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A LOCAL INJECTIVE PROOF OF LOG-CONCAVITY FOR

INCREASING SPANNING FORESTS

ABDELMALEK ABDESSELAM

Abstract. We give an explicit combinatorial proof of a weighted version of strong log-
concavity for the generating polynomial of increasing spanning forests of a finite simple
graph equipped with a total ordering of the vertices. In contrast to similar proofs in the
literature, our injection is local in the sense that it proceeds by moving a single edge from
one forest to the other. In the particular case of the complete graph, this gives a new
combinatorial proof of log-concavity of unsigned Stirling numbers of the first kind where a
pair of permutations is transformed into a new pair by breaking a single cycle in the first
permutation and gluing two cycles in the second permutation, while all the other spectator
cycles are left untouched.

1. Introduction

Let G a finite simple graph with vertex set V = {v1, v2, . . . , vn} and edge set E. We
assume we are given a total ordering of the vertices v1 < v2 < · · · < vn. A spanning forest
F is a subgraph of G with the same vertex set and an edge set given by a subset of E
which contains no circuit. Recall that a circuit is a set of edges (seen as unordered pairs of
vertices) of the form {{vi1, vi2}, {vi2, vi3}, . . . , {vip−1

, vip}, {vip, vi1}}, with p ≥ 3 and where
all the vertices vi1 , . . . , vip are distinct. Such a forest F is thus made of a disjoint collection
of trees which will, by convention, be rooted at their minimal vertex. Such a forest is called
increasing if for every such tree, the vertices (or labels) increase along each path from the
root to a leaf. For simplicity, we will restrict to V = [n] := {1, 2, . . . , n} with the usual
ordering. We will also identify a forest F with the corresponding subset of edges inside E.
We will also switch gears and view an edge e as an ordered pair of vertices (i, j) with i < j.
For example, with G being the complete graph on nine vertices,

F1 = {(1, 2), (1, 4), (4, 7), (4, 9), (3, 5), (3, 6), (6, 8)} (1)

is an increasing forest, whereas

F2 = {(1, 2), (1, 8), (7, 8), (8, 9), (3, 5), (3, 6), (4, 6)}

is not, because of the drops occurring in the paths from 1 to 7 and from 3 to 4.

Increasing forests and associated generating polynomials have been studied recently in [12,
11]. Increasing forests have also been investigated in [2] in connection to LLT polynomials.
Given a collection of indeterminates x = (xe)e∈E and for 0 ≤ k ≤ n, one can define the
polynomial

ak(x) =
∑

F∈IFk

∏

e∈F

xe

where the sum is over the set IFk of all increasing forests with exactly k connected compo-
nents. Given an additional variable t, such polynomials can be packaged into the generating
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polynomial

ISF(x, t) =

n∑

k=0

ak(x)t
k .

Of course, when n ≥ 1 the first term a0(x) vanishes and all these polynomials depend on
the graph G and the chosen total ordering. Our main concern in this article will be the
log-concavity of the sequence ak(x), 0 ≤ k ≤ n.

We now recall some basic terminology about log-concavity. The reader can glean much
more information from the reviews [25, 5, 4]. A finite sequence (a0, a1, . . . , an) of real numbers
is called log-concave if ap−1ap+1 ≤ a2p whenever 0 < p < n. It is called strongly log-concave
if ap−1aq+1 ≤ apaq whenever 0 < p ≤ q < n. Such a sequence is said to be without internal
zeros if there are no indices 0 ≤ p < q < r ≤ n with ap 6= 0, aq = 0 and ar 6= 0. Of course,
log-concavity follows from strong log-concavity as the p = q particular case. However, when
the sequence is made of nonnegative numbers and has no internal zeros, the two properties
are easily seen to be equivalent. Following [23, 24], we will define a weighted version of
these two notions for sequences of polynomials like (a0(x), a1(x), . . . , an(x)) in a polynomial
algebra R[x]. We will say that the sequence is x-log-concave if, whenever 0 < p < n, it holds
that the polynomial ap(x)

2 − ap−1(x)ap+1(x) only has nonnegative coefficients. Likewise,
we will say that the sequence is strongly x-log-concave if, whenever 0 < p ≤ q < n, it
holds that the polynomial ap(x)aq(x)− ap−1(x)aq+1(x) only has nonnegative coefficients. In
general, for the weighted case, strong x-log-concavity is a strictly stronger property than
x-log-concavity. Although we did not find it explicitly stated in the literature, one has the
following x-log-concavity result.

Theorem 1.1. The sequence (a0(x), a1(x), . . . , an(x)) defined above by the enumeration of

increasing spanning forests is strongly x-log-concave.

Indeed, that Hallam et al. [11, Theorem 2.2] have shown the factorization

ISF(x, t) =
n∏

j=1

(
t+

j−1∑

i=1

1l{(i, j) ∈ E} x(i,j)

)

where 1l{· · · } denotes the indicator function of the logical condition between braces. There-
fore, Theorem 1.1 follows immediately from this factorization together with [24, Proposition
2.3]. Also note that, if one specializes the weights to real values, then the log-concavity of
the ak sequence is immediate since they form the coefficients of a polynomial with only real
roots. One even gets ultra log-concavity, namely, the log-concavity of the sequence ak/

(
n

k

)
,

see [25, Theorem 2]. In this article we will provide a new proof of Theorem 1.1 which is
based on an explicit weight-preserving combinatorial injection, and which is thematically
similar to many log-concavity proofs in the literature, e.g., [7, 13, 17, 19, 22, 23, 24]. The
key difference however, is what we, for lack of a better word, call locality.

Let 0 ≤ k < ℓ ≤ n, and let Ψ : IFk × IFℓ → IFk+1 × IFl−1 be an injective map. We will
denote the image by Ψ of a pair of increasing forests (A ,B) simply by (A ′,B′). We will
say that Ψ is local if for all (A ,B) ∈ IFk × IFℓ, there exists an edge e ∈ A \B, such that

A
′ = A \{e} and B

′ = B ∪ {e} .
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We will refer to such an edge as a movable edge. Note that locality forces weight preservation,
i.e., (

∏

e∈A ′

xe

)
×

(
∏

e∈B′

xe

)
=

(
∏

e∈A

xe

)
×

(
∏

e∈B

xe

)
.

Now our main result is as follows.

Theorem 1.2. For all 0 ≤ k < ℓ ≤ n, there exists an explicit local injective map Ψ :
IFk × IFℓ → IFk+1 × IFl−1 .

Making the change of indices p = k+ 1 and q = ℓ− 1, and thanks to weight preservation,
one easily sees that Theorem 1.1 follows from Theorem 1.2. Note that we now include the
bijective case q = p − 1 or ℓ = k + 1 which is silly from the point of view of strong log-
concavity. A trivial bijection IFk × IFk+1 → IFk+1× IFk that does the job is the forest swap
given by (A ′,B′) := (B,A ). Locality makes the existence of such a bijection less trivial
since one is only allowed to transfer a single edge. In the particular case of the complete
graph and the Stirling numbers of the first kind, to be discussed in §3.2, our injection for
pairs of permutations (σ, τ) 7→ (σ′, τ ′) is such that σ′ is obtained from σ by breaking a single
cycle, whereas τ ′ is obtained by gluing two cycles of τ . We call this a local move as opposed
to a global transformation where the resulting premutations can look very different from the
original ones. This global flavor was a feature of, e.g., previous injections by Sagan [22, 24]
which use the powerful Lindström-Gessel-Viennot machinery of lattice paths [20, 8].

2. The explicit injection

2.1. The construction. An important tool for the construction of our local injection is
provided by the next proposition. We will use absolute values to denote the cardinality of
finite sets, and for 0 ≤ k ≤ n, we will denote by Sn,k the set of subsets of [n] which have k
elements.

Proposition 2.1. For all n ≥ 0 and 0 ≤ k < n
2
, there exists an injection Φn,k : Sn,k → Sn,k+1

such that for all k-subset X, we have the inclusion X ⊂ Φn,k(X).

There are many ways to produce such injections, for instance, the bracketing algorithm
in [9] which is an elegant reformulation of earlier constructions [6, 3] (see [21, 26] for insightful
reviews on this topic). Let us also sketch another approach which echoes the remarks at the
end of the previous section about emphasizing the “apparently silly bijective case”. First
construct all the bijections Φ2k+1,k, for all k. This amounts to chosing a perfect matching in
the bipartite Kneser graph H(2k + 1, k), i.e., the middle two levels of the Boolean lattice of
[2k + 1]. There are many matchings to choose from (see [16] and the more recent [15]) and
their study was motivated by the middle levels conjecture (see [10] and references therein).
Then Φn,k can be constructed recursively, or by induction on n as follows. If k < n−1

2
, then

let

Φn,k(X) :=

{
Φn−1,k−1(X) if n /∈ X ,
{n} ∪ Φn−1,k−1(X\{n}) if n ∈ X .

The remaining case n−1
2

≤ k < n
2
, which can only happen if n = 2k+ 1, has been taken care

of beforehand. More generally for a finite set Y instead of [n], and for 0 ≤ k < |Y |/2 we
will denote by ΦY,k a choice of injection from k-subsets to (k+1)-subsets of Y satisfying the
same constraint as in Proposition 2.1.
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We now proceed with the definition of our injection Ψ. For each subset Y ⊂ [n] and each
k, 0 ≤ k < |Y |/2, we prepare the maps ΦY,k discussed above. For A an increasing forest,
we will use the notation m(A ) for the set of minima of connected components of A . For
(A ,B) ∈ IFk × IFℓ we therefore have |m(A )| = k and |m(B)| = ℓ. From the hypothesis
k < ℓ, we see that the symmetric difference

m(A )∆m(B) = (m(A )\m(B)) ∪ (m(B)\m(A ))

satisfies

|m(A )\m(B)| <
1

2
|m(A )∆m(B)| .

As a result, we have a uniquely defined element j ∈ [n] for which

{j} = Φm(A )∆m(B),|m(A )\m(B)| (m(A )\m(B)) \ (m(A )\m(B)) .

Let A ⊂ [n] be the set of vertices corresponding to the connected component of the forest A

which contains j. Likewise, let B ⊂ [n] be the set of vertices corresponding to the connected
component of the forest B which contains j. By definition, j is the minimal element of B
but it is different from the minimal element i0 of A. Consider the path in the forest A going
from i0 to j and let e = (i, j) be the last edge on that path. We claim that e is a movable
edge, i.e., that e ∈ A \B and, letting

A
′ := A \{e} and B

′ := B ∪ {e} (2)

we have that both A ′, B′ are increasing forests. Clearly, removing an edge from an increasing
forest produces an increasing forest so we only need explain the property for B′. Since A

is increasing i0 ≤ i < j = min(B) so i belongs to a different connected component B̃ of B.

Since e joins different connected components, adding it to B still gives a forest. Let j̃ be the

minimal element of B̃. It will also be the minimal element of the newly formed connected

component B ∪ B̃ of the forest B′. It is easy to see that paths from the root j̃ to a leaf are

increasing. If the leaf is in B̃, it is so because it already was an increasing path in B. If the
leaf b is in B, then the path must be of the form j̃, . . . , i, j, . . . , b where the portion j̃, . . . , i

is in B̃ and the portion j, . . . , b is in B. Both portions increase because B is an increasing
forest, while at the transition i < j by construction. Of course the new increasing forests
A ′,B′ respectively have k+ 1 and ℓ− 1 connected components. Hence, we now have a well
defined map Ψ from IFk × IFℓ to IFk+1 × IFℓ−1.

2.2. Proof of the injective property. Suppose two pairs of forests (A1,B1) and (A2,B2)
are sent to the same (A ′,B′). Let j1 be the component minimum, and e1 the movable edge,
as in the previous section, which appeared in the construction of (A ′,B′) from (A1,B1).
Likewise, let j2 be the component minimum, and e2 the movable edge which appeared in
the construction of (A ′,B′) from (A2,B2). It is easy to track the changes in the sets of
component minima through the map Ψ which results in the relations

m(A ′) = m(A1) ∪ {j1} = m(A2) ∪ {j2}

and

m(B′) = m(B1)\{j1} = m(B2)\{j2}
4



with the knowledge that j1 ∈ m(B1)\m(A1) and j2 ∈ m(B2)\m(A2). We thus have preser-
vation of unions:

m(A ′) ∪m(B′) = m(A1) ∪m(B1) = m(A2) ∪m(B2)

and similarly for intersections and symmetric differences (i.e., the same equalities as above
hold with ∩, ∆, instead of ∪). From |m(A1)| = |m(A2)| = k, and denoting by r the
cardinality of m(A1) ∩m(B1) = m(A2) ∩m(B2), we get

|m(A1)\m(B1)| = |m(A2)\m(B2)| = k − r .

Therefore

m(A ′)\m(B′) = (m(A1)\m(B1)) ∪ {j1}

= Φm(A1)∆m(B1),|m(A1)\m(B1)| (m(A1)\m(B1))

= Φm(A ′)∆m(B′),k−r (m(A1)\m(B1))

and similarly for the other pair. Therefore

Φm(A ′)∆m(B′),k−r (m(A1)\m(B1)) = Φm(A ′)∆m(B′),k−r (m(A2)\m(B2))

and the injectivity of the Φ maps forces m(A1)\m(B1) = m(A2)\m(B2). Since the unions
and intersections also agree, we immediately obtain m(A1) = m(A2) and m(B1) = m(B2).
As a result

{j1} = m(A ′)\m(A1) = m(A ′)\m(A2) = {j2} .

The equality j1 = j2, forces that of the unique edges in B′ of the form (i1, j1) and (i2, j2)
with i1 < j1 and i2 < j2, namely the equality e1 = e2. Finally, the definition (2) gives the
desired conclusion (A1,B1) = (A2,B2).

3. Concluding remarks

3.1. Log-concavity for elementary symmetric functions. Note that Proposition 2.1
gives a combinatorial proof of unimodality of binomial coefficients. One can adapt the
construction of our Ψ to this simpler setting and obtain a new derivation of the log-concavity
of binomial coefficients. Indeed, one can construct a map Sn,k × Sn,ℓ → Sn,k+1 × Sn,ℓ−1,
(X, Y ) 7→ (X ′, Y ′) by letting

{i} := ΦX∆Y,|X\Y |(X\Y )\(X\Y )

X ′ := X ∪ {i}

Y ′ := Y \{i}

just as in (2). This map is injective and also weight-preserving. Now taking x = (x1, . . . , xn)
and weighting subsets by the product of corresponding x variables, we obtain a combinatorial
proof of the strong x-log-concavity of the elementary symmetric functions ek(x) as in [24].
Of course, by the Jacobi-Trudy identity, we know more, namely, that the relevant polynomial
difference is not only positive coefficient-wise in the x, but is also Schur-positive. This is one
of the simplest instances of a very general phenomenon as investigated, e.g., in [18].
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3.2. Stirling numbers of the first kind. We will denote by s(n, k) the Stirling numbers
of the first kind and by c(n, k) := |s(n, k)| their unsigned version. As is well known, c(n, k)
counts the number of permutations of n elements with exactly k cycles. It is easy to construct
a bijection between such permutations and increasing forests in IFk, where G is the complete
graph on [n]. Let F ∈ IFk, and turn it into a collection of rooted planar trees as follows.
For each tree, draw the root (again the minimal vertex) on the left and the leafs on the
right. For a vertex v with children w1 < · · · < wp draw them, in this order, from top to
bottom. Then consider a path around the tree starting and ending at the root, going in the
counterclockwise direction. Intuitively, one could think of drawing the contour of one’s hand
placed flat on a table. Next, make the cycle (i1i2 · · · iq) where i1 is the root and the other
vertices are listed in the order in which they appear as one turns around the tree. Finally,
let σ be the permutation obtained as the product of such cycles, over all trees in the forest
F . For example, the permutation corresponding to the forest F1 in (1), in cycle notation,
is

σ = (14972)(3685) .

Using this bijection and our map Ψ, we thus obtain an injective proof of log-concavity of
the sequence (c(n, 0), . . . , c(n, n)) which is different than the constructions in [22, 24]. In
particular our map sends a pair of permutations (σ, τ) to a new one (σ′, τ ′) where σ′ is
obtained by breaking a cycle of σ in two, and τ ′ is obtained by gluing two cycles of τ , while
all other cycles are left untouched.

3.3. Chromatic polynomials. For a graph G on the vertex set [n], the chromatic polyno-
mial PG(t) has an expansion of the form

PG(t) =

n∑

k=0

(−1)n−kakt
k

and, by a recent result of Huh [14], we know the sequence (a0, a1, . . . , an) is log-concave. The
proof is a high-powered one using ideas from algebraic geometry, and is very far from a com-
binatorial proof via an explicit injection. Note that necessary and sufficient conditions (the
existence of a perfect elimination order) for (−1)nPG(−t) = ISF(1l, t) was given by Hallam
and Sagan in [12]. A refinement involving the notion of tight forest was also derived [11,
Theorem 5.11]. By Whitney’s no broken circuit theorem which relies on the choice of an
ordering of the edges of G, the coefficient ak counts all forests in G with k components and
which do not contain a broken circuit. The latter is a set of edges obtained by removing from
a circuit its minimal edge. Again on the vertex set [n] with its usual ordering, let us order
edges (i, j) with i < j using the lexicographic order, and let us call a forest admissible if it
contains no broken circuit for this choice of edge ordering. It is not difficult to reformulate
admissibility in a way similar to the increasing property, as follows. As before let us pick
the minimal vertex as the root in each tree of the forest. For a vertex v, let C(v) denote the
set of children of v, and let B(v) denote the branch at v, i.e., the union of {v}, C(v), the
set of grandchildren of v, etc. We will call a vertex v a good vertex if for all w in C(v), w
is the smallest element in B(w) with an edge in G connecting it to v. A forest is admissible
if and only if all the vertices are good. Note that a proof of the no broken circuit theorem
with this particular edge ordering and notion of admissible forests, using the combinatorics
of perturbative renormalization in quantum field theory (featuring toy versions of the Bo-
goliubov induction and Zimmermann’s forest formula) was given in [1, Ch. 4]. When G is
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a tree, our injective proof not only applies but degenerates into the easier case from §3.1
for subsets. When G is cycle, which is slightly less trivial, one can also find movable edges.
However, if G is say a triangle and an edge, as in

G = {(1, 4), (2, 4), (2, 3), (3, 4)}

with n = 4, then movable edges may not exist, let alone be used to construct an injection.
For instance, take the admissible forests

A = {(1, 4), (2, 4), (3, 4)}

and

B = {(2, 3), (3, 4)} ,

then there is no movable adge. Namely, there is no e ∈ A \B such that A ′ := A \{e}
and B′ := B ∪ {e} are admissible forests. However if one changes the vertex ordering, or
equivalently relabels the vertices so now

G = {(1, 2), (2, 3), (2, 4), (3, 4)} ,

this problem does not occur. Echoing [21], we believe that a combinatorial proof of Huh’s
theorem is still out of reach. Yet, it may be interesting to investigate the class of graphs for
which, modulo a suitable choice of vertex ordering, movable edges always exist.
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