
ar
X

iv
:2

20
2.

04
28

2v
1 

 [
m

at
h.

C
O

] 
 9

 F
eb

 2
02

2
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Abstract. Borrowing inspiration from Marcone and Montálban’s one-one corre-

spondence between the class of signed trees and the equimorphism classes of inde-

composable scattered linear orders, we find a subclass of signed trees which has an

analogous correspondence with equimorphism classes of indecomposable finite rank

discrete linear orders.

We also introduce the class of finitely presented linear orders– the smallest sub-

class of finite rank linear orders containing 1, ω and ω
∗ and closed under finite

sums and lexicographic products. For this class we develop a generalization of the

Euclidean algorithm where the width of a linear order plays the role of the Eu-

clidean norm. Using this as a tool we classify the isomorphism classes of finitely

presented linear orders in terms of an equivalence relation on their presentations

using 3-signed trees.

1. Introduction

The classification of scattered linear orders up to isomorphisms is a very hard
problem; however their classification up to equimorphisms is well-studied. Montálban
[6] introduced the notion of signed trees to study equimorphism classes of scattered
linear orders. Together with Marcone he proved [5, Lemma 2.8] that the class of
signed trees, ST, is in one-one correspondence with the class of equimorphism classes
of indecomposable linear orders, ILO; this correspondence restricts to one between
the class of finite signed trees, STω, and the class of equimorphism classes of finite
rank indecomposable linear orders, ILOω.

Our interest to investigate finite rank linear orders, specially the finite rank discrete
linear orders, stems from the study of chains in certain posets, known as hammocks,
which were introduced by Brenner [1] in the study of the representation theory of
finite dimensional algebras. The simplest version of a hammock in the context of
string algebras is a bounded discrete linear order [9, § 2.5]. Representation-theoretic
literature talks about the dimension of a modular lattice [7], which when restricted
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2 AGRAWAL ET AL.

to linear orders is exactly its Hausdorff rank [3]; nevertheless there does not seem to
be any mention of the Hausdorff rank in the representation-theoretic literature.

With the goal of understanding discrete linear orders we obtain a one-one corre-
spondence (Theorems 4.3 and 4.7) between a subclass ASTω of finite signed trees,
consisting of alternating signed trees, and the equimorphism classes of finite rank in-
decomposable discrete linear orders, dILOω. In the process we document and use a
characterization of discrete linear orders (Proposition 4.5) which we believe is known
to experts, but whose proof could not be found in the literature.

Since equimorphism is a very coarse relation and can relate profoundly different
linear orders, we focus on the isomorphism relation in the latter half of the paper by
restricting our attention to a much smaller class consisting of finitely presented linear
orders, LOfp–such orders can be written using finitely many sum and lexicographical
product operations. Borrowing inspiration from signed trees, we introduce the class
3STω of 3-signed trees so that there is a many-one correspondence between 3STω and
the isomorphism classes in LOfp. Again this correspondence restricts (Theorem 7.2)

to one between the class dLOb
fp of bounded discrete finitely presented linear orders

and a subclass A3STω of 3STω consisting of alternating 3-signed trees. Sardar and
the second author proved [8] that the class dLOb

fp is precisely the class of hammock
linear orders for domestic string algebras.

Later we introduce an equivalence relation on 3STω, which we call ‘L-equivalence’,
so that two L-equivalent 3-signed trees correspond to isomorphic linear orders. The
main goal of this paper is to prove Corollary 9.4 which states that two 3-signed trees
are L-equivalent if and only if their corresponding linear orders are isomorphic. To this
end we define the width of a finitely presented linear order–this isomorphism-invariant
plays the role of the Euclidean norm in a generalisation of Euclid’s division lemma
(Lemma 8.8). At the heart of the proof of the main result lies this generalisation of
the Euclidean algorithm, where we use the above lemma successively to reduce the
problem to the lower (Hausdorff) rank cases.

The paper is organized as follows. In §2 we recall some preliminaries needed for our
purpose while §3 deals with scattered linear orders and signed trees. In §4, we show
the correspondence between dILOω and ASTω. After introducing the classes LOfp

and 3STω in §5 we define the notion of L-equivalence in §6. We study isomorphism
classes of bounded discrete finitely presented linear orders in §7. The Euclid’s division
lemma is the highlight of §8 and we prove the main result in §9.
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2. Fundamentals of linear orders

In this section we recall standard facts about linear orders and set up notations.
Let n denote the linear order with n elements for a non-negative integer n. Let

Z and Q denote the sets of integers and rationals with usual orders. Let ω denote
the first infinite ordinal. For any linear order L, the notation L∗ denotes the same
underlying set with the reverse order. Set ω+1 = ω+ ∶= ω,ω−1 = ω− ∶= ω∗, ω0 ∶= 1.

There are two natural associative and non-commutative binary operations on linear
orders, namely sum (+) and lexicographic product (×). The sum operation can be
extended to a family of linear orders indexed by a linear order.

Remark 2.1. For linear orders L1,L2,L3 we have

(L1 +L2) ×L3 ≅ (L1 ×L3) + (L2 ×L3);

the other distributive law fails.

Say that a linear order L embeds into another linear order L′ if L is isomorphic to
a subset of L′ with the induced order. Say that L ⪯ L′ if there is an embedding of L
into L′. Say that L and L′ are equimorphic, denoted L ∼ L′, if L ⪯ L′ and L′ ⪯ L.

For linear orders L,L′, the former is said to be a prefix of the latter if L′ = L +L0

for some linear order L0. Similarly L is said to be a suffix of L′ if L′ = L0 + L for
some linear order L0. We say that a subset S ⊆ L for a linear order is convex if for
all a, b, c ∈ L whenever a, b ∈ S and a < c < b then we have c ∈ S.

Recall that a linear order L is said to be indecomposable if whenever L ⪯ A +B,
for some linear orders A,B, either L ⪯ A or L ⪯ B.

Remark 2.2. Indecomposability of linear orders is invariant under equimorphism.

We are interested in a subclass of indecomposable linear orders.

Definition 2.3. Say that a linear order L is irreducible if either L = 1 or L ≅ ω±×L′

for some linear order L′.

Proposition 2.4. An irreducible linear order is indecomposable.

Proof. Since 1 is clearly indecomposable, without loss we will prove that ω × L is
indecomposable; the proof of the remaining case is dual.

By definition ω × L = ∑n∈ω L. So suppose ∑n∈ω L ⪯ L1 + L2. If ∑n∈ω L ⪯ L1, we
are done. If not then L1 embeds only finitely many, say k many, copies of L for some
k ∈ N. Then ∑n>k+1,n∈ωL ≅ ∑n∈ω L ⪯ L2 so again we are done. �

Definition 2.5. Given a linear order L and an ordinal α, define an equivalence
relation ∼α on L by transfinite recursion as follows.

Let ∼0 be the identity relation on L. For an ordinal α > 0 suppose we have defined
relations ∼β for all β < α. For x < y in L, set x ∼α y if for some β < α, there
are only finitely many ∼β-equivalence classes intersecting the interval [x, y]. The
∼α-equivalence classes are convex subsets of L–such classes, ordered in the obvious
way, constitute a linear order, denoted L(α). The Hausdorff rank (or, just rank)
of L, rk(L), is the least ordinal α such that L(α) is finite. If no such α exists, set
rk(L) ∶=∞.
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Remark 2.6. Suppose L = L1 + L2. Then L
(1)
1 (resp. L

(1)
2 ) is a prefix (resp. suffix)

of L(1). Moreover, L(1) = L(1)1 +L
(1)
2 if and only if either L1 is not bounded above or

L2 is not bounded below. When L1 is bounded above and L2 is bounded below we
obtain L(1) by identifying the maximal element of L

(1)
1 with the minimal element of

L
(1)
2 in L

(1)
1 +L

(1)
2 .

Using the above remark repeatedly we get the following.

Proposition 2.7. If L is an irreducible linear order isomorphic to ωδ ×L′ for some
δ ∈ {+,−} and some L′ with rk(L′) > 0 then L(1) is also isomorphic to ωδ × L′′ for
some L′′.

Proof. Without loss suppose L ≅ ω × L′. Let L1 be the ∼1-equivalence class of the
minimal element of L′, if exists (L1 = ∅ if minimal element doesn’t exist), and let
L′ = L1 +L2. This shows that if L2 is non-empty then either L1 is unbounded above

or L2 is unbounded below. Thus Remark 2.6 gives that (L1+L2)(1) = L(1)1 +L
(1)
2 . The

same remark also gives that (L2 + L1)(1) = L′2 + L(1)1 , where L′2 is prefix of L
(1)
2 that

contains at most one point less than the latter. Since ω × L′ ≅ L1 + ω × (L2 +L1), it
is easy to see that

L(1) ≅ (ω ×L′)(1)
≅ L

(1)
1 + (ω × (L2 +L1))(1)

≅ L
(1)
1 + ω × (L2 +L1)(1)

≅ L
(1)
1 + ω × (L′2 +L(1)1 )

≅ ω × (L(1)1 +L
′
2).

�

Proposition 2.7 together with induction gives the following.

Corollary 2.8. If L is an irreducible linear order with 1 ≤ rk(L) < ω and L is
isomorphic to ωδ×L′ for some δ ∈ {+,−} and some linear order L′ then L(rk(L)−1) ≅ ωδ.

3. Scattered Linear Orders

Recall that a linear order L is scattered if Q â L. There is a characterization of
scattered linear orders in terms of their Hausdorff ranks due to Hausdorff.

Lemma 3.1. [3] A linear order L is scattered if and only if rk(L) ≠∞.

The classes of scattered linear orders and finite rank linear orders are closed under
finite sums and finite products.

Let ILO denote the class of countable indecomposable scattered linear orders, dLO
denote the class of countable discrete linear orders, and dILO ∶= dLO ∩ ILO. We
add a subscript ω to any class of linear orders to denote its subclass of orders with
finite rank.

In a seminal work Laver [4] settled in the affirmative the conjectures of Fräıssé [2]
stating that indecomposables are the building blocks of the class of scattered linear
orders up to equimorphism.
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Theorem 3.2. [4] Every scattered linear order can be written as a finite sum of
indecomposable ones.

Every indecomposable linear order can be written either as an ω-sum or as an
ω∗-sum of indecomposable linear orders of smaller rank.

An important tool in the study of scattered linear orders is the notion of a signed
tree introduced by Montalbán.

Definition 3.3. [6, Definition 2.1] Let ω<ω denote the set of all finite sequences in
ω. A signed tree is a pair (T, sT ) where T ⊆ ω<ω is a non-empty well-founded tree
and sT ∶ T → {+,−} is a map.

The class of signed trees (resp. finite signed trees) is denoted by ST (resp. STω).
To talk about signed trees we use relevant notations from [5] and [6]. The significance
of signed trees is captured by the next result.

Proposition 3.4. [5, Lemma 2.8] There is a map lin ∶ ST → ILO such that for each
infinite L ∈ ILO, there exists (T, sT ) ∈ ST such that lin(T, sT ) ∼ L.

Combining the above with [5, Lemma 2.6] we get a stronger result for finite rank
indecomposables.

Proposition 3.5. For each infinite L ∈ ILO with rk(L) < ω, there exists (T, sT ) ∈
STω such that lin(T, sT ) ∼ L.

From Theorem 3.2, we know that an indecomposable linear order L is either an
ω-sum or an ω∗-sum. In fact, the next result states that the sign of the root of any
rooted tree presenting L in the sense of Proposition 3.4 is determined–this should be
known to the experts but we could not find a reference.

Proposition 3.6. Suppose L ∈ ILO is infinite. Then for any (T, sT ), (T ′, sT ′) ∈ ST
with L ∼ lin(T, sT ) ∼ lin(T ′, sT ′) we have sT (∅) = sT ′(∅).
Proof. In view of Theorem 3.2, without loss, L could be written as an ω-sum, say
L = ∑n∈ω Ln, for indecomposables Ln with rk(Ln) < rk(L) for each n ∈ ω. Suppose
L ∼ lin(T, sT ) for some (T, sT ) ∈ ST with sT (∅) = −. Then using the language of [6],
lin(T, sT ) is h-indecomposable to the right. Since ω is a well-order and lin(T, sT ) ⪯
L = ∑n∈ω Ln the dual of [6, Lemma 2.11] gives that L ∼ lin(T, sT ) ⪯ Ln for some
n ∈ ω–a contradiction to rk(Ln) < rk(L). Therefore sT (∅) = +. �

4. Discrete linear orders with finite rank

Henceforth we will use a standard (re)labelling of the vertices of a finite signed tree(T, sT ) described as follows. For each σ ∈ T let w(T ;σ) denote the number of children
of the root in Tσ. We will assume that for each vertex σ and x ∈ ω, σ ∗ x ∈ T if and
only if x < w(T ;σ). The height of T ∈ STω is defined as ht(T ) ∶=max{∣σ∣ ∶ σ ∈ T}.

We now introduce a new map LIN ∶ STω → ILO that is motivated from the map
lin ∶ ST→ ILO.

Let (T, sT ) ∈ STω and σ ∈ T . We inductively assign a linear order to the triple(T, sT , σ) as follows:
LIN(T, sT , σ) ∶= ωsT (σ) × ( ∑

x<w(T ;σ)

LIN(T, sT , σ ∗ x)),
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where ∑x<w(T ;σ)LIN(T, sT , σ ∗ x) ∶= 1 if w(T ;σ) = 0. Finally we set

LIN(T, sT ) ∶= LIN(T, sT ,∅).
Proposition 2.4 ensures that LIN(T, sT ) is indeed indecomposable. The map LIN

differs from the original map lin only in choosing a representative from the same
equimorphism class.

Proposition 4.1. For (T, sT ) ∈ STω, lin(T, sT ) ∼ LIN(T, sT ).
Proof. We use induction on the height of the tree to prove the result.

For the base case we have T = {∅}, and the conclusion is immediate.
Next suppose T ≠ {∅} and the result holds for all trees of smaller height. We prove

the result when sT (∅) = +; the other case will be analogous. Clearly LIN(T, sT ) ⪯
lin(T, sT ). For the other direction we have

lin(T, sT ) = ∑
k∈ω

( ∑
n≤min{k,w(T ;∅)}

lin(Tn, sTn
))

= ∑
k<w(T ;∅)

(∑
n≤k

lin(Tn, sTn
)) + ω × ( ∑

n<w(T ;∅)

lin(Tn, sTn
))

∼ ∑
k<w(T ;∅)

(∑
n≤k

LIN(Tn, sTn
)) + ω × ( ∑

n<w(T ;∅)

LIN(Tn, sTn
))

= ∑
k<w(T ;∅)

(∑
n≤k

LIN(Tn, sTn
)) + LIN(T, sT )

⪯ (w(T ;∅) + ω)× ( ∑
n<w(T ;∅)

LIN(Tn, sTn
))

∼ LIN(T, sT ),
where the inductive hypothesis is used in the third line. �

We now introduce a subclass of finite signed trees that will be used in our study
of finite rank discrete linear orders.

Definition 4.2. Say that (T, sT ) ∈ STω is an alternating signed tree (AST, for short)
if for every σ ∈ T , w(T ;σ) is even and, for each x < w(T ;σ), sT (σ ∗ x) = (−1)x.

We denote the class of alternating signed trees by ASTω.

The main goal of this section is to prove that the map LIN relates the classes
ASTω and dILOω in a way similar to the relation induced by the map lin between
STω and ILOω as given by Proposition 3.5.

Theorem 4.3. Let (T, sT ) ∈ ASTω. Then LIN(T, sT ) = ωsT (∅) × L, for a bounded
L ∈ dLOω. Hence LIN(T, sT ) ∈ dILOω.

Proof. We show this by induction on the height of the tree.
For the base case T = {∅}. Then LIN(T, sT ) = ωsT (∅) × 1, where 1 ∈ dILOω is the

singleton order.
Now suppose T ≠ {∅}. Note that (Tx, sTx

) ∈ ASTω for each x < w(T ;∅). By the
inductive hypothesis, LIN(Tx, sTx

) = ω(−1)x ×Lx for some bounded Lx ∈ dLOω. Then

LIN(T, sT ) = ωsT (∅) × (ω ×L0 + ω
∗ ×L1 + . . . ω ×Lw(T ;∅)−2 + ω

∗ ×Lw(T ;∅)−1).
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Since Lx is bounded and discrete, ω × Lx and ω∗ × Lx are discrete. Moreover
ω×Lx +ω∗ ×Lx+1 is bounded and discrete for each even x < w(T ;∅) because the first
summand is unbounded above while the latter is unbounded below. Since finite sum
of bounded discrete linear orders is again so, we get that (ω × L0 + ω∗ × L1 + . . . ω ×
Lw(T ;∅)−2 + ω∗ ×Lw(T ;∅)−1) ∈ dLOω and is bounded. �

The rest of this section is devoted to proving Theorem 4.7 which is the converse of
the above theorem.

Remark 4.4. If L is a linear order then ω +L ×Z,L ×Z +ω∗, ω +L ×Z +ω∗,L ×Z are
all discrete linear orders.

In fact the converse is also true.

Proposition 4.5. For each discrete linear order L there is a linear order L′ such
that exactly one of the following holds.

(1) If L has a minimum element, but not a maximum element, then L ≅ ω+L′×Z.
(2) If L has a maximum element, but not a minimum element, then L ≅ L′×Z+ω∗.
(3) If L has a maximum and a minimum element, then L ≅ ω +L′ ×Z + ω∗.
(4) If L does not have a maximum or a minimum element, then L ≅ L′ ×Z.

Proof. The linear order L′ is obtained by removing the endpoints of the order L(1),
if such endpoints exist, for if L has a minimal (resp. maximal) element then its
∼1-equivalence class is a copy of ω (resp. ω∗). �

Lemma 4.6. Suppose L×Z = L×(ω∗+ω) is an indecomposable linear order for some
linear order L. Then L is indecomposable as well.

Proof. Suppose L ⪯ L1 + L2 for linear orders L1,L2. Then L × Z ⪯ (L1 + L2) × Z ≅
L1 ×Z +L2 ×Z by using right distributivity. Since L ×Z is indecomposable, without
loss we assume L ×Z ⪯ L1 ×Z.

Let (a,n) ↦ (f1(a,n), f2(a,n)) ∶ L ×Z → L1 ×Z be an embedding.
Claim: The map a↦ f1(a,0) ∶ L→ L1 is an embedding.

Indeed if a < b in L then ω + ω∗ embeds in the interval [(a,0), (b,0)] in L × Z,
and hence in the interval [(f1(a,0), f2(a,0)), (f1(b,0), f2(b,0))] in L1 × Z. As a
consequence we get f1(a,0) < f1(b,0). Thus L ⪯ L1, and hence L is indecomposable.

�

Now we are ready to prove the promised analogue of Proposition 3.5 for the class
dILOω.

Theorem 4.7. If L ∈ dILOω is infinite, then L ∼ LIN(T, sT ) for some (T, sT ) ∈
ASTω.

Proof. If rk(L) = 1 then either L ≅ ω or L ≅ ω∗–the required ASTs in those two cases
are (T = {∅}, sT (∅) = +) and (T = {∅}, sT (∅) = −) respectively.

Now suppose rk(L) > 1. By Proposition 4.5, L is isomorphic to one of ω+L′×Z+ω∗,
ω +L′ ×Z, L′ ×Z+ω∗ or L′ ×Z for some L′ of finite rank. Since L is indecomposable,

L ∼ L′ ×Z.

Using Remark 2.2 and Lemma 4.6 we see that since L is indecomposable, so is L′.
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We use induction on rk(L) to prove the result.
Base case: If rk(L) = 2 then rk(L′) = 1 and L′ is indecomposable. So L′ ≅ ω or
L′ ≅ ω∗. It can be readily verified that ω × Z and ω∗ × Z are equimorphic to the
images under LIN of the ASTs (T = {∅,0,1}, sT = {∅ ↦ +,0 ↦ +,1 ↦ −}) and

(T = {∅,0,1}, sT = {∅↦ −,0 ↦ +,1 ↦ −}) respectively.
Inductive case: Suppose m ∶= rk(L) > 2. Propositions 3.5 and 4.1 together provide(T ′, sT ′) ∈ STω such that L′ ∼ LIN(T ′, sT ′). Let n ∶= w(T ;∅) and Lx ∶= LIN(T ′x, sT ′x)
for each x < n. Without loss of generality, assume that sT ′(∅) = +. Then L′ ∼
ω × (L0 +⋯ +Ln−1). Therefore

L′ ×Z ∼ (ω × (L0 +⋯ +Ln−1)) ×Z ≅ ω × ((L0 ×Z) +⋯+ (Ln−1 ×Z)).
As L′ ∼ ω × (L0 +⋯ +Ln−1), for each x < n we have 1 ≤ rk(Lx) < rk(L′) = m − 1, and
hence 2 ≤ rk(Lx × Z) < m. By the inductive hypothesis there are (T̃x, sT̃x

) ∈ ASTω

such that LIN(T̃x, sT̃x
) ∼ Lx ×Z.

Let T ∈ STω be defined as follows.

● The root ∅ ∈ T has n children and sT (∅) = +.
● For each child x of the root, let Tx ∶= T̃x and the restriction of sT to Tx

coincides with sT̃x
.

Then clearly

LIN(T, sT ) ∼ ω × ((L0 ×Z) + . . . + (Ln−1 ×Z)) ∼ L′ ×Z.
Since Tx0

∈ASTω it only remains to edit T to ensure that the signs of the children
of the root of T are in an alternating order starting with +.

(1) Let (T̃ , sT̃ ) be a copy of (T, sT ). Traverse through the children of the root of

T̃ in order starting from the vertex 0.
(2) If sT̃ (x) = (−1)x then move to the next child. Otherwise relabel y as y + 1

for y ≥ x, and add a new child of the root with label x and sign (−1)x. As a

result the width of the tree T̃ increases by 1.
(3) Continue the previous step until all the children of the root have been con-

sidered.

It is easy to see that the resultant T̃ is in ASTω.
Claim: LIN(T̃ , sT̃ ) ∼ L.

To establish the claim it is enough to show that (T̃ , sT̃ ) ∼ (T, sT ) in view of [5,

Lemma 2.8]. Clearly (T, sT ) ⪯ (T̃ , sT̃ ).
For the other direction, observe that the only difference between T and T̃ is that

the latter possibly contains more children of the root than the former. So identifying
the copy of the former in the latter, it remains to map the newly added vertices in a
sign-preserving manner.

Since m > 2 there is some x0 < n such that ht(Tx0
) ≥ 2. Moreover since Tx0

∈ASTω

there is at least one non-root vertex in Tx0
of each sign. This provides us with the

necessary vertices.
This establishes the required equimorphism and hence the claim. �
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5. Finitely presented linear orders

Having characterized all finite rank (discrete) linear orders up to equimorphism
with the help of (A)STs, we would like to characterize these linear orders up to
isomorphism.

Recall that equimorphism is a weak notion because an equimorphism class of linear
orders can consist of profoundly different linear orders (e.g., ω×(ω+ω∗) ∼ ω×(ω∗+ω)).

Consider the following example:

L = ∑
i∈ω

Li where Li = {ω if i is prime;

ω∗ otherwise.

Clearly L is a linear order of Hausdorff rank 2 but there is no ‘compact’ way to
present it. However it can be easily seen to be equimorphic to ω × (ω +ω∗), which is
‘compactly presented’.

To tackle the problem of characterizing linear orders up to isomorphisms we restrict
our attention to a subclass of ‘compactly presented’ linear orders.

Definition 5.1. The class LOfp of finitely presented linear orders is defined as the
smallest subclass of linear orders closed under isomorphisms such that

(1) 0,1 ∈ LOfp;
(2) if L1,L2 ∈ LOfp then L1 +L2 ∈ LOfp;
(3) if L ∈ LOfp then ω ×L,ω∗ ×L ∈ LOfp.

Clearly a finitely presented linear order is of finite rank, and all such orders are
precisely those which can be written using finitely many + and ω± × (-) operations.
Remark 5.2. In view of Remark 2.1, LOfp is precisely the smallest class of linear
orders that contains 0,1, ω,ω∗ and is closed under finite sums and finite products.

Remark 5.3. If (T, sT ) ∈ STω then LIN(T, sT ) ∈ LOfp. Hence Proposition 3.5 gives
that each indecomposable finite rank linear order is equimorphic to a finitely pre-
sented one.

Since LIN(T, sT ) is indecomposable for (T, sT ) ∈ STω we define a new class of
rooted trees to deal with decomposable linear orders as well. This would be very
similar to finite signed trees except that we allow vertices to have a third sign.

Definition 5.4. A 3-signed tree (3ST, for short) is a pair (T, sT ) where T ⊆ ω<ω

is a non-empty well-founded finite tree and sT ∶ T → {+,−,0} is a map satisfying
sT (σ) = 0 if and only if σ is either the root or a leaf of T . The class of 3-signed trees
will be denoted 3STω.

For a tree T and a non-root vertex σ of T , we denote its parent by π(σ).
There is a natural embedding I ∶ STω → 3STω that appends a sign 0 root as well

as a sign 0 child to each leaf of a signed tree in STω.
In a similar spirit, for (T, sT ) ∈ 3STω and a non-root vertex σ ∈ T , define (Tσ, sTσ

)
to be the 3ST obtained by appending a sign 0 root to the subtree of (T, sT ) induced
by σ. Moreover if sT (σ) ≠ 0, we also define (T̂σ, sT̂σ

) to be the 3ST obtained by
changing the sign of the root of the subtree of (T, sT ) induced by σ to 0.
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Given (T, sT ) ∈ 3STω and δ ∈ {+,−}, we define (T δ, sT δ) to be the 3ST obtained
by assigning sign δ to the root of T , and then appending a sign 0 root to such tree.

We continue to use the standard (re)labelling of the vertices of a 3ST as discussed
at the beginning of §4.

For (T, sT ), (T ′, sT ′) ∈ 3STω define (T, sT ) ⋎ (T ′, sT ′), the join of (T, sT ) and(T ′, sT ′), to be the 3ST obtained by identifying the roots of T and T ′ in (T, sT ) ⊔(T ′, sT ′), where the induced subtrees of the children of the root of the latter are
added after the induced subtrees of the children of the root of the former. We then
call (T, sT ) a prefix of (T, sT ) ⋎ (T ′, sT ′) and (T ′, sT ′) a suffix of (T, sT ) ⋎ (T ′, sT ′).

We now associate a linear order to each element of 3STω using a construction
similar to the map LIN described for STω.

Let (T, sT ) ∈ 3STω. If ∣T ∣ = 1 then we define

LIN(T, sT ) ∶= 0.
If ∣T ∣ > 1 and σ ∈ T then we inductively assign a linear order to the triple (T, sT , σ)
as follows:

LIN(T, sT , σ) ∶= ωsT (σ) × ( ∑
x<w(T ;σ)

LIN(T, sT , σ ∗ x)),
where ∑x<w(T ;σ)LIN(T, sT , σ ∗ x) ∶= 1 if w(T ;σ) = 0. Finally we set

LIN(T, sT ) ∶= LIN(T, sT ,∅).
Remark 5.5. For (T, sT ) ∈ STω it is readily seen that LIN(T, sT ) ≅ LIN(I(T, sT )).

Clearly for (T, sT ) ∈ 3STω, LIN(T, sT ) will consist of finitely many + and ω± × (-)
operations, hence LIN is a map 3STω → LOfp. Moreover for a finitely presented linear
order L, the inductive nature of Definition 5.1 allows us to construct a 3-signed tree(T, sT ) such that LIN(T, sT ) ≅ L. We collect these observations in the next result.

Proposition 5.6. For a linear order L, L ∈ LOfp if and only if there is (T, sT ) ∈ 3STω

such that L ≅ LIN(T, sT ).
Proposition 5.7. Let L ∈ LOfp. If L = L1 + L2 for non-empty linear orders L1,L2

then L1,L2 ∈ LOfp.

Proof. Let L ∈ LOfp be non-empty. We prove the result using induction on rk(L).
Proposition 5.6 yields a 3ST (T, sT ) such that L ≅ LIN(T, sT ) and rk(L) = ht(T )−1.
Let w ∶= w(T ;∅).

If rk(L) = 0 then the conclusion is obvious. On the other hand if rk(L) > 0 then
there are two cases.

(w = 1) Here L ≅ ωsT (0) × LIN(T̂0, sT̂0
). If L̃ ∶= LIN(T̂0, sT̂0

) then L̃ ∈ LOfp. Without
loss assume that sT (0) = +. Then there exists some n ∈ ω and linear order L′1
such that n× L̃ ≅ L1+L′1 and L2 ≅ L′1+ω× L̃. Since rk(n× L̃) = rk(L̃) < rk(L),
we have L1,L

′
1,L2 ∈ LOfp by the induction hypothesis.(w > 1) Let L′i ∶= LIN(Ti, sTi

) for 0 ≤ i < w. Then L′i ∈ LOfp and L ≅ L′0+L
′
1 +⋯+L

′
w−1.

We can find an integer 0 ≤ j < w and linear orders L̃′j and L̃′′j such that

L1 = L′0 + ⋯ + L
′
j−1 + L̃

′
j, L2 = L̃′′j + L

′
j+1 + ⋯ + L

′
w−1, and L′j = L̃

′
j + L̃

′′
j . Since



EUCLIDEAN ALGORITHM FOR A CLASS OF LINEAR ORDERS 11

w(Tj ;∅) = 1 from the above case we conclude that L̃′j , L̃
′′
j ∈ LOfp. Thus

L1,L2 ∈ LOfp.

�

Proposition 5.8. If L ∈ LOfp then L(1) ∈ LOfp.

Proof. We will prove the result using induction on rk(L).
If rk(L) ≤ 1 then L(1) is finite and hence finitely presented. On the other hand if

rk(L) > 1 then there are two cases.
Case I: L is irreducible.

Here L ≅ ωδ × L̃ for some δ ∈ {+,−}. If δ = + then Proposition 2.7 gives that
L(1) ≅ ω × L̃(1r), where L̃1r = L̃(1) if L̃ is not bounded and L̃(1r) + 1 = L̃(1) if L̃ is
bounded.

Since rk(L̃) < rk(L), L̃(1) ∈ LOfp by induction hypothesis, and then L̃(1r) ∈ LOfp by
Proposition 5.7. Hence L(1) ∈ LOfp by the definition of the class LOfp.

A similar argument holds if δ = −.
Case II: L is not irreducible.

Here L = L1 + L2 +⋯ + Ln, where each Li ∈ LOfp is irreducible. Using Remark 2.6
we have

L(1) = L(1r)1 +L
(2r)
2 +⋯ +L

(1)
n ,

where for 1 ≤ i ≤ n − 1 we set

L
(1r)
i ∶=

⎧⎪⎪⎨⎪⎪⎩
L
(1)
i − {maxL

(1)
i } if maxLi and minLi+1 exist;

L
(1)
i otherwise.

By Case I and Proposition 5.7 each L
(1)
i ,L

(1r)
i ∈ LOfp. Hence L(1) ∈ LOfp by the

definition of the class LOfp. �

We end this section by noting an interesting observation.

Proposition 5.9. Suppose L,L′ ∈ LOfp and rk(L) = rk(L′). If ω × L is a prefix of
ω ×L′ then ω ×L ≅ ω ×L′. Dually if ω∗ ×L is a suffix of ω∗ ×L′ then ω∗ ×L ≅ ω∗ ×L′.

Proof. Suppose ω ×L is a prefix of ω ×L′. If ω ×L is a proper prefix of ω ×L′ then in
fact ω ×L is a proper prefix of p × L′ for some p ≥ 1. This is clearly a contradiction
since rk(ω ×L) = rk(L) + 1 > rk(L′) = rk(p ×L′). Hence the proof. �

6. L-equivalence on 3STω

In this section we introduce two constructions on 3-signed trees in a way that does
not change LIN.

For all linear orders L1,L2,⋯,Ln, the following identities hold.

ω × (L1 +L2 +⋯+Ln) ≅ L1 + ω × (L2 +⋯+Ln +L1),
ω∗ × (L1 +L2 +⋯+Ln) ≅ ω∗ × (Ln +L1 +⋯+Ln−1) +Ln,

This motivates the following construction.
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Construction 6.1. Suppose (T, sT ) ∈ 3STω and σ ∈ T is a non-root non-leaf vertex.

Thus sT (σ) ≠ 0. Suppose m ∶= w(T ;π(σ)), n ∶= w(T ;σ), p ∶= (sT (σ)−1
2
) (mod n) and

σ = π(σ) ∗ k for some k <m. Define g(i) ∶= (i + sT (σ)) (mod n) for 0 ≤ i < n.
We construct a new 3-signed tree EXUDE((T, sT );σ), that has either the first or

the last child subtree of σ exuded out depending on its sign, as below.

(1) Suppose (T ′, sT ′) is a copy of (T, sT ).
(2) Reassign (T ′σ∗i, sT ′σ∗i) to be a copy of (Tσ∗g(i), sTσ∗g(i)

) for i < n.
(3) Set (T ′

π(σ)∗m
, sT ′

π(σ)∗m
) to be a copy of (Tσ∗p, sTσ∗p).

(4) Permute in a cyclic order with step-size 1 the induced subtrees (T ′
π(σ)∗i

, sT ′
π(σ)∗i
)

with indices between k ≤ i ≤m when sT (σ) = +, and k < i ≤m when sT (σ) = −.
(5) Set EXUDE((T, sT );σ) ∶= (T ′, sT ′).
It is readily verified that LIN(T, sT ) ≅ LIN(EXUDE((T, sT );σ)).
For a linear order L, m ≥ 1 and δ ∈ {+,−}, we also have

ωδ ×L ≅ ωδ × (m ×L).
This motivates the following construction.

Construction 6.2. Suppose (T, sT ) ∈ 3STω, σ ∈ T is a non-root non-leaf vertex, and
m ≥ 1. Thus sT (σ) ≠ 0. Let n ∶= w(T ;σ).

We construct a new 3-signed tree m-REPL((T, sT );σ), that has m copies of the
children of σ, as below.

(1) Suppose (T ′, sT ′) is a copy of (T, sT ).
(2) For i < n and 1 ≤ j <m, set (T ′

σ∗(jn+i)
, sT ′

σ∗(jn+i)
) to be a copy of (Tσ∗i, sTσ∗i

).
(3) Set m-REPL((T, sT );σ) ∶= (T ′, sT ′).
Again it is readily verified that LIN(T, sT ) ≅ LIN(m-REPL((T, sT );σ)).

Definition 6.3. Define a relation ≈L on 3STω as follows.
For (T, sT ) ∈ 3STω, σ ∈ T with sT (σ) ≠ 0, and m ≥ 1,

● (T, sT ) ≈L EXUDE((T, sT );σ);
● (T, sT ) ≈L m-REPL((T, sT );σ).

Say that L-equivalence on 3STω is the equivalence relation generated by ≈L, which
we again denote by ≈L.

Remark 6.4. L-equivalence is a congruence relation on 3STω. Suppose (T, sT ),(T ′, sT ′) and (T ′′, sT ′′) are 3STs and δ ∈ {1,−1}. If (T ′, sT ′) ≈L (T ′′, sT ′′) then
● T ⋎ T ′ ≈L T ⋎ T ′′ and T ′ ⋎ T ≈L T ′′ ⋎ T ;
● T ′δ ≈L T ′′δ.

We obviously have the following.

Proposition 6.5. Suppose (T, sT ), (T ′, sT ′) ∈ 3STω and (T, sT ) ≈L (T ′, sT ′). Then
LIN(T, sT ) ≅ LIN(T ′, sT ′).
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7. Bounded discrete finitely presented linear orders

Let dLOb
fp denote the subclass of LOfp consisting of bounded discrete finitely pre-

sented linear orders. Recall that we defined in §4 a subclass of finite signed trees,
namely the alternating signed trees (ASTω) which corresponded to the class of inde-
composable discrete linear orders up to equimorphism (Theorem 4.7). In this section
we define alternating 3-signed trees, which will be a subclass of 3-signed trees and
show in Theorem 7.2 that such trees correspond to the class of bounded discrete
finitely presented linear orders up to isomorphism (cf. Proposition 5.6).

Definition 7.1. Say that (T, sT ) ∈ 3STω is an alternating 3-signed tree if for each
non-leaf vertex σ ∈ T exactly one of the following holds:

● sT (σ ∗ x) = 0 for each x < w(T ;σ);
● w(T ;σ) is even and sT (σ ∗ x) = (−1)x for each x < w(T ;σ).

We denote the subclass of 3STω consisting of alternating 3-signed trees by A3STω.

Theorem 7.2. Suppose L ∈ LOfp. Then L ∈ dLOb
fp if and only if there is (T, sT ) ∈

A3STω such that LIN(T, sT ) ≅ L.
Proof. If (T, sT ) ∈A3STω then clearly LIN(T, sT ) ∈ dLOb

fp.

For the other direction suppose L ∈ dLOb
fp. Then Proposition 4.5 gives that L ≅

ω + L′ × Z + ω∗ for some linear order L′. Since L is finitely presented so is L′ by
Propositions 5.7 and 5.8. Then Proposition 5.6 yields (T ′, sT ′) ∈ 3STω such that
L′ ≅ LIN(T ′, sT ′). We construct another tree (T, sT ) such that LIN(T, sT ) ≅ L′ × Z
as follows.

Starting with (T, sT ) as a copy of (T ′, sT ′), duplicate all leaf vertices while ensuring
that such duplicate copies are adjacent to each other and the relative position of each
of the duplicate copies with respect to its siblings is unaltered. If σ∗x and σ∗(x+1)
are duplicates then assign sT (x) = − and sT (x+1) = +. Furthermore, to maintain our
convention of sign 0 leaves, we add one child for both σ ∗ x and σ ∗ (x + 1) with sign
0. It is readily seen that LIN(T, sT ) ≅ L′ ×Z as required.

Now we find (T̃ , sT̃ ) ≈L (T, sT ) that is very close to being in A3STω. In view of

Proposition 6.5 we will have LIN(T̃ , sT̃ ) ≅ L′ ×Z.
Let h ∶= ht(T ). If h = 2 then ht(T ′) = 1, i.e., L′ = n for some n ∈ ω so that L ≅ n×Z.

In this case let (T̃ , sT̃ ) ∶= (T, sT ).
On the other hand if h > 2 then, for 2 ≤ i ≤ h − 1, let Si ∶= {σ ∈ T ∣ ht(T̂σ) = i}

and ti ∶= ∣Si∣. Order each Si using lexicographic ordering on its vertices thought of as
finite subsets of ω. Let S ∶= {(i, j) ∣ 2 ≤ i ≤ h−1, 1 ≤ j ≤ ti}∪{(1,1)} be equipped with
lexicographic order <lex on the pairs. Set t1 ∶= 1. For (i, j)(≠ (1,1)) ∈ S we denote
the corresponding vertex of T by σi,j. For each (i, j) ∈ S we construct T i,j ∈ 3STω

and for each (i, j)<lex(i′, j′) in S we describe a height and sign preserving embedding

f
i′,j′

i,j ∶ T
i,j
→ T i′,j′. For brevity we denote by f i,j the map f

i,j
1,1 for each (i, j) ∈ S.

(1) Set T 1,1 ∶= T and f 1,1 to be the identity map.
(2) Suppose T i,j is constructed and the immediate successor (i′, j′) of (i, j) in S

exists. Set T i′,j′ ∶= EXUDE((T i,j, sT i,j);f i,j(σi′,j′)) and f
i′,j′

i,j ∶ T
i,j
→ T i′,j′ to be

the canonical inclusion. For each (i′′, j′′)<lex(i, j) in S set f i′,j′

i′′,j′′ ∶= f
i′,j′

i,j ○f
i,j
i′′,j′′.
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(3) Finally set (T̃ , sT̃ ) ∶= (T h−1,th−1 , sTh−1,th−1 ).
Clearly (T̃ , sT̃ ) ≈L (T, sT ) because the former is obtained by a sequence of EXUDE
routines.

For brevity let T i ∶= T i,ti for 1 ≤ i < h and f i′

i ∶= f
i′,ti′
i,ti

for 1 ≤ i < i′ < h.
We show the following for T i using induction for each 1 ≤ i ≤ h − 1:
(Ai) if σ ∈ T i and 1 < ht(T̂ i

σ) ≤ i then T̂ i
σ ∈A3STω;(Bi) if σ ∈ T i and ht(T̂ i

σ) = i + 1 then w(T i;σ) is even and sT i(σ ∗ x) = (−1)x+1 for
each x < w(T i;σ).

From the construction of T it is clear that (B1) holds and (A1) holds vacuously.
Assume for induction that, for some 1 ≤ i < h − 1, the statements (Ai) and (Bi)

hold.
To see that (Ai+1) holds suppose σ ∈ T i+1 and 1 < ht(T̂ i+1

σ ) ≤ i + 1. There are three
possibilities.

● If ht(T̂ i+1
σ ) ≤ i and σ = f i+1

i (σ′) for some σ′ ∈ T i then T̂ i+1
σ is isomorphic to T̂ i

σ′ .
Since (Ai) gives that the latter is in A3STω we see that the former is also in
A3STω.
● If ht(T̂ i+1

σ ) ≤ i and σ ∉ Im(f i+1
i ) then the construction of EXUDE operation

gives some σ′ ∈ T i such that T̂ i+1
σ is isomorphic to T̂ i

σ′ . Thus the conclusion
follows as in the above item.
● If ht(T̂ i+1

σ ) = i+ 1 and σ = f i+1
i (σ′) for some σ′ ∈ T i then (Bi) guarantees that

w(T i;σ′) is even and that sT i(σ′ ∗ x) = (−1)x+1 for each x < w(T i;σ′). Since

there is 1 ≤ k < ti+1 such that T i+1,k+1 = EXUDE((T i+1,k, sT i+1,k);f i+1,k
i,ti
(σ′)), we

get that T̂ i+1
σ ∈A3STω.

Now we show that (Bi+1) holds. The map f i+1 restricts to a bijection between

Si+2 and the set {σ ∈ T i+1 ∣ ht(T̂ i+1
σ ) = i + 2}. Choose an element σ from the latter

set and x < w(T i+1;σ). Let j ∶= ht(T̂ i+1
σ∗x) and δ ∶= sT i+1(σ ∗ x). Since at no step in

the construction of T̃ , the EXUDE operation is applied at a vertex σ′′ ∈ Tm,n with

ht(T̂m,n
σ′′ ) = 1, we see that 1 ≤ j ≤ i + 1.

If σ ∗ x = f i+1(σj,k) for some (j, k) ∈ S then one of the following happens.

(δ = +) If f j,k(σj,k) ∈ T j,k is of the form σ′ ∗ y then the EXUDE construction and(Bj−1) together ensure that σ′ ∗ (y − 1) exists and sT j,k(σ′ ∗ (y − 1)) = −.
Since for each (j, k)<lex(i′, k′) ≤lex (i + 1, ti+1), the vertices f

i′,k′

j,k (σ′ ∗ (y − 1))
and f

i′,k′

j,k (σ′ ∗ y) are immediate siblings and their relative position is also

unaltered, we conclude that σ ∗ (x − 1) ∈ T i+1 and sT i+1(σ ∗ (x − 1)) = −.(δ = −) As above we can argue that σ ∗ (x + 1) ∈ T i+1 and sT i+1(σ ∗ (x + 1)) = +.
If σ ∗x ∉ Im(f i+1) then let (j, k) ∈ S be the minimum such that σ ∗x = f i+1,ti+1

j,k (σ′′)
for some σ′′. Since (1,1)<lex(j, k), the immediate predecessor (j′, k′) of (j, k) in S

exists. Since T j,k = EXUDE((T j′,k′, sT j′,k′ );f j′,k′(σj,k)) and π(σ ∗ x) ∈ Im(f i+1), we
conclude that σ′′ and f j,k(σj,k) are immediate siblings.

Suppose σ′′ = π(σ′′)∗z. If δ = + then it follows using (Bj−1) that sT j,k(f j,k(σj,k)) = −
and f j,k(σj,k) = π(σ′′) ∗ (z − 1). Similarly if δ = − then sT j,k(f j,k(σj,k)) = + and
f j,k(σj,k) = π(σ′′) ∗ (z + 1).
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This completes the proof of (Bi+1).
Let (T1, sT1

), (T2, sT2
) ∈ 3STω be defined by T1 = T2 ∶= {∅,0,00} and where sT1

(0) =
+ and sT2

(0) = −. Then define (T , sT ) ∶= (T1, sT1
) ⋎ (T h−1, sTh−1) ⋎ (T2, sT2

). The

statement (Bh−1) ensures (T , sT ) ∈ A3STω while Proposition 6.5 and Remark 6.4

ensure that LIN(T , sT ) ≅ ω +L′ × (ω∗ + ω) + ω∗ ≅ L. �

8. Euclidean division with finitely presented linear orders

In this section we gather some tools to prove the converse of Proposition 6.5 re-
garding the notion of the width of finitely presented linear orders defined below.

Definition 8.1. For L ∈ LOfp define the width of L (denoted wd(L)) to be the
minimum value of w(T ;∅) where (T, sT ) ∈ 3STω and LIN(T, sT ) ≅ L.

Given L ∈ LOfp, L is irreducible if and only wd(L) = 1. Throughout the rest of
this paper we say that L ∈ LOfp is an ω-sum (resp. ω∗-sum) if L ≅ ω × L′ (resp.
L ≅ ω∗ ×L′) for some L′.

Lemma 8.2. (Irreducible affix lemma) Let n > 1 and Li ∈ LOfp such that wd(Li) = 1
for 1 ≤ i ≤ n, and L1+L2+⋯+Ln is an ω-sum then for each 1 ≤ i < n rk(Ln) > rk(Li),
Li +Li+1 +⋯ +Ln is an ω-sum, and hence wd(Li +Li+1 +⋯+Ln) = 1.
Proof. Let f ∶ (L1+L2+⋯+Ln)→ ω×L be an isomorphism. Since f(L1+L2+⋯+Ln−1)
is a proper prefix of ω × L, there exists a smallest m ≥ 1 such that it is a prefix of
m ×L. Clearly ω ×L is isomorphic to a suffix of Ln. Hence

rk(L1 +L2 +⋯+Ln−1) ≤ rk(m ×L) < rk(ω ×L) = rk(L1 +L2 +⋯+Ln) = rk(Ln).
Fix 1 ≤ i < n. Let m ×L = f(L1 +L2 +⋯+Ln−1 + L̄) for some prefix L̄ of Ln. Then

f(L1 +L2 +⋯ +Ln) ≅ ω × (m ×L)
= ω × f(L1 +L2 +⋯ +Ln−1 + L̄)
≅ f(L1 +⋯ +Li−1) + ω × f(Li +⋯Ln−1 + L̄ +L1 +⋯ +Li−1).

Cancelling f(L1+⋯+Li−1) from both sides and applying f−1, we obtain the result.
�

The next result states that any suffix of an ω-sum is so too.

Proposition 8.3. Let L,L′ ∈ LOfp. If L′ = L+ L̃ for some non-empty L̃ and L′ is an

ω-sum then there exists L̄ ∈ LOfp such that L′ ≅ ω × (L + L̄) and L̃ ≅ ω × (L̄ +L).
Proof. Suppose L′ ≅ ω× L̃′ for a prefix L̃′ of L′. Since L is a proper prefix of L′, there
exists an m ≥ 1 such that L is a proper prefix of m × L̃′. Then m × L̃′ ≅ L + L̄ for
some finitely presented L̄. Thus

L + L̃ = L′ ≅ ω × L̃′ ≅ ω × (m × L̃′) ≅ ω × (L + L̄) ≅ L + ω × (L̄ +L).
Since each isomorphism in the above line preserves the prefix L, the result follows by
cancelling a copy of L from both sides. �

Using the above result we can patch two irreducible ω-sums.
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Corollary 8.4. Suppose L1,L2,L
′ ∈ LOfp are irreducible such that L1 is a proper

prefix of L′ and L′ is a proper prefix of L1 +L2. If L1 is an ω-sum then L′ is also an
ω-sum. Moreover wd(L1 +L2) = 1.
Proof. Let L′ = L1 +L′2 and L2 = L′2 +L

′′
2 , where L′2 and L′′2 are non-empty. Since L′

is irreducible, it is either an ω-sum or an ω∗-sum. Since L1 is a prefix of of L′ and
L1 is an ω-sum, the dual of the irreducible affix lemma (Lemma 8.2) gives that L′ is
also an ω-sum. The same lemma also gives that L′2 is an ω-sum, which gives that L2

is an ω-sum.
Applying Proposition 8.3 to the prefix embedding of L′2 in L2 gives that L2 ≅

ω×(L′2+L̄′2) for some L̄′2 ∈ LOfp. The same proposition applied to the prefix embedding
of L1 in L′ gives that L′ ≅ ω × (L1 + L̄1) and L′2 ≅ ω × (L̄1 + L1) for some L̄1 ∈ LOfp.
Then

L1 +L2 ≅ L1 + ω × (L′2 + L̄′2)
≅ L1 + ω × (ω × (L̄1 +L1) + L̄′2)
≅ L1 + ω × (L̄1 + ω × (L1 + L̄1) + L̄′2)
≅ L1 + L̄1 + ω × (L1 + L̄1) + ω × (L̄′2 + L̄1 + ω × (L1 + L̄1))
≅ ω × (L1 + L̄1) + ω × (L̄′2 + L̄1 + ω × (L1 + L̄1))
≅ ω × (ω × (L1 + L̄1) + L̄′2 + L̄1),

which gives that wd(L1 +L2) = 1. �

Now we explore the width of finite sums of finitely presented linear orders using
that of the sum of consecutive pairs.

Remark 8.5. Let L ∈ LOfp. If n ∶= wd(L) > 1 and L = L1 +L2 +⋯+Ln, where each Li

is irreducible then wd(Li +Li+1) = 2 for 1 ≤ i < n.

In fact the converse of the above remark is also true.

Theorem 8.6. Let n > 1 and Li ∈ LOfp for 1 ≤ i ≤ n. If wd(Li) = 1 for 1 ≤ i ≤ n, and
wd(Li +Li+1) = 2 for 1 ≤ i < n then wd(L1 +L2 +⋯+Ln) = n.
Proof. We use induction on n to prove the result.

The base case n = 2 is immediate from the hypotheses. So let n > 2 and assume
that the result is true for any k < n.

Let p ∶= wd(L1 + L2 +⋯ + Ln). Then p ≤ n. Moreover the irreducible affix lemma
gives that p > 1.

Suppose p < n. Then L1 + L2 + ⋯ + Ln = L′1 + L
′
2 + ⋯ + L

′
p for some irreducible

L′j ∈ LOfp.

Claim. L1 +L2 +⋯ +Ln′ ≠ L′1 +L
′
2 +⋯ +L

′
p′ for any n′ < n and p′ < p.

Proof. If L1 + L2 + ⋯ + Ln′ = L′1 + L
′
2 + ⋯ + L

′
p′ for some n′ < n and p′ < p then

Ln′+1 + Ln′+2 +⋯ + Ln = L′p′+1 + L
′
p′+2 +⋯ + L

′
p. Hence the induction hypothesis gives

that n′ = p′ and n − n′ = p − p′, a contradiction to p < n. �

The rest of the proof can be divided into the following two cases.
Case I: L1 is an ω-sum.
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(a) L1 is a proper prefix of L′1: The irreducible affix lemma gives that L′1 is also an
ω-sum. The same lemma also gives that Li is an ω-sum, where i is minimum
such that L′1 is a prefix of L1+⋯+Li. Using an argument similar to the proof
of Corollary 8.4 we get that wd(L1 + ⋯ + Li) = 1. The induction hypothesis
gives that i = n which is a contradiction to p > 1.

(b) L′1 is a proper prefix of L1: Let j be the maximum such that L′1 + ⋯ + L
′
j is

a prefix of L1. Then L1 is a prefix of L′1 + ⋯ + L
′
j+1. Thus a suffix of L1 is

a prefix of L′j+1 which gives that L1,L
′
j+1 are both ω-sums by the irreducible

affix lemma. Furthermore if i is the smallest such that L′1+⋯+L
′
j+1 is a prefix

of L1 + ⋯ + Li then a suffix of L′j+1 is a prefix of Li which gives that Li is
an ω-sum. Using an argument similar to the proof of Corollary 8.4 we get
wd(L1 +⋯ +Li) = 1, a contradiction to i > 1.

Case II: L1 is an ω∗-sum.
Let j ≥ 0 be the largest such that L′1 +⋯ +L

′
j is a proper prefix of L1. Then L1 is

a proper prefix of L′1 +⋯ +L
′
j+1.

(a) j = 0, L′1 is an ω-sum: Let i be the smallest such that L′1 is a prefix of
L1 + ⋯ + Li. Since L′1 is an ω-sum the proof of Case I(a) goes through to
obtain a contradiction.

(b) j > 0, L′j+1 is an ω-sum: Let L′j+1 = L̃
′
j+1 + L̄

′
j+1, where L̃′j+1 is a suffix of L1.

By the irreducible affix lemma L̄′j+1 is irreducible and an ω-sum. Then

L2 +⋯+Ln = L̄′j+1 +L
′
j+2 +⋯+L

′
p.

By the induction hypothesis the width of the LHS is n − 1 but the RHS has
at most p − j ≤ p − 1 < n − 1 irreducible summands, a contradiction.

(c) j = 0, L′1 is an ω∗-sum: Let i be the smallest such that L′1 is a prefix of
L1 +⋯ +Li.

If i > 2 then L1 +L2 is a prefix of L′1, and hence by the dual of Lemma 8.2
we get wd(L1 +L2) = 1, a contradiction. Hence i = 2.

If L2 is an ω∗-sum then the second paragraph of the proof of the dual of
Corollary 8.4 gives wd(L1 +L2) = 1, which is also a contradiction. Hence L2

is an ω-sum.
Let L2 = L̃2 + L̄2 be the partition such that L′1 = L1 + L̃2. By Lemma 8.2,

L̄2 is an ω-sum. Hence by the same lemma if wd(L̄2 + L3) = 1 then L3 is
an ω-sum. In that case Corollary 8.4 gives wd(L2 +L3) = 1, a contradiction.
Thus wd(L̄2+L3) = 2. Hence by the induction hypothesis we get wd(L̄2+L3+
⋯+Ln) = n− 1. But L̄2 +L3 +⋯+Ln = L′2 +⋯+L′p, where the RHS has fewer
than n − 1 irreducible summands, a contradiction to the above statement.

(d) j > 0, L′j+1 is an ω∗-sum: An easy argument using the irreducible affix lemma
gives that j = 1. By the same lemma we also get that L′1 is an ω∗-sum. Then
an argument similar to the proof of Corollary 8.4 gives that wd(L′1 +L′2) = 1,
a contradiction in view of Remark 8.5 applied to the order L′1 +⋯ +L

′
p.

�

When restricted to linear orders of the same rank, the width of the sum increases
but the growth could be really slow.
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Lemma 8.7. Let L,L′ ∈ LOfp. If rk(L) = rk(L′) then
wd(L +L′) >min{wd(L),wd(L′)}.

Proof. Let k ∶= wd(L) and m ∶= wd(L′). Without loss we may assume that rk(L) =
rk(L′) > 0 and k,m ≥ 1.

Suppose L = L1 +⋯+Lk and L′ = L′1 +⋯+L′m, where each Li and L′j is irreducible.
Then Remark 8.5 gives wd(Li +Li+1) = wd(L′j +L′j+1) = 2 for 1 ≤ i < k and 1 ≤ j <m.

If wd(Lk+L′1) = 2 then Theorem 8.6 gives wd(L+L′) = k+m > min{k,m}. Moreover
if 1 ∈ {k,m} then the irreducible affix lemma gives that wd(L + L′) > 1. Hence it
remains to consider the case when wd(Lk + L′1) = 1 and k,m > 1. Without loss we
may assume that Lk +L′1 is an ω-sum; the proof of the other case is dual.

Since Lk + L′1 is an ω-sum then rk(Lk) < rk(L′1) and L′1 is also an ω-sum by the
irreducible affix lemma.

If wd((Lk + L′1) + L′2) = 1 then again by the irreducible affix lemma we conclude
that (Lk + L′1) + L′2 is an ω-sum and wd(L′1 + L′2) = 1, a contradiction. Therefore
wd((Lk +L′1) +L′2) = 2.

If wd(Lk−1+(Lk+L′1)) = 1 and Lk−1+(Lk+L′1) is an ω∗-sum then wd(Lk−1+Lk) = 1
by the irreducible affix lemma, a contradiction. Hence if wd(Lk−1 + (Lk + L′1)) = 1
then Lk−1 + (Lk +L′1) is an ω-sum.

Therefore under the hypothesis that Lk +L′1 is an ω-sum the above argument can
be repeated to show that for 1 ≤ p ≤ k if wd(Lp + Lp+1 + ⋯ + Lk + L′1) = 1 then
wd(Lp +Lp+1 +⋯ +Lk +L′1 +L

′
2) = 2 and Lp +Lp+1 +⋯+Lk +L′1 is an ω-sum.

Recall that if Lp +Lp+1 +⋯+Lk +L′1 is an ω-sum then rk(Li) < rk(L′1) for p ≤ i ≤ k.
Since rk(L) = rk(L′) there is 1 ≤ i0 ≤ k such that rk(Li0) ≥ rk(L′1), and the condition
wd(Lp + Lp+1 + ⋯ + Lk + L′1) = 1 fails for some p ≥ i0. Thus Theorem 8.6 gives that
wd(L +L′) > wd(L′) ≥min{wd(L),wd(L′)}. �

The next result generalizes Euclidean division lemma for integers.

Lemma 8.8. (Euclidean division lemma) Let L,L′ ∈ LOfp, f ∶ ω × L → ω × L′ an
isomorphism such that f(1 × L) is a prefix of 1 × L′. Then there is k ≥ 1 and
L1,L2 ∈ LOfp such that

L = L1 +L2, L′ = f(k ×L +L1), ω × (L1 +L2) ≅ ω × (L2 +L1).
Moreover

● if (rk(L1) < rk(L2)) then ω ×L1 is isomorphic to a prefix of L2.
● if (rk(L1) > rk(L2)) then ω ×L2 is isomorphic to a prefix of L1.
● if (rk(L1) = rk(L2)) then ω ×L1 ≅ ω ×L2 and

min{wd(L1),wd(L2)} <min{wd(L),wd(L′)}.
Proof. Since f(1 × L) is a prefix of 1 ×L′ there is a largest k ≥ 1 such that f(k ×L)
is a prefix of L′. If L′ = f(k×L)+ L̄1 then define L1 ∶= f−1(L̄1). Using maximality of
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k we obtain that L1 is a prefix of (the (k + 1)th copy of) L. Let L = L1 +L2. Then

k × (L1 +L2) +L1 + ω × (L2 +L1) ≅ ω × (L1 +L2)
≅ ω × (k × (L1 +L2) +L1)
≅ k × (L1 +L2) +L1 + ω × (k × (L1 +L2) +L1)
≅ k × (L1 +L2) +L1 + ω × (L1 +L2).

Since each isomorphism above preserves the first copy of L′ ≅ k × (L1 + L2) +L1, we
can cancel it to obtain

(1) ω × (L1 +L2) ≅ ω × (L2 +L1)
Using ω × (L2 + L1) ≅ L2 + ω × (L1 + L2) repeatedly with Equation (1) we get, for

each m ≥ 1,

ω × (L1 +L2) ≅m ×L2 + ω × (L1 +L2).
Thus ω ×L2 is isomorphic to a prefix of ω × (L1 +L2). If rk(L2) < rk(L1) then since
ω×L2 is a prefix of ω×(L1+L2), it is a prefix of p×(L1+L2) for some p ≥ 1. However
if L1 is a proper prefix of ω ×L2 then it is in fact a prefix of q ×L2 for some q ≥ 1, a
contradiction to rk(L2) < rk(L1). Hence ω ×L2 is a prefix of L1.

If rk(L1) < rk(L2) then swapping L1 and L2 in view of Equation (1) in the above
paragraph we can obtain that ω ×L1 is isomorphic to a prefix of L2.

If rk(L1) = rk(L2) then Proposition 5.9 yields isomorphisms

ω ×L1 ≅ ω × (L1 +L2) ≅ ω ×L2.

The final conclusion follows from Lemma 8.7. �

9. Euclidean algorithm for LOfp

The main goal of this section is to establish Corollary 9.4 which is the converse of
Proposition 6.5. We need some more tools for that.

Proposition 9.1. Suppose (T, sT ), (T ′, sT ′) ∈ 3STω and T̄ ∶=
bn

i=1 Ti, T̄ ′ ∶=
bm

j=1T
′
j ,

where {Ti ∣ 1 ≤ i ≤ n} = {T ′j ∣ 1 ≤ j ≤ m} = {T,T ′}. If one of the following sets of
conditions holds:

(I) T ⋎ T ′ ≈L T = T1 = T ′1;
(II) T ⋎ T ′ ≈L T ′,

then T̄ + ≈L (T̄ ′)+.
Proof. If (I) holds and T̄ ∶=

bn

i=1 Ti, where {Ti ∣ 1 ≤ i ≤ n} = {T,T ′}, then it is
enough to show that T̄ + ≈L T +. Let I ∶= {i ∣ 1 ≤ i ≤ n,Ti = T}. Since 1 ∈ I we have

T
+
≈L (bi∈I T )+ ≈L T +.
If (II) holds and T̄ ∶=

bn

i=1 Ti, where {Ti ∣ 1 ≤ i ≤ n} = {T,T ′}, then it is enough to
show that T̄ + ≈L (T ′)+. Let I ∶= {i ∣ 1 ≤ i ≤ n,Ti = T ′}, i0 ∶=max I and I ′ ∶= {i ∣ i0 < i ≤
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n}. Then ∅ ≠ I ⊊ {1,2,⋯, n} and
T
+
≈L (j

i∈I

T ′ ⋎
j

i∈I ′

T )+
≈L

j

i∈I

T ′ ⋎ (j
i∈I ′

T ⋎
j

i∈I

T ′)+
≈L

j

i∈I

T ′ ⋎ (j
i∈I

T ′)+
≈L T ′+.

�

There is yet another supporting result that is a necessary tool in the proof of the
main theorem.

Lemma 9.2. Suppose (T, sT ) ∈ 3STω,w(T ;∅) = 1 and sT (0) = +. If (T, sT ) ≈L(T1, sT1
)⋎(T2, sT2

), where rk(LIN(T1, sT1
)) < rk(LIN(T, sT )), then there is (T ′, sT ′) ∈

3STω such that (T ′, sT ′) ≈L (T, sT ), (T1, sT1
) is a prefix of (T ′, sT ′), and w(T ′;∅) =

w(T1;∅) + 1.
Proof. Suppose T =∶ T (0), T (1),⋯, T (N) ∶= (T1, sT1

)⋎ (T2, sT2
) is a sequence of 3STs

such that, for 0 ≤ i < N , T (i) ≈L T (i + 1) using a basic L-equivalence or its inverse.
Let wi ∶= w(T (i);∅). Without loss we may assume that max{i ∣ wi = 1} = 0, for

otherwise we may reset 0 at such a maximum.
We inductively construct another sequence T ′(0), T ′(1),⋯, T ′(N) such that for

each 0 ≤ i ≤ N we have T ′(i) ≈L T (i). Let w′i ∶= w(T ′(i);∅).
Since w0 = 1 and sT (0)(w0 − 1) = + first observe that since T (i) ≈L T (0) we have

ht(T (i)wi−1) = ht(T (0)0) > ht(T (i)x) for all 1 ≤ i ≤ N and 0 ≤ x < wi − 1. Moreover
sT (i)(wi − 1) = +. Similarly we can conclude that sT ′(i)(w′i − 1) = + for 0 ≤ i ≤ N .

For each i > 0 we write T̃ (i) ∶= T (i)0 ⋎ T (i)1 ⋎ ⋯ ⋎ T (i)wi−2 so that T (i) = T̃ (i) ⋎
T (i)wi−1. We decompose T ′(i) similarly.

We inductively construct T ′(i+1) using T ′(i) while ensuring the following inductive
hypothesis.
(IH) For each 0 ≤ i ≤ N , there are ki >mi ≥ 0 and T̄ (i) ∈ 3STω satisfying

T ′(i) = T̃ (i) ⋎ (mij

j=1

T̂ (i)wi−1
) ⋎ (T̂ (i)wi−1

⋎ T̄(i) ⋎ T̃ (i) ⋎ mij

j=1

T̂ (i)wi−1
)+,

(2)

kij

s=1

T̂ (i)wi−1
≈L T̄ (i) ⋎ T̃ (i) ⋎ (mij

j=1

T̂ (i)wi−1
)
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We clearly have

T (i) = T̃ (i) ⋎ T̂ (i)+wi−1

≈L T̃ (i) ⋎ ( ki+1j

s=1

T̂ (i)wi−1
)+ [(ki + 1)-REPL]

≈L T̃ (i) ⋎ (mij

j=1

T̂ (i)wi−1
) ⋎ ( ki+1j

s=1

T̂ (i)wi−1
)+ [iterated EXUDE]

≈L T̃ (i) ⋎ (mij

j=1

T̂ (i)wi−1
) ⋎ (T̂ (i)wi−1

⋎ T̄ (i) ⋎ T̃(i) ⋎ mij

j=1

T̂ (i)wi−1
)+ [Equation (2)]

= T ′(i)

Suppose T̃ (N) = T1 ⋎ T3 for some T3 ∈ 3STω. Then the 3ST required by the
statement of the lemma can be chosen to be

T ′ ∶= T1 ⋎ (T3 ⋎

mN+1j

j=1

T̂ (N)wN−1
⋎ T̄ (N) ⋎ T1)+

and it is clear that T ′ ≈L T ′(N).
For the base case choose T ′(0) ∶= T (0) so that IH readily holds.
For the inductive case assume that for some i < N , T ′(i) has been constructed and

we construct T ′(i + 1) in various cases as follows.
Case I: Suppose T (i + 1)wi+1−1 = T (i)wi−1. Then T̃(i) ≈L T̃ (i + 1). Using this L-
equivalence repeatedly and choosing ki+1 ∶= ki, mi+1 ∶=mi, and T̄(i+1) ∶= T̄(i) we can
readily verify that T ′(i + 1) ≈L T ′(i).
Case II: Suppose T̃ (i) = T̃ (i + 1) and ̂T (i + 1)wi+1−1

≈L T̂ (i)wi−1
. Using this L-

equivalence repeatedly and choosing ki+1 ∶= ki, mi+1 ∶=mi, and T̄(i+1) ∶= T̄(i) we can
readily verify that T ′(i + 1) ≈L T ′(i).
Case III: Suppose T (i+1) = EXUDE((T (i), sT (i));wi−1). Then there are 3STs Ta, Tb

with w(Ta;∅) = 1 such that

T (i) = T̃ (i) ⋎ (Ta ⋎ Tb)+, T (i + 1) = T̃ (i) ⋎ Ta ⋎ (Tb ⋎ Ta)+.
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For brevity, let Tc ∶= T̃ (i). Then we get a sequence of L-equivalences where the
reasons for each step are written in square brackets at the end of the line.

T ′(i) = Tc ⋎

mij

j=1

(Ta ⋎ Tb) ⋎ ((Ta ⋎ Tb) ⋎ T̄ (i) ⋎ Tc ⋎

mij

j=1

((Ta ⋎ Tb)))+ [IH]

≈L Tc ⋎

mij

j=1

(Ta ⋎ Tb) ⋎ (
ki+1j

s=1

(Ta ⋎ Tb))+ [Equation (2)]

≈L Tc ⋎

mij

j=1

(Ta ⋎ Tb) ⋎ (
2(ki+1)j

s=1

(Ta ⋎ Tb))+ [2-REPL]

≈L Tc ⋎

mij

j=1

(Ta ⋎ Tb) ⋎ Ta ⋎ (
2(ki+1)j

s=1

(Tb ⋎ Ta))+ [EXUDE]

≈L Tc ⋎ Ta ⋎

mij

j=1

(Tb ⋎ Ta) ⋎ ((Tb ⋎ Ta) ⋎ T̄ (i + 1) ⋎ Tc ⋎ Ta ⋎

mij

j=1

(Tb ⋎ Ta))+[Equation (2)],

where T̄(i + 1) ∶=bki
s=1(Tb ⋎ Ta) ⋎ Tb ⋎ T̄ (i), mi+1 ∶=mi and ki+1 ∶= 2ki + 1.

Case IV: Suppose T (i) = EXUDE((T (i + 1), sT (i+1));wi+1 − 1). Then there are 3STs
Ta, Tb, Tc with w(Tb;∅) = 1 such that

T (i + 1) = Ta ⋎ (Tb ⋎ Tc)+, T (i) = Ta ⋎ Tb ⋎ (Tc ⋎ Tb)+.
Then

T ′(i) = Ta ⋎ Tb ⋎

mij

j=1

(Tc ⋎ Tb) ⋎ ((Tc ⋎ Tb) ⋎ T̄(i) ⋎ Ta ⋎ Tb ⋎ (
mij

j=1

(Tc ⋎ Tb)))+ [IH]

≈L Ta ⋎ Tb ⋎

mij

j=1

(Tc ⋎ Tb) ⋎ (
ki+1j

s=1

(Tc ⋎ Tb))+ [Equation (2)]

≈L Ta ⋎ Tb ⋎

mij

j=1

(Tc ⋎ Tb) ⋎ (
2(ki+1)j

s=1

(Tc ⋎ Tb))+ [2-REPL]

≈L Ta ⋎

mi+1j

j=1

(Tb ⋎ Tc) ⋎ (
2(ki+1)j

s=1

(Tb ⋎ Tc))+ [iterated EXUDE]

≈L Ta ⋎

mi+1j

j=1

(Tb ⋎ Tc) ⋎ ((Tb ⋎ Tc) ⋎ T̄(i + 1) ⋎ Ta ⋎

mi+1j

j=1

(Tb ⋎ Tc))+ [Equation (2)],

where T̄(i + 1) ∶=bki
s=1(Tb ⋎ Tc) ⋎ Tb ⋎ T̄ (i), mi+1 ∶=mi + 1 and ki+1 ∶= 2ki + 1.
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Case V: Suppose T (i+1) = n-REPL((T (i), sT (i));wi−1) for some n > 1. For brevity,
let Ta ∶= T̃(i), Tb ∶= T̂ (i)wi−1

. Then

T (i) = Ta ⋎ T
+
b , T (i + 1) = Ta ⋎ (

nj

t=1

Tb)+.
Then

T ′(i) = Ta ⋎

mij

j=1

Tb ⋎ (Tb ⋎ T̄(i) ⋎ Ta ⋎

mij

j=1

Tb)+ [IH]

≈L Ta ⋎

mij

j=1

Tb ⋎ (
ki+1j

s=1

Tb)+ [Equation (2)]

≈L Ta ⋎

mij

j=1

Tb ⋎ (
pn(ki+1)j

s=1

Tb)+ [pn-REPL]

≈L Ta ⋎

minj

j=1

Tb ⋎ (
pn(ki+1)j

s=1

Tb)+ [iterated EXUDE]

≈L Ta ⋎

minj

j=1

Tb ⋎ (
nj

t=1

Tb ⋎

pn(ki+1)−mi(n−1)−n−kij

s=1

Tb ⋎ T̄ (i) ⋎ Ta ⋎

minj

j=1

Tb)+ [Equation (2)]

The integer p could be chosen so that pn(ki+1)−mi(n−1)−n−ki > 0. Hence choosing
mi+1 ∶= min, ki+1 ∶= p(ki + 1) − 1, T̄(i + 1) ∶= bpn(ki+1)−mi(n−1)−n−ki

s=1 Tb ⋎ T̄(i) does the
job.
Case VI: Suppose T (i) = n-REPL((T (i + 1), sT (i+1));wi+1 − 1) for some n > 1. For

brevity, let us take Ta ∶= T̃ (i + 1), Tb ∶= ̂T (i + 1)wi+1−1
. Then

T (i) = Ta ⋎ (
nj

t=1

Tb)+, T (i + 1) = Ta ⋎ T
+
b .

Then by the induction hypothesis we have

T ′(i) = Ta ⋎

nmij

j=1

Tb ⋎ (
nj

t=1

Tb ⋎ T̄ (i) ⋎ Ta ⋎

nmij

j=1

Tb)+.
In this case we choosemi+1 ∶= nmi, ki+1 ∶= n(ki+1)−1, and T̄(i+1) ∶=bn−1

t=1 Tb⋎T̄ (i). �

We first prove a more flexible version of the main goal.

Theorem 9.3. Suppose (T, sT ), (T ′, sT ′) ∈ 3STω and f ∶ LIN(T, sT ) → LIN(T ′, sT ′)
is a prefix (resp. suffix) embedding. Then there are (T̃ , sT̃ ), (T̃ ′, sT̃ ′) ∈ 3STω such

that (T, sT ) ≈L (T̃ , sT̃ ), (T ′, sT ′) ≈L (T̃ ′, sT̃ ′), and (T̃ , sT̃ ) is a prefix (resp. suffix) of

(T̃ ′, sT̃ ′) such that if g ∶ LIN(T, sT )→ LIN(T̃ , sT̃ ) and h ∶ LIN(T̃ ′, sT̃ ′)→ LIN(T ′, sT ′)
are the induced isomorphims (in the sense of Proposition 6.5) then h ∣LIN(T̃ ,s

T̃
)= fg−1.
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Proof. Let L ∶= LIN(T, sT ),L′ ∶= LIN(T ′, sT ′), n ∶= rk(L), n′ ∶= rk(L′),w ∶= w(T ;∅)
and w′ ∶= w(T ′;∅). Without loss we may assume that f ∶ L → L′ is a prefix embed-
ding. Clearly n ≤ n′.

We shall use transfinite induction on the pair (n,n′) to prove the result, where the
set {(n,n′) ∈ N ×N ∣ n ≤ n′} of such pairs of ranks is arranged in the lexicographic
ordering, denoted <lex. Also note that we implicitly keep track of all the isomorphisms
while invoking the induction hypothesis.

For the base case, we have (n,n′) = (0,0), and the conclusion is obvious irrespective
of the values of w,w′.
Case I: n = n′ > 0, w = w′ = 1.

If L′ is an ω-sum then f(L) = L′ for if f(L) is a proper prefix of L′ then n < n′ by
the irreducible affix lemma. Thus L is also an ω-sum. On the other hand if L′ is an
ω∗-sum then the irreducible affix lemma gives that L is also an ω∗-sum.

(a) f is not surjective: The above discussion gives that L′ is an ω∗-sum. If
L′ = f(L) + L′′ then Lemma 8.7 gives that rk(L′′) < n. Propositions 5.6 and
5.7 together yield (T ′′, sT ′′) ∈ 3STω such that LIN(T ′′, sT ′′) ≅ L′′.

Applying the induction hypothesis to the suffix embedding L′′ → L′ we get
3STs T̄ ′, T̄ ′′ such that T̄ ′ ≈L T ′, T̄ ′′ ≈L T ′′ and T̄ ′ = T̃ ′ ⋎ T̄ ′′ for some 3ST T̃ ′.
Then LIN(T, sT ) ≅ LIN(T ′, sT ′) and we are in the next subcase.

(b) f is a bijection: Without loss we assume that both L,L′ are ω-sums; the other
argument is dual.

Let L ≅ ω × L̃ and L′ ≅ ω × L̃′. Set (T0,1, sT0,1
) ∶= (T̂0, sT̂0

), (T0,2, sT0,2
) ∶=

(T̂ ′0, sT̂ ′
0

) and L̃0,j ∶= LIN(T0,j , sT0,j
) for j = 1,2 so that L0,1 = L̃ and L0,2 =

L̃′. Then repeatedly applying the Euclidean division lemma (Lemma 8.8)
starting with L0,1 and L0,2 gives a positive integer m and for each 1 ≤ i ≤m a
permutation ξi of {1,2}, a positive integer ki, and Li,1,Li,2 ∈ LOfp such that
● Li−1,ξi(1) = Li,1 +Li,2 and Li−1,ξi(2) = f(ki × (Li,1 +Li,2) +Li,1);
● rk(Li,1) = rk(Li,2) for each 0 ≤ i <m;
● rk(Lm,1) ≠ rk(Lm,2).

For each 1 ≤ i ≤ m,1 ≤ j ≤ 2 since rk(Li,j) < n = n′, the induction hypothesis
together with Propositions 5.6 and 5.7 gives (Ti,j, sTi,j

) ∈ 3STω such that
● LIN(Ti,j , sTi,j

) ≅ Li,j ;

● Ti−1,ξi(1) ≈L Ti,1 ⋎ Ti,2 and Ti−1,ξi(2) ≈L
bki

l=1(Ti,1 ⋎ Ti,2) ⋎ Ti,1.
If rk(Lm,2) < rk(Lm,1) then the Euclidean division lemma gives that ω×Lm,2

is isomorphic to a prefix of Lm,1. Using the induction hypothesis for this prefix
embedding we obtain T ′m,j ≈L Tm,j for j = 1,2 such that T ′m,1 = (T ′m,2)+ ⋎ T̄ for

some 3ST T̄ so that T ′m,2 ⋎ T
′
m,1 ≈L T ′m,1.

On the other hand if rk(Lm,1) < rk(Lm,2) then the Euclidean division lemma
gives that ω × Lm,2 is isomorphic to a prefix of Lm,1. Using the induction
hypothesis for this prefix embedding we obtain T ′m,j ≈L Tm,j for j = 1,2 such

that T ′m,2 = (T ′m,1)+ ⋎ T̄ for some 3ST T̄ so that T ′m,1 ⋎ T
′
m,2 ≈L T ′m,2.
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In either of the above two cases T0,1, T0,2 are L-equivalent to finite joins of
T ′m,1 and T ′m,2 so that the hypotheses of Proposition 9.1 are satisfied, which

then yields T = (T̂0)+ = T +0,1 ≈L T +0,2 = (T̂ ′0)+ = T ′ as required.
Case II: 0 ≤ n < n′, w = w′ = 1.

Since n < n′, the irreducible affix lemma gives that L′ is an ω-sum. Thus L is
a prefix of k × L̃′ for some k > 0. Since (rk(L), rk(k × L))<lex(n,n′), the induction
hypothesis applied to the prefix embedding L → (k × L̃) gives 3STs T̄ , T̄ ′ such that

T̄ ≈L T and
bk

i=1 T̂
′
0 ≈L T̄ ⋎ T̄ ′. Then

T ′ ≈L (T̂ ′0)+ ≈L (
kj

i=1

T̂ ′0)+ ≈L (T̄ ⋎ T̄ ′)+ ≈L T̄ ⋎ (T̄ ′ ⋎ T̄ )+,
as required.
Case III: 0 ≤ n ≤ n′, w = 1 < w′.

Let L′j ∶= LIN(T ′j , sT ′j) for 0 ≤ j < w′ and k ≥ 0 the minimum such that f(L) is a

prefix of L′0 +L
′
1 +⋯ +L

′
k. Then L′0 +L

′
1 +⋯+L

′
k−1 is a prefix of f(L).

(a) sT (0) = + : Using the irreducible affix lemma we get that sT ′(k) = + and
rk(L′0 +L′1 +⋯+L′k−1) < n.

If k > 0 then let T (0) ∶= T . Applying the induction hypothesis and Lemma
9.2 to the prefix embedding of f−1(L′0) → L yields 3STs T (1), T̄ ′0 such that
T̄ ′0 ≈L T ′0, T̄

′
0 ⋎ T (1) ≈L T (0) and wd(T (1)) = 1. Repeating this procedure k

times we get T (k) with wd(T (k)) = 1 so that LIN(T (k), sT (k)) is isomorphic to
a prefix of L′

k
.

For all k ≥ 0, if rk(L′k) = n = rk(LIN(T (k), sT (k))) then using Case I, other-
wise using Case II for this prefix embedding we get the required conclusion.

(b) sT (0) = − : If k = 0 then there are two possibilities. If rk(L′0) = n then Case
I, otherwise Case II for this prefix embedding gives the required conclusion.

If k > 0 then we have L = f−1(L0) + L̃ for some L̃ ∈ LOfp. Since sT (0) = −,
i.e.,. L is an ω∗-sum, we can apply the dual version of Lemma 8.2 to get
rk(L̃) < rk(L′0) = rk(L) = n. This also means that the argument of Case I
can be applied to the embedding of L′0 into L, so that without loss we have

T ≈L T ′0 ⋎ T̃ for some 3ST T̃ satisfying LIN(T̃ , sT̃ ) ≅ L̃. Then we are left to

find two 3STs, namely T ≈L T̃ and T , so that T ⋎ T ≈L T ′1 ⋎ . . . ⋎ T
′
k, which

can be achieved by the inductive hypothesis since we established above that
rk(L̃) < n. Therefore we are done.

Case IV: 0 ≤ n ≤ n′, 1 < w
Here the argument is completed by embedding LIN(Ti, sTi

) into the target linear
order in the increasing order for each 0 ≤ i < w using Case III.

This completes the proof. �

Here is the promised converse to Proposition 6.5 that follows readily from the above
theorem.

Corollary 9.4. Suppose (T, sT ), (T ′, sT ′) ∈ 3STω. If f ∶ LIN(T, sT ) → LIN(T ′, sT ′)
is an isomorphism then (T, sT ) ≈L (T ′, sT ′).
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[2] Roland Fräıssé. “Sur la comparaison des types d’ordres”. In: CR Acad. Sci. Paris
226 (1948), pp. 1330–1331.
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