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A simple proof for the lower bound of the girth of graphs D(n, q)
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Abstract

The components of the graphs D(n, q) provide the best-known general lower bound for the
number of edges in a graph with n vertices and no cycles of length less than g. In this paper, we
give a new, short, and simpler proof of the fact that the length of the shortest cycle appearing
in D(n, q) is n+ 5 when n is odd, and n+ 4 when n is even.

1 Introduction and Motivation

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). We use standard terminology from
graph theory, see, e.g., Bollobás [2]. We refer to |V (Γ)| and |E(Γ)| as the order and the size of Γ,
respectively. A graph is called q-regular if every vertex has exactly q neighbors. All the graphs we
consider are q-regular and simple (i.e., undirected, without loops and multiple edges). The girth of
a graph containing at least one cycle is the length of the shortest cycle in the graph.

The graphs D(n, q) are part of a broad class of graphs referred to in the literature as as
algebraically defined graphs, or graphs defined by systems of equations, see Lazebnik and Woldar
[17], Lazebnik, Sun, and Wang [12]. The graphs in this class are defined as follows: Let n ≥ 2
and P = L = F

n
q be two copies of the n-dimensional vector space over the finite field Fq of

order q = pe, where p is prime. Call the elements of P points and the elements of L lines, with
the distinction in notation: For a ∈ F

n
q , (a) ∈ P and [a] ∈ L. The point (0, 0, . . . , 0) will be

denoted by (0). For each i, 2 ≤ i ≤ n, let fi be a polynomial of 2i − 2 variables over Fq. Define
Γq = Γq(f2, f3, . . . , fn) to be the bipartite graph with parts P and L and with edge relation defined
as follows: If (p) = (p1, . . . , pn) ∈ P and [ℓ] = [ℓ1, . . . , ℓn], then (p) is adjacent to [l] if and only if

ℓ2 + p2 = f2(ℓ1, p1),

ℓ3 + p3 = f3(ℓ1, p1, ℓ2, p2),

...

ℓn + pn = fn(ℓ1, p1, . . . , ℓn−1, pn−1).

This class of graphs has connections and applications to finite geometry, extremal graph theory,
cryptography, and coding theory [23, 17, 12].
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The graphs D(n, q) are a family of algebraically defined graphs that were constructed by Lazeb-
nik and Ustimenko in 1994 [13]. These graphs are defined by a system of n − 1 equations which
give the following adjacency relation between a point (p) = (p1, . . . , pn) and a line [ℓ] = [ℓ1, . . . , ℓn]:

p2 + ℓ2 = p1ℓ1

p3 + ℓ3 = p1ℓ2

and for 4 ≤ j ≤ n :

pj + ℓj =

{

pj−2ℓ1 if j ≡ 0, 1 (mod 4)
p1ℓj−2 if j ≡ 2, 3 (mod 4)

For n ≥ 6, the graphs D(n, q) are known to be disconnected and their components are completely
described, see Lazebnik, Ustimenko, and Woldar [15], Lazebnik and Viglione [16]. Furthermore,
D(n, q) is known to be transitive on its set of points and set of lines [13]. In the same paper, the
graphs D(n, q) were shown to have girth at least n + 5 when n is odd, and n + 4 when n is even.
These bounds have been show to be tight in many cases, see Füredi, et. al, [9], Cheng, Chen, and
Tang [4, 5], Cheng, Tang, and Xu [6]. The original proof of the lower bound for the girth in [13]
was rather technical, and it was presented in a somewhat simpler way with new notation in [12]. In
this paper we will provide a shorter and simpler proof of this fact, which was previously attempted
by Ustimenko [27].

Let F be a set of graphs. The Turán number of F , denoted ex(n,F), is the maximum number
of edges that a graph on n vertices can have such that it does not contain any graph in F as a
subgraph. Let Ck be the set of all cycles with length less than or equal to k. One of the most
notorious open questions in graph theory asks to determine the functions ex(n, Ck) (i.e. maximum
number of edges in a graph on n vertices with girth at least k). To date, the best-known general
bounds are

1

21+1/k
n1+2/(3k−3+ǫ) ≤ ex(n, C2k+1) ≤

1

21+1/k
n1+1/k +

1

2
n (1)

where ǫ = 1 if k is even and 0 if k is odd. An upper bound of the same magnitude was originally
established almost 50 years ago by Bondy and Simonovits [3]. The upper bound in (1) is due to
Alon, Hoory, and Linial [1]. The lower bound is obtained by the components of the graphs D(n, q)
which are denoted CD(n, q). This discovery lead to an improvement over the previously best-known
lower bound given by Lubotzky, Philips, and Sarnak [19], Margulis [20], and Morgenstern [21].

When k = 2, 3, 5, more precise results are known regarding ex(n, C2k+1). In fact, the graphs
with the maximal edge count are known for infinitely many values of n, and these graphs come
from finite geometries, namely generalized polygons. For more history and information regarding
ex(n, Ck) and related problems, see Füredi and Simonovits [10], [12].

Before proceeding to the proof of the main results, we require a few more definitions and
comments. A covering map Φ from the graph Γ onto a graph Γ′ is a surjection Φ : V (Γ) → V (Γ′)
such that the neighborhood of each x ∈ V (Γ) is mapped bijectively onto the neighborhood of Φ(x).
If a covering map from Γ to Γ′ exists, we say that Γ is a lift of Γ′. If Φ : Γ → Γ′ is a covering map,
then it is immediate that:

• If C ⊂ Γ is a cycle, then Φ(C) ⊂ Γ′ contains a cycle with length at most the length of C.
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• The girth of Γ is at least the girth of Γ′.

Remark 1.1. Let 2 ≤ m < n and consider algebraically defined graphs Γ = Γq(f2, f3, . . . , fn)
and Γ′ = Γq(f2, f3, . . . , fm). Then, it is known that Γ is a lift of Γ′ with the covering map
Φ((p1, . . . , pn)) = (p1, . . . , pm) and Φ([ℓ1, . . . , ℓn]) = [ℓ1, . . . , ℓm] [12, Section 3.2, Theorem 2].

Here we present in a nutshell the main ideas used in the proof of our main result. A new family
of algebraically defined graphs, denoted A(n, q), n ≥ 2, was introduced by Ustimenko in [24, p.
467], where they were denoted by E(n, k), and later in [25, 26], where they were denoted by A(n, q).
Though the girth of A(n, q) was not as was hoped in [26], Proposition 3.1 in this preprint states
that the point (0) is not contained in a cycle of length less than 2n. In fact, the key theorem of
our paper improves upon this, demonstrating that the point (0) in A(n, q) is not contained in any
cycle of length less than 2n+2 (which was also suggested in [25]). We then demonstrate that there
is a covering map from D(2k + 1, q) to A(k + 2, q) which maps the point (0) in D(2k + 1, q) to the
point (0) in A(k + 2, q). Finally, by transitivity of D(2k + 1, q) on the set of points and properties
of covering maps, we immediately obtain that no cycle of length less than 2k + 6 can appear in
D(2k + 1, q).

2 The graphs A(n, q) and D(n, q)

The algebraically defined graph A(n, q) has edge relation defined as follows: For 2 ≤ j ≤ n,

pj + ℓj =

{

pj−1ℓ1 if j is even
p1ℓj−1 if j is odd

The following lemma, though not explicitly, appears in [24, p. 467-468]. For our purposes, we make
the lemma explicit and provide a proof.

Lemma 2.1. Let k ≥ 1 and φ : F2k+1
q → F

k+2
q where φ(x) = x′ is defined coordinate-wise as

follows:

x′1 = x1

x′2 = x2

x′j+2 = x2j+1 for 1 ≤ j ≤ k

Then Φ : D(2k + 1, q) → A(k + 2, q), defined by Φ((p)) = (φ(p)) and Φ([ℓ]) = [φ(ℓ)], is a covering
map.

Proof. It is clear that Φ is a surjection. Suppose that (p) is adjacent to [ℓ] in D(2k + 1, q). Then
it must be true that

p2 + ℓ2 = p1ℓ1

p3 + ℓ3 = p1ℓ2

and for 2 ≤ j ≤ k :

p2j+1 + ℓ2j+1 =

{

p2j−1ℓ1 if j is even
p1ℓ2j−1 if j is odd
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But then applying Φ, where Φ((p)) = (p′) and Φ([ℓ]) = [ℓ′], we obtain

p′2 + ℓ′2 = p2 + ℓ2 = p1ℓ1 = p′1ℓ
′

1

p′3 + ℓ′3 = p3 + ℓ3 = p1ℓ2 = p′1ℓ
′

2

and for 2 ≤ j ≤ k

p′j+2 + ℓ′j+2 = p2j+1 + ℓ2j+1 =

{

p2j−1ℓ1 if j is even
p1ℓ2j−1 if j is odd

}

=

{

p′j+1ℓ
′

1 if j is even

p′1ℓ
′

j+1 if j is odd

Thus Φ((p)) is adjacent to Φ([ℓ]), so Φ preserves adjacency. If v is a vertex in an any algebraically
defined graph constructed over Fq, then for each x ∈ Fq, v has a unqiue neighbor whose first
coordinate is x [12, Theorem 1]. Since the first coordinate of v ∈ F

2k+1
q and φ(v) ∈ F

k+2
q are

the same, then for any vertex v of D(2k + 1, q), we have that Φ must be a bijection from the
neighborhood of v to the neighborhood of Φ(v). Thus Φ is a covering map.

Lemma 2.2. Let n ≥ 2 and (0) be in A(n, q). Then a vertex at distance j, 2 ≤ j ≤ n, from (0) is
of the form:

[ℓ1, ℓ2, . . . , ℓj, 0, . . . , 0], ℓj−1 6= 0 if j is odd, (2)

(p1, p2, . . . , pj , 0, . . . , 0), pj−1 6= 0 if j is even. (3)

Proof. For a fixed n, we proceed by induction on j. Note that the base case (j = 2) is true since

(0) ∼ [a, 0, . . . , 0] ∼ (x, ax, 0, . . . , 0) a, x ∈ Fq, x 6= 0

Thus, we may also assume n ≥ 3. Suppose that for a fixed n ≥ 3, the lemma holds up to j ≤ n− 1.
If j is odd, then by the inductive hypothesis, we have a point (q) = (q1, . . . , qj−1, 0, . . . ) at distance
j − 1 from (0) adjacent to a line [ℓ] = [ℓ1, . . . , ℓj , 0, . . . ] at distance j from (0) satisfying ℓj−1 6= 0
and ℓj = q1ℓj−1. Next, we note that if (p) = (p1, . . . , pn) is another neighbor of [ℓ1, . . . , ℓj , 0, . . . ],
then since ℓm = 0 for j < m ≤ n we have

pj + ℓj = p1ℓj−1

pj+1 = pjℓ1

pj+2 = p1ℓj+1 = 0 (since ℓj+1 = 0)

pj+3 = pj+2ℓ1 = 0 (since pj+2 = 0)

...

Thus pm = 0 for m > j + 1. Furthermore, using the fact that ℓj = q1ℓj−1 we obtain

pj = p1ℓj−1 − ℓj = (p1 − q1)ℓj−1.

Since ℓj−1 6= 0 (by the inductive hypothesis) and p1 6= q1 since both (p) and (q) are distinct
neighbors of [ℓ], then pj 6= 0 as claimed. Furthermore, pj 6= 0 implies that (p) cannot be at distance
j − 1 as it would contradict the inductive hypothesis, and so (p) must be at distance j + 1.

Now, if we instead begin with j even, we can swap the roles of points and lines and perform a
similar argument to prove this case. Together, these two cases finish the proof of the lemma.
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Theorem 2.3. For n ≥ 2, the length of the shortest cycle in A(n, q) containing the point (0) is at
least 2n+ 2.

Proof. We proceed by induction on n. For n = 2, 3, the graphs A(n, q) are the same as the graphs
D(2, q) and D(3, q) whose girths are known to be 6 and 8 respectively. Therefore, beginning at
n = 2, the base case is done.

Suppose that no cycle of length less than 2n + 2 in A(n, q) contains the point (0). Using the
covering map from A(n+1, q) to A(n, q) which “deletes” the (n+1)st coordinate and nth equation,
we immediately obtain that A(n + 1, q) has no cycles of length less than 2n+ 2 through the point
(0). All that is left is to demonstrate that no cycle of length 2n + 2 in A(n + 1, q) contains the
point (0).

If n + 1 is even, then n is odd, and by Lemma 2.2, we have that any line at distance n from
(0) is of the form

[ℓ1, . . . , ℓn, 0], ℓn−1 6= 0.

A point at distance n+ 1 is of the form

(p1, . . . , pn+1), pn 6= 0.

Suppose that A(n + 1, q) has a cycle of length 2n + 2 containing the point (0). Then there must
exist a point at distance n+1 from (0) with two common neighbors in the set of all lines at distance
n from (0). Denote these lines [ℓ1, . . . , ℓn, 0] and [k1, . . . , kn, 0]. Then as ℓn+1 = kn+1 = 0, we have

pn+1 = pnℓ1 = pnk1.

As pn 6= 0, it must be that ℓ1 = k1, which contradicts the fact that the lines [ℓ] and [k] are distinct
neighbors of (p).

If n+1 is odd, then again as in the proof of Lemma 2.2, swapping the roles of points and lines,
we perform a completely similar argument, finishing the proof of the theorem.

We are now ready to prove the main result of this paper.

Theorem 2.4. The girth of D(n, q) is at least n + 5 when n is odd, and at least n+ 4 when n is
even.

Proof. Let n = 2k + 1 and k ≥ 1. It is known that D(2k + 1, q) is transitive on the set of points
and lines. Therefore, it contains a cycle of length 2k + 4 or less, if and only if it contains a cycle
of the same length through the point (0). Lemma 2.1 gives a covering map Φ from D(2k + 1, q) to
A(k+2, q) such that Φ((0)) = (0). Therefore, if a cycle of length 2k+4 or less exists in D(2k+1, q),
then a cycle of the same length or less would exist in A(k + 2, q) and contain the point (0), which
contradicts Theorem 2.3. Thus the girth of D(2k + 1, q) is at least 2k + 6 = n + 5. If n = 2k + 2,
then we know that the girth of D(2k + 2, q) is greater than or equal to the girth of D(2k + 1, q),
which we have shown is at least 2k + 6 = n+ 4.
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As we have observed the equations governing the edge relations of A(n, q) are in fact a subset of
the equations governing the edge relations of D(2n−3, q). The remaining equations of D(2n−3, q)
are present for the purpose of making the graphs edge transitive (as well as point transitive and line
transitive). It also turned out that some of these remaining equations cause the graphs D(2n−3, q)
to disconnect, which was unexpected. The graphs A(n, q) can in a sense be seen as the frame
around which D(2n − 3, q) is built. It would be worthwhile to investigate other families of graphs
that can serve as potential “frames” around which new high girth families of graphs can be built.

3 Conclusion and Open Questions

It is our belief that researchers have only scratched the surface in regards to applying algebraically
defined graphs and their generalizations to various problems in graph theory. We hope that this
paper makes this area more accessible to those interested in studying such problems. We leave here
several problems and conjectures of interest.

It has been observed computationally that the graphs A(n, q) are connected for q = 3, 4, 5, 7
and 2 ≤ n ≤ 10. It seems likely that this is always the case when q > 2. If this is not the case, their
components may be of interest, just like it happened with the components CD(n, q) of D(n, q).

Conjecture 3.1. The graphs A(n, q) are connected for all prime powers q > 2 and all n ≥ 2.

The graphs D(n, q) have been conjectured by Ustimenko to be nearly Ramanujan, that is their
second largest eigenvalues is less than or equal to 2

√
q. This conjecture has been verified for

k = 2, 3, 4 for all prime powers q, and k = 5 for all odd prime powers q, see Li, Lu, and Wang
[18], Cioabă, Lazebnik and Li [7], Moorhouse, Sun, and Williford [22], Gupta and Taranchuk [11].
Since D(2k +1, q) is lift of A(k+ 2, q), then the spectrum of A(k+2, q) embeds into the spectrum
of D(2k + 1, q) [12]. The graphs A(2, q) and A(3, q) are precisely the same graphs as D(2, q) and
D(3, q), or the Wenger graphs W1(q) and W2(q) see [7], whose spectrum is known. D(5, q) is a
lift of A(4, q), and therefore, for all odd prime powers q, the second largest eigenvalue of A(4, q) is
less than or equal to 2

√
q [11]. Ustimenko’s conjecture regarding the second largest eigenvalue of

D(n, q) would imply the same for the family A(n, q).

Conjecture 3.2. The second largest eigenvalue of A(n, q) is less than or equal to 2
√
q.
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