The most general structure of graphs with hamiltonian or hamiltonian connected square

Jan Ekstein* Herbert Fleischner ${ }^{\dagger}$

September 28, 2023

Abstract

On the basis of recent results on hamiltonicity, [4, and hamiltonian connectedness, [8], in the square of a 2 -block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G^{2} is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in (9) for hamiltonian total graphs.

Keywords: hamiltonian cycle, hamiltonian path, block-cutvertex graph, square of a graph

2010 Mathematics Subject Classification: 05C76, 05C45

1 Introduction and Preliminary Discussion

As for standard terminology and other terminology used in this paper, we refer to the book by Bondy and Murty, [2], and to the papers quoted in the references. Let G be a connected graph. A 2-block is a 2-connected graph or a block of G containing more than two vertices. The square of a graph G,

[^0]denoted G^{2}, is the graph obtained from G by joining any two nonadjacent vertices which have a common neighbor, by an edge.

It was shown in 1970 and published in 1974 that the square of every 2block contains a hamiltonian cycle, [6]. Key in proving this was the existence of EPS-graphs S in connected bridgeless graphs G, where S is the edgedisjoint union of a not necessarily connected eulerian subgraph E and a linear forest P, and S is connected and spans G, [5]. In subsequent papers [7], 9] the existence of various types of EPS-graphs was established. Their relevance was based on the fact that the total graph $T(G)$ of any connected graph G other than K_{1} is hamiltonian if and only if G has an EPS-graph, [9]. This and the theory of EPS-graphs led to a description of the most general block-cutvertex graph $\operatorname{bc}(G)$ of a graph G may have such that $T(G)$ is hamiltonian and if $\mathrm{bc}(G)$ does not have the corresponding structure, then exchanging certain 2-blocks in G with some special 2-blocks yields a graph G^{*} such that $\mathrm{bc}(G)$ and $\mathrm{bc}\left(G^{*}\right)$ are isomorphic but $T\left(G^{*}\right)$ is not hamiltonian, [9]. In dealing with hamiltonian cycles and hamiltonian paths by methods developed up to that point, it was shown in [7] that in the square of graphs hamiltonicity and vertex-pancyclicity are equivalent concepts, and so are hamiltonian connectedness and panconnectedness. In this context Theorem 3 stated below was established as a tool needed to prove the equivalences just mentioned.

However, in the course of time much shorter proofs of Fleischner's Theorem were developed [10], [13]; the same applies to Theorem 3 below, [12]. More recently, an algorithm yielding a hamiltonian cycle in the square of a 2-block in linear time, was developed, [1]. The methods developed in these much shorter proofs (including the algorithm just mentioned) do not seem to yield short proofs of Theorems 4 and 5 below, [4], 8]. These latter theorems are, on the other hand, instrumental in proving the central results of this paper, i.e., Theorems 1 and 2, and related algorithms.

Let $\operatorname{bc}(G)$ denote the block-cutvertex graph of G. Blocks corresponding to leaves of $\mathrm{bc}(G)$ are called endblocks, otherwise innerblocks. Note that a block in a graph G is either a 2-block or a bridge of G. For each cutvertex i of G, let k_{i} be the number of 2-blocks of G which include vertex i and let $\mathrm{bn}(i)$ be the number of nontrivial bridges of G which are incident with vertex i. In what follows a bridge is called nontrivial if it is not incident to a leaf.

Let H be a subgraph of the graph G. We define $G-H:=G-E(H)-\{v \in$ $\left.V(H): d_{H}(v)=d_{G}(v)\right\}$.

In Theorem [1, we introduce an array $m_{i}(B)$ of numbers with an entry for each pair consisting of a cutvertex i and a 2-block B of G. We may think of this number $m_{i}(B)$ as the number of edges of B incident with i which are possibly contained in a hamiltonian cycle in G^{2}.

Statement of Theorem 1 describes the most general block-cutvertex structure a graph G may have in order to guarantee that G^{2} is hamiltonian using parameters $m_{i}(B)$ as in [9].

Theorem 1. Let G be a connected graph with at least three vertices. Let the 2-blocks of G be labelled $B_{1}, B_{2}, \ldots, B_{n}$. Let the cutvertices of G be labelled $1,2, \ldots, s$. Suppose there is a labelling $m_{i}\left(B_{t}\right)$ for each $i \in\{1,2, \ldots, s\}$ and each $t \in\{1,2, \ldots, n\}$ such that the following conditions are fulfilled.

1) $0 \leq m_{i}\left(B_{t}\right) \leq 2$ for all i and all 2-blocks B_{t};
2) for 2-block $B_{t} m_{i}\left(B_{t}\right)=0$ if and only if cutvertex i is not in $V\left(B_{t}\right)$;
3) for 2-block $B_{t}, m_{i}\left(B_{t}\right) \geq b n(i)$, if cutvertex $i \in V\left(B_{t}\right)$;
4) $b n(i) \leq 2$ for all $i \in\{1,2, \ldots, s\}$;
5) $\sum_{i=1}^{s} m_{i}\left(B_{t}\right) \leq 4$ for each 2-block B_{t} of G and, if $m_{i}\left(B_{t}\right)=2$ for some i, then $\sum_{i=1}^{s} m_{i}\left(B_{t}\right) \leq 3$; and
6) $\sum_{t=1}^{n} m_{i}\left(B_{t}\right) \geq 2 k_{i}+b n(i)-2$ for each $i \in\{1,2, \ldots, s\}$.

Then G^{2} is hamiltonian.
Moreover, if the labelling $m_{i}\left(B_{t}\right)$ satisfying conditions 1), 2) and 3) is given and at least one of conditions 4), 5), 6) is violated by some G, then there exists a class of graphs G^{\prime} with non-hamiltonian square but bc $\left(G^{\prime}\right)$ and $b c(G)$ are isomorphic.

Also, we obtain a similar result for hamiltonian connectedness (Theorem (2). Quite surprisingly, its formulation is much simpler than that of Theorem 1 .

Theorem 2. Let G be a connected graph such that the following conditions are fulfilled:

1) there is no nontrivial bridge of G;
2) every block contains at most 2 cutvertices.

Then G^{2} is hamiltonian connected.
Moreover,

- if a graph G contains a nontrivial bridge, then G^{2} is not hamiltonian connected;
- if G contains a block containing more than 2 cutvertices, then there is a graph G^{\prime} such that $b c(G)$ and $b c\left(G^{\prime}\right)$ are isomorphic but $\left(G^{\prime}\right)^{2}$ is not hamiltonian connected.

A fundamental result regarding hamiltonicity in the square of a 2-block is the following theorem.
Theorem 3. [7] Suppose v and w are two arbitrarily chosen vertices of a 2-block G. Then G^{2} contains a hamiltonian cycle C such that the edges of C incident to v are in G and at least one of the edges of C incident to w is in G. Furthermore, if v and w are adjacent in G, then these are three different edges.

The hamiltonian theme in the square of a 2-block has been recently revisited ([3], 4], 8]), yielding the following results which are essential for this paper.

A graph G is said to have the \mathcal{H}_{k} property if for any given vertices x_{1}, \ldots, x_{k} there is a hamiltonian cycle in G^{2} containing distinct edges $x_{1} y_{1}, \ldots, x_{k} y_{k}$ of G.
Theorem 4. 4] Given a 2-block G on at least 4 vertices, then G has the \mathcal{H}_{4} property, and there are 2-blocks of arbitrary order greater than 4 without the \mathcal{H}_{5} property.

By a $u v$-path we mean a path from u to v in G. If a $u v$-path is hamiltonian, we call it a uv-hamiltonian path. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a set of $k \geq 3$ distinct vertices in G. An $x_{1} x_{2}$-hamiltonian path in G^{2} which contains $k-2$ distinct edges $x_{i} y_{i} \in E(G), i=3, \ldots, k$, is said to be \mathcal{F}_{k}. A graph G is said to have the \mathcal{F}_{k} property if, for any set $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V(G)$, there is an $\mathcal{F}_{k} x_{1} x_{2}$-hamiltonian path in G^{2}.

Theorem 5. [8] Every 2-block on at least 4 vertices has the \mathcal{F}_{4} property.
A graph G is said to have the strong \mathcal{F}_{3} property if, for any set of 3 vertices $\left\{x_{1}, x_{2}, x_{3}\right\}$ in G, there is an $x_{1} x_{2}$-hamiltonian path in G^{2} containing distinct edges $x_{3} z_{3}, x_{i} z_{i} \in E(G)$ for a given $i \in\{1,2\}$. Such an $x_{1} x_{2}$-hamiltonian path in G^{2} is called a strong $\mathcal{F}_{3} x_{1} x_{2}$-hamiltonian path.

Theorem 6. [8] Every 2-block has the strong \mathcal{F}_{3} property.
Theorem 7. [8] Let G be a 2-connected graph and let x, y be two vertices in G. Then G^{2} has an xy-hamiltonian path $P(x, y)$ such that
(i) $x z \in E(G) \cap E(P(x, y))$ for some $z \in V(G)$, and
(ii) either $y w \in E(G) \cap E(P(x, y))$ for some $w \in V(G)$, or else $P(x, y)$ contains an edge uv for some vertices $u, v \in N(y)$.

2 Proofs and algorithms

PROOF OF THEOREM 1

Proof. Set $P_{0}=G-\cup_{t=1}^{n} B_{t}$. Then every component of P_{0} is a tree. Since by 4) $\mathrm{bn}(i) \leq 2$ every component of P_{0} is even a caterpillar.

For every caterpillar T of P_{0} except $T=K_{2}$ we have the following observation which can be proved easily.

Observation: Let T be a caterpillar with at least three vertices and $P=$ $x_{1} x_{2} \ldots x_{m}$ be some longest path in T. Then T^{2} contains a hamiltonian cycle containing edges $x_{1} x_{2}, x_{m-1} x_{m}$ and different edges $u_{j} v_{j}$, where $u_{j}, v_{j} \in$ $N_{G}\left(x_{j}\right)$ for $j=2,3, \ldots, m-1$.

See Figure 1 for illustration in which for x_{3} we have $u_{3}=x_{2}$ and $v_{3}=x_{4}$.

Figure 1: Hamiltonian cycle in a caterpillar for $m=7$ (bold edges)

Every 2-block B_{t} contains a hamitonian cycle in $\left(B_{t}\right)^{2}$ which is one of two types depending on labellings $m_{i}\left(B_{t}\right)$:

Let $m_{i}\left(B_{t}\right) \neq 2$ for every $i=1,2, \ldots, s$. If $B_{t} \cong C_{3}$, then we set $C_{t}=B_{t}$. Otherwise for at most 4 cutvertices a, b, c, d it holds that $m_{j}\left(B_{t}\right)=1$ for $j=a, b, c, d$ by condition 5). By Theorem 4, $\left(B_{t}\right)^{2}$ has a hamiltonian cycle C_{t} containing 4 different edges $a a^{\prime}, b b^{\prime}, c c^{\prime}, d d^{\prime}$ of B_{t}.

If $m_{i}\left(B_{t}\right)=2$ for some $i \in\{1,2, \ldots, s\}$, then at most one cutvertex a has $m_{a}\left(B_{t}\right)=1$ by condition 5). By Theorem 3, $\left(B_{t}\right)^{2}$ has a hamiltonian cycle C_{t} containing 3 different edges $i i^{\prime}, i i^{\prime \prime}, a a^{\prime}$ of B_{t}.

The union of hamiltonian cycles C_{t} in $\left(B_{t}\right)^{2}$, for $t=1,2, \ldots, n$, hamiltonian cycles in the square of each catepillar (nontrivial component of P_{0}) and trivial components of P_{0} is a connected spanning subgraph S of G^{2}.

We construct a hamiltonian cycle C in G^{2} from S repeating step by step the following procedure for every cutvertex i of G with $m_{i}(B) \geq 1$ for some 2-block B.

If i does not exist, then $n=0$ and $G=P_{0}$ is a caterpillar. Hence S is a hamiltonian cycle in G^{2}. Otherwise we join all hamiltonian cycles from S containing i together with trivial components of P_{0} containing i to one cycle in the following way.

First assume that $\mathrm{bn}(i)=0$.
By condition 6) we have $\sum_{t=1}^{n} m_{i}\left(B_{t}\right) \geq 2 k_{i}-2$. Without loss of generality for $k_{i}>1$ we may assume that $m_{i}\left(B_{1}\right) \geq 1, m_{i}\left(B_{2}\right) \geq 1$ and $m_{i}\left(B_{3}\right)=$ $m_{i}\left(B_{4}\right)=\cdots=m_{i}\left(B_{k_{i}}\right)=2$, where $m_{i}\left(B_{t}\right)$ corresponds to the number of edges of B_{t} incident to i in C_{t}. If $k_{i}=1$, then by condition 2) we have $m_{i}\left(B_{1}\right) \geq 1$.

We find a cycle C^{i} on $\cup_{r=1}^{k_{i}} V\left(C_{r}\right) \cup L$, where L is the set of all leaves incident to i, by appropriately replacing edges of $C_{r} \cap B_{r}, r=1,2, \ldots, k_{i}$, incident to i (guaranteed by definition of $m_{i}\left(B_{t}\right)$) with edges of G^{2} joining vertices in different C_{r} adjacent to i and leaves adjacent to i. Note that we preserve properties given by $m_{j}\left(B_{t}\right)$ for all $j \neq i$.
Now assume that $\mathrm{bn}(i)=1$.
By condition 6) we have $\sum_{t=1}^{n} m_{i}\left(B_{t}\right) \geq 2 k_{i}+1-2=2 k_{i}-1$. Without loss of generality we may assume that $m_{i}\left(B_{1}\right) \geq 1$ and $m_{i}\left(B_{2}\right)=m_{i}\left(B_{3}\right)=$ $\cdots=m_{i}\left(B_{k_{i}}\right)=2$, where $m_{i}\left(B_{t}\right)$ corresponds to the number of edges of B_{t} incident to i in C_{t}. Let T be the component of P_{0} containing i.

If $T=K_{2}=i i^{\prime}$, where i^{\prime} is also a cutvertex of G with $m_{i^{\prime}}(B) \geq 1(T$ is a trivial component of P_{0}), then we find a cycle C^{i} on $\cup_{r=1}^{k_{i}} V\left(C_{r}\right) \cup V(T)$ containing the edge $i i^{\prime}$ by appropriately replacing edges of $C_{r} \cap B_{r}, r=$ $1,2, \ldots, k_{i}$, incident to i (guaranteed by definition of $m_{i}\left(B_{t}\right)$) with edges of G^{2} joining i^{\prime} and vertices in different C_{r} adjacent to i. Also here we preserve properties given by $m_{j}\left(B_{t}\right)$ for all $j \neq i$.

If T is a nontrivial component of P_{0}, then T^{2} contains a hamiltonian cycle C_{T} containing end-edges of any fixed longest path P in T (we choose endedges containing cutvertices of G with $m_{i}\left(B_{t}\right) \geq 1$) - see Observation above. Again we find a cycle C^{i} on $\cup_{r=1}^{k_{i}} V\left(C_{r}\right) \cup V\left(C_{T}\right)$ by appropriately replacing edges of $C_{r} \cap B_{r}, r=1,2, \ldots, k_{i}$, incident to i (guaranteed by definition of $\left.m_{i}\left(B_{t}\right)\right)$ and the end-edge $i i^{*}$ of P with edges of G^{2} joining i^{*} and vertices in different C_{r} adjacent to i. Again we preserve properties given by $m_{j}\left(B_{t}\right)$ for all $j \neq i$ and by C_{T}.

Finally assume that $\mathrm{bn}(i)=2$.
By condition 6) we have $\sum_{t=1}^{n} m_{i}\left(B_{t}\right) \geq 2 k_{i}+2-2=2 k_{i}$. It follows necessarily that $m_{i}\left(B_{1}\right)=m_{i}\left(B_{2}\right)=\cdots=m_{i}\left(B_{k_{i}}\right)=2$, where $m_{i}\left(B_{t}\right)$ corresponds to the number of edges of B_{t} incident to i in C_{t}.

Let T be the nontrivial component of P_{0} containing i. Note that i is not an endvertex of T because of $\operatorname{bn}(i)=2$. Then T^{2} contains a hamiltonian cycle C_{T} containing end-edges of any fixed longest path in T (we choose end-edges containing cutvertices of G with $m_{i}\left(B_{t}\right) \geq 1$) and an edge $u_{i} v_{i}$ of G^{2} where $u_{i}, v_{i} \in N_{G}(i)$ (see Observation above). We find a cycle C^{i} on $\cup_{r=1}^{k_{i}} V\left(C_{r}\right) \cup V\left(C_{T}\right)$ by appropriately replacing edges of $C_{r} \cap B_{r}, r=1,2, \ldots, k_{i}$, incident to i (guaranteed by definition of $m_{i}\left(B_{t}\right)$) and the edge $u_{i} v_{i}$ of P with edges of G^{2} joining u_{i}, v_{i} and vertices in different C_{r} adjacent to i if $k_{i}>1$. If, however, $k_{i}=1$, then u_{i} and v_{i} are joined to the neighbors of $C_{r} \cap B_{r}$ in $N_{G}(i)$. Also here we preserve properties given by $m_{j}\left(B_{t}\right)$ for all $j \neq i$ and by C_{T}.

Now we choose next cutvertex i with $m_{i}(B) \geq 1$ for some 2-block B successively and we use all cycles formed in the previous steps instead of previously formed cycles. Note that we preserve all properties given by $m_{j}(B)$ for all $j \neq i$ in every case. We stop with the hamiltonian cycle in G^{2} as required.

Now assume that there is no labelling satisfying conditions 1)-6), that is, the labelling $m_{i}\left(B_{t}\right)$ satisfying conditions 1$\left.), 2\right)$ and 3$)$ is given and at least one of conditions 4), 5), 6) is violated. We show that there exists a class of graphs G^{\prime} with non-hamiltonian square but $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic.

Condition 4) does not hold.

Hence $\operatorname{bn}(i) \geq 3$ for at least one $i \in\{1,2, \ldots, s\}$. Clearly this is a class of graphs G^{\prime} such that the square of every such graph G^{\prime} does not contain a hamiltonian cycle (if we try to construct a hamiltonian cycle in the square, then the degree of the cutvertex i is at least 3 , a contradiction), e.g. see the graph in Figure 2 a), where H_{1} is an arbitrary connected graphs, H_{2}, H_{3}, H_{4} are arbitrary connected graphs with at least one edge each and $\mathrm{bn}(i)=3$. Note that conditions 5) and 6) may hold.

Figure 2: Graphs without hamiltonian square

Condition 5) does not hold.
Hence $\sum_{i=1}^{s} m_{i}(B) \geq 5$ for some 2-block B and $m_{i}(B)<2$ for all i or $\sum_{j=1}^{s} m_{j}(B) \geq 4$ for some 2-block B and $m_{i}(B)=2$ for some $i \in\{1,2, \ldots, s\}$.

First suppose that $k=\sum_{i=1}^{s} m_{i}(B) \geq 5$ for some 2-block B of G and $m_{i}(B)<2$ for all i. Clearly B has exactly k cutvertices by condition 2). Then we exhange B with $K_{2, k}$ where k 2-valent vertices are cutvertices of G and all other blocks with arbitrary blocks to get a class of graphs G^{\prime} such that $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic. The square of every such graph G^{\prime} does not contain a hamiltonian cycle (if we try to construct a hamiltonian cycle in the square, then the degree of at least one of the two k-valent vertices of $K_{2, k}$ is at least 3, a contradiction), e.g. see the graph in Figure 2b), where $k=5$ and H_{1}, \ldots, H_{5} are arbitrary connected graphs with at least one edge each. Note that conditions 4), 6) and the second part of condition 5) may hold.

Now suppose that $\sum_{j=1}^{s} m_{j}(B) \geq 4$ for some 2-block B and $m_{i}(B)=2$ for some i. If B contains at least 5 cutvertices of G, then we continue similarly as above. If B contains k cutvertices of G where $2 \leq k \leq 4$, then without loss of generality we may assume that we tried to set the labelling $m_{i}\left(B_{t}\right)$ satisfying firstly condition 5) and subsequently condition 6). Hence $\operatorname{bn}(i) \geq 2$ and $\operatorname{bn}(j) \geq 2$ where j is the second cutvertex of G in B if $k=2$, otherwise we find a labelling $m_{i}\left(B_{t}\right)$ satisfying condition 5), a contradiction (see Algorithm 1 cases e) and f) below).

For $k=3,4$ we exhange B with a cycle C_{k} to get a class of graphs G^{\prime} such that $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic. The square of every such graph G^{\prime} does not contain a hamiltonian cycle (if we try to construct a
hamiltonian cycle in the square, then the degree of the cutvertex i is at least 3, a contradiction), e.g. see the graph in Figure 2 c), where $k=3$ and H_{1}, \ldots, H_{4} are arbitrary connected graphs with at least one edge each. Note that conditions 4), 6) and the first part of condition 5) may hold.

For $k=2$, we exchange B with $K_{2,3}$, where two of the three 2-valent vertices are i and j, to get a class of graphs G^{\prime} such that $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic. The square of every such graph G^{\prime} does not contain a hamiltonian cycle (it is not possible to find a hamiltonian cycle in the square containing the third 2 -valent vertex different from i, j, a contradiction), e.g. see the graph in Figure 2 d), where H_{1}, \ldots, H_{4} are arbitrary connected graphs with at least one edge each. Note that conditions 4), 6) and the first part of condition 5) may hold.

Condition 6) does not hold.

Hence $\sum_{t=1}^{n} m_{i}\left(B_{t}\right)<2 k_{i}+\mathrm{bn}(i)-2$ for some i and consequently $m_{i}\left(B_{t}\right)=$ 1 for at least $3-\operatorname{bn}(i) 2$-blocks containing i. Note that, clearly, $\operatorname{bn}(i)<2$ with respect to condition 3).

Let r be the number of 2 -blocks with $m_{i}\left(B_{t}\right)=1$. Each of these 2-blocks contains either exactly 2 cutvertices of G or at least 3 cutvertices of G. Note that for 2-blocks containing only cutvertex i we have $m_{i}\left(B_{t}\right)=2$ (see Algorithm 1 case d) below). We exchange every 2-block containing exactly 2 cutvertices of G with a cycle C_{3} and every 2-block containing k cutvertices of $G, k \geq 3$, with a cycle C_{k}. In the first case note that we assume without loss of generality that there is no labelling such that we switch values 1 and 2 for both cutvertices of this 2-block to get a permissible labelling (again see Algorithm 1 case e) below).

Since $r \geq 3-\mathrm{bn}(i)$, by the exchanging 2-block mentioned above we get a class of graphs G^{\prime} such that $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic. The square of every such graph G^{\prime} does not contain a hamiltonian cycle (if we try to construct a hamiltonian cycle in the square, then the degree of the cutvertex i is at least 3, a contradiction), e.g. see graphs in Figure 2 e_{1}) and e_{2}). For the graph in Figure $2 e_{1}$) it holds that $r=3-\operatorname{bn}(i)=3-1=2$, the 2 block B_{1} has exactly 2 cutvertices of G, the 2-block B_{2} has $k=3$ cutvertices of G (and hence B_{1}, B_{2} are isomorphic to C_{3}) and H_{1}, \ldots, H_{5} are arbitrary connected graphs with at least one edge. For the graph in Figure $2 e_{2}$) it holds that $r=3-\operatorname{bn}(i)=3-0=3$, the 2-block B_{1} has exactly 2 cutvertices of G, the 2-block B_{2} has $k=3$ cutvertices of G, the 2-block B_{3} has $k=4$ cutvertices of G (hence B_{1}, B_{2} are isomorphic to C_{3} and B_{3} is isomorphic
to C_{4}) and H_{1}, \ldots, H_{7} are arbitrary connected graphs with at least one edge. Note that conditions 4) and 5) may hold.

This finishes the proof of Theorem 1 .
If there is a graph G such that every labelling $m_{i}\left(B_{t}\right)$ violates at least one of the conditions 4) -6) of Theorem (1) then there is a graph G^{\prime} with $\mathrm{bc}\left(G^{\prime}\right)=\mathrm{bc}(G)$ such that $\left(G^{\prime}\right)^{2}$ is not hamiltonian as it has been shown in the proof of Theorem 1. On the other hand, if we are able to construct a labelling $m_{i}\left(B_{t}\right)$ satisfying conditions 1) - 6) using the following algorithm, then G^{2} is hamiltonian as it has been shown in the proof of Theorem [1.

ALGORITHM 1:

Set $P_{0}=G-\cup_{t=1}^{n} B_{t}$. If any component of P_{0} is not a caterpillar, then $\operatorname{bn}(i) \geq 3$ for some $i \in\{1,2, \ldots, s\}$ contradicting condition 4) in Theorem 1 and G^{2} is not hamiltonian (e.g. see Figure 2 a)). STOP.

If $G=P_{0}$, then G is a caterpillar, $n=0$ and G^{2} is hamiltonian (see Observation in the proof of Theorem (1) and $m_{i}\left(B_{t}\right)$ is not defined $(n=0)$. STOP.

If G is a 2-block, G^{2} is hamiltonian by Theorem 3 and $m_{i}\left(B_{t}\right)$ is not defined ($s=0$ and $n=1$). STOP.

We set $G_{0}=G-P_{0}$ and $m_{i}\left(B_{t}\right)=0$ if $i \notin V\left(B_{t}\right)$ for $i \in\{1,2, \ldots, s\}$ and $t \in\{1,2, \ldots, n\}$.

START

We choose a 2-block B containing at most 1 cutvertex of G_{0}. Note that B is either a component of G_{0} or an endblock of some component of G_{0}. If such endblock does not exist, we choose 2-block B as a component of $G_{0}-H$ or an endblock of $G_{0}-H$ where H is the union of all 2-blocks for which the labelling $m_{i}\left(B_{t}\right)$ is already set. Let $c_{1}, c_{2}, \ldots, c_{k}$ be all cutvertices of G contained in $B, k \geq 1$.
a) If $k \geq 5$, then by condition 2) $m_{c_{i}}(B) \geq 1$ for $i=1,2, \ldots, k$. Hence condition 5) in Theorem 1 does not hold and G^{2} may not be hamiltonian (e.g. see Figure 2 b)). STOP.
b) If $k \geq 3$ and $\operatorname{bn}\left(c_{i}\right)=2$ for some $i \in\{1,2, \ldots, k\}$, then by condition 3) $m_{c_{i}}(B)=2$ and by 2) $m_{c_{j}}(B) \geq 1$ for $j=1,2, \ldots, k$. Hence condition 5) in Theorem 1 does not hold and G^{2} may not be hamiltonian (e.g. see Figure 2 c)). STOP.
c) If $k=2$ and $\operatorname{bn}\left(c_{1}\right)=\operatorname{bn}\left(c_{2}\right)=2$, then by condition 3) $m_{c_{1}}(B)=2$ and $m_{c_{2}}(B)=2$. Hence condition 5) in Theorem 11 does not hold and G^{2} may not be hamiltonian (e.g. see Figure 2 d)). STOP.
d) If $k=1$, then we set $m_{c_{1}}(B)=2$ (we maximize values $m_{i}\left(B_{t}\right)$ with respect to condition 6) in Theorem (1). Note that, if the labelling $m_{i}\left(B_{t}\right)$ is set for all 2 -blocks incident with c_{1}, then condition 6) holds for cutvertex c_{1} with respect to the choice of B.

If the labelling $m_{i}\left(B_{t}\right)$ is set for all 2-blocks of G, then the labelling $m_{i}\left(B_{t}\right)$ satisfies the conditions of Theorem $\mathbb{1}$ and G^{2} is hamiltonian. STOP.

Otherwise we go to START.
e) If $k=2$ and $\operatorname{bn}\left(c_{i}\right) \leq 1$ for $i \in\{1,2\}$, then we set $m_{c_{1}}(B)$ and $m_{c_{2}}(B)$ in the following way (without loss of generality $i=1$).
Let $\operatorname{bn}\left(c_{2}\right)=2$. Then we set $m_{c_{1}}(B)=1$ and $m_{c_{2}}(B)=2$ with respect to conditions 2), 3) and 5).
Let $\operatorname{bn}\left(c_{2}\right) \leq 1$. Then for at least one of c_{1}, c_{2} it holds that $m_{c_{j}}\left(B_{t}\right)$ for $j \in\{1,2\}$ is set for all 2-blocks B_{t} except B with respect to the choice of B (again without loss of generality $j=1$). We set $m_{c_{1}}(B)=1$ and we verify condition 6) for c_{1}. If it holds, then we set $m_{c_{2}}(B)=2$ (again we maximize values $m_{i}\left(B_{t}\right)$ with respect to condition 6)). If condition 6) for c_{1} does not hold for $m_{c_{1}}(B)=1$, then we set $m_{c_{1}}(B)=2$ and $m_{c_{2}}(B)=1$.
Now in both cases we verify condition 6) for c_{1} and c_{2} if the labelling $m_{c_{1}}\left(B_{t}\right)$ and $m_{c_{2}}\left(B_{t}\right)$ is set for all 2-blocks B_{t}.
If condition 6) does not hold in at least one case, then G^{2} may not be hamiltonian (e.g. see Figure $2 e_{1}$)). STOP.

Hence suppose that condition 6) holds for c_{1}, c_{2} if $m_{c_{1}}\left(B_{t}\right), m_{c_{2}}\left(B_{t}\right)$ is set for all B_{t}, respectively.
If the labelling $m_{i}\left(B_{t}\right)$ is set for all 2-blocks, then the labelling $m_{i}\left(B_{t}\right)$ satisfies the conditions of Theorem 1 and G^{2} is hamiltonian. STOP.

Otherwise we go to START.
f) If $k \in\{3,4\}$ and $\operatorname{bn}\left(c_{i}\right) \leq 1$, then we set $m_{c_{i}}(B)=1$ for $i=1,2, \ldots, k$. We verify condition 6) for all c_{i} if the labelling $m_{c_{i}}\left(B_{t}\right)$ is set for all 2-blocks B_{t}.
If condition 6) does not hold in at least one case, then G^{2} may not be hamiltonian (e.g. see Figure $2 e_{2}$)). STOP.
Hence suppose that condition 6) holds for all $c_{i}, i=1,2, \ldots, k$, for which $m_{c_{i}}\left(B_{t}\right)$ is set for all B_{t}.

If the labelling $m_{i}\left(B_{t}\right)$ is set for all 2-blocks, then the labelling $m_{i}\left(B_{t}\right)$ satisfies the conditions of Theorem $\mathbb{1}$ and G^{2} is hamiltonian. STOP.
Otherwise we go to START.

PROOF OF THEOREM 2

Proof. Let $x, y \in V(G)$. First we prove that there exists an $x y$-hamiltonian path P in G^{2} if there is no nontrivial bridge of G and every block contains at most 2 cutvertices.
(A) Suppose that x and y are in the same block B of G. We proceed by induction on n, where n is the number of blocks of $G, n \geq 1$.

For $n=1$, clearly $G=B$. If $B=K_{2}=x y$, then G is also the $x y$ hamiltonian path in G^{2} as required. If B is a 2-block, then by Theorem 6, $G^{2}=B^{2}$ contains an $x y$-hamiltonian path P as required.

Now suppose that the statement of Theorem 2 is true for every graph with n blocks and G is a graph with $n+1$ blocks, $n \geq 1$. We distinguish 2 cases.

- B has exactly one cutvertex c.

Without loss of generality we assume that $x \neq c$. If B is a 2 -block, then by Theorem 6, B^{2} contains an $x y$-hamiltonian path P_{B} containing an edge $c y^{\prime}$ where y^{\prime} is a neighbor of c in B. Note that $y^{\prime}=x$ or $c=y$ is possible. If $B=K_{2}$, then $B=x y=y^{\prime} c$ and $P_{B}=x y$ is an $x c$ hamiltonian path in B^{2}. By the induction hypothesis $(G-B)^{2}$ contains a $c c^{\prime}$-hamiltonian path P_{G} where c^{\prime} is a neighbor of c in $G-B$. Then $P=P_{B} \cup P_{G}-c y^{\prime}+y^{\prime} c^{\prime}$ is an $x y$-hamiltonian path in G^{2} as required.

- B has two cutvertices c_{1}, c_{2}.

We denote by G_{1}, G_{2} the two components of $G-B$ such that $c_{i} \in V\left(G_{i}\right)$ and let c_{i}^{\prime} be a neighbor of c_{i} in $G_{i}, i=1,2$. By the induction hypothesis $\left(G_{i}\right)^{2}$ contains a $c_{i} c_{i}^{\prime}$-hamiltonian path $P_{G_{i}}, i=1,2$.
a) $c_{i} \notin\{x, y\}$ (x and y are not cutvertices).

By Theorem 5, B^{2} contains an $x y$-hamiltonian path P_{B} containing the edges $c_{i} z_{i}$ where z_{i} is a neighbor of c_{i} in $B, i=1,2$. Note that $z_{i} \in\{x, y\}$ is possible.
b) Up to symmetry $c_{1}=x$ and $c_{2} \neq y$ (either x or y is a cutvertex of G).
By Theorem6, B^{2} contains an $x y$-hamiltonian path P_{B} containing the edges $c_{i} z_{i}$ where z_{i} is a neighbor of c_{i} in $B, i=1,2$. Note that $z_{1}=c_{2}$ or $z_{2}=y$ is possible.
c) $c_{1}=x$ and $c_{2}=y$ (similarly $c_{1}=y$ and $c_{2}=x$).

By Theorem 7, B^{2} contains an $x y$-hamiltonian path P_{B} containing either the edges $c_{i} z_{i}$ where z_{i} is a neighbor of c_{i} in $B, i=1,2$, or the edges $c_{1} z_{1}, u v$ where z_{1} is a neighbor of c_{1} in B and u, v are neighbors of c_{2} in B.

In all cases except the case c), if $u v$ is the edge of P_{B},

$$
P=P_{G_{1}} \cup P_{B} \cup P_{G_{2}}-\left\{c_{1} z_{1}, c_{2} z_{2}\right\} \cup\left\{c_{1}^{\prime} z_{1}, c_{2}^{\prime} z_{2}\right\}
$$

is an $x y$-hamiltonian path in G^{2} as required.
It remains to find an $x y$-hamiltonian path in G^{2} if $u v$ is the edge of P_{B}. If $G_{2}=K_{2}=c_{2} c_{2}^{\prime}$, then

$$
P=P_{G_{1}} \cup P_{B}-\left\{c_{1} z_{1}, u v, c_{2} c_{2}^{\prime}\right\} \cup\left\{c_{1}^{\prime} z_{1}, c_{2}^{\prime} u, c_{2}^{\prime} v\right\}
$$

is an $x y$-hamiltonian path in G^{2} as required.
If $G_{2} \neq K_{2}$, then we prove that $\left(G_{2}\right)^{2}$ contains a hamiltonian cycle C containing edges $c_{2} u_{2}, c_{2} v_{2}$ of G_{2}. Let $B_{1}, B_{2}, \ldots, B_{k}$ be all 2-blocks of G_{2} containing c_{2}. By Theorem 3, for $i=1,2, \ldots, k,\left(B_{i}\right)^{2}$ contains a hamiltonian cycle C_{i}^{\prime} containing three different edges $c_{2} u_{2}^{i}, c_{2} v_{2}^{i}, y_{i} y_{i}^{\prime}$ of B_{i} where y_{i} is the second cutvertex of G_{2} in B_{i} if it exists.

If y_{i} exists, then we denote by H_{i} a component of $G_{2}-\left(B_{i}-y_{i}\right)$ containing y_{i}. By the induction hypothesis $\left(H_{i}\right)^{2}$ contains a $y_{i} d_{i}$-hamiltonian path P_{i} where d_{i} is a neighbor of y_{i} in H_{i}. Then we set $C_{i}=C_{i}^{\prime} \cup P_{i}-$ $y_{i} y_{i}^{\prime}+y_{i}^{\prime} d_{i}$. If y_{i} does not exist, then we set $C_{i}=C_{i}^{\prime}$.
Let T be the set of all leaves of G_{2} adjacent to c_{2}. Then we find a cycle C on $\cup_{i=1}^{k} V\left(C_{i}\right) \cup T$ by appropriately replacing edges $c_{2} u_{2}^{i}, c_{2} v_{2}^{i}$ with edges of G^{2} joining u_{2}^{i}, v_{2}^{i} in different C_{i} and leaves adjacent to c_{2} (similarly as in the proof of Theorem (1) such that we preserve two edges $\left(c_{2} u_{2}^{i}, c_{2} v_{2}^{i}\right.$ or $c_{2} l_{1}, c_{2} l_{2}$ where l_{1}, l_{2} are two leaves of G_{2} adjacent to c_{2}) as $c_{2} u_{2}, c_{2} v_{2}$.
Now

$$
P=P_{G_{1}} \cup P_{B} \cup C-\left\{c_{1} z_{1}, u v, c_{2} u_{2}, c_{2} v_{2}\right\} \cup\left\{c_{1}^{\prime} z_{1}, u_{2} u, v_{2} v\right\}
$$

is an $x y$-hamiltonian path in G^{2} as required.
(B) Suppose that x and y are in different blocks of G.

Let P_{G} be any $x y$-path in G and $c \in V\left(P_{G}\right) \backslash\{x, y\}$ be a cutvertex of G. Let K be the component of $G-c$ containing $x, G_{y}=G-V(K)$ and $G_{x}=G-G_{y}$. Clearly $G_{x} \cup G_{y}=G$ and $G_{x} \cap G_{y}=c$. If G_{x}, G_{y} are isomorphic to K_{2}, then we set $P_{x}=G_{x}, P_{y}=G_{y}$, respectively. If G_{x}, G_{y} are 2-blocks, then $\left(G_{x}\right)^{2},\left(G_{y}\right)^{2}$ contains an $x c$-hamiltonian path P_{x}, a cy-hamiltonian path P_{y} by Theorem 6, respectively. We proceed by induction on n, where n is the number of blocks of $G, n \geq 2$.

First assume that G has exactly 2 blocks. Hence G_{x}, G_{y} are isomorphic to K_{2} or 2-blocks and $P=P_{x} \cup P_{y}$ is an $x y$-hamiltonian path in G^{2} as required.

Now suppose that the statement of Theorem 2 is true for every graph with n blocks and G is a graph with $n+1$ blocks, $n \geq 2$. If G_{x}, G_{y} is not a block, then by the induction hypothesis $\left(G_{x}\right)^{2},\left(G_{y}\right)^{2}$ contains an $x c$-hamiltonian path P_{x}, a $c y$-hamiltonian path P_{y}, respectively. Then $P=P_{x} \cup P_{y}$ is an $x y$-hamiltonian path in G^{2} as required.

Now it remains to prove that if there is a nontrivial bridge of G, then G^{2} is not hamiltonian connected and if G contains a block containing more than 2 cutvertices, then there is a graph G^{\prime} such that $\mathrm{bc}(G)$ and $\mathrm{bc}\left(G^{\prime}\right)$ are isomorphic but $\left(G^{\prime}\right)^{2}$ is not hamiltonian connected.

Figure 3: Graphs without $x y$-hamiltonian path in the square

Clearly, if there exists a nontrivial bridge $x y$ in G, then there is no $x y$ hamiltonian path in G^{2} and G^{2} is not hamiltonian connected.

Finally assume that G contains a block B containing r cutvertices, where $r>2$. Then we exhange B with a cycle C_{r} and all other blocks with arbitrary blocks to get a class of graphs G^{\prime} such that $\mathrm{bc}\left(G^{\prime}\right)$ and $\mathrm{bc}(G)$ are isomorphic. Clearly the square of every such graph G^{\prime} does not contain a hamiltonian path between arbitrary two cutvertices of G^{\prime} in C_{r} and hence $\left(G^{\prime}\right)^{2}$ is not hamiltonian connected, e.g. with Figure 3, where $r=3$ and H_{1}, H_{2}, H_{3} are arbitrary connected graphs with at least one edge.

Similarly as for Theorem 1 we state the following algorithm to verify conditions of Theorem 2.

ALGORITHM 2:

Let $G^{\prime}=G-S$ where S is the set of all endblocks of G. Let $\operatorname{cvn}_{G}(B)$ be the number of cutvertices of G in B.
START
Find an endblock B of G^{\prime}.

- If B is a bridge of G^{\prime}, then B is a nontrivial bridge of G and G^{2} is not hamiltonian connected. STOP.
- Let B be a 2-block.
- If $\operatorname{cvn}_{G}(B)>2$, then G^{2} may not be hamiltonian connected (e.g. see Figure 3). STOP.
- If $\operatorname{cvn}_{G}(B) \leq 2$, then $G^{\prime}:=G^{\prime}-B$.
* If $G^{\prime}=\emptyset$, then G^{2} is hamiltonian connected. STOP.
* If $G^{\prime} \neq \emptyset$, then go to START.

In both algorithms in this paper, determining blocks and especially endblocks and bridges, cutvertices, block-cutvertex graphs, and the parameters $\mathrm{bn}(i), \operatorname{cvn}_{G}(B)$ can be determined in polynomial time.

As a consequence, polynomial running time in Algorithm 2 is guaranteed. For, determining (potentially) not being Hamiltonian connected, can be determined instantly once a nontrivial bridge, a block with more than 2 cutvertices has been found. And deleting an endblock reduces the size of G^{\prime} linearly.

Now consider the running time of Algorithm 1. The first decision to be made is whether P_{0} is a forest of caterpillars - this can be done in linear time. After that, at every step 'one chooses a 2 -block B as a component of $G_{0}-H$ or an endblock of $G_{0}-H$ where H is the union of all 2-blocks for which the labelling $m_{i}\left(B_{t}\right)$ is already set'. Clearly, identifying such B can be done in linear time. The same applies to working through the cases for defining the various values of $m_{i}(B)$.

Summarizing, it follows that both algorithms run in polynomial time. We note however, that these algorithms can only decide the existence or potential non-existence of hamiltonian cycles or hamiltonian paths in the square of graphs under consideration; they do not construct any such cycle or path.

3 Conclusion

The main results of this paper are Theorem 11 and Theorem 2. As we mention in Introduction Fleischner in [7] proved that in the square of graphs hamiltonicity and vertex-pancyclicity are equivalent concepts, and so are hamiltonian connectedness and panconnectedness. Hence we proved in fact that for graphs satisfying assumptions of Theorem [1, Theorem 2 the square of these graphs is vertex-pancyclic, panconnected, respectively.

As an easy corollary of Theorem 2 we get the following result.
Corollary 8. Let G be a block-chain. Then G^{2} is panconnected if and only if every innerblock of G is a 2-block.

Moreover Corollary 8 is also the answer to Problem 1 stated by Chia et al. in [11] that for a graph G with only two cutvertices it is true that G^{2} is panconnected if and only if the unique block containing the two cutvertices is not the complete graph on two vertices.

Acknowledgements. This work was partly supported by the European Regional Development Fund (ERDF), project NTIS - New Technologies for Information Society, European Centre of Excellence, CZ.1.05/1.1.00/02.0090. The first author was partly supported by project GA20-09525S of the Czech Science Foundation. The second author was supported in part by FWF grant P27615.

References

[1] S. Alstrup, A. Georgakopoulos, E. Rotenberg, C. Thomassen; A Hamiltonian cycle in the square of a 2-connected graph in linear time; Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 1645-1649, SIAM, Philadelphia, PA, 2018.
[2] J.A. Bondy, U.S.R. Murty; Graph Theory, Graduate Texts in Mathematics 244; Springer, New York 2008.
[3] G. L. Chia, J. Ekstein, H. Fleischner; Revisiting the Hamiltonian Theme in the Square of a Block: The Case of DT-graphs; Journal of Combinatorics 9 (2018), no.1, 119-161.
[4] J. Ekstein, H. Fleischner; A Best Possible Result for the Square of a 2Block to be Hamiltonian; Discrete Mathematics 344 (1) (2021), 112158.
[5] H. Fleischner; On Spanning Subgraphs of a Connected Bridgeless Graph and Their Application to DT-Graphs; Journal of Combinatorial Theory 16, No. 1 (1974), 17-28.
[6] H. Fleischner; The Square of Every Two-Connected Graph is Hamiltonian; Journal of Combinatorial Theory 16, No. 1 (1974), 29-34.
[7] H. Fleischner; In the square of graphs, Hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts; Monatsh. Math. 82 (1976), 125-149.
[8] H. Fleischner, G. L. Chia; Revisiting the Hamiltonian Theme in the Square of a Block: The General Case; Journal of Combinatorics 10 (2019), no.1, 163-201.
[9] H. Fleischner, A.M. Hobbs; Hamiltonian total graphs; Mathematische Nachrichten 68 (1975), 59-82.
[10] A. Georgakopoulos; A Short Proof of Fleischner's Theorem; Discrete Mathematics 309 (2009), no. 23-24, 6632-6634.
[11] G. L. Chia, S.-H. Ong, L. Y. Tan; On graphs whose square have strong hamiltonian properties; Discrete Mathematics 309 (13) (2009), 46084613.
[12] J. Müttel, D. Rautenbach; A short proof of the versatile version of Fleischner's theorem; Discrete Mathematics 313 (2013), no. 19, 1929-1933.
[13] S. Říha; A New Proof of the Theorem by Fleischner; Journal of Combinatorial Theory Series B 52 (1991) 117-123.

[^0]: *Department of Mathematics and European Centre of Excellence NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Technická 8, 30614 Plzeň, Czech Republic, EU
 e-mail: ekstein@kma.zcu.cz.
 ${ }^{\dagger}$ Institute of Logic and Computation, Algorithms and Complexity Group, Technical University of Vienna, Favoritenstrasse 9-11, 1040 Wien, Austria, EU
 e-mail: fleischner@ac.tuwien.ac.at.

