
ar
X

iv
:2

20
3.

12
66

5v
3 

 [
m

at
h.

C
O

] 
 2

7 
Se

p 
20

23

The most general structure of graphs with

hamiltonian or hamiltonian connected square
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Abstract

On the basis of recent results on hamiltonicity, [4], and hamiltonian

connectedness, [8], in the square of a 2-block, we determine the most

general block-cutvertex structure a graph G may have in order to

guarantee that G2 is hamiltonian, hamiltonian connected, respectively.

Such an approach was already developed in [9] for hamiltonian total

graphs.
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1 Introduction and Preliminary Discussion

As for standard terminology and other terminology used in this paper, we

refer to the book by Bondy and Murty, [2], and to the papers quoted in the

references. Let G be a connected graph. A 2-block is a 2-connected graph or

a block of G containing more than two vertices. The square of a graph G,

∗Department of Mathematics and European Centre of Excellence NTIS - New Technolo-

gies for the Information Society, Faculty of Applied Sciences, University of West Bohemia,

Pilsen, Technická 8, 306 14 Plzeň, Czech Republic, EU

e-mail: ekstein@kma.zcu.cz.
†Institute of Logic and Computation, Algorithms and Complexity Group, Technical

University of Vienna, Favoritenstrasse 9 - 11, 1040 Wien, Austria, EU

e-mail: fleischner@ac.tuwien.ac.at.

1

http://arxiv.org/abs/2203.12665v3


denoted G2, is the graph obtained from G by joining any two nonadjacent

vertices which have a common neighbor, by an edge.

It was shown in 1970 and published in 1974 that the square of every 2-

block contains a hamiltonian cycle, [6]. Key in proving this was the existence

of EPS-graphs S in connected bridgeless graphs G, where S is the edge-

disjoint union of a not necessarily connected eulerian subgraph E and a

linear forest P , and S is connected and spans G, [5]. In subsequent papers

[7], [9] the existence of various types of EPS-graphs was established. Their

relevance was based on the fact that the total graph T (G) of any connected

graph G other than K1 is hamiltonian if and only if G has an EPS-graph,

[9]. This and the theory of EPS-graphs led to a description of the most

general block-cutvertex graph bc(G) of a graph G may have such that T (G)

is hamiltonian and if bc(G) does not have the corresponding structure, then

exchanging certain 2-blocks in G with some special 2-blocks yields a graph

G∗ such that bc(G) and bc(G∗) are isomorphic but T (G∗) is not hamiltonian,

[9]. In dealing with hamiltonian cycles and hamiltonian paths by methods

developed up to that point, it was shown in [7] that in the square of graphs

hamiltonicity and vertex-pancyclicity are equivalent concepts, and so are

hamiltonian connectedness and panconnectedness. In this context Theorem 3

stated below was established as a tool needed to prove the equivalences just

mentioned.

However, in the course of time much shorter proofs of Fleischner’s The-

orem were developed [10], [13]; the same applies to Theorem 3 below, [12].

More recently, an algorithm yielding a hamiltonian cycle in the square of a

2-block in linear time, was developed, [1]. The methods developed in these

much shorter proofs (including the algorithm just mentioned) do not seem to

yield short proofs of Theorems 4 and 5 below, [4], [8]. These latter theorems

are, on the other hand, instrumental in proving the central results of this

paper, i.e., Theorems 1 and 2, and related algorithms.

Let bc(G) denote the block-cutvertex graph of G. Blocks corresponding

to leaves of bc(G) are called endblocks, otherwise innerblocks. Note that a

block in a graph G is either a 2-block or a bridge of G. For each cutvertex

i of G, let ki be the number of 2-blocks of G which include vertex i and let

bn(i) be the number of nontrivial bridges of G which are incident with vertex

i. In what follows a bridge is called nontrivial if it is not incident to a leaf.

LetH be a subgraph of the graphG. We define G−H := G−E(H)−{v ∈

V (H) : dH(v) = dG(v)}.
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In Theorem 1, we introduce an array mi(B) of numbers with an entry for

each pair consisting of a cutvertex i and a 2-block B of G. We may think

of this number mi(B) as the number of edges of B incident with i which are

possibly contained in a hamiltonian cycle in G2.

Statement of Theorem 1 describes the most general block-cutvertex struc-

ture a graph G may have in order to guarantee that G2 is hamiltonian using

parameters mi(B) as in [9].

Theorem 1. Let G be a connected graph with at least three vertices. Let the

2-blocks of G be labelled B1, B2, ..., Bn. Let the cutvertices of G be labelled

1, 2, ..., s. Suppose there is a labelling mi(Bt) for each i ∈ {1, 2, ..., s} and

each t ∈ {1, 2, ..., n} such that the following conditions are fulfilled.

1) 0 ≤ mi(Bt) ≤ 2 for all i and all 2-blocks Bt;

2) for 2-block Bt mi(Bt) = 0 if and only if cutvertex i is not in V (Bt);

3) for 2-block Bt, mi(Bt) ≥ bn(i), if cutvertex i ∈ V (Bt);

4) bn(i) ≤ 2 for all i ∈ {1, 2, ..., s};

5)
∑s

i=1
mi(Bt) ≤ 4 for each 2-block Bt of G and, if mi(Bt) = 2 for

some i, then
∑s

i=1
mi(Bt) ≤ 3; and

6)
∑n

t=1
mi(Bt) ≥ 2ki + bn(i)− 2 for each i ∈ {1, 2, ..., s}.

Then G2 is hamiltonian.

Moreover, if the labelling mi(Bt) satisfying conditions 1), 2) and 3) is

given and at least one of conditions 4), 5), 6) is violated by some G, then

there exists a class of graphs G′ with non-hamiltonian square but bc(G′) and

bc(G) are isomorphic.

Also, we obtain a similar result for hamiltonian connectedness (Theo-

rem 2). Quite surprisingly, its formulation is much simpler than that of

Theorem 1.

Theorem 2. Let G be a connected graph such that the following conditions

are fulfilled:

1) there is no nontrivial bridge of G;

2) every block contains at most 2 cutvertices.

Then G2 is hamiltonian connected.

Moreover,

· if a graph G contains a nontrivial bridge, then G2 is not hamiltonian

connected;
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· if G contains a block containing more than 2 cutvertices, then there is

a graph G′ such that bc(G) and bc(G′) are isomorphic but (G′)2 is not

hamiltonian connected.

A fundamental result regarding hamiltonicity in the square of a 2-block

is the following theorem.

Theorem 3. [7] Suppose v and w are two arbitrarily chosen vertices of a

2-block G. Then G2 contains a hamiltonian cycle C such that the edges of C

incident to v are in G and at least one of the edges of C incident to w is in

G. Furthermore, if v and w are adjacent in G, then these are three different

edges.

The hamiltonian theme in the square of a 2-block has been recently re-

visited ([3], [4], [8]), yielding the following results which are essential for this

paper.

A graphG is said to have theHk property if for any given vertices x1, ..., xk

there is a hamiltonian cycle in G2 containing distinct edges x1y1, ..., xkyk of G.

Theorem 4. [4] Given a 2-block G on at least 4 vertices, then G has the H4

property, and there are 2-blocks of arbitrary order greater than 4 without the

H5 property.

By a uv-path we mean a path from u to v inG. If a uv-path is hamiltonian,

we call it a uv-hamiltonian path. Let A = {x1, x2, ..., xk} be a set of k ≥ 3

distinct vertices in G. An x1x2-hamiltonian path in G2 which contains k− 2

distinct edges xiyi ∈ E(G), i = 3, ..., k, is said to be Fk. A graph G is said

to have the Fk property if, for any set A = {x1, x2, ..., xk} ⊆ V (G), there is

an Fk x1x2-hamiltonian path in G2.

Theorem 5. [8] Every 2-block on at least 4 vertices has the F4 property.

A graphG is said to have the strong F3 property if, for any set of 3 vertices

{x1, x2, x3} in G, there is an x1x2-hamiltonian path in G2 containing distinct

edges x3z3, xizi ∈ E(G) for a given i ∈ {1, 2}. Such an x1x2-hamiltonian

path in G2 is called a strong F3 x1x2-hamiltonian path.

Theorem 6. [8] Every 2-block has the strong F3 property.

Theorem 7. [8] Let G be a 2-connected graph and let x, y be two vertices in

G. Then G2 has an xy-hamiltonian path P (x, y) such that

(i) xz ∈ E(G) ∩ E(P (x, y)) for some z ∈ V (G), and

(ii) either yw ∈ E(G) ∩ E(P (x, y)) for some w ∈ V (G), or else P (x, y)

contains an edge uv for some vertices u, v ∈ N(y).

4



2 Proofs and algorithms

PROOF OF THEOREM 1

Proof. Set P0 = G − ∪n
t=1

Bt. Then every component of P0 is a tree. Since

by 4) bn(i) ≤ 2 every component of P0 is even a caterpillar.

For every caterpillar T of P0 except T = K2 we have the following obser-

vation which can be proved easily.

Observation: Let T be a caterpillar with at least three vertices and P =

x1x2...xm be some longest path in T . Then T 2 contains a hamiltonian cy-

cle containing edges x1x2, xm−1xm and different edges ujvj, where uj, vj ∈

NG(xj) for j = 2, 3, ..., m− 1.

See Figure 1 for illustration in which for x3 we have u3 = x2 and v3 = x4.

Figure 1: Hamiltonian cycle in a caterpillar for m = 7 (bold edges)

Every 2-block Bt contains a hamitonian cycle in (Bt)
2 which is one of two

types depending on labellings mi(Bt):

Let mi(Bt) 6= 2 for every i = 1, 2, ..., s. If Bt
∼= C3, then we set Ct = Bt.

Otherwise for at most 4 cutvertices a, b, c, d it holds that mj(Bt) = 1 for

j = a, b, c, d by condition 5). By Theorem 4, (Bt)
2 has a hamiltonian cycle

Ct containing 4 different edges aa′, bb′, cc′, dd′ of Bt.

If mi(Bt) = 2 for some i ∈ {1, 2, ..., s}, then at most one cutvertex a has

ma(Bt) = 1 by condition 5). By Theorem 3, (Bt)
2 has a hamiltonian cycle

Ct containing 3 different edges ii′, ii′′, aa′ of Bt.

The union of hamiltonian cycles Ct in (Bt)
2, for t = 1, 2, ..., n, hamiltonian

cycles in the square of each catepillar (nontrivial component of P0) and trivial

components of P0 is a connected spanning subgraph S of G2.
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We construct a hamiltonian cycle C in G2 from S repeating step by step

the following procedure for every cutvertex i of G with mi(B) ≥ 1 for some

2-block B.

If i does not exist, then n = 0 and G = P0 is a caterpillar. Hence S is

a hamiltonian cycle in G2. Otherwise we join all hamiltonian cycles from S

containing i together with trivial components of P0 containing i to one cycle

in the following way.

First assume that bn(i) = 0.

By condition 6) we have
∑n

t=1
mi(Bt) ≥ 2ki−2. Without loss of generality

for ki > 1 we may assume that mi(B1) ≥ 1, mi(B2) ≥ 1 and mi(B3) =

mi(B4) = · · · = mi(Bki) = 2, where mi(Bt) corresponds to the number of

edges of Bt incident to i in Ct. If ki = 1, then by condition 2) we have

mi(B1) ≥ 1.

We find a cycle C i on ∪ki
r=1

V (Cr) ∪ L, where L is the set of all leaves

incident to i, by appropriately replacing edges of Cr ∩ Br, r = 1, 2, ..., ki,

incident to i (guaranteed by definition of mi(Bt)) with edges of G2 joining

vertices in different Cr adjacent to i and leaves adjacent to i. Note that we

preserve properties given by mj(Bt) for all j 6= i.

Now assume that bn(i) = 1.

By condition 6) we have
∑n

t=1
mi(Bt) ≥ 2ki + 1 − 2 = 2ki − 1. Without

loss of generality we may assume that mi(B1) ≥ 1 and mi(B2) = mi(B3) =

· · · = mi(Bki) = 2, where mi(Bt) corresponds to the number of edges of Bt

incident to i in Ct. Let T be the component of P0 containing i.

If T = K2 = ii′, where i′ is also a cutvertex of G with mi′(B) ≥ 1 (T

is a trivial component of P0), then we find a cycle C i on ∪ki
r=1

V (Cr) ∪ V (T )

containing the edge ii′ by appropriately replacing edges of Cr ∩ Br, r =

1, 2, ..., ki, incident to i (guaranteed by definition of mi(Bt)) with edges of

G2 joining i′ and vertices in different Cr adjacent to i. Also here we preserve

properties given by mj(Bt) for all j 6= i.

If T is a nontrivial component of P0, then T 2 contains a hamiltonian cycle

CT containing end-edges of any fixed longest path P in T (we choose end-

edges containing cutvertices of G with mi(Bt) ≥ 1) - see Observation above.

Again we find a cycle C i on ∪ki
r=1

V (Cr) ∪ V (CT ) by appropriately replacing

edges of Cr ∩ Br, r = 1, 2, ..., ki, incident to i (guaranteed by definition of

mi(Bt)) and the end-edge ii∗ of P with edges of G2 joining i∗ and vertices in

different Cr adjacent to i. Again we preserve properties given by mj(Bt) for

all j 6= i and by CT .
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Finally assume that bn(i) = 2.

By condition 6) we have
∑n

t=1
mi(Bt) ≥ 2ki + 2 − 2 = 2ki. It follows

necessarily that mi(B1) = mi(B2) = · · · = mi(Bki) = 2, where mi(Bt)

corresponds to the number of edges of Bt incident to i in Ct.

Let T be the nontrivial component of P0 containing i. Note that i is not

an endvertex of T because of bn(i) = 2. Then T 2 contains a hamiltonian

cycle CT containing end-edges of any fixed longest path in T (we choose

end-edges containing cutvertices of G with mi(Bt) ≥ 1) and an edge uivi
of G2 where ui, vi ∈ NG(i) (see Observation above). We find a cycle C i on

∪ki
r=1

V (Cr)∪V (CT ) by appropriately replacing edges of Cr∩Br, r = 1, 2, ..., ki,

incident to i (guaranteed by definition of mi(Bt)) and the edge uivi of P with

edges of G2 joining ui, vi and vertices in different Cr adjacent to i if ki > 1.

If, however, ki = 1, then ui and vi are joined to the neighbors of Cr ∩ Br in

NG(i). Also here we preserve properties given by mj(Bt) for all j 6= i and by

CT .

Now we choose next cutvertex i with mi(B) ≥ 1 for some 2-block B

successively and we use all cycles formed in the previous steps instead of

previously formed cycles. Note that we preserve all properties given bymj(B)

for all j 6= i in every case. We stop with the hamiltonian cycle in G2 as

required.

Now assume that there is no labelling satisfying conditions 1) - 6), that

is, the labelling mi(Bt) satisfying conditions 1), 2) and 3) is given and at

least one of conditions 4), 5), 6) is violated. We show that there exists a

class of graphs G′ with non-hamiltonian square but bc(G′) and bc(G) are

isomorphic.

Condition 4) does not hold.

Hence bn(i) ≥ 3 for at least one i ∈ {1, 2, ..., s}. Clearly this is a class

of graphs G′ such that the square of every such graph G′ does not contain a

hamiltonian cycle (if we try to construct a hamiltonian cycle in the square,

then the degree of the cutvertex i is at least 3, a contradiction), e.g. see the

graph in Figure 2 a), where H1 is an arbitrary connected graphs, H2, H3, H4

are arbitrary connected graphs with at least one edge each and bn(i) = 3.

Note that conditions 5) and 6) may hold.
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a)

H3H2 H4

b)

H1

H2

H3

H4

H5

H1 H2

H3 H4

c)

i

d)

H1 H2

H3 H4 H3 H4

H5i

H1

H3 H4

H2

i

e1) e2)

i

H1

i

j H1 H2

H5

H6

H7

B1

B2

B3

B2

B1

Figure 2: Graphs without hamiltonian square

Condition 5) does not hold.

Hence
∑s

i=1
mi(B) ≥ 5 for some 2-block B and mi(B) < 2 for all i or

∑s

j=1
mj(B) ≥ 4 for some 2-block B and mi(B) = 2 for some i ∈ {1, 2, ..., s}.

First suppose that k =
∑s

i=1
mi(B) ≥ 5 for some 2-block B of G and

mi(B) < 2 for all i. Clearly B has exactly k cutvertices by condition 2).

Then we exhange B with K2,k where k 2-valent vertices are cutvertices of G

and all other blocks with arbitrary blocks to get a class of graphs G′ such

that bc(G′) and bc(G) are isomorphic. The square of every such graph G′

does not contain a hamiltonian cycle (if we try to construct a hamiltonian

cycle in the square, then the degree of at least one of the two k-valent vertices

of K2,k is at least 3, a contradiction), e.g. see the graph in Figure 2 b), where

k = 5 and H1, ..., H5 are arbitrary connected graphs with at least one edge

each. Note that conditions 4), 6) and the second part of condition 5) may

hold.

Now suppose that
∑s

j=1
mj(B) ≥ 4 for some 2-block B and mi(B) = 2

for some i. If B contains at least 5 cutvertices of G, then we continue

similarly as above. If B contains k cutvertices of G where 2 ≤ k ≤ 4, then

without loss of generality we may assume that we tried to set the labelling

mi(Bt) satisfying firstly condition 5) and subsequently condition 6). Hence

bn(i) ≥ 2 and bn(j) ≥ 2 where j is the second cutvertex of G in B if k = 2,

otherwise we find a labelling mi(Bt) satisfying condition 5), a contradiction

(see Algorithm 1 cases e) and f) below).

For k = 3, 4 we exhange B with a cycle Ck to get a class of graphs

G′ such that bc(G′) and bc(G) are isomorphic. The square of every such

graph G′ does not contain a hamiltonian cycle (if we try to construct a
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hamiltonian cycle in the square, then the degree of the cutvertex i is at least

3, a contradiction), e.g. see the graph in Figure 2 c), where k = 3 and

H1, ..., H4 are arbitrary connected graphs with at least one edge each. Note

that conditions 4), 6) and the first part of condition 5) may hold.

For k = 2, we exchange B with K2,3, where two of the three 2-valent

vertices are i and j, to get a class of graphs G′ such that bc(G′) and bc(G)

are isomorphic. The square of every such graph G′ does not contain a hamil-

tonian cycle (it is not possible to find a hamiltonian cycle in the square

containing the third 2-valent vertex different from i, j, a contradiction), e.g.

see the graph in Figure 2 d), where H1, ..., H4 are arbitrary connected graphs

with at least one edge each. Note that conditions 4), 6) and the first part of

condition 5) may hold.

Condition 6) does not hold.

Hence
∑n

t=1
mi(Bt) < 2ki+bn(i)−2 for some i and consequently mi(Bt) =

1 for at least 3 − bn(i) 2-blocks containing i. Note that, clearly, bn(i) < 2

with respect to condition 3).

Let r be the number of 2-blocks with mi(Bt) = 1. Each of these 2-blocks

contains either exactly 2 cutvertices of G or at least 3 cutvertices of G.

Note that for 2-blocks containing only cutvertex i we have mi(Bt) = 2 (see

Algorithm 1 case d) below). We exchange every 2-block containing exactly

2 cutvertices of G with a cycle C3 and every 2-block containing k cutvertices

of G, k ≥ 3, with a cycle Ck. In the first case note that we assume without

loss of generality that there is no labelling such that we switch values 1 and

2 for both cutvertices of this 2-block to get a permissible labelling (again see

Algorithm 1 case e) below).

Since r ≥ 3 − bn(i), by the exchanging 2-block mentioned above we get

a class of graphs G′ such that bc(G′) and bc(G) are isomorphic. The square

of every such graph G′ does not contain a hamiltonian cycle (if we try to

construct a hamiltonian cycle in the square, then the degree of the cutvertex

i is at least 3, a contradiction), e.g. see graphs in Figure 2 e1) and e2). For

the graph in Figure 2 e1) it holds that r = 3 − bn(i) = 3 − 1 = 2, the 2-

block B1 has exactly 2 cutvertices of G, the 2-block B2 has k = 3 cutvertices

of G (and hence B1, B2 are isomorphic to C3) and H1, ..., H5 are arbitrary

connected graphs with at least one edge. For the graph in Figure 2 e2) it

holds that r = 3−bn(i) = 3−0 = 3, the 2-block B1 has exactly 2 cutvertices

of G, the 2-block B2 has k = 3 cutvertices of G, the 2-block B3 has k = 4

cutvertices of G (hence B1, B2 are isomorphic to C3 and B3 is isomorphic

9



to C4) and H1, ..., H7 are arbitrary connected graphs with at least one edge.

Note that conditions 4) and 5) may hold.

This finishes the proof of Theorem 1.

If there is a graph G such that every labelling mi(Bt) violates at least

one of the conditions 4) - 6) of Theorem 1, then there is a graph G′ with

bc(G′) = bc(G) such that (G′)2 is not hamiltonian as it has been shown in

the proof of Theorem 1. On the other hand, if we are able to construct a

labelling mi(Bt) satisfying conditions 1) - 6) using the following algorithm,

then G2 is hamiltonian as it has been shown in the proof of Theorem 1.

ALGORITHM 1:

Set P0 = G − ∪n
t=1

Bt. If any component of P0 is not a caterpillar, then

bn(i) ≥ 3 for some i ∈ {1, 2, ..., s} contradicting condition 4) in Theorem 1

and G2 is not hamiltonian (e.g. see Figure 2 a)). STOP.

If G = P0, then G is a caterpillar, n = 0 and G2 is hamiltonian (see

Observation in the proof of Theorem 1) and mi(Bt) is not defined (n = 0).

STOP.

If G is a 2-block, G2 is hamiltonian by Theorem 3 and mi(Bt) is not

defined (s = 0 and n = 1). STOP.

We set G0 = G− P0 and mi(Bt) = 0 if i /∈ V (Bt) for i ∈ {1, 2, ..., s} and

t ∈ {1, 2, ..., n}.

START

We choose a 2-block B containing at most 1 cutvertex of G0. Note that

B is either a component of G0 or an endblock of some component of G0. If

such endblock does not exist, we choose 2-block B as a component of G0−H

or an endblock of G0 − H where H is the union of all 2-blocks for which

the labelling mi(Bt) is already set. Let c1, c2, ..., ck be all cutvertices of G

contained in B, k ≥ 1.

a) If k ≥ 5, then by condition 2) mci(B) ≥ 1 for i = 1, 2, ..., k. Hence

condition 5) in Theorem 1 does not hold andG2 may not be hamiltonian

(e.g. see Figure 2 b)). STOP.

b) If k ≥ 3 and bn(ci) = 2 for some i ∈ {1, 2, ..., k} , then by condition 3)

mci(B) = 2 and by 2) mcj(B) ≥ 1 for j = 1, 2, ..., k. Hence condition 5)

in Theorem 1 does not hold and G2 may not be hamiltonian (e.g. see

Figure 2 c)). STOP.

10



c) If k = 2 and bn(c1) = bn(c2) = 2, then by condition 3) mc1(B) = 2

and mc2(B) = 2. Hence condition 5) in Theorem 1 does not hold and

G2 may not be hamiltonian (e.g. see Figure 2 d)). STOP.

d) If k = 1, then we set mc1(B) = 2 (we maximize values mi(Bt) with re-

spect to condition 6) in Theorem 1). Note that, if the labelling mi(Bt)

is set for all 2-blocks incident with c1, then condition 6) holds for cutver-

tex c1 with respect to the choice of B.

If the labelling mi(Bt) is set for all 2-blocks of G, then the labelling

mi(Bt) satisfies the conditions of Theorem 1 and G2 is hamiltonian.

STOP.

Otherwise we go to START.

e) If k = 2 and bn(ci) ≤ 1 for i ∈ {1, 2}, then we set mc1(B) and mc2(B)

in the following way (without loss of generality i = 1).

Let bn(c2) = 2. Then we set mc1(B) = 1 and mc2(B) = 2 with respect

to conditions 2), 3) and 5).

Let bn(c2) ≤ 1. Then for at least one of c1, c2 it holds that mcj (Bt) for

j ∈ {1, 2} is set for all 2-blocks Bt except B with respect to the choice of

B (again without loss of generality j = 1). We set mc1(B) = 1 and we

verify condition 6) for c1. If it holds, then we set mc2(B) = 2 (again we

maximize values mi(Bt) with respect to condition 6)). If condition 6)

for c1 does not hold for mc1(B) = 1, then we set mc1(B) = 2 and

mc2(B) = 1.

Now in both cases we verify condition 6) for c1 and c2 if the labelling

mc1(Bt) and mc2(Bt) is set for all 2-blocks Bt.

If condition 6) does not hold in at least one case, then G2 may not be

hamiltonian (e.g. see Figure 2 e1)). STOP.

Hence suppose that condition 6) holds for c1, c2 if mc1(Bt), mc2(Bt) is

set for all Bt, respectively.

If the labelling mi(Bt) is set for all 2-blocks, then the labelling mi(Bt)

satisfies the conditions of Theorem 1 and G2 is hamiltonian. STOP.

Otherwise we go to START.
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f) If k ∈ {3, 4} and bn(ci) ≤ 1, then we set mci(B) = 1 for i = 1, 2, ..., k.

We verify condition 6) for all ci if the labelling mci(Bt) is set for all

2-blocks Bt.

If condition 6) does not hold in at least one case, then G2 may not be

hamiltonian (e.g. see Figure 2 e2)). STOP.

Hence suppose that condition 6) holds for all ci, i = 1, 2, ..., k, for which

mci(Bt) is set for all Bt.

If the labelling mi(Bt) is set for all 2-blocks, then the labelling mi(Bt)

satisfies the conditions of Theorem 1 and G2 is hamiltonian. STOP.

Otherwise we go to START.

PROOF OF THEOREM 2

Proof. Let x, y ∈ V (G). First we prove that there exists an xy-hamiltonian

path P in G2 if there is no nontrivial bridge of G and every block contains

at most 2 cutvertices.

(A) Suppose that x and y are in the same block B of G. We proceed by

induction on n, where n is the number of blocks of G, n ≥ 1.

For n = 1, clearly G = B. If B = K2 = xy, then G is also the xy-

hamiltonian path in G2 as required. If B is a 2-block, then by Theorem 6,

G2 = B2 contains an xy-hamiltonian path P as required.

Now suppose that the statement of Theorem 2 is true for every graph

with n blocks and G is a graph with n + 1 blocks, n ≥ 1. We distinguish 2

cases.

• B has exactly one cutvertex c.

Without loss of generality we assume that x 6= c. If B is a 2-block,

then by Theorem 6, B2 contains an xy-hamiltonian path PB containing

an edge cy′ where y′ is a neighbor of c in B. Note that y′ = x or c = y

is possible. If B = K2, then B = xy = y′c and PB = xy is an xc-

hamiltonian path in B2. By the induction hypothesis (G−B)2 contains

a cc′-hamiltonian path PG where c′ is a neighbor of c in G− B. Then

P = PB ∪ PG − cy′ + y′c′ is an xy-hamiltonian path in G2 as required.

12



• B has two cutvertices c1, c2.

We denote by G1, G2 the two components of G−B such that ci ∈ V (Gi)

and let c′i be a neighbor of ci inGi, i = 1, 2. By the induction hypothesis

(Gi)
2 contains a cic

′

i-hamiltonian path PGi
, i = 1, 2.

a) ci /∈ {x, y} (x and y are not cutvertices).

By Theorem 5, B2 contains an xy-hamiltonian path PB containing

the edges cizi where zi is a neighbor of ci in B, i = 1, 2. Note that

zi ∈ {x, y} is possible.

b) Up to symmetry c1 = x and c2 6= y (either x or y is a cutvertex

of G).

By Theorem 6, B2 contains an xy-hamiltonian path PB containing

the edges cizi where zi is a neighbor of ci in B, i = 1, 2. Note that

z1 = c2 or z2 = y is possible.

c) c1 = x and c2 = y (similarly c1 = y and c2 = x).

By Theorem 7, B2 contains an xy-hamiltonian path PB containing

either the edges cizi where zi is a neighbor of ci in B, i = 1, 2, or

the edges c1z1, uv where z1 is a neighbor of c1 in B and u, v are

neighbors of c2 in B.

In all cases except the case c), if uv is the edge of PB,

P = PG1
∪ PB ∪ PG2

− {c1z1, c2z2} ∪ {c′
1
z1, c

′

2
z2}

is an xy-hamiltonian path in G2 as required.

It remains to find an xy-hamiltonian path in G2 if uv is the edge of PB.

If G2 = K2 = c2c
′

2
, then

P = PG1
∪ PB − {c1z1, uv, c2c

′

2
} ∪ {c′

1
z1, c

′

2
u, c′

2
v}

is an xy-hamiltonian path in G2 as required.

If G2 6= K2, then we prove that (G2)
2 contains a hamiltonian cycle C

containing edges c2u2, c2v2 of G2. Let B1, B2, ..., Bk be all 2-blocks of

G2 containing c2. By Theorem 3, for i = 1, 2, ..., k, (Bi)
2 contains a

hamiltonian cycle C ′

i containing three different edges c2u
i
2
, c2v

i
2
, yiy

′

i of

Bi where yi is the second cutvertex of G2 in Bi if it exists.

13



If yi exists, then we denote by Hi a component of G2−(Bi−yi) contain-

ing yi. By the induction hypothesis (Hi)
2 contains a yidi-hamiltonian

path Pi where di is a neighbor of yi in Hi. Then we set Ci = C ′

i ∪ Pi −

yiy
′

i + y′idi. If yi does not exist, then we set Ci = C ′

i.

Let T be the set of all leaves of G2 adjacent to c2. Then we find a

cycle C on ∪k
i=1

V (Ci) ∪ T by appropriately replacing edges c2u
i
2
, c2v

i
2

with edges of G2 joining ui
2
, vi

2
in different Ci and leaves adjacent to

c2 (similarly as in the proof of Theorem 1) such that we preserve two

edges (c2u
i
2
, c2v

i
2
or c2l1, c2l2 where l1, l2 are two leaves of G2 adjacent

to c2) as c2u2, c2v2.

Now

P = PG1
∪ PB ∪ C − {c1z1, uv, c2u2, c2v2} ∪ {c′

1
z1, u2u, v2v}

is an xy-hamiltonian path in G2 as required.

(B) Suppose that x and y are in different blocks of G.

Let PG be any xy-path in G and c ∈ V (PG) \ {x, y} be a cutvertex of

G. Let K be the component of G − c containing x, Gy = G − V (K) and

Gx = G−Gy. Clearly Gx∪Gy = G and Gx∩Gy = c. If Gx, Gy are isomorphic

to K2, then we set Px = Gx, Py = Gy, respectively. If Gx, Gy are 2-blocks,

then (Gx)
2, (Gy)

2 contains an xc-hamiltonian path Px, a cy-hamiltonian path

Py by Theorem 6, respectively. We proceed by induction on n, where n is

the number of blocks of G, n ≥ 2.

First assume that G has exactly 2 blocks. Hence Gx, Gy are isomorphic to

K2 or 2-blocks and P = Px∪Py is an xy-hamiltonian path in G2 as required.

Now suppose that the statement of Theorem 2 is true for every graph with

n blocks and G is a graph with n+1 blocks, n ≥ 2. If Gx, Gy is not a block,

then by the induction hypothesis (Gx)
2, (Gy)

2 contains an xc-hamiltonian

path Px, a cy-hamiltonian path Py, respectively. Then P = Px ∪ Py is an

xy-hamiltonian path in G2 as required.

Now it remains to prove that if there is a nontrivial bridge of G, then

G2 is not hamiltonian connected and if G contains a block containing more

than 2 cutvertices, then there is a graph G′ such that bc(G) and bc(G′) are

isomorphic but (G′)2 is not hamiltonian connected.
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H1

H3

H2

x y

Figure 3: Graphs without xy-hamiltonian path in the square

Clearly, if there exists a nontrivial bridge xy in G, then there is no xy-

hamiltonian path in G2 and G2 is not hamiltonian connected.

Finally assume that G contains a block B containing r cutvertices, where

r > 2. Then we exhange B with a cycle Cr and all other blocks with arbitrary

blocks to get a class of graphs G′ such that bc(G′) and bc(G) are isomorphic.

Clearly the square of every such graph G′ does not contain a hamiltonian

path between arbitrary two cutvertices of G′ in Cr and hence (G′)2 is not

hamiltonian connected, e.g. with Figure 3, where r = 3 and H1, H2, H3 are

arbitrary connected graphs with at least one edge.

Similarly as for Theorem 1 we state the following algorithm to verify

conditions of Theorem 2.

ALGORITHM 2:

Let G′ = G− S where S is the set of all endblocks of G. Let cvnG(B) be

the number of cutvertices of G in B.

START

Find an endblock B of G′.

• If B is a bridge of G′, then B is a nontrivial bridge of G and G2 is not

hamiltonian connected. STOP.

• Let B be a 2-block.

– If cvnG(B) > 2, then G2 may not be hamiltonian connected (e.g.

see Figure 3). STOP.

– If cvnG(B) ≤ 2, then G′ := G′ − B.

∗ If G′ = ∅, then G2 is hamiltonian connected. STOP.

∗ If G′ 6= ∅, then go to START.

15



In both algorithms in this paper, determining blocks and especially end-

blocks and bridges, cutvertices, block-cutvertex graphs, and the parameters

bn(i), cvnG(B) can be determined in polynomial time.

As a consequence, polynomial running time in Algorithm 2 is guaran-

teed. For, determining (potentially) not being Hamiltonian connected, can

be determined instantly once a nontrivial bridge, a block with more than 2

cutvertices has been found. And deleting an endblock reduces the size of G′

linearly.

Now consider the running time of Algorithm 1. The first decision to be

made is whether P0 is a forest of caterpillars – this can be done in linear

time. After that, at every step ’one chooses a 2-block B as a component of

G0 − H or an endblock of G0 − H where H is the union of all 2-blocks for

which the labelling mi(Bt) is already set’. Clearly, identifying such B can

be done in linear time. The same applies to working through the cases for

defining the various values of mi(B).

Summarizing, it follows that both algorithms run in polynomial time.

We note however, that these algorithms can only decide the existence or

potential non-existence of hamiltonian cycles or hamiltonian paths in the

square of graphs under consideration; they do not construct any such cycle

or path.

3 Conclusion

The main results of this paper are Theorem 1 and Theorem 2. As we men-

tion in Introduction Fleischner in [7] proved that in the square of graphs

hamiltonicity and vertex-pancyclicity are equivalent concepts, and so are

hamiltonian connectedness and panconnectedness. Hence we proved in fact

that for graphs satisfying assumptions of Theorem 1, Theorem 2 the square

of these graphs is vertex-pancyclic, panconnected, respectively.

As an easy corollary of Theorem 2 we get the following result.

Corollary 8. Let G be a block-chain. Then G2 is panconnected if and only

if every innerblock of G is a 2-block.

Moreover Corollary 8 is also the answer to Problem 1 stated by Chia et

al. in [11] that for a graph G with only two cutvertices it is true that G2 is

panconnected if and only if the unique block containing the two cutvertices

is not the complete graph on two vertices.
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