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ON THE LAPLACIAN SPECTRUM OF k-SYMMETRIC

GRAPHS

SUNYO MOON AND HYUNGKEE YOO

Abstract. For some positive integer k, if the finite cyclic group Zk can
act freely on a graph G, then we say that G is k-symmetric. In 1985,
Faria showed that the multiplicity of Laplacian eigenvalue 1 is greater
than or equal to the difference between the number of pendant vertices
and the number of quasi-pendant vertices. But if a graph has a pendant
vertex, then it is at most 1-connected. In this paper, we investigate a
class of 2-connected k-symmetric graphs with a Laplacian eigenvalue 1.
We also identify a class of k-symmetric graphs in which all Laplacian
eigenvalues are integers.

1. Introduction

A simple graph G = (V,E) is a combinatorial object consisting of a finite
set V and a set E of unordered pairs of different elements of V . The elements
of V and E are called the vertices and the edges of the graph G, respectively.
For a given graph G, the vertex set and the edge set of G are denoted by
V (G) and E(G), respectively.

Let G be a graph with enumerated vertices. The Laplacian matrix L(G) of
G is defined as L(G) =D(G)−A(G), where D(G) is the diagonal matrix of
vertex degrees and A(G) is the adjacency matrix of G. Thus the Laplacian
matrix is symmetric. Note that the Laplacian matrix can be considered
a positive-semidefinite quadratic form on the Hilbert space generated by
V (G). Since the Laplacian matrix contains information on the structure of
the graph, it has been studied importantly in various applied fields including
artificial neural network research using graph shaped data [13, 14].

Let G be a graph with n vertices. For a square matrix M , we denote
the characteristic polynomial of M by µ(M,x). A root of the characteristic
polynomial of Laplacian matrix L(G) is called a Laplacian eigenvalue of G.
Denote the all eigenvalues of L(G) by λn(G) ≤ λn−1(G) ≤ ⋯ ≤ λ1(G). It is
well-known that λn(G) = 0 and λ1(G) ≤ n. The multiset of Laplacian eigen-
values of G is called the Laplacian spectrum of G. The Laplacian spectrum
of the complement graph G of G is satisfying

0 = λn(G) ≤ n − λ1(G) ≤ ⋯ ≤ n − λn−1(G).
The Laplacian spectrum shows us several properties of the graph. For in-
stance, Kirchhoff [15] proved that the number of spanning tree of a connected
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2 S. MOON AND H. YOO

graph G with n vertices is 1

n
λ1(G)⋯λn−1(G). Let mG(λ) denote the multi-

plicity of λ as a Laplacian eigenvalue of G. Note that the multiplcity of 0 is
equal to the number of connected components of G.

The connectivity κ(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected or trivial graph. A graph G is said
to be t-connected if κ(G) ≥ t. If a graph is t-connected, then it is (t−1)-
connected. Fiedler [9] proved that the second smallest Laplacian eigenvalue
of G is less than or equal to κ(G).

A pendant vertex of G is a vertex of degree 1. A quasi-pendant of G is
a vertex adjacent to a pendant. We denote the number of pendants of G
by p(G), and the number of quasi-pendant vertices by q(G). In [8], Faria
showed that for any graph G,

mG(1) ≥ p(G) − q(G).
It implies that if p(G) is greater than q(G), then G has a Laplacian eigen-
value 1. Also, such graph G is at most 1-connected. In [1], Barik et al. found
trees with a Laplacian eigenvalue 1 even though the right-hand side of the
above inequality is 0. Since a tree has connectivity 1, we focus on 2-connected
graph with a Laplacian eigenvalue 1.

The simplest way to obtain a 2-connected graph with a Laplacian eigen-
value 1 is the Cartesian product. The Cartesian product G◻H of graphs G
and H is the graph with the vertex set V (G)×V (H) such that two vertices(v, v′) and (w,w′) are adjacent if v = w and v′ is adjacent to w′ in H, or if
v′ = w′ and v is adjacent to w in G. Fiedler [9] showed that the Laplacian
eigenvalues of the Cartesian product G ◻H are all possible sums of Lapla-
cian eigenvalues of G and H. If either G or H has a Laplacian eigenvalue 1,
then 1 is a Laplacian eigenvalue of G ◻H. Špacapan [20] showed that the
connectivity of G ◻H is

κ(G ◻H) =min{κ(G)∣H ∣, κ(H)∣G∣, δ(G ◻H)},
where δ(G ◻ H) is the minimum degree of G ◻H. Remark that if G and
H are connected graphs, then G ◻H is 2-connected. Thus we concentrate
a 2-connected graph that does not decompose nontrivial graphs under the
Cartesian product. If a graph does not admit the nontrivial Cartesian prod-
uct decomposition, then the graph is called prime with respect to the Carte-
sian product. In this paper, we prove the following theorem.

Theorem 1.1. For any positive integer n, there is a 2-connected prime

graph G with respect to the Cartesian product,

mG(1) ≥ n.
Meanwhile, integral spectra of Laplacian matrix or adjacency matrix are

studied in various application fields including physics and chemistry [3, 4, 5].
A graph with integral Laplacian spectrum is called a Laplacian integral

graph. If a graph does not include the path P4 as an induced subgraph, then
it is called a cograph. In [19], Merris showed that a cograph is a Laplacian
integral graph. Many researchers [7, 10, 16, 17] have investigated infinitely
many classes of Laplacian integral graphs that are not cographs. In section
5, we introduce a new graph C(n,m) for some positive integers n andm. The
graph C(n,m) is obtained by connecting several set of vertices for m parallel
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copies of n-complete graph Kn to the corresponding vertex of Kn. Later, we
examine that if n ≥ 2, then C(n,m) has the path P4 as the induced subgraph,
that is, it is not a cograph. In this paper, we also prove the following theorem.

Theorem 1.2. There are infinitely many pairs of positive integers n and

m, which make C(n,m) a Laplacian integral graph.

This paper is organized as follows. In Section 2, We provide some linear
algebra results needed for proof of main theorems. In Section 3, We de-
fine the k-symmetric graph by relaxing the condition of symmetric graph,
and examine its properties. In Section 4 and Section 5, we prove the main
theorems and related properties.

2. Preliminaries

In this section, we introduce some definitions and properties that will be
used in this paper. The set of all m×n matrices over a field F is denoted by
Mm×n(F). Denote Mn×n(F) by Mn(F). We denote by In and Jn the n × n
identity matrix and the n × n matrix whose entries are ones. Also, 1n is the
n-vector of all ones.

Let A ∈Mn(F) be a block matrix of the form

A = (A11 A12

A21 A22

) ,
where A11 ∈ Mm(F), A12 ∈ Mm×(n−m)(F), A21 ∈ M(n−m)×m(F) and A22 ∈
Mn−m(F). It is well known that ifA22 is invertible, then detA = detA22 det(A11−
A12A

−1
22A21) (see [12, Chapter 0]).

For two matrices A = (aij) ∈ Mm×n(F) and B ∈ Mp×q(F), the Kronecker

product of A and B, denoted by A⊗B, is defined as

A⊗B =
⎛⎜⎜⎜⎝

a11B a12B ⋯ a1nB

a21B a22B ⋯ a2nB⋮ ⋮ ⋱ ⋮
am1B am2B ⋯ amnB

⎞⎟⎟⎟⎠
.

We state some basic properties of the Kronecker product (for more details,
see [11, Chapter 4]):

(a) A⊗ (B +C) = A⊗B +A⊗C.
(b) (B +C) ⊗A = B ⊗A +C ⊗A.
(c) (A⊗B)(C ⊗D) = AC ⊗BD.
(d) If A ∈ Mm(F) and B ∈ Mn(F) are invertible, then (A ⊗ B)−1 =

A−1 ⊗B−1.
(e) det(A⊗B) = (detA)n(detB)m for A ∈Mm(F) and B ∈Mn(F).

A matrix T ∈Mn(F) of the form

T =
⎛⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 ⋯ a−(n−1)
a1 a0 a−1 ⋯ a−(n−2)
a2 a1 a0 ⋯ a−(n−3)⋮ ⋮ ⋮ ⋱ ⋮
an−1 an−2 an−3 ⋯ a0

⎞⎟⎟⎟⎟⎟⎠
is called a Toeplitz matrix. In [18], the authors gave a Toeplitz matrix inver-
sion formula.
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Theorem 2.1 ([18], Theorem 1). Let T = (ai−j)ni,j=1 be a Toeplitz matrix

and let f = (0, an−1−a−1,⋯, a2−a−(n−2), a1−a−(n−1))T and e1 = (1,0,⋯,0)T . If
each of the systems of equations Tx = f , Ty = e1 is solvable, x = (x1, x2, . . . , xn)T ,
y = (y1, y2, . . . , yn)T , then

(a) T is invertible;

(b) T −1 = T1U1 + T2U2, where

T1 =
⎛⎜⎜⎜⎝

y1 yn ⋯ y2
y2 y1 ⋱ ⋮⋮ ⋱ ⋱ yn
yn ⋯ y2 y1

⎞⎟⎟⎟⎠
, U1 =

⎛⎜⎜⎜⎝

1 −xn ⋯ −x2
0 1 ⋱ ⋮⋮ ⋱ ⋱ −xn
0 ⋯ 0 1

⎞⎟⎟⎟⎠
,

T2 =
⎛⎜⎜⎜⎝

x1 xn ⋯ x2
x2 x1 ⋱ ⋮⋮ ⋱ ⋱ xn
xn ⋯ x2 x1

⎞⎟⎟⎟⎠
, and U2 =

⎛⎜⎜⎜⎝

0 yn ⋯ y2
0 0 ⋱ ⋮⋮ ⋱ ⋱ yn
0 ⋯ 0 0

⎞⎟⎟⎟⎠
.

Corollary 2.2. Let aIn + bJn be a matrix in Mn(F). Then
(a) det(aIn + bJn) = an−1(a + nb).
(b) If aIn + bJn is invertible, then its inverse matrix is

1

a(a + nb)((a + nb)In − bJn).
Proof. (a) It is easy to check that

det

⎛⎜⎜⎜⎜⎜⎝

a + b b b ⋯ b

b a + b b ⋯ b

b b a + b ⋯ b⋮ ⋮ ⋮ ⋱ ⋮
b b b ⋯ a + b

⎞⎟⎟⎟⎟⎟⎠
= det

⎛⎜⎜⎜⎜⎜⎝

a 0 0 ⋯ 0
0 a 0 ⋯ 0
0 0 a ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮
b 2b 3b ⋯ a + nb

⎞⎟⎟⎟⎟⎟⎠
.

Hence the determinant of aIn + bJn is an−1(a + nb).
(b) Note that the matrix aIn + bJn is Toeplitz. Let

x = (0, . . . ,0)T and y = (a + nb − b
a(a + nb) ,

−b
a(a + nb) , . . . ,

−b
a(a + nb))

T

.

Then (aIn + bJn)x = 0 and (aIn + bJn)y = e1. By Theorem 2.1, the
inverse of aIn + bJn is

1

a(a + nb)((a + nb)In − bJn).
�

3. k-Symmetric graphs

Symmetry is an important property of graphs. We deal with graphs that
has symmetric property. Let G be a graph. An automorphism ϕ of a graph
G is a permutation of V (G) such that ϕ(v) and ϕ(w) are adjacent if and
only if v and w are adjacent where v and w are vertices of G. The set of
all automorphisms of G is called an automorphism group of G and denoted
by Aut(G). A graph G is symmetric if Aut(G) acts transitively on both
vertices of G and ordered pairs of adjacent vertices. This implies that G
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is regular, that is, all vertices have the same degree. However, it is a very
difficult problem to determine whether a given graph is a symmetric graph.
Thus we concentrate the cyclic part of Aut(G). In this section, we define
k-symmetric graphs and give some their properties. Also, we construct a
k-symmetric graph from other k-symmetric graphs.

Definition 3.1. Let k be a positive integer. A graph G is k-symmetric if
there is a subgroup H of Aut(G) such that H is isomorphic to Zk and H
freely act on vertices. A generator of H is called a k-symmetric automor-

phism.

The above definition tells us that all graphs are 1-symmetric because the
trivial group freely acts on any graph. If a graph G with n vertices is n-
symmetric, then the automorphism group Aut(G) has a cyclic subgroup H
which transitively acts on vertices. Thus G is regular. However, the converse
is not true even though G is a symmetric graph. Before examining this, we
check the following proposition.

Proposition 3.2. Let G be a graph with n vertices. If G is n-symmetric,

then either G or its complement G have a Hamiltonian cycle.

Proof. Let G be an n-symmetric graph with n vertices, and let ϕ be an
n-symmetric automorphism of G. Choose a vertex v. If v and ϕ(v) are
adjacent, then ϕi(v) and ϕi+1(v) are also adjacent for any interger i. Since
G is n-symmetric, the group generated by ϕ acts freely and transitively on
V (G). Thus the sequence v,ϕ(v), . . . , ϕn(v) induces a Hamiltonian cycle of
G. Suppose that v and ϕ(v) are not adjacent in G. Then v and ϕ(v) are
adjacent in G. Hence the sequence of vertices induces a Hamiltonian cycle
of G. �

For example, the Petersen graph in Figure 1 is 5-symmetric because the
5-fold rotation satisfies the 5-symmetric automorphism condition. The Pe-
tersen graph is a symmetric graph with 10 vertices. But since the Petersen
graph is not Hamiltonian, it is not 10-symmetric. For any positive integer
k, k-symmetric graphs are satisfying the following properties.

Figure 1. The Petersen graphs with different bases for the
5-fold rotation

Proposition 3.3. Let G be a k-symmetric graph for some integer k and let

d be a divisor of k. Then G is a d-symmetric graph.

Proof. Let ϕ be a k-symmetric automorphism of G and let k = k′d for
some integer k′. Define an automorphism ψ of G by ψ = ϕk′ . Then ψd(v) =
ϕk′d(v) = ϕk(v) = idG(v) for all v ∈ V (G). The subgroup ⟨ψ⟩ of Aut(G) is
isomorphic to Zd. Thus G is a d-symmetric graph. �
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Proposition 3.4. Let G1 and G2 be k-symmetric graphs for some integer

k. Then G1 ∪G2 is k-symmetric graph.

Proof. Let ϕ1 and ϕ2 be k-symmetric automorphisms of G1 and G2, respec-
tively. Then the automorphism ϕ1 + ϕ2 of G1 ∪G2 is defined by

(ϕ1 + ϕ2)(v) = { ϕ1(v), if v ∈ V (G1),
ϕ2(v), if v ∈ V (G2) .

Hence G1 ∪G2 is a k-symmetric graph.
�

Let ϕ be a k-symmetric automorphism of a graph G and let idH be the
identity automorphism of a graph H. Then the automorphism ϕ × idH of
G ◻H is k-symmetric. Thus we obtain the following proposition.

Proposition 3.5. Let G be a k-symmetric graphs for some integer k. For

any graph H, the Cartesian product G ◻H is k-symmetric graph.

Let G be a graph with a k-symmetric automorphism ϕ. Then Zk acts on
V (G) as follows. For any i ∈ Zk and v ∈ V (G), we define i ⋅ v = ϕi(v). For
any vertex v, the orbit of v is denoted by Zk ⋅v. Let Bϕ be a minimal subset
of V (G) such that

k−1

⋃
i=0

ϕi(Bϕ) = V (G).
Alternatively, Bϕ is a minimal subset of V (G) such that

⋃
v∈Bϕ

Zk ⋅ v = V (G).
The set Bϕ is called a base of ϕ. Since k choices are possible for each orbit,
Bϕ is not unique as drawn in Figure 1. Note that the size of the base Bϕ is
∣V (G)∣

k
.

Now we introduce how to construct a k-symmetric graph from other k-
symmetric graphs for any positive integer k. First we observe a graph join.
Let H1 and H2 be graphs. The graph join H1∨H2 of H1 and H2 is a graph
obtained by joining each vertex of H1 to all vertices of H2. Since every graph
is 1-symmetric with respect to identity map, we can understand graph join
H1∨H2 as a join of the bases V (H1) and V (H2) of idH1

and idH2
. From this

fact, we generalize graph join.

Definition 3.6. For i ∈ {1,2}, let Gi be a k-symmetric graph with a k-
symmetric automorphism ϕi, and let Bi be a chosen base of ϕi. The k-

symmetric join is a graph obtained by joining each vertex of ϕj
1
(B1) to

all vertices of ϕj
2
(B2) for all j ∈ Zk. The k-symmetric join is denoted by(G1, ϕ1,B1) ∨k (G2, ϕ2,B2). If we choose arbitrary k-symmetric automor-

phisms and its bases of G1 and G2, then the k-symmetric join is simply
denoted by G1 ∨k G2.

The k-symmetric join preserves the k-symmetry. Because the k-symmetric
automorphism of G1 ∨k G2 is ϕ1 +ϕ2 and its base is B1 ∪B2. Definition 3.6
derives that the graph join is the 1-symmetric join. Note that, n-symmetric
joins are not unique even if the base of each Gi is unique. For instance, the
Cartesian product of 5-cycle C5 with K2 and the Petersen graph are both



ON THE LAPLACIAN SPECTRUM OF k-SYMMETRIC GRAPHS 7

5-symmetric joins of two 5-cycles, but they are not isomorphic as drawn in
Figure 2.

1

2 5

3 4

1

2 5

3 4

1

2

5

3
4

1

3

4

5
2

Figure 2. The 5-symmetric join of two 5-cycles is C5◻K2 if
both automorphisms are (1,2,3,4,5), and the Petersen graph
if automorphisms are (1,2,3,4,5) and (1,3,5,2,4)

4. 2-connected k-symmetric graphs with Laplacian eigenvalue 1

In this section, we prove Theorem 1.1. First we consider the multiplicity
of an integral Laplacian eigenvalue. Recall that for a given graph G, the
partition π = (V1, V2,⋯, Vk) of V (G) is an equitable partition if for all i, j ∈{1,2, . . . , k} and for any v ∈ Vi the number dij = ∣NG(v) ∩ Vj ∣ depends only
on i and j. The k × k matrix Lπ(G) = (bij) defined by

bij = { −dij , if i ≠ j,
∑k

s=1 dis − dij, if i = j
is called the divisor matrix of G with respect to π.

Lemma 4.1 ([2, 6]). Let G be a graph and let π = (V1, . . . , Vk) be an equitable

partition of G with divisor matrix Lπ(G). Then each eigenvalue of Lπ(G)
is also an eigenvalue of L(G).

In the following theorem, we obtain the multiplicity of n of k-symmetric
join of graphs where n is the size of a base.

Theorem 4.2. Let G1, . . . ,Gl be k-symmetric graphs for some k and let

G = G1 ∨k ⋯ ∨k Gl be the k-symmetric join of G1, . . . ,Gl. Let n = ∣V (G)∣k
.

Then

mG(n) ≥ l − 1.
Proof. The partition π = (V (G1), . . . , V (Gl)) is an equitable partition of G.
Then we have

Lπ(G) =
⎛⎜⎜⎜⎝

n − n1 −n2 ⋯ −nl
−n1 n − n2 ⋯ −nl
⋮ ⋮ ⋱ ⋮
−n1 −n2 ⋯ n − nl

⎞⎟⎟⎟⎠
,

where ni = ∣V (Gi)∣
k

for i = 1, . . . , l. Since the characteristic polynomial of

Lπ(G) is µ(Lπ(G), x) = x(x − n)l−1, by Lemma 4.1, we obtain

mG(n) ≥ l − 1.
�
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If each Gi in the above theorem is n-symmetric graph with n vertices,
then the size of a base of G is l.

Corollary 4.3. Let G1, . . . ,Gl be n-symmetric graphs with n vertices. Then

for any their n-symmetric join G,

mG(l) ≥ l − 1.
Let G be an n-symmetric graph with n vertices. Take an n-symmetric

automorphism ϕ of G. Let G′ be a graph that n-symmetric join of m copies
of G along ϕ. Then since each base of the copy of G is a vertex, the base
of G′ induces the m complete graph Km. Since G′ is constructed by same
n-symmetric automorphism, G′ becomes the Cartesian product of G and
Km.

Corollary 4.4. Let G be n-symmetric graphs with n vertices. Then for any

positive integer m,

mKm◻G(m) ≥m − 1.
By the Špacapan’s result [20] about the connectivity of the Cartesian

product in Section 1, we realize that for any positive integer m, there is a
m-connected graph G with mG(m) ≥m − 1.

Now consider a special case of k-symmetric join. For any i ∈ {1, . . . , l},
let Gi be a k-symmetric graph for some positive integer k and let ϕi be
an associated k-symmetric automorphism. Let B1

i be a base of Gi, and

let Bj
i = ϕj

i (B1
i ). Racall that the union of G1, . . . Gl is also k-symmetric

with the k-symmetric automorphism ϕ1 +⋯+ϕl and the base B1
1 ∪⋯∪B

1

l .

Define a graph G by k-symmetric joining Kk and G1 ∪ ⋯ ∪ Gl. Then the
subgraph induced by a base of G has a cut-vertex as drawn in Figure 3
(a). From this fact, we can take an equitable partition π = (V0, V1, . . . , Vl)
where V0 = V (Kk) and Vi = V (Gi) for any i ∈ {1, . . . , l} as drawn in Figure
3 (b). Remark that for any distinct i and i′, there is no edge connecting two
subgraphs Gi and Gi′ in G. To prove Theorem 1.1, we need the following
two theorems.

G
l

B
l

j

G
2

B
2

j

G
1

B
1

j

...
v

j

v
1

v
2

v
3

v
k

...
...

...

...

B
1

1 B
2

1 B
3

1 B
l

1

B
1

2 B
2

2 B
3

2 B
l

2

B
1

3 B
2

3 B
3

3 B
l

3

B
1

k B
2

k B
3

k B
l

k

...

V
1

V
2

V
3

V
l

V
0

(a) (b)

Figure 3. k-symmetric graph G =Kk ∨k (G1 ∪⋯∪Gl)
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Theorem 4.5. Let G1, . . . ,Gl be k-symmetric graphs for some positive in-

tegers l and k, and let G =Kk ∨k (G1 ∪⋯∪Gl). Then
mG(1) ≥ l − 1.

Proof. Suppose that G1, . . . ,Gl and G are the graphs in the statement of the
theorem. Let V0 be the vertices set of Kk and let Vi be the vertices set of Gi

for i = 1, . . . , l. Our observation implies that the partition π = (V0, V1, . . . , Vl)
is an equitable partition of G. Then the divisor matrix Lπ(G) is equal to

⎛⎜⎜⎜⎜⎜⎝

n −n1 −n2 ⋯ −nl
−1 1 0 ⋯ 0
−1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
−1 0 0 ⋯ 1

⎞⎟⎟⎟⎟⎟⎠
,

where ni = ∣Vi∣
k

for i = 1, . . . , l and n = ∑l
i=1 ni. We can partition the matrix

xI −Lπ(G) into four blocks as

⎛⎜⎜⎜⎜⎜⎝

x − n n1 n2 ⋯ nl
1 x − 1 0 ⋯ 0
1 0 x − 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ x − 1

⎞⎟⎟⎟⎟⎟⎠
.

Then the characteristic polynomial of Lπ(G) is
µ(Lπ(G), x) = (x − 1)l((x − n) − 1

x − 1
n)

= (x − 1)l−1((x − n)(x − 1) − n)
= (x − 1)l−1x(x − (n + 1)).

By Lemma 4.1, we obtain mG(1) ≥ l − 1. �

Theorem 4.6. Let G1, . . . ,Gl be connected k-symmetric graphs for some

integers l, k ≥ 2. Then the graph G = Kk ∨k (G1 ∪⋯ ∪Gl) is a 2-connected

prime graph with respect to Cartesian product.

Proof. First we prove that the graph G =Kk∨k(G1 ∪⋯∪Gl) is 2-connected.
Suppose that there is a cut-vertex v of G in Kk. Since k ≥ 2, there is another
vertex w in Kk. Since l ≥ 2, there are two independent paths P1 and P2 from
v to w passing through G1 and G2, respectively. This implies that v lies on
the cycle P1 ∪ P2, and hence v is not a cut-vertex. Next we suppose that
a cut-vertex of G is not lying on Kk. Without loss of generality, assume
that a cut-vertex v is in G1. Since l, k ≥ 2 and G is connected, there is a
cycle containing v in G. It follows that v is not a cut-vertex. Therefore, G
is 2-connected.

Now, we show that the graph G is prime with respect to the Cartesian
product. It is well-known that if two edges of a nontrivial Cartesian prod-
uct are incident, then they are included in a subgraph C4 of the Cartesian
product. For any vertex u of G in Kk, two incident edges e and f of u such
that the endpoints of e and f are contained in different graphs Gi and Gj
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for some integers i and j. But there is no C4 including e and f . Thus we
deduce that G is prime. �

Theorems 4.5 and 4.6 imply Theorem 1.1. Note that, if one of the graphs
G1, . . . ,Gl is disconnected, then there is a counterexample. For example, if
G1 is Kk, then G =Kk ∨k (G1 ∪⋯∪Gl) has a cut vertex.

5. Laplacian integral graphs

In this section, we discuss k-symmetric graphs with integral Laplacian
spectrum. Let n and m be positive integers. Since the n-complete graph Kn

is n-symmetric, the disjoint union of m copies of Kn, denoted by mKn, is
also n-symmetric. We consider the n-symmetric join ofKn andmKn. Denote
the graph Kn ∨nmKn by C(n,m). Now we observe that a graph C(n,m) is
not a cograph for n ≥ 2. Let v and w be vertices in Kn. Then there are two
vertices in Kn which are adjacent to v and w, respectively. Thus the graph
C(n,m) contains the path P4 as an induced subgraph. We will show that a
graph C(n,m) is Laplacian integral for some positive integers n and m. In
the following theorem, we give the characteristic polynomial of L(C(n,m)).
Theorem 5.1. Let n and m be positive integers. Then the characteristic

polynomial of L(C(n,m)) is
x(x − 1)m−1(x − (n + 1))(m−1)(n−1)(x − (m + 1))(x2 − (m + n + 1)x +mn)n−1.
Proof. The Laplacian matrix of C(n,m) is

L(C(n,m)) = (mIn +L(Kn) −1Tm ⊗ In
−1m ⊗ In Im ⊗ (In +L(Kn))) .

We consider xIn(m+1) − L(C(n,m)) as a matrix over the field of rational
functions C(x). Then the characteristic polynomial of L(C(n,m)) is
µ(L(C(n,m)), x) =det(xIn(m+1) −L(C(n,m)))

=det((x −m)In 1Tm ⊗ In
1m ⊗ In Im ⊗ ((x − 1)In −L(Kn)))

=det (Im ⊗ ((x − 1)In −L(Kn)))det ((x −m)In
− (1Tm ⊗ In)(Im ⊗ ((x − 1)In −L(Kn)))−1(1m ⊗ In))

=det((x − 1)In −L(Kn))m det ((x −m)In
−m((x − 1)In −L(Kn))−1).

Since det(xIn −L(Kn)) = µ(L(Kn), x), we obtain

det((x − 1)In −L(Kn))m = µ(L(Kn), x − 1)m
= (x − 1)m(x − (n + 1))m(n−1).

Now, we compute the determinant of (x −m)In −m((x − 1)In − L(Kn))−1.
By Corollary 2.2 (b), we have

((x − 1)In −L(Kn))−1 = ((x − (n + 1))In + Jn)−1
= 1

(x − 1)(x − (n + 1))((x − 1)In − Jn).
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This implies that

det ((x −m)In −m((x − 1)In −L(Kn))−1)
= det ((x −m)(x − 1)(x − (n + 1))In −m((x − 1)In − Jn))

(x − 1)n(x − (n + 1))n
= det ((x3 − (m + n + 2)x2 + (mn +m + n + 1)x −mn)In +mJn)

(x − 1)n(x − (n + 1))n
By Corollary 2.2 (a), we have

det ((x3 − (m + n + 2)x2 + (mn +m + n + 1)x −mn)In +mJn)
= x(x − (m + 1))(x − (n + 1))(x − 1)n−1(x2 − (m + n + 1)x +mn)n−1.

Hence the determinant of (x −m)In −m((x − 1)In −L(Kn))−1 is

x(x − (m + 1))(x2 − (m + n + 1)x +mn)n−1
(x − (n + 1))n−1(x − 1) .

Therefore the characteristic polynomial of L(C(n,m)) is
x(x−1)m−1(x−(n+1))(m−1)(n−1)(x−(m+1))(x2−(m+n+1)x+mn)n−1.

�

The following corollary induces Theorem 1.2.

Corollary 5.2. Let n, m, k, and l be positive integers with l ≠ 1. Then
(a) If C(n,m) is Laplacian integral, then C(m,n) is also Laplacian in-

tegral.

(b) A graph C(kl, (k + 1)(l − 1)) is Laplacian integral.

(c) A graph C(k2 + k, k2 + k) is regular Laplacian integral.

Proof. (a) It is obvious by Theorem 5.1.
(b) If the quadratic x2 − (m + n + 1)x +mn has two integer roots, then
C(m,n) is Laplacian integral, by Theorem 5.1. Let k, l, r and s

be positive integers with n = kl and m = rs. Suppose that kr and
ls are roots of the quadratic. Then, by Vieta’s formulas, we have
kr + ls = rs + kl + 1, that is,

(1) (s − k)r − (s − k)l + 1 = 0.
If s = k then it is a contradiction. If s − k ≠ 0, then r − l + 1

s−k = 0.
Since r and l are integers, s − k must be 1. Plugging s = k + 1 into
the equation (1), we have r = l − 1. Since m is a positive integer, l
is not equal to 1. Thus C(kl, (k + 1)(l − 1)) is Laplacian integral for
any positive integers k and l ≠ 1.

(c) If m = n, then C(n,m) is regular. By (b), a graph C(k2 + k, k2 + k) is
regular Laplacian integral graph.

�

Now, we consider the n-complete graph Kn as a k-symmetric graph for
some divisor k of n. Note that a base of Kn as a k-symmetric graph is
not unique, but the k-symmetric join of Kk and mKn is unique up to iso-
morphism. We denote by C(n,k,m) the graph Kk ∨k mKn. In the similar
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way to the proof of Theorem 5.1, we get the characteristic polynomial of
L(C(n,k,m)).
Theorem 5.3. Let n and m be positive integers. Let k be a divisor of n and

let d = n/k. Then the characteristic polynomial of L(C(n,k,m)) is
x(x−1)m−1(x−(n+1))m(n−1)−k+1(x−(md+1))(x2−(md+n+1)x+mdn)k−1.
Proof. The Laplacian matrix of C(n,k,m) is

L(C(n,k,m)) = (mdIk +L(Kk) −1Tm ⊗ (Ik ⊗ 1Td )
−1m ⊗ (Ik ⊗ 1d) Im ⊗ (In +L(Kn))) .

Then the characteristic polynomial of L(C(n,k,m)) is
µ(L(C(n,k,m)), x) = det (xIn(m+1) −L(C(n,k,m))).

Consider xIn(m+1)−L(C(n,k,m)) as a matrix over the field of rational func-
tions C(x). Then

det (xIn(m+1) −L(C(n,k,m)))
= det( (x −md)Ik 1Tm ⊗ (Ik ⊗ 1Td )

1m ⊗ (Ik ⊗ 1d) Im ⊗ ((x − 1)In −L(Kn)))
= det (Im ⊗ ((x − 1)In −L(Kn)))det ((x −md)Ik
− (1Tm ⊗ (Ik ⊗ 1Td ))(Im ⊗ ((x − 1)In −L(Kn)))−1(1m ⊗ (Ik ⊗ 1d))
= det ((x − 1)In −L(Kn))m det ((x −md)Ik
−m(Ik ⊗ 1Td )((x − 1)In −L(Kn))−1(Ik ⊗ 1d)).

It is easily check that

det ((x − 1)In −L(Kn))m = (x − 1)m(x − (n + 1))m(n−1).
Now, we compute det ((x−md)Ik−m(Ik⊗1Td )((x−1)In−L(Kn))−1(Ik⊗1d)).
By Corollary 2.2 (b), we have

((x − 1)In −L(Kn))−1 = 1

(x − 1)(x − (n + 1))((x − 1)In − Jn).
Note that the matrix (x−1)In−Jn can be written in the Kronecker product
form (x − 1)Ik ⊗ Id − Jk ⊗ Jd. It follows that

(Ik ⊗ 1Td )((x − 1)In −L(Kn))−1(Ik ⊗ 1d)
= (x − 1)−1(x − (n + 1))−1(Ik ⊗ 1Td )((x − 1)Ik ⊗ Id − Jk ⊗ Jd)(Ik ⊗ 1d)
= (x − 1)−1(x − (n + 1))−1(d(x − 1)Ik − d2Jk).

Then we have

det ((x −md)Ik −m(Ik ⊗ 1Td )((x − 1)In +L(Kn))−1(Ik ⊗ 1d)))
=det ((x −md)(x − 1)(x − (n + 1))Ik −md(x − 1)Ik +md2Jk)(x − 1)k(x − (n + 1))k .
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By Corollary 2.2 (a), we obtain

det ((x −md)(x − 1)(x − (n + 1))Ik −md(x − 1)Ik +md2Jk)
=det ((x3 − (md + n + 2)x2 + (md + 1)(n + 1)x −mdn)Ik +md2Jk)
= x(x − (md + 1))(x − (n + 1))(x − 1)k−1(x2 − (md + n + 1)x +mdn)k−1.

Hence the determinant of (x−md)Ik−m(Ik⊗1Td )((x−1)In−L(Kn))−1(Ik⊗1d)
is

x(x − (md + 1))(x2 − (md + n + 1)x +mdn)k−1
(x − 1)(x − (n + 1))k−1 .

Thus the characteristic polynomial of L(C(n,k,m)) is
x(x − 1)m−1(x − (n + 1))m(n−1)−k+1(x − (md + 1))(x2 − (md + n + 1)x +mdn)k−1.

�

The next two corollaries tell us about the relation between Laplacian
integral graphs C(n,n,m) and C(n,k,m′) for some positive integers n, m,
m′ and k with k ∣n.
Corollary 5.4. Suppose that C(n,n,m) is Laplacian integral for some pos-

itive integers n and m. Let d be a divisor of n. If m is divisible by d, then

C(n, n
d
, m
d
) is Laplacian integral.

Proof. Suppose that C(n,n,m) is Laplacaian integral for some positive inte-
gers n andm. Then the polynomial x2−(m+n+1)x+mn in the characteristic
polynomial of C(n,n,m) can be factored over the integers. Let d be a divisor
of n. By Theorem 5.3, it is enough to show that the quadratic in the char-
acteristic polynomial of C(n, n

d
, m
d
) has integral roots. Since the quadratic

is

x2 − (m
d
dn + n + 1)x + m

d
dn = x2 − (m + n + 1)x +mn,

the graph C(n, n
d
, m
d
) is Laplacian integral. �

Corollary 5.5. Suppose that C(n,k,m) is Laplacian integral for some posi-

tive integers n,m and k with k ∣n. Let d = n/k. Then C(n,n,md) is Laplacian
integral.

Proof. The proof is similar that of Theorem 5.4. Since the quadratic in the
characteristic polynomial of C(n,n,md) is

x2 − (md + n + 1)x +mdn,
it is easy to see that C(n,n,md) is Laplacian integral. �
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[5] D. Cvetković, I. Gutman, N. Trinajstić, Conjugated molecules having integral graph
spectra, Chem. Phys. Lett. 29 (1) (1974) 65–68.
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