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Abstract 

In this paper, we study the concept of "binary color-coded magic squares" by assigning two distinct 

colors to the even and odd numbers within a magic square. We investigate the uniqueness of 

patterns within these squares using three different analytical methods, including 

rotation/reflection, PCA, and LDA. Our investigation covers all 880 magic squares of order 4, all 

48,544 associative magic squares of order 5, and all 368,640 Franklin magic squares of order 8. 

Our investigation reveals striking patterns that were previously unknown in traditional magic 

squares, shedding light on the potential for binary color-coded magic squares to contribute to the 

field of mathematics. 
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Introduction 

Magic squares have long been a topic of fascination in mathematics, with the earliest known 

example dating back to ancient China [1]. A magic square is a square grid of numbers in which 

the sum of the numbers in each row, column, and main diagonal is the same [2–5]. While 

traditional magic squares follow strict rules and patterns, variations on this concept have led to the 

discovery of new and exciting properties within these structures [5–12]. 

In this paper, we focus on a modification of the traditional magic square concept by introducing a 

color-coding element. Specifically, we explore the concept of "binary color-coded magic squares," 

which assigns two distinct colors to the even and odd numbers within a magic square. This novel 

approach provides a new perspective on traditional magic squares and reveals previously unknown 

patterns and relationships. 

Our investigation focuses on the uniqueness of patterns within binary color-coded magic squares, 

using three different analytical methods. Firstly, we analyze the squares through rotation and 

reflection, seeking patterns that remain unchanged under such transformations. Secondly, we use 

principal component analysis (PCA) [13] to identify the most significant patterns within the 

squares. Lastly, we apply linear discriminant analysis (LDA) [14] to classify and distinguish 

between different types of magic squares. PCA is a technique that identifies the most significant 

patterns within a dataset by transforming the data into a new set of variables that are uncorrelated 
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with each other. LDA is a supervised learning technique that aims to classify and distinguish 

between different types of objects based on their attributes. 

We analyze a large number of binary color-coded magic squares, including all 880 magic squares 

of order 4 [15,16], all 48,544 associative magic squares of order 5 [15,16], and all 368,640 Franklin 

magic squares of order 8 [16]. An associative magic square is a specific type of magic square that 

exhibits a unique property. In this type of magic square, each pair of numbers located 

symmetrically opposite to the center of the square adds up to the same value [5]. Franklin magic 

squares are also a special type of magic square with unique properties. In a Franklin magic square, 

each half-row or half-column of the square adds up to half of the magic constant. Additionally, the 

sum of each bent diagonal in the square is equal to the magic constant. Finally, the sum of each 

2×2 block is equal to 4/n of the magic constant in which n is the order of the square [16,17]. 

Our investigation reveals striking patterns that emerge from this novel approach, which were 

previously unknown in traditional magic squares. This study sheds light on the potential for color-

coded magic squares to contribute to the field of mathematics and offers new insights into the 

nature of magic squares. 

 

Distinct Binary Color-Coded Magic Squares: A Rotation and Reflection Analysis 

In a binary color-coded magic square, odd and even numbers are separated into two groups and 

assigned different colors. To identify the distinct color-coded patterns, a Python code 

(supplementary data) converts each of the squares into a binary matrix by assigning a value of 1 

to the odd numbers and 0 to the even numbers.  

Since a magic square can be rotated or reflected and still retain its symmetry and properties, the 

code excludes any matrices produced through these transformations. This is done to ensure that 

only unique patterns are identified, rather than different variations of the same pattern. Once the 

distinct binary matrices have been identified, the code converts them back into a pattern string to 

count the number of squares with each unique pattern.  

Overall, we use a combination of matrix manipulation and pattern recognition techniques to 

identify and visualize the unique binary color-coded patterns within a specific type of magic 

square. Table 1 provides a summary of the unique binary matrices and the total number of distinct 

patterns for various types of magic squares. The table also includes the number of squares that 

have a particular pattern. To aid visualization, the unique patterns are illustrated visually in the 

table. 

Table 1 shows that the 880 magic squares of order 4 can be created using only 8 unique binary 

magic squares. Similarly, the 48,544 associative magic squares of order 5 can be constructed with 

just 15 unique binary magic squares. Surprisingly, the 368,640 Franklin magic squares are created 

by only 6 distinct binary magic squares. Beautiful tilings can be created by plotting the binary 

color-coded magic squares of higher orders or repeating the patterns of lower order magic squares 

in a larger square grid. Figure 1 shows two examples. 
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Table 1: Unique patterns of binary color-coded magic squares 

Type of  

magic square 

No. 

magic 

squares 

No. 

unique 

patterns 

(UP) 

Binary matrix of UP 

No. 

squares 

with 

a UP 

Unique patterns 

3×3 magic square 1 1 010111010 1 

 

4×4 associative 

magic square 
48 2 

0101101010100101 

0011110011000011 

24 

24 

 

4×4 magic square 880 8 

0011001111001100 

0101110000111010 

0011110011000011 
0011110000111100 

0011101001011100 

0101101010100101 
0011010110101100 

0101101001011010 

44 

48 

212 
192 

80 

212 
48 

44 

 

5×5 ultra  

magic square 
16 2 

1001101011001001101011001 

0010010101111111010100100 

8 

8 

 

5×5 associative 

magic square 
48,544 15 

1010100100111110010010101 

1001101011001001101011001 

1001111010001000101111001 
0001011001111111001101000 

0001010011111111100101000 

1001100010111110100011001 
1001101000111110001011001 

0010010101111111010100100 

0000111010111110101110000 
0000101011111111101010000 

0101110000111110000111010 
0011110101001001010111100 

0101110011001001100111010 

0101111001001001001111010 
0010001110111110111000100 

864 

2180 

2180 
4546 

4546 

4546 
4546 

1728 

4546 
4546 

4546 
4546 

2180 

2180 
864 
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8×8 Franklin 

magic square 
368,640 6 

010101011010101010101 

010010101011010101001 
0101010101010110101010 

 

001101101100100100110 
110110010010011011011 

0010010011011011001001 

 
010101011010101010101 

010010101010101010110 

1010101010101001010101 
 

001110011100011000111 

001110001100011100111 
0001100011100111000110 

 

001100111100110000110 
011110011000011001111 

0011000011001111001100 

 
001111001100001100111 

100110000110011110011 

0000110011110011000011 

 

46080 
 

 

 
92160 

 

 
 

46080 

 
 

 

92160 
 

 

 
46080 

 

 
 

46080 

 

 

 

 (a) (b)  

Figure 1: (a) a distinct pattern of an 8x8 binary color-coded magic square repeated in a larger square grid and (b) a binary 

color-coded magic square of order 35. 

 

Distinct Binary Magic Squares: A PCA analysis 

PCA (Principal Component Analysis) [13] is a technique used to reduce the dimensionality of a 

dataset. In a Python code (supplementary data) we have developed (e.g. 4×4 magic squares), the 

PCA is applied to the flattened binary magic squares dataset to reduce the dimensionality from 16 

to 2. The PCA finds the principal components of the dataset, which are linear combinations of the 

original features that capture the most variance in the data. The first principal component captures 

the most variance in the data, followed by the second principal component, and so on. By reducing 

the dimensionality of the data, PCA helps to simplify the dataset and make it easier to visualize. 

The result (Figure 2) shows a scatter plot of the binary magic squares in 2-dimensional space after 

performing PCA on the flattened binary matrix of each square. Each point in the scatter plot 

represents a binary magic square, and the color of the point represent the pattern string of the 

square. The scatter plot can be used to interpret the relationships between the binary magic squares 
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in the dataset. Points that are close together in the plot represent binary magic squares that are 

similar to each other in terms of their binary patterns. Similarly, points that are far apart from each 

other in the plot represent binary magic squares that are dissimilar to each other in terms of their 

binary patterns. The plot also shows that there are several clusters of points in the plot. Each cluster 

represents a group of binary magic squares that have similar binary patterns. By examining the 

plot and the pattern strings associated with each cluster, it is possible to identify the different types 

of patterns that occur in the binary magic squares. 

Based on Figure 2, there are 24 distinct patterns among the 4×4 binary magic squares, 44 distinct 

patterns among the 5×5 associative magic squares, and 32 distinct patterns among the 8×8 Franklin 

magic squares, as identified through the use of PCA. Additionally, each plot displays a 

symmetrical distribution of points, which are categorized into 9 regions for 4×4 magic squares, 6 

regions for 5×5 associative magic squares, and 9 regions for 8×8 Franklin magic squares. These 

regions represent different clusters of points in the scatter plot and are indicative of similarities in 

the binary patterns of the magic squares within each cluster. 

Based on the PCA analysis, Table 2 presents the number of squares for each distinct pattern of 

different types of magic squares. It can be observed that the number of squares also exhibits 

symmetry. 

(a) (b)  

(c) (d)  
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(e) (f)  

Figure 2: PCA analysis of the binary 4×4 magic squares (a,b), 5×5 associative magic squares (c,d), and 8×8 Franklin magic 

squares (e,f). 

 

Table 2: Number of binary squares with a distinct pattern based on PCA analysis. 

4×4 magic 

squares 

5×5 associative magic 

squares 
8×8 Franklin magic squares 

 0011001111001100: 24 

 0011010110101100: 24 

 0011101001011100: 15 

 0011110000111100: 34 

 0011110011000011: 35 

 0101001111001010: 27 

 0101010110101010: 62 

 0101101001011010: 24 

 0101101010100101: 54 

 0101110000111010: 24 

 0110011010011001: 61 

 0110100101101001: 42 

 1001011010010110: 55 

 1001100101100110: 56 

 1010001111000101: 24 

 1010010101011010: 61 

 1010010110100101: 20 

 1010101001010101: 55 

 1010110000110101: 12 

 1100001100111100: 60 

 1100001111000011: 41 

 1100010110100011: 26 

 1100101001010011: 24 

 1100110000110011: 20 

 0000101011111111101010000: 930 

 0000111010111110101110000: 930 

 0001010011111111100101000: 1011 

 0001011001111111001101000: 1011 

 0010001110111110111000100: 864 

 0010010101111111010100100: 820 

 0011101110001000111011100: 1016 

 0011110101001001010111100: 892 

 0100010011111111100100010: 1011 

 0100011001111111001100010: 1011 

 0101100001111111000011010: 1008 

 0101110000111110000111010: 1008 

 0101110011001001100111010: 962 

 0101111001001001001111010: 962 

 0110101110001000111010110: 1016 

 0110110101001001010110110: 892 

 0111000100111110010001110: 908 

 0111000111001001110001110: 1262 

 0111001101001001011001110: 1262 

 0111010110001000110101110: 1262 

 0111011100001000011101110: 1262 

 1000001011111111101000001: 1266 

 1000011010111110101100001: 1266 

 1001100010111110100011001: 1193 

 1001101000111110001011001: 1193 

 1001101011001001101011001: 1090 

 1001111010001000101111001: 1090 

 1010100100111110010010101: 864 

 1010100111001001110010101: 1080 

 1010101101001001011010101: 1080 

 1010110110001000110110101: 1080 

 1010111100001000011110101: 1080 

 1011001110001000111001101: 1334 

 1011010101001001010101101: 1424 

 1100100010111110100010011: 1193 

 1100101000111110001010011: 1193 

 1100101011001001101010011: 1090 

 1100111010001000101110011: 1090 

 1101000001111111000001011: 1222 

 1101010000111110000101011: 1222 

 1101010011001001100101011: 1218 

 1101011001001001001101011: 1218 

 1110001110001000111000111: 1334 

 1110010101001001010100111: 1424 

 0011001111001100001100111100110000110011110011000011001111001100: 13824 

 0011011011001001001101101100100100110110110010010011011011001001: 13824 

 0011100111000110001110011100011000111001110001100011100111000110: 13824 

 0011110011000011001111001100001100111100110000110011110011000011: 13824 

 0101010101010101101010101010101001010101010101011010101010101010: 9216 

 0101010101010101101010101010101001010101101010101010101001010101: 9216 

 0101010101010101101010101010101010101010010101010101010110101010: 9216 

 0101010101010101101010101010101010101010101010100101010101010101: 9216 

 0101010110101010101010100101010101010101010101011010101010101010: 9216 

 0101010110101010101010100101010101010101101010101010101001010101: 9216 

 0101010110101010101010100101010110101010010101010101010110101010: 9216 

 0101010110101010101010100101010110101010101010100101010101010101: 9216 

 0110001110011100011000111001110001100011100111000110001110011100: 13824 

 0110011010011001011001101001100101100110100110010110011010011001: 13824 

 0110100110010110011010011001011001101001100101100110100110010110: 13824 

 0110110010010011011011001001001101101100100100110110110010010011: 13824 

 1001001101101100100100110110110010010011011011001001001101101100: 13824 

 1001011001101001100101100110100110010110011010011001011001101001: 13824 

 1001100101100110100110010110011010011001011001101001100101100110: 13824 

 1001110001100011100111000110001110011100011000111001110001100011: 13824 

 1010101001010101010101011010101001010101010101011010101010101010: 9216 

 1010101001010101010101011010101001010101101010101010101001010101: 9216 

 1010101001010101010101011010101010101010010101010101010110101010: 9216 

 1010101001010101010101011010101010101010101010100101010101010101: 9216 

 1010101010101010010101010101010101010101010101011010101010101010: 9216 

 1010101010101010010101010101010101010101101010101010101001010101: 9216 

 1010101010101010010101010101010110101010010101010101010110101010: 9216 

 1010101010101010010101010101010110101010101010100101010101010101: 9216 

 1100001100111100110000110011110011000011001111001100001100111100: 13824 

 1100011000111001110001100011100111000110001110011100011000111001: 13824 

 1100100100110110110010010011011011001001001101101100100100110110: 13824 

 1100110000110011110011000011001111001100001100111100110000110011: 13824 

 



7 
 

Distinct Binary Magic Squares: A LDA analysis 

Linear Discriminant Analysis (LDA) [14] is a statistical method used for classification and 

dimensionality reduction. It is based on finding the linear combination of features that maximally 

separates different classes in a dataset. LDA is a supervised learning algorithm, meaning that it 

requires labeled data in order to learn the optimal linear discriminant. The goal of LDA is to find 

a projection of the data that maximizes the ratio of between-class variance to within-class variance. 

In other words, it seeks a linear transformation that maximizes the distance between the means of 

the different classes, while minimizing the variance within each class. This is achieved by solving 

an eigenvalue problem involving the scatter matrices of the data. 

In terms of binary magic squares, Linear Discriminant Analysis (LDA) is used to find the most 

important linear combination of the features (i.e., the binary values in each square) that can best 

separate the magic squares into different classes. In the python code (supplementary data) we have 

developed (for example, for 4×4 magic squares), LDA is used to find a linear transformation of 

the original 16-dimensional feature space to a 2-dimensional space that maximally separates the 

different patterns of the binary magic squares. The data points in the LDA analysis of binary magic 

squares provide information about how different magic squares are related to each other based on 

their binary patterns. Each data point (Figure 3) corresponds to a unique binary pattern, and the 

position of the data point in the LDA plot reflects how similar or dissimilar that pattern is to the 

other patterns in the dataset. By using LDA to analyze the binary patterns of magic squares, we 

can identify clusters of squares that are similar to each other in terms of their patterns. 

Figure 3a depicts the classification of 4×4 binary magic squares into 7 pencil-like fingerprints 

based on LDA analysis, which reveals a distinct pattern. The colors in Figure 3a correspond to the 

LDA data points, which are based on the unique reflection/rotation binary patterns (Table 1). The 

distribution of LDA values is visualized in the form of a heatmap and a histogram in Figures 3b to 

3d. Additionally, the LDA analysis results for 5×5 associative magic squares are shown in Figures 

3e to 3h. The histograms of LDA values exhibit an approximate normal distribution. In Figures 3g 

and 3h, we compare the distributions of LDA1 and LDA2 with a normal distribution to assess their 

similarity.  

(a) (b)  
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(c) (d)  

(e) (f)

(g) (h)  

Figure 3: Distinct patterns of binary 4×4 magic squares (a-d) and 5×5 associative magic square (e-h) based on the LDA analysis. 

 

Conclusion 

In this study, we have introduced the concept of binary color-coded magic squares, a novel 

approach that reveals previously unknown patterns and relationships within magic squares. We 

have explored the uniqueness of patterns within these squares using rotation and reflection, PCA, 

and LDA. Our investigation has revealed striking patterns that were previously unknown in 
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traditional magic squares. Based on the analysis conducted in this study, the following results can 

be concluded: 

- By analyzing binary color-coded magic squares through rotation and reflection, we 

identified the distinct color-coded patterns and their frequency in different types of magic 

squares. We found that only a small number of unique binary matrices are needed to 

construct a large number of magic squares. 

- Principal component analysis (PCA) allowed us to identify the most significant patterns 

within the dataset of binary color-coded magic squares. The scatter plot resulting from PCA 

showed that similar binary magic squares are grouped together, suggesting underlying 

patterns and relationships. 

- Linear discriminant analysis (LDA) was able to classify and distinguish between different 

types of magic squares based on their attributes, suggesting that the binary color-coding 

element provides additional information that can be used to differentiate between different 

types of magic squares. 
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provided, along with step-by-step explanations of the methodology. Readers can access this data 

online for transparency and reproducibility. 

 

References 

[1] S. Cammann, The evolution of magic squares in China, J. Am. Orient. Soc. 80 (1960) 116–124. 

[2] H.E. Dudeney, Amusements in mathematics, Dover Publications, 1st Ed., 1958. 

[3] W.S. Andrews, Magic squares and cubes, The Open Court Publishing Company, 2nd Ed., 1917. 

[4] W.H. Benson, New recreations with magic squares, Dover Publications, 1st Ed., 1976. 

[5] P. Fahimi, R. Javadi, An introduction to magic squares and their physical applications, ResearchGate 

(2016), 1-26. 



10 
 

[6] P. Fahimi, Quasi-static levitation of magic squares, Submitted, (2023) https://doi.org/10.21203/rs.3.rs-

3069154/v1. 

[7] P. Fahimi, C.A. Toussi, W. Trump, J. Haddadnia, C.F. Matta, Striking patterns in natural magic squares’ 

associated electrostatic potentials: Matrices of the 4th and 5th order, Discrete Math. 344 (2021) 112229. 

[8] P. Fahimi, B. Jaleh, The electrostatic potential at the center of associative magic squares, Int. J. Phys. Sci. 7 

(2012) 24–30. 

[9] P. Loly, The invariance of the moment of inertia of magic squares, Math. Gaz. 88 (2004) 151–153. 

[10] A. Rogers, P. Loly, The inertia tensor of a magic cube, Am. J. Phys. 72 (2004) 786–789. 

[11] A. Rogers, P. Loly, The electric multipole expansion for a magic cube, Eur. J. Phys. 26 (2005) 809-813. 

[12] P. Fahimi, A. Ahmadi Baneh, 4×4 Magic Path, Submitted (2023) 

https://doi.org/10.48550/arXiv.2306.08123. 

[13] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev. Comput. Stat. 2 (2010) 433–

459. 

[14] P. Xanthopoulos, P.M. Pardalos, T.B. Trafalis, Linear discriminant analysis in: Robust Data Mining. 

SpringerBriefs in Optimization. Springer, New York, NY. (2013) 27–33. 

[15] W. Trump, How many magic squares are there?, (2019). http://www.trump.de/magic-

squares/howmany.html. 

[16] H. White, Magic squares, (2023). https://budshaw.ca/MagicSquares.html. 

[17] P.D. Loly, Franklin squares: a chapter in the scientific studies of magical squares, Comp. Syst. 17 (2007) 

143-161. 

 


