [1,5] and each
j € [1,2]. See Figure 2 for a depiction. By inspection, the graph is 7Py -free. For any given
p > 5, the graph Hs does not contain a 2-factor, as any 2-factor has to contain at least three
edges from one of x1 and xo to at least three vertices of T. We will show 7(Hs) = % when
p > 6 in the last section.
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Figure 4: Sharpness example for Theorem 1(2), Theorem 2(1) and Theorem 3(1), where
S = {SL’} and T' = {tl,tg,tg}.

To supplement Theorems 1 to 3, we show that the exceptional graphs in Figures 1 to 3 satisfy
the corresponding conditions below.



Theorem 5. The following statements hold.

(1) The graph H; is (P> U3P;)-free, contains no 2-factor, and 7(H;) =1 for each i € [0,4], the
graph Hy is also (P3U2Py)-free.

(2) The graph H; is (Py U5P;)-free and contains no 2-factor for each i € [5,11], Hs with p =5
is (P3 U4Py)-free and 6Py -free. Furthermore, 7(Hs) = g when p =5 and 7(H;) = % for each
i€ [6,11].

We have explained that Hs and Hqs are R-free for the corresponding linear forests R and contain
no 2-factor in Remark 4(2) and (4). The Theorem below is to verify the toughness of the graphs
Hs with p > 6 and Hqo.

Theorem 6. The following statements hold.

(1) 7(Hs) = % when p > 6;

(2) T(Hyp) =1.

The remainder of this paper is organized as follows. In section 2, we introduce more notation and
preliminary results on proving existence of 2-factors in graphs. In section 3, we prove Theorems 1-3.
Theorems 5 and 6 are proved in the last section.

2 Preliminaries

One of the main proof ingredients of Theorems 1 to 3 is to apply Tutte’s 2-factor Theorem.
We start with some notation. Let S and T be disjoint subsets of vertices of a graph G, and D
be a component of G — (S UT). The component D is said to be an odd component (resp. even
component) of G — (SUT) if eq(D,T) =1 (mod 2) (resp. eq(D,T) =0 (mod 2)). Let h(S,T) be
the number of all odd components of G — (S UT). Define

8(S,T) =2|S| = 2T| + Y da-s(y) — h(S, T).
yeT

It is easy to see that §(S,7) = 0 (mod 2) for every S, T' C V(G) with SNT = (. We use the
following criterion for the existence of a 2-factor, which is a restricted form of Tutte’s f-factor
Theorem.

Lemma 7 (Tutte [6]). A graph G has a 2-factor if and only if 5(S,T) > 0 for every S, T C V(Q)
with SNT = ).

An ordered pair (S,T), consisting of disjoint subsets of vertices S and T in a graph G, is called
a barrier if 6(S,T) < —2. By Lemma 7, if G does not have a 2-factor, then G has a barrier. In [4],
a biased barrier of G is defined as a barrier (S,T) of G such that among all the barriers of G,
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(1) |S| is maximum; and

(2) subject to (1), |T| is minimum.

The following properties of a biased barrier were derived in [4].
Lemma 8. Let G be a graph without a 2-factor, and let (S,T) be a biased barrier of G. Then each
of the following holds.
(1) The setT is independent in G.
(2) If D is an even component with respect to (S,T), then eq(T,D) = 0.
(3) If D is an odd component with respect to (S,T), then for anyy € T, eq(y, D) < 1.
(4) If D is an odd component with respect to (S,T), then for any x € V(D), eq(x,T) < 1.
Let G be a graph without a 2-factor and (S, T") be a barrier of G. For an integer k > 0, let Cogy1

denote the set of odd components D of G — (S UT) such that eq(D,T) = 2k + 1. The following
result was proved as a claim in [4] but we include a short proof here for self-completeness.

Lemma 9. Let G be a graph without a 2-factor, and let (S,T) be a biased barrier of G. Then
T = S|+ > k1 klCok+1] + 1.

Proof. Let U=V (G)\ S. Since (S,T) is a barrier,

8(S,T) = 2|S| = 2|T| + Y dg-s(y) — h(S,T)

yeT
=2|5| = 2T + Zd(;_s(y) - Z Coka| < 2.
yeT k>0

By Lemma 8(1) and Lemma 8(2),

Y dasy) =Y ealy,U) = eq(T,U) = > _(2k + 1)|Capya-

yeT yeT E>0

Therefore, we have

—2>2|8| = 2T| + Y (2k + 1)|Cors1| — > [Coral;
E>0 k>0

which yields [T > [S] + 3 ;> k[Cort1] + 1. O
We use the following lemmas in our proof.

Lemma 10. Let t > 1, G be a t-tough graph on at least three vertices containing no 2-factor, and
(S,T) be a barrier of G. Then the following statements hold.



(1) If C1 # 0, then |S|+1 > 2t. Consequently, S = 0 implies C; = 0, and |S| = 1 implies C; = ()
when t > 1.

(2) Ugs1Cort1 # 0.

Proof. Since G is 1-tough and thus is 2-connected, dg(y) > 2 for every y € T. This together
with Lemma 8(1)-(3) implies [S| + 3 350 [Cort1] > 2.

For the first part of (1), suppose to the contrary that |S| 4+ 1 < 2¢t. Let D € C; and y € V(7))
be adjacent in G to some vertex v € V(D). As eq(D,T) = eq(D,y) =1, |S| + > p>0 [Cort1] > 2.
and |T| > |S| 4+ 1 by Lemma 9, we have ¢(G — (S U {y})) > 2 regardless of whether or not S = 0.
But ¢(G — (SU{y})) > 2 implies 7(G) < 2t/2 = t, contradicting G being t-tough. The second part
of (1) is a consequence of the first part.

For (2), suppose to the contrary that (J,~;Cort1 = 0. By Lemma 10(1), |S| + |Ci] > 2
implies |S| > 1. Consequently, |T| > 2 by Lemma 9. As every component of G — (S U T) in
Cy is connected to exactly one vertex of T', S is a cutset of G with ¢(G — S) > |T'|. However,
|T) > S|+ > p>1 klCaky1]| +1 = |S| + 1, implying 7(G) < 1, a contradiction. O

A path P connecting two vertices v and v is called a (u,v)-path, and we write uPv or vPu in
order to specify the two endvertices of P. Let uPv and zQy be two disjoint paths. If vx is an
edge, we write uPvxQy as the concatenation of P and @) through the edge vz. Let G be a graph
without a 2-factor, and let (S,T) be a barrier of G. For y € T, define

hy)=KD: De | JCup1 and eq(y,D)>1}].
E>1
Lemma 11. Let G be a graph without a 2-factor, and let (S,T) be a biased barrier of G. Then the
following statements hold.

(1) If [Ugs1 Cok+1l > 1, then G contains an induced Py U aPy, where a = |T| — 2.

(2) If there exists yo € T with h(yog) > 2, then for some integer b > 7, G contains an induced
P, U aPy, where a = |T| — 3. Furthermore, an induced P, U aPy can be taken such that
the wvertices in aPy are from T and the path P, has the form yix] Pix1yoraPaxsys, where
Y0,Y1,Y2 € T and x7Piz1 and x5 Pz are respectively contained in two distinct components
from Uy, Cok+1 such that eq(z,T) = 0 for every internal vertex x from P and Ps.

Proof. Lemma 8(1), (3) and (4) will be applied frequently in the arguments sometimes without

mentioning it.

Let D € Uy~ Cok+1. The existence of D implies [T'| > 3 and |V (D)| > 3 by Lemma 8(3) and (4).
We claim that for a fixed vertex z1 € V(D) such that eg(z1,T) = 1, there exists distinct 2o € V(D)
and an induced (z1,x2)-path P in D with the following two properties: (a) eq(z2,T) = 1, and
(b) eg(z,T) = 0 for every x € V(P) \ {x1,22}. Note that the vertex x; exists by Lemma 8(4).
Let y; € T be the vertex such that eq(z1,T) = eg(x1,y1) = 1 and W = Ng(T \ {y1}) N V(D).
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By Lemma 8(4), 1 ¢ W. Now in D, we find a shortest path P connecting x; and some vertex
from W, say xo. Then zo and P satisfy properties (a) and (b), respectively. Let yo € T such
that eq(z2,T) = eq(z2,y2) = 1. The vertex ys uniquely exists by the choice z3 and Lemma 8(4).
By Lemma 8(1) and (4), and the choice of P, we know that y;2; Pzoys and T\ {y1,y2} together
contains an induced Py U aP;. This proves (1).

We now prove (2). By Lemma 8(3), the existence of yo implies ||{J;~; Cor+1| > 2, which in
turn gives |T'| > 3 by Lemma 8(3) again. We let D1,Dy € [J;54 Coptq be distinct such that
ec(yo,D1) = 1 and eg(yo, D2) = 1. Let x; € D; such that eg(yo,iDi) = ec(yo,z;) = 1. By the
argument in the first paragraph above, we can find 2 € V(D;) \ {z;} and an (z;,z})-path P; in
D; for each i € {1,2}. By the choice of P, and Lemma 8(4), there are unique y1,y2 € T \ {yo}
such that xfy; € E(G). If y; # ya, by the choice of P, and P» and Lemma 8(1) and (4), we
know that y127 Prxiyore Paxiys and T\ {yo, y1,y2} together contain an induced P, U aP; for some
integer b > 7. Thus we assume y; = yo. Then the vertex y; can also play the role of yg. Let
W = Ng(T \ {yo,y1}) NV (D2). By Lemma 8(4), xo, 25 ¢ W. Now in Dy, we find a shortest path
P connecting some vertex of {z2, 5} and some vertex from W, say z. If PJ is an (22, z)-path, then
y1x] Prziyoxe Pz and T'\ {yo, y1, y2} together contain an induced P,UaP;. If Py is an (23, z)-path,
then yoz1 Prziyias Py z and T\ {yo,y1, y2} together contain an induced P, UaP;. The second part
of (2) is clear by the construction above. O

Let G be a non-complete graph. A cutset S of V(G) is a toughset of G if % =7(Q).

Lemma 12. If G is a connected graph and S is a toughset of G, then for every x € S, x is adjacent
in G to vertices from at least two components of G — S.

Proof. Assume to the contrary that there exists x € S such that x is adjacent in G to vertices
from at most one component of G — S. Then ¢(G — (S'\ {z})) = ¢(G — S) > 2 and

5\ {a}] s
@B\ =) ~ a5 G

contradicting G being 7(G)-tough. O

3 Proof of Theorems 1, 2, and 3

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also R*-free for any
supergraph R* of R. To prove Theorems 1 to 3, we will show that the corresponding statements
hold for a supergraph R* of R, which simplifies the cases of possibilities of R. Let us first list the
supergraphs that we will use.

(1) Py U3P; is a supergraph of the following graphs: Py U2P;, Ps U3P;, and P, U4P;;

(2) 6Py is a supergraph of 5P;;



(3) P3U2P, is a supergraph of 3P;;
(4) P;U2P; is a supergraph of the following graphs:

(a) Ps, P3U P, 2P, U P
(b) Py, PsUP,,PyUPy,2P3, Ps UP, U P,2P, U2P;;
(C) P PsUP,PsU2P,PLUP,U P,2P3U P, PsUP,U2P,2P, U3P;.

Those supergraphs above together with the graphs R listed below cover all the 33 R graphs described
in Theorems 1 to 3. Theorems 1 to 3 are then consequences of the theorem below.

Theorem 13. Let t > 0 be a real number, R be a linear forest, and G be a t-tough R-free graph
on at least 8 vertices. Then G has a 2-factor provided that

(1) Re {P,UP,,PsU2P;,P,U3P} andt =1 unless

(a) R= P, U3P;, and G = Hy or G contains Hy, Ho, Hs or Hy as a spanning subgraph
such that E(G)\ E(H;) C Eg(S,V(G)\(T'US)) for each i € [1,3], where H;, S and T
are defined in Figure 1.

(b) R = P3U2P; and G contains Hy as a spanning subgraph such that E(G) \ E(H;) C
Eq(S,V(G)\ (T'US)).

(2) Re{P,U3P;,PsU4P;,P,U5P,,6P1} andt > 1 unless

(a) when R # P, U3Py, G contains Hs with p = 5 as a spanning subgraph such that
E(G)\ E(Hs) C Eq(S,V(G)\ (T'US))U E(G[S]), where Hs, S and T are defined in
Figure 2.

(b) R = P, UbBP, and G contains one of Hg,...,Hi1 as a spanning subgraph such that
E(G)\ E(H;) C Eq(S,V(G)\ (TUS))UE(G[S])UE(G[V(G)\ (T'US)]), where H;, S
and T are defined in Figure 3 for each i € [6,11].

(8) R ="TP and t > % unless G contains Hs with p = 5 as a spanning subgraph such that
E(G)\ E(Hs) € Eq(S,V(G)\ (T'US)) U E(G[S]).

(4) R e {P7U2P1,P5UPQ,P4UP3,P3U2P2,3P2UP1} andt:3/2.

Proof. Assume by contradiction that G does not have a 2-factor. By Lemma 7, G has a barrier.
We choose (S,T) to be a biased barrier. Thus (S,7) and G satisfy all the properties listed in
Lemma 8. These properties will be used frequently even without further mentioning sometimes.
By Lemma 9,

IT| > |S|+ ) klCoria| + 1. (1)
E>1

Since t > 1, by Lemma 10(2), we know that

U Cory1 # 0. (2)

k>1
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This implies |T| > 3 and so G contains an induced Py U P; by Lemma 11 (1). Thus we assume
R # P, U Pj in the rest of the proof.

Claim 1. R¢ {P3U2P;, P,U3P;} unless G falls under one of the exceptional cases as in (a) and
(b) of Theorem 13(1).

Proof. Assume instead that R € {P3 U2P;, P, U3P;}. Thus t = 1. We may assume that G does
not fall under any of the exceptional cases as in (a) and (b) of Theorem 13 (1).

It must be the case that |T| = 3, as otherwise G contains an induced Py U 2P; by Lemma 11(1),
and so contains an induced R. By Equation (1), we have |Jz~; Cor+1]+|S| < 2. By Lemma 10(1),
we have that Cp = ) if § = §. Since G is 1-tough and so 6(G) > 2, Lemma 8(1)-(3) implies that
| Uk>1 Cakt1] + S| = 2. By (2), we have the two cases below.

CASE 1: |Up>1Cok1| =2 and S = 0.

Let Dy, Dy € Ji>q Cok+1 be the two odd components of G — (SUT). Since |T'| = 3, Lemma 8(3)
implies that eq(D;, T) = 3 for each i € [1,2]. Let y € T and & € V(Dy) such that zy € E(G). We
let 1 be a neighbor of x from D;. Then yxx; is an induced P3 by Lemma 8(3). Let y; € T'\ {y}
such that y1x1 ¢ E(G), which is possible as |T| = 3 and eg(z1,T) < 1 by Lemma 8(4). We now
let z9 € V(D2) such that eq(x2,{y,y1}) = 0, which is again possible as |[Ng(T) NV (D2)| = 3 and
each vertex of Dy is adjacent in G to at most one vertex of T. However, yxx1,y1 and xo together
form an induced copy of P3 U2P;. Therefore, we assume R = P, U 3P;.

We first claim that |V (D;)| = 3 for each ¢ € [1,2]. Otherwise, say |V (D2)| > 4. Let y € T and
x € V(Dy) such that zy € E(G). Take z; € V(D3) such that eg(z1,7) = 0, which exists as
INa(T)NV(D2)| = 3. Then zy,z; and T\ {y} together form an induced copy of P, U3P, giving a
contradiction. We next claim that D; = K3 for each i € [1,2]. Otherwise, say D; # K3. As Dy is
connected, it follows that D; = P3. If also Dy # K3 and so Dy = P35, then deleting the two vertices
of degree 2 from both Dy and Dy gives three components (note that each vertex of T' is adjacent
in G to one vertex of D and one vertex of D), showing that 7(G) < 2/3 < 1. Thus Dy = K3.
We let z1,29 € V(D) be nonadjacent, y1,y2 € T such that eg(z;,y;) = 1 for each i € [1,2], and
21,29 € V(D3) such that eg(y;, z;) = 1 for each i € [1,2]. Let y € T'\ {y1,y2}. Then z 25, y, 21 and
x9 together form an induced copy of P, U 3Py, giving a contradiction.

Thus |V (D;)| = 3 and D; = K3 for each i € [1,2]. However, this implies that G = H.

CASE 2: ‘UkZl C2k+1‘ =1 and ’S’ = 1.

Let D € [J,>; Caky1 be the odd component of G — (SUT). Assume first that R = P;U2P;. Then
we have |V (D)| = 3. Otherwise, |V(D)| > 4. Let z € V(D) such that eg(z,T) = 0 and P be a
shortest path of D from x to a vertex, say 1 € V(D) N Ng(T). Let y € T such that eq(x1,y) = 1.
Then zPx1y and T\ {y} form an induced copy of R, a contradiction.
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Since G does not contain Hj as a spanning subgraph such that E(G)\E(H;) C Eg(S,V(G)\(TUS)),
it follows that D # K3. As D is connected, it follows that D = P3. Now deleting the vertex in S
together with the degree 2 vertex of D produces three components, showing that 7(G) < 2/3 < 1.

Therefore, we assume now that R = P,U3P;. Since GG does not contain H; as a spanning subgraph
such that E(G) \ E(H1) C Eq(S,V(G) \ (T'US)), the argument for the case R = Py U 2P,
above implies that |V(D)| > 4. We claim that |V(D)| = 4. If |[V(D)| > 5, we let x1,29 €
V(D) \ Ng(T) be any two distinct vertices. If z1x9 € FE(G), then z1x9 together with T' form an
induced copy of R, a contradiction. Thus V(D) \ Ng(T) is an independent set in G. However,
(G- (SU(Ng(T)NnV(D)))) =T+ |V(D)\ Ng(T)| > 5, implying that 7(G) < 4/5 < 1.

Thus |V(D)| = 4. Let « € V(D) such that eq(x,T) = 0. Since G does not contain H; as a
spanning subgraph such that E(G) \ E(H;) C Eg(S,V(G) \ (T'US)) for each i € [2,4], it follows
that either dp(xz) < 2 or dp(z) = 3 and D = K;3. If dp(xz) = 3, then as D = K, 3, we have
(G — (SU{z})) =3, implying 7(G) < 2/3 < 1. Thus dp(z) < 2. Let V(D) = {x,x1, 22,23} and
assume zx1 € E(D). Then ¢(G — (SU{z2,z3})) = 4, implying 7(G) < 3/4 < 1. The proof of Case
2 is complete. O

Thus by Claim 1 and the fact that R # Py U P;, we can assume R ¢ {Py U Py, P3U2P;, P, U3P;}
from this point on. Therefore we have ¢t > 1. This implies that G is 3-connected and so 6(G) > 3.
Thus S| + | Ug>o Cak+1] > 3 by Lemma 8(1)-(4).

Claim 2. |T| > 5.

Proof. Equation (2) implies |T| > 3. Assume to the contrary that |T'| < 4. We consider the
following two cases.

CASE 1: |T| = 3.

Since |S| + [Ug>oCak+1] > 3, we already have a contradiction to Equation (1) if C; = ). Thus
C1 # 0, which gives |S| > 2 by Lemma 10(1). However, we again get a contradiction to Equation (1)

as Up>1 Cakr1 # 0 by Equation (2).
CASE 2: |T| =4.

By Lemma 8 (3), we know that Cor1 = 0 for any k > 2. First assume |S| < 1. Then C; = () by
Lemma 10 (1). By Lemma 8, there are at least 3|T'| = 12 edges going from T to vertices in S and
components in (Jy~; Cok+1. As Cop1 = 0 for any k > 2, it follows that |C3] > 4 if |S| = 0 and
IC3| > 3 if |S| = 1, contradicting Equation (1).

Next, assume |S| > 2. By Equations (1) and (2), we have |S| = 2. Let D be the single component
in C3. Define Wp to be a set of 2 vertices in D which are all adjacent in G to some vertex from 7.
Then SUWp is a cutset in G such that [SUWp| =4 and ¢(G— (SUWDp)) > |T| = 4, contradicting
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7(G) >t > 1. O

By Claim 2 and Lemma 11 (1), we see that G contains an induced R = Py U 3P;. Thus we may
assume R ¢ {P,U Py, P3s U2P;, P, U3P;, P, U3P;} from this point on.

Claim 3. R ¢ {PsU4P;, P, U5P;,6P,7P,} unless G falls under the exceptional cases as in (a)
and (b) of Theorem 13(2).

Proof. We may assume that G does not fall under the exceptional cases as in (a) and (b) of
Theorem 13(2). Thus we show that R & {Ps U4P;, P, U5P,,6P;, 7P, }.

Assume to the contrary that R € {P;U4P;, P, U5P;,6P;,7P;}. By Lemma 11(1), G contains an
induced Py UaP;, where a = |T'| — 2. If a > 5, then each of P3sU4P;, P, U5P;,6P;, and 7P, is an
induced subgraph of Py U aP;, a contradiction. Thus a < 4 and so |T| < 6. As |T| < 6, we have
that (J,wq Cory1 = () by Lemma 8 (3). Since G is more than 1-tough and so is 3-connected, we have
d(G) > 3. By Claim 2, |T'| > 5. Thus, we have two cases.

CASE 1: |T| =5.

As |T| = 5, we have Cory1 = () for any k > 3. We consider two cases regarding whether or not
|C3 UC5] > 2.

CASE 1.1: |C3UCs5| = 1.

Let D € Cop+1 € C3UCs. By Equation (1), 5> [S|+k+1,s0 |S|<4—k. If k=1, 1let Wp be a
set of 2k vertices (which exist by Lemma 8 (4)) from D which are adjacent in G to vertices from
T. Then S U Wp forms a cutset and we have

t§|S|+2k§4+k:§:1’
5 5 5

contradicting ¢t > 1. Thus we assume k = 2. We consider two subcases.

CAsE 1.1.1: |V(D)| > 6.

For R = PsU4P;, let © € V(D) such that eg(xz,T) = 0. Let P be a shortest path in D from
x to a vertex, say z* from Ng(T) NV(D). Let y* € T such that eq(z*,y*) = 1. Then zPz*y*
and T\ {y*} contain P3 U4P; as an induced subgraph. We consider next that R = 6P;. Then T
and the vertex of D that is not adjacent in G to any vertex from T for an induced 6P;, giving a
contradiction. For R = 7Py, let Wp be the set of 2k + 1 vertices (which exist by Lemma 8(4)) from
D which are adjacent in G to vertices from 7. Then S U Wp forms a cutset and we have

t<|5|+2k+1<4+k:+123,
= T+1 — 6 6

giving a contradiction to ¢ > 7/6.

Lastly, we consider R = P, U5P;. For any x € V(D) such that eg(z,T) = 0, it must be the case
that z is adjacent in G to every vertex from Ng(T) N V(D). Otherwise, let z* € Ng(T) NV (D)

13



such that zz* ¢ E(G). Let y* € T such that eg(z*,y*) = 1. Then x*y* and (T \ {y*}) U {z}
contain P, U 5P, as an induced subgraph. Furthermore, if |V (D)| — |[Ng(T) N V(D)| > 2, then
V(D)\ (Ng(T)NV(D)) is an independent set in G. Otherwise, an edge with both endvertices from
V(D) \ (Ng(T) NV (D)) together with T induces P, U5P;. Thus if |V (D)| > 7, let Wp be the set
of 2k + 1 vertices (which exist by Lemma 8(4)) from D which are adjacent in G to vertices from
T. Then S U Wp forms a cutset and we have

t§|S|+5
|T| + 2

<

Y

~ =

giving a contradiction to ¢ > 1. Thus |V(D)| = 6. Let # € V(D) be the vertex such that
eq(z,T) = 0. Then it must be the case that D — x has at most two components. Otherwise, we
have t < |3U3ﬂ = 1.

Assume first that ¢(D—xz) = 2. Let D1 and D5 be the two components of D —z, and assume further
that |V(D1)| < |V(Dz2)|. Then as |V(D — x)| = 5, we have two possibilities: either |V(D;)| =1
and |V(D2)| =4 or |V(D1)| =2 and |V(D3)| = 3. Since §(G) > 3, if |V (D1)| = 1, then the vertex
from D; must be adjacent in G to at least one vertex from S. When |V (D2)| = 4 and Dy # Ky,
then Do has a cutset W of size 2 such that ¢(Dy — W) = 2. Then SUW U {z} is a cutset of G
such that ¢(G — (SUW U{z})) = 5, showing that ¢ < 1. Thus Dy = K4. However, this shows that
G contains Hg as a spanning subgraph. When |V (Dy)| = 3 and Dy # K3, then Dj has a cutvertex
z*. Then S U {z,2*} is a cutset of G such that ¢(G — (S U {z,2*})) = 4, showing that t < 1 = 1.
Thus Dy = K3; however, this shows that G contains H; as a spanning subgraph.

Assume then that ¢(D —z) = 1. Let D* = D — z. If §(D*) > 3, then D* is Hamiltonian and so G
contains Hi as a spanning subgraph. Thus we assume 6(D*) < 2.

Assume first that D* has a cutvertex x*. Then ¢(D* — z) = 2: as if ¢(D* —x) > 3, then ¢(G —
(SU{z,z*})) >4, implying ¢t < 1. Let D] and D be the two components of D* — z*, and assume
further that |V (D7)| < [V(D3)|. Then as |V(D* — z*)| = 4, we have two possibilities: either
V(D7) =1 and |V(D3)| = 3 or |[V(D7)| = 2 and |V(D3)| = 2. Since 6(G) > 3, if |[V(D7)| =1,
then the vertex from D] must be adjacent in G to at least one vertex from S. When |V(DJ)| = 3
and D5 # K, then D3 has a cutvertex ™. Then S U {x,z*,2**} is a cutset of G such that
(G — (SU{z,z*,2**})) = 5, showing that t < 1. Thus Dj = K3. The vertex z* is a cutvertex
of D* and so is adjacent in D* to a vertex of D} and a vertex of D5. However, this shows that
G contains Hg as a spanning subgraph. When |V(D3)| = 2, as G does not contain Hg or Hyg as
a spanning subgraph, z* is adjacent in G to exactly one vertex, say z7, of D} and to exactly one
vertex, say x5, of D5. Then SU {x,z], x5} is a cutset of G whose removal produces 5 components,
showing that 7(G) < 1.

Assume then that D* is 2-connected. As §(D*) < 2, D* has a minimum cutset W of size 2. If
c(D* — W) = 3, then we have ¢(G — (SUW U{z})) = 5, showing that ¢ < 1. Thus ¢(D* - W) = 2.
Then by analyzing the connection in D* between W and the two components of D* — W we see
that D* contains C5 as a spanning subgraph, showing that G contains Hyg as a spanning subgraph.

CAsE 1.1.2: |V(D)| =5.
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Since G does not contain Hj as a spanning subgraph, we have D £ K5. As D # K5, D has a cutset
Wp of size at most 3 such that each component of D — Wp is a single vertex. Then

|S|+|WD|<4—2+3_
- 5

t< 1,

a contradiction.
CASE 1.2: |C3UC5| > 2.

By Equation (1), we have

4> (S|4 klCorpal.

k>1

So one of the following holds:

1. S = 0 and either [C5] < 2, |C5] < 1 and |C3] < 2, or |C3] < 4. In this case, C; = 0 by
Lemma 10(1). Thus by Lemma 8(3), we have eq(T,V(G)\T) < 12 < 3|T| = 15.

2. |S| = 1 and either [C5| = 1 and |C3| = 1 or |C3| < 3. In this case, again C; = () by Lemma 10(1).
This implies there are a maximum of 14 edges incident to vertices in 7', a contradiction.

3. |S| = 2 and |Cg| = 2.

Let C3 = {D;, D2}. Note that |V (D;)| > 3 by Lemma 8(4) for each i € [1,2]. Since |T| =5,
there exists yg € T such that eg(yo, D;) = 1 for each ¢ € [1,2]. If R = P3 U4P;, then T
together with the two neighbors of yo from V(D;)UV (Ds) induce R. If R = 6P, then T\ {yo}
together with the two neighbors of yo from V(D;)UV (Ds) gives an induced 6P;. If R = 7Py,
let Wp, € V(D;)\ N (yo) be the two vertices of D; that are adjacent in G to vertices from 7.
Then ¢(G — (SUWp, UWp, U{yo})) =|T|—1+2=6. Thust < % = %, contradicting
t > L. Lastly, assume R = P, U5P;. If one of D; has at least 4 vertices, say |V (D2)| > 4,
then let € V(D3) such that eq(x,T) = 0, 2* € V(D;) and y* € T such that eq(z*,y*) = 1.
Then z*y* and (T'\ {y*}) U{z} induce P, U5P;. Thus |V (D;)| = |V(D2)| = 3. If one of D;,
say Do # K3, then Ds has a cutvertex z. Let W be the set of any two vertices of D1. Then
SUW U{z} is a cutset of G such that ¢(G — (SUW U {z})) = 5, showing that ¢t < 2 = 1.

Thus D1 = Dy = K3. However, this shows that G contains Hy; as a spanning subgraph.

CASE 2: |T| = 6.

In this case, by Lemma 11(1), G has an induced Py U4P;, which contains each of PsU4P;, P,U5P;
and 6P, as an induced subgraph. So we assume R = 7P; in this case and thus ¢ > %.

Recall for y € T, h(y) = {D : D € Jy>1Cor+1 and eqg(y, D) > 1}|. If there exists yo € T such
that h(yo) > 2, we let z1, 22 be the two neighbors of yg from the two corresponding components
in (Jp>q Cok+1, respectively. Then T\ {yo} together with {x,x2} induces 7P;. Thus h(y) <1 for
each y € T. This, together with |T| = 6, implies that we have either |C3| € {1,2} and Copy1 = 0
for any k > 2 or |C5| =1 and Copy1 = 0 for any 1 < k # 2.
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If |C5| = 1 and Cogyq = 0 for any k > 2, then |S| < 4 by Equation (1). Let W be a set of two vertices
from the component in C3 that are adjacent in G to vertices from 7. Then ¢(G — (S UW)) > 6,
indicating that t < 22 < I. For the other two cases, we have |S| < 3. If |C3| = 2 and Coj11 = 0 for
any k > 2, let W be a set of four vertices, with two from one component in C3 and the other two from
the other component in C3, which are adjacent in G to vertices from T. If |C5| = 1 and Cojy1 = 0
for any 1 < k < 2, let W be a set of four vertices from the component in C5 that are adjacent in G

to vertices from 7. Then we have ¢(G — (S UW)) > 6, indicating that t < 34 = I. O

By Claim 3, we now assume that R € {P; U2P;, Ps U Py, Py U P3, PsU2P5, 3P, U P} and t = 3/2.

Claim 4. There exists y € T with h(y) > 2.

Proof. Assume to the contrary that for every y € T, we have h(y) < 1. Define the following
partition of T

Ty = {y cT: eG(y,D) =0 forall D € U C2k+1}7
k>1
Ti = {yeT:ecly,D)=1"forsome D€ | JCors}.
E>1

Note that [T = ) ;~;(2k +1)|Cox41| by Lemma 8(3) and (4). For each D € Cyp4q for some k > 1,
we let Wp be a set ‘of 2k vertices that each has in G a neighbor from 7. As each D — Wp is
connected to exactly one vertex from 7" and each component from C; is connected to exactly one
vertex from T, it follows that
w=su |J W
DEUk31C2k+1

satisfies ¢(G — W) > |T'| > 5, where |T'| > 5 is by Claim 2.

By the toughness of G, we have

S|+ 2k[Cora| = [W|>t|T| = t(To| + |Th])
E>1
= ¢ |Tol + D2k +1)[Carya] | - (3)
=1

Since t = 3/2, the inequality above implies that [S| > 3[Ty|/2 + > )~ (k + 3/2)[C2x+1]. Thus

|S| + Zk’CQk_H’ > 3|To|/2 + Z(Qk +3/2)|Cok+1] > |To| + Z(Qk + 1)[Cors1| = |7,
k>1 k>1 k>1

contradicting Equation (1). O

By Claim 4, there exists y € T such that h(y) > 2. Then as |T'| > 5, by Lemma 11(2), G contains an
induced P; U2P;. Thus we assume that R # P; U2P;. We assume first that || J k>1 Cok+1| > 3 and
let D1, Do, D3 be three distinct odd components from Uk21 Coks1- Let yo € T such that h(yg) > 2.
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We assume, without loss of generality, that eq(yo, D1) = eg(yo, D2) = 1. By Lemma 11(2), G
contains an induced P, U aPy, where b > 7 and a = |T| — 3, and the graph P, U aP; can be
chosen such that the vertices in aP; are from 7" and the path P, has the form y; 2] Piz1yor2 Pax5ys,
where yo,y1,y2 € T and z7Pix1 and x5P,x9 are respectively contained in D; and Dg such that
eq(z,T) = 0 for every internal vertex x from P; and P,. If one of y; and ys, say y; has a neighbor z;
from V(Ds3), then z1y12] PixiyoraPaxdys and T\ {yo,y1,y2} induce Pg U2P;, which contains each
of PsUP,, PyUPs3, and 3P, U P; as an induced subgraph. Let zo € V(Dj3) be a neighbor of z;. Then
zoz1y107 Prx1yora Paxhys contains an induced Py U 2P, whether eg(z2, {yo,y2}) = 0 or 1. Thus we
assume eg(y;, D3) = 0 for each i € [1,2] and so we can find y3 € T\ {yo,y1,y2} and z € V(D3) such
that y3z € E(G). Then yiz5 Piz1yora Paxdys and zys contains an induced Py U Py, which contains
each of Ps U Py, P3U2P, and 3P, U P; as an induced subgraph. We are only left to consider
R =Py UPs. As eq(yi, D3) = 0 for each ¢ € [1,2], we can find distinct y3,y4 € T\ {yo,y1,y2} and
distinct z1, 29 € V(D3) such that ysz1,yszo € E(G). We let P be a shortest path in D3 connecting
z1 and zo. If eq(yo, V(P)) = 0, then ysz1Pzoys and yix]Pix1yoraParlys contains an induced
Py U Ps. Thus eg(yo, V(P)) = 1. This in particular, implies that [V (P)| > 3. Then y3z1 Pz2y4 and
Y127 Pz together contain an induced Py U Ps.

Thus | Ug>1 Copt1| = 2. Let Dy, Dy € >  Cap+1 be the two components. Define the following
partition of T

Ty = {yeT:ec(y,D1)=eq(y,D2) =0},
Ty = {yeT:eq(y,D1)=1and eqg(y, D2) =0},
Tio = {yeT:ec(y,D1)=0and eg(y, Dy) = 1},
T = {yeT:ec(y,D1)=eq(y,D2) =1}.

We have either Ty = () or T5 # (). First suppose Ty = ). Define the following vertex sets:
Wy = Ng(Tll) N V(Dl) and Wy = N(;(Tlg) N V(Dg)

Then |Wi| = |T11] = 2k1 + 1 and |Ws| = |T12| = 2k + 1, where we assume eq (T, D1) = 2k; + 1 and
eq(T, Dy) = 2ko + 1 for some integers k1 and ko. Then W = S UW; U Ws is a cutset of G with
¢(G —W) > |T|. By toughness, |W| > 3|T| = |T|+ &|T|. Since |T'| = |Ty| + |T11| + |T12|, this gives
us

1 1
(W[ >|T]+ §|T0| + §(|T11| + |[T12])
1 1
= |T| + §|To| + 5(%1 + 14 2ko + 1)
1
= |T| + §|T0| + ki + ko + 1.

Thus |W| = |S| + [Wi| + |Wa| = [S| + 2k1 + 2ko +2 > |T| + §|To| + k1 + ko + 1, which implies
|S| + k1 + ko + 1 > |T| + £|Tp|. Hence, by Equation (1), we have |T| > |T| + 3|Ty|, giving a

contradiction.

So we may assume Th # (). Now define the following vertex sets:

Wy = Ng(TH) N V(Dl), Wy = Ng(T12) N V(DQ), and W3 = N(Tg) N (V(Dl) U V(DQ))
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We have that |W1| = |T11|, |W2| = |T12|, and |W3| = 2|T2|. Now let W = SU W7 U Wy U Ws.
Then W is a cutset of G with ¢(G — W) > |To| + |T11| + |Th2| + 1 since Ty # (. By toughness,
(W[ > 3(|To| + |Tu1| + |Taz| + 1). Since [W| = | S|+ [Wi| + [Wa| + [W3| = |S| + |T11| + [Ti2| + 2|T3,
we have ’S’ + ‘Tllf + ’T12’ + 2‘T2‘ > %‘To‘ + %’Tll‘ + %‘Tm’ + % This implies

3 1 1
> —|Tq —|T; —|T; 1.
1512 SITol + 5[Tual + 5[ Tr2] +
Thus,
3 1 1
|5|+k’1+k‘22§|T0|+§|T11|+§|T12|+1+k‘1+k‘2. (4)

We have that either 711 UT1s UTy = 0 or T11 UT 1o UTy # 0. First suppose T11 UT1oUTy = (). Then
IT| = |T»| = $(2k1 + 1+ 2k + 1) = ky + ko + 1. Thus [S| + k1 + ko > |T'|, showing a contradiction
to Equation (1).

So we may assume 711 U Tio U Ty # 0. Then
T = |To| + (2k1 + 1+ 2ky + 1 — [T3])
= |To| + (2k1 + 2k2 +2) — %(%1 + 1+ 2k +1— |Tua| — [Th2])
= [To| + %(2/61 + 2k +2) + %‘TH’ + %’Tm\
=|Tol+ ki +ka+1+ %’Tll‘ + %\Tmy.
Using the size of T' and (4), we get |S| + k1 + ko > |T'|, showing a contradiction to Equation (1).

The proof of Theorem 13 is now finished. O

4 Proof of Theorems 5 and 6

Recall that for a graph G, a(G), the independence number of G, is the size of a largest independent
set in G.

Proof of Theorem 5. For each i € [0,11], H; does not contain a 2-factor by Theorem 7. Thus to
finish proving Theorem 13, we are only left to show the three claims below.

Claim 5. The graph H; is (P U3P))-free, Hy is (P3U2P))-free, and 7(H;) = 1 for each i € [0,4].

Proof. We first show that H; is (P> U 3P;)-free for each i € [0,4]. We only show this for Hy,
as the proofs for H; for i € [1,4] are similar. In Hy, there are two types of edges zy: =,y €
V(Dj) or x € V(D;) and y € V(T), where j € [1,2]. Without loss of generality first consider the
edge vivy € E(Dq) and the subgraph Fy = Hy — (Npg,[v1] U Ny, [v2]). We see o(F1) = 2. Now,
without loss of generality, consider the edge vit; and the subgraph F» = Hy — (N, [v1] U N, [t1])-
We see a(F3) = 2. In either case, P, U3P; cannot exist as an induced subgraph in Hy. Thus Hy is
(P2 U 3Py )-free.
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Then we show that H; is (P3 U 2P;)-free. Two types of induced paths abc of length 3 exist: a €
S,beT,ce V(D)oracT,bce V(D). Without loss of generality, consider the path zt;v; and
the subgraph Fy = Hy — (Np, [2]UNg, [t1]U Ng, [v1]). We see that Fj is a null graph. Now, without
loss of generality, consider the path t1v1v2 and the subgraph Fy = Hy;—(Ng, [t1]UNg, [v1]UNH, [va]).
We see |V (Fy)| = 1. In either case, P3 U2P; cannot exist as an induced subgraph in Hy. Thus H;
is (P U 2P;)-free.

Let i € [0,4]. As §(H;) =2, 7(H;) < 1. It suffices to show 7(H;) > 1. Since H; is 2-connected, we
show that ¢(H; — W) < |W| for any W C V(H;) such that [W| > 2. If |IW| = 2, by considering all
the possible formations of W, we have ¢(H; — W) < |W/|. Thus we assume |W| > 3.

Assume by contradiction that there exists W C V(H;) with |W| > 3 and ¢(H; — W) > |[W|+1 > 4.
The size of a largest independent set of each Hy, Hy, Hs, and Hy is 4, and of Hy is 3. Since
c¢(H; — W) is bounded above by the size of a largest independent set of H;, we already obtain a
contradiction if ¢ = 1 or [W| > 4. So we assume i € {0,2,3,4} and |W| = 3.

As ¢(H; — W) > 4, for the graph Hy, we must have {vy,vs,v3} "W # 0 and {vy, vs5,v6} N W # (.
As |W| = 3, we have either WNT = or |[IWNT|=1. In either case, by checking all the possible
formations of W, we get ¢(Hy — W) < 2, contradicting the choice of W.

As ¢(H; — W) > 4, for each i € [2,4], we must have x € W. Thus t; ¢ W for j € [1,3], as
otherwise, ¢(H; — (W \ {t;})) > 4, contradicting the argument previously that c(H; — W*) < 2 for
any W* C V(H;) and |[W*| < 2. As |W| = 3, we then have |W N {vy,vs,v3,v4}| = 2. However,
c(H; — W) <3 for W = {x, v, vp} for all distinct k, ¢ € [1,4]. We again get a contradiction to the
choice of W. O

Claim 6. The graph Hs with p =5 is (P3U4P;)-free, (PoU5P;)-free, and 6Py -free with 7(Hs) = g.

Proof. Let p=>5 and D be the odd component of Hs — (S UT). Note that D = K}, = K.

We first show that Hs is (P3 U 4P;)-free. There are three types of induced paths zyz of length
3in Hy :x € Ssye T,z e V(D)orzx € Tyy,z € V(D)or xz,z € T,y € S. Without loss of
generality, consider the path xit1y; and the subgraph Fy = Hs — (Ng[z1] U Ny [t1] U Nu, [y1])-
We see that Fj is a null graph. Now consider the path t1yiys and the subgraph F» = Hjs —
(Nm[t1] U N [y1] U Nog[y2]). We see a(F;) = 3. Finally consider the path ¢;x1ts and the
subgraph F3 = Hs — (N, [t1] U Np,[z1] U N, [ta]). We see a(F3) = 3. In any case, an induced
copy of P3U4P; cannot exist in Hs. Thus Hs is (P U 4P )-free.

We then show that Hjy is (P2 U 5P;)-free. There are three types of edges zy in Hs : z € S,y €
TorxeT,yeV(D)orx,ye V(D). Without loss of generality, consider the edge z1t; and the
subgraph F} = Hs — (N [x1] U Ny, [t1]). We see |V (F1)| = 4. Now consider the edge t1y; and the
subgraph Fy = Hs — (N, [t1] U Nu, [y1]). We see |V (Fy)| = 4. Finally, consider the edge y1y2 and
the subgraph F3 = Hs — (NgHs[y1] U N, [y2]). We see a(F3) = 3. In any case, no induced copy of
P, U5P; can exist in Hs. Thus Hj is (P> U 5P))-free.

We lastly show that Hs is 6P -free. There are three types of vertices x in Hs : x € S,z € T, or

19



x € V(D). Without loss of generality, consider the vertex x; and the subgraph Fy = Hs — Ny, [z1].
We see a(Fy) = 1. Now consider the vertex ¢; and the subgraph Fy = Hs — Np.[t1]. We see
a(Fy) = 4. Finally, consider the vertex y; and the subgraph I3 = Hs — Nz, [y1]. We see a(F3) = 4.
In any case, no induced copy of 6P, can exist in Hs. Thus Hj is 6P;-free.

We now show that 7(Hs) = g. Let W be a toughset of Hs. Then S C W. Otherwise, by the

structure of Hs, we have ¢(Hs — W) < 3 and |[W| > 5. As S C W and the only neighbor of each
vertex of T'in Hs — S is contained in a clique of Hs, we have TN'W = (). Since ¢(Hs — W) > 2, it
follows that WN V(D) # 0. Then ¢(Hs — W) = |WnNV(D)| if [WNV(D)| <3or ]WﬂV( )| =5,
and ¢(Hs — W) = [WnNV(D)|+1if [WnNV(D)| =4. The smallest ratio of C(I‘IIZI:‘W) is 2, which
happens when [W NV (D)| = 4. O

Claim 7. The graph H; is (P, U5P))-free with 7(H;) = % for each i € [6,11].

Proof. We show first that each H; is (P, U 5P;)-free. We do this only for the graph Hg, as the
proofs for the rest graphs are similar. For any edge ab € E(Hg), we see a(Hg — (N, [a] UNpg,[b])) <
4. Thus no induced copy of (P, U5P;) can exist in Hg. Thus Hg is (P, U 5P;)-free.

We next show that 7(H,) = £ for each i € [6,10]. We have ¢(H; — (SU{v1,...,vs5})) = 6, implying
T(H;) S . Suppose 7(H;) < % Let W be a toughset of H;. As each H; is 3-connected, we have
|[W| > 3. Thus c¢(H; — W) > 3. We have that either S C W or S € W. Suppose the latter. Then
we have SNV (H; — W) # (. Then all vertices in 7'\ W are contained in the same component
as the one which contains S\ W. Since ¢(H; — W) > 3, by the structure of H;, it follows that
we have either T C W or {vy,...,v5} € W. In either case, we have ¢(H; — W) < 3, implying
% > g > %, a contradiction. So S C W. By Lemma 12, t; ¢ W for all j € [1,5]. Thus
each t; € V(H; — W). Now either vg € W or vy ¢ W. Suppose vg € W, then we cannot have

W]

all v; € W without violating Lemma 12. In this case, the minimum ratio m
W]

|[W N {vy,v2,v3,v4, 05} = 3. This implies ST > g > %, a contradiction. Thus vg € W and we
must have vy € V(H; — W). This implies {v; ...v5} C W and o ‘W|W) L, a contradiction. Thus
T(H;) = L for each i € [6,10].

occurs when

Lastly we show 7(Hj1) = %. We have ¢(Hi; — (S U {v1,v2,t3,v4,v5})) = 6, implying 7(Hi1) < (75

Suppose T(Hp1) < %. Let W be a tough set of Hy;. As Hjp is 3-connected, we have |W| > 3.
Thus ¢(Hi; — W) > 3. We have that either S C W or S ¢ W. Suppose the latter. Then we
have SNV (Hy;; — W) # 0. Then all vertices in 7'\ W are contained in the same component as
the one which contains S \ W. Since ¢(Hy; — W) > 3, by the structure of Hij, it follows that
|W| > 5 and ¢(Hyp — W) < 4. This implies % > 32> %, a contradiction. So S C W. By
Lemma 12, t; ¢ W for i € {1,2,4,5}. Thus t; € V(Hy; — W) for ¢ € {1,2,4,5} and we must
have W N {vy,v2,v3,v4,v5,v6,t3}+ # 0. If t5 € W, then % > g > %, a contradiction. Thus
ts € W. Then v3 and v4 are respectively in two distinct components of Hi; — W by Lemma 12.
Thus W N {v1,va,v5,06} # 0 as ¢(Hy; — W) > 3. Furthermore we have ¢(Hyp — W) = |[W N

{v1,v2,v5,v6}| + 2. The smallest ratio of % is 6, which happens when {1)1,1)2,1)5,1}6} cw.

Again we get a contradiction to the assumption that 7(Hj;) < 6' Thus 7(Hyp) = 6' O
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The proof of Theorem 13 is complete. O

Proof of Theorem 6. Let p > 6 and D be the odd component of Hs — (S UT'). Note that D = K.
Since ¢(Hs — (SU{y1,...,ys5})) = 6, we have 7(Hs) < I. We show 7(Hs) > £. Let W be a toughset
of Hs. Then either S C W or S € W. Suppose the latter. Then we have SNV (Hs — W) # (.
Then all vertices in T\ W are contained in the same component as the one containing S\ W. Since
c(Hs — W) > 2, by the structure of Hs, it follows that we have either T'C W or {y1,...,ys} C W.
In either case, we have ¢(Hs — W) < 3, implying % > % > %. Now suppose S C W. By
Lemma 12, t; ¢ W for all i. Thus each t; € V(Hs —W). Furthermore, ¢(Hs—W) = [WNV(D)|+1.
Since W is a cutset of G, we have |W NV (D)| > 2. The smallest ratio of W g £, which

c(Hs—W)
happens when [W NV (D)| = 5.

For the graph Hjy, we have ¢(Hi2 — (S U {y1,v2,y3})) = 4, implying 7(Hi2) < % = 1. We show
T(Hi2) > 1. Let W be a toughset of Hjs. Then either S C W or S € W. Suppose the latter. Then
we have SNV (Hy2—W) # (). Then all vertices in T\ W are contained in the same component as the
one containing S\ W. Since ¢(H12 — W) > 2, by the structure of Hys, it follows that we have either
T CW or {y1,y2,y3} € W. In either case, we have ¢(Hj2 — W) < 2, implying % > % > 1.
Now suppose S C W. By Lemma 12, t; ¢ W for all i. Thus each t; € V(H;2 — W). This implies

. W
Hy1,y2,y3} N W] =2 or 3. In either case we see ﬁ =1. O
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