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The (+)-extended twisted generalized
Reed-Solomon code

Canze Zhu and Qunying Liao

(College of Mathematical Science, Sichuan Normal University, Chengdu Sichuan, 610066)

Abstract. In this paper, we give a parity check matrix for the (+)-extended twisted gener-
alized Reed Solomon (in short, ETGRS) code, and then not only prove that it is MDS or NMDS,
but also determine the weight distribution. Especially, based on Schur method, we show that the
(+)-ETGRS code is not GRS or EGRS. Furthermore, we present a sufficient and necessary condition
for any punctured code of the (+)-ETGRS code to be self-orthogonal, and then construct several
classes of self-dual (+)-TGRS codes and almost self-dual (+)-ETGRS codes.

Keywords. (+)-extended twisted generalized Reed Solomon codes; MDS codes; NMDS codes;
Self-dual codes; Almost self-dual codes.

1 Introduction

An [n, k, d] linear code C over Fq is a k-dimensional subspace of Fn
q with minimum

(Hamming) distance d and length n. If the parameters reach the Singleton bound, namely,
d = n− k+1, then C is maximum distance separable (in short, MDS). If d = n− k, then C is
called almost MDS (in short, AMDS). In addition, C is said to be near MDS (in short, NMDS)
if both C and C⊥ are AMDS. Since MDS codes and NMDS codes are very important in coding
theory and applications [5, 17, 26, 31, 35], the study of MDS codes or NMDS codes, including
weight distributions, constructions, equivalence, self-orthogonal, (almost) self-dual property,
and so on, has attracted a lot of attention [1, 9–13, 20, 21, 28, 29, 32]. Especially, generalized
Reed-Solomon (in short, GRS) codes are a class of MDS codes. A lot of self-dual or almost
self-dual MDS codes are constructed based on GRS codes [4, 6, 7, 14, 18, 19, 23, 30, 33, 34].

In 2017, inspired by the construction for twisted Gabidulin codes [27], Beelen et al. firstly
introduced twisted Reed-Solomon (in short, TRS) codes, which is a generalization for Reed-
Solomon codes, they also showed that TRS codes could be well decoded. Different from GRS
codes, they showed that a twisted generalized Reed-Solomon (in short, TGRS) code is not
necessary MDS and presented a sufficient and necessary condition for a TGRS code to be
MDS [2]. Especially, the authors showed that most of TGRS MDS codes are not GRS when
the code rate is less than one half [3, 25]. Later, by TGRS codes, Lavauzelle et al. presented
an efficient key-recovery attack used in the McEliece cryptosystem [22]. TGRS codes are also
used to construct LCD MDS codes by their applications in cryptography [16, 25]. Recently,
Huang et al. not only gave the parity check matrix for the (+)-TGRS code, but also showed
that it is MDS or NMDS. Furthermore, they presented a sufficient and necessary condition
for the (+)-TGRS code to be self-dual, and then constructed several classes of self-dual MDS
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or NMDS codes [15]. More relative results about self-orthogonal MDS or NMDS TGRS codes
can be seen in [8, 36, 37].

In this paper, we focus on the (+)-extended twisted generalized Reed Solomon (in short,
ETGRS) code. This paper is organized as follows. In section 2, some basic notations and
results about linear codes are given. In section 3, a parity check matrix and the weight
distribution for the (+)-ETGRS code are obtained, and then based on the Schur product
method, we show that the (+)-ETGRS code is not GRS or EGRS. In section 4, a sufficient
and necessary condition for any punctured code of the (+)-ETGRS code to be self-orthogonal
is presented, and then several classes of self-dual or almost self-dual are constructed. In section
5, we conclude the whole paper.

2 Preliminaries

Throughout this paper, we fix some notations as follows for convenience.

• q is a power of a prime.

• Fq is the finite field with q elements, and F∗
q = Fq\{0}.

• Fq[x] is the polynomial ring over Fq.

• k and n are both positive integers with 2 ≤ k < n.

• 1 = (1, . . . , 1), 0 = (0, . . . , 0).

• For any α = (α1, . . . , αn) ∈ Fn
q , denote (α, a) = (α1, . . . , αn, a) (∀a ∈ Fq),

αi =

{

(1, . . . , 1), if i = 0;

(αi
1, . . . , α

i
n), if i ∈ Z+,

Aα = {αi | i = 1, . . . , n}, Sα =
∑

α∈Aα

α.

In this section, we review some basic notations and knowledge about GRS codes, EGRS
codes, (+)-TGRS codes, (+)-ETGRS codes, Schur product, punctured codes, self-orthogonal
codes, NMDS codes and the subset sum problem, respectively.

2.1 GRS, EGRS, TGRS and ETGRS codes

2.1.1 The GRS and EGRS code

The definitions of the GRS code and the EGRS code are given in the following, respec-
tively.

Definition 2.1 ([17]) Let α = (α1, . . . , αn) ∈ Fn
q with αi 6= αj (i 6= j) and v = (v1, . . . , vn) ∈

(F∗
q)

n. Then the GRS code is defined as

GRSk,n(α, v) = {(v1f(α1), . . . , vnf(αn)) | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

The EGRS code is defined as

GRSk,n(α, v,∞) = {(v1f(α1), . . . , vnf(αn), fk−1) | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}
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where fk−1 is the coefficient of xk−1 in f(x).
If v = 1, then GRSk,n(α, 1) and GRSk,n(α, 1,∞) are the RS code and the ERS code,

respectively.

The dual codes of the GRS code and the EGRS code are given in the following, respec-
tively.

Lemma 2.1 ([19]) Let u = (u1, . . . , un) with uj = −
n
∏

i=1,i 6=j

(αj − αi)
−1, then

(

GRSk,n(α, 1)
)⊥

= GRSn−k,n(α,u)

and
(

GRSk,n(α, 1,∞)
)⊥

= GRSn+1−k,n(α,u,∞).

2.1.2 The (+)-TGRS and (+)-ETGRS code

Definition 2.2 ([2]) Let t, h and k be positive integers with 0 ≤ h < k ≤ q and η ∈ F∗
q.

Define the set of (k, t, h, η)-twisted polynomial as

Vk,t,h,η =
{

f(x) =

k−1
∑

i=0

aix
i + ηahx

k−1+t | ai ∈ Fq (i = 0, . . . , k − 1)
}

,

which is a k-dimensional Fq-linear subspace. h and t are the hook and the twist, respectively.

From the twisted polynomials linear space Vk,1,k−1,η, the definitions of the (+)-TGRS
code and the (+)-ETGRS code are given in the following, respectively.

Definition 2.3 ([2]) Let η ∈ F∗
q, α = (α1, . . . , αn) ∈ Fn

q with αi 6= αj (i 6= j) and v =
(v1, . . . , vn) ∈ (F∗

q)
n. Then the (+)-TGRS code is defined as

Ck,n(α, v, η) = {(v1f(α1), . . . , vnf(αn)) | f(x) ∈ Vk,1,k−1,η}.

The (+)-ETGRS code is defined as

Ck,n(α, v, η,∞) = {(v1f(α1), . . . , vnf(αn), fk−1) | f(x) ∈ Vk,1,k−1,η},

where fk−1 is the coefficient of xk−1 in f(x).
If v = 1, then Ck,n(α, 1, η) and Ck,n(α, 1, η,∞) are the (+)-TRS code and the (+)-ETRS

code, respectively.

Remark 2.1 By Definition 2.2, it is easy to see that the generator matrix for Ck,n(α, v, η,∞)
is

Gk =













v1 v2 . . . vn 0
v1α1 v2α2 . . . vnαn 0
...

...
...

...
v1α

k−2
1 v2α

k−2
2 · · · vnα

k−2
n 0

v1(α
k−1
1 + ηαk

1) v2(α
k−1
2 + ηαk

2) . . . vn(α
k−1
n + ηαk

h) 1













.
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2.2 Some notations for linear codes

2.2.1 The Schur product

The Schur product is defined as follows.

Definition 2.4 For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn
q , the Schur product between x and

y is defined as
x ⋆ y := (x1y1, . . . , xnyn).

The Schur product of two q-ary codes C1 and C2 with length n is defined as

C1 ⋆ C2 = 〈c1 ⋆ c2 | c1 ∈ C1, c2 ∈ C2〉.

Especially, for a code C, we call C2 := C ⋆ C the Schur square of C.

Remark 2.2 For any linear codes C1 and C2, if C1 = 〈v1, . . . , vk1〉 and C2 = 〈w1, . . . ,wk2〉
with vi,wj ∈ Fn

q (i = 1, . . . , k1, j = 1, . . . , k2), then

C1 ⋆ C2 = 〈vi ⋆wj (i = 1, . . . , k1, j = 1, . . . , k2)〉, (2.1)

By the definitions of the GRS code and the EGRS code, Lemma 2.1 and Remark 2.2, we
have the following proposition about the Schur square of GRS (EGRS) code.

Proposition 2.1 Let u = (u1, . . . , un) with uj = −
n
∏

i=1,i 6=j

(αj − αi) (j = 1, . . . , n).

(1) If k ≤ n+1
2
, then

GRS2
k,n+1(α,1) = GRS2k−1,n+1(α,1) and GRS2

k,n(α,1,∞) = GRS2k−1,n(α,1,∞).

(2) If n+ 1 ≥ k ≥ n
2
+ 1, then

(

GRS⊥
k,n+1(α,1)

)2
= GRS2n−2k+1,n+1(α,u2) and

(

GRS⊥
k,n(α,1,∞)

)2
= GRS2n−2k+1,n(α,u2,∞).

2.2.2 The equivalence and punctured codes for linear codes

The definition of the equivalence for linear codes is given in the following.

Definition 2.5 Let C1 and C2 be linear codes over Fq with length n, and Sn be the permutation
group with order n. We say that C1 and C2 are equivalent if there is a permutation π ∈ Sn,
and v = (v1, . . . , vn) ∈ (F∗

q)
n such that C2 = Φπ,v(C1), where

Φπ,v : Fn
q → Fn

q , (c1, . . . , cn) 7→ (v1cπ(1), . . . , vncπ(n)).

Remark 2.3 It is easy to see that C2
1 and C2

2 are equivalent when C1 and C2 are equivalent.

The definition of the punctured code is given in the following.

Definition 2.6 For any positive integers m and n with m ≤ n, let C be a linear code over Fq

with length n, and I = {i1, . . . , im} ⊆ {1, . . . , n}. The punctured code for C over I is defined
as

CI = {(ci1, . . . , cim) | (c1, . . . , cn) ∈ C}.

Remark 2.4 (1) If v1, v2 ∈ (F∗
q)

n, α1,α2 ∈ Fn
q with Aα1

= Aα2
, then Ck,n(α1, v1, η,∞) and

Ck,n(α2, v2, η,∞) are equivalent.
(2) If Aα = Fq, we denote Ck,n(Fq, v, η,∞) = Ck,n(α, v, η,∞). Obviously, any (+)-TGRS

code or (+)-ETGRS code is equivalent to a punctured code of Ck,n(Fq, v, η,∞).
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2.2.3 Self-orthogonal linear codes

The notations about self-orthogonal, self-dual or almost self-dual codes are given in the
following, respectively.

For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn
q , the inner product is defined as

〈a,b〉 =
n

∑

i=1

aibi.

And then the dual code of C is defined as

C⊥ = {c
′

∈ Fn
q | 〈c

′

, c〉 = 0, for any c ∈ C}.

Especially, if C ⊆ C⊥, then C is self-orthogonal. Especially, if C = C⊥, then C is self-dual; if C
is self-orthogonal with length n odd and dim(C) = n−1

2
, then C is almost self-dual.

Let 1π be the identity in Sn, a sufficient and necessary condition for Φ1π ,v(CI) to be
self-orthogonal is presented in the following lemma.

Lemma 2.2 Let n and m be positive integers with m ≤ n, I = {i1, . . . , im} ⊆ {1, . . . , n},
and v = (v1, . . . , vm) ∈ (F∗

q)
m. Then for a q-ary linear code C with length n, Φ1π ,v(CI) is

self-orthogonal if and only if there is some c ∈ (C2)⊥ such that

Supp(c) = I and cij = v2j (j = 1, . . . , m).

Proof. By the definition of the self-orthogonal code, Φ1π ,v(CI) is self-orthogonal if and
only if

m
∑

j=1

vjc1,ijvjc2,ij = 0 for any ct = (ct,i1 , . . . , ct,im) ∈ CI (t = 1, 2),

namely,

m
∑

j=1

v2j (c1,ijc2,ij ) = 0 for any ct = (ct,i1 , . . . , ct,im) ∈ CI (t = 1, 2),

equivalently, there is some c = (c1, . . . , cn) ∈ (C2)⊥ such that

Supp(c) = I and cij = v2j (j = 1, . . . , m).

�

2.3 Near MDS codes and the subset sum problem over finite fields

2.3.1 Weight distributions of near MDS codes

It is well-known that the weight distribution for the MDS code [n, k, n`k + 1] over Fq

depends only on the values of n, k and q. But for the NMDS code [n, k, n`k] over Fq, the
weight distribution depends not only on the values of n, k and q, but also on the number of
its minimum weight codewords, which can be seen in the following lemma.
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Lemma 2.3 ([5]) Let C be an [n, k, n − k] NMDS code over Fq and Ai (i = 0, 1, . . . , n) the
number of codewords in C with weight i. Then weight distributions of C and C⊥ are given by

An−k+s =

(

n

k − s

) s−1
∑

j=0

(−1)j
(

n− k + s

j

)

(qs−j − 1)+(−1)s
(

k

s

)

An−k (s = 1, . . . , k), (2.2)

and

A⊥
k+s =

(

n

k + s

) s−1
∑

j=0

(−1)j
(

k + s

j

)

(qs−j − 1)+(−1)s
(

k

s

)

A⊥
k (s = 1, . . . , n− k). (2.3)

Furthermore,
An−k = A⊥

k .

Remark 2.5 Let C be an [n, k, n − k + 1] MDS code, then An−k = A⊥
k = 0, the weight

distributions for C and C⊥ are given in (2.2) and (2.3), respectively.

2.3.2 The subset sum problem over finite fields

In the following, we give the notation and a lemma for the subset sum problem over finite
fields, which are needed to determine the weight distribution of Ck,n(α, v, η,∞).

The subset sum problem is a well-known NP-complete problem. Given t ∈ Z+, b ∈ Fq

and D ⊆ Fq with |D| ≥ t, let

N(t, b, D) =
{

{x1, . . . , xt} ⊆ D
∣

∣x1 + · · ·+ xt = b
}

,

then #N(t, b, D) is the number of t-element subsets of D whose sum is b. Determine the value
of #N(t, b, D) is the subset sum problem.

For D = Fq or F
∗
q, the value of #N(t, b, D) is given explicitly in the following lemma.

Lemma 2.4 ([24]) Let v(b) =

{

q − 1, if b = 0;

−1, if b 6= 0.
Then

#N(t, b,F∗
q) =

1

q

(

q − 1

t

)

+ (−1)t+⌊ t
p
⌋v(b)

q

( q

p
− 1

⌊ t
p
⌋

)

,

and

#N(t, b,Fq) =

{1
q

(

q

t

)

, if p ∤ t;
1
q

(

q

t

)

+ (−1)t+
t
p
v(b)
q

(
q

p
t
p

)

, if p | t.

Remark 2.6 For t ≥ 2, it is easy to see that #N(t, b,F∗
q) = 0 or #N(t, b,Fq) = 0 if and only

if 2 | q and (t, b) ∈ {(2, 0), (q − 2, 0)}.

6



3 Properties for (+)-ETGRS codes

In this section, we give a parity check matrix for the (+)-ETGRS code, and then prove
that (+)-ETGRS is MDS or NMDS. Furthermore, we give a sufficient and necessary condition
for a (+)-ETGRS code to be MDS or NMDS, and then determine the weight distribution
based on the subset sum problem. Finally, by using Schur method, we show that it is not
GRS or EGRS.

3.1 A parity check matrix for the (+)-ETGRS code

The following lemma is necessary to calculate a parity check matrix for the (+)-ETGRS
code.

Lemma 3.1 For any m ∈ N and A ⊆ Fq with |A| > 2, let

LA(m) =
∑

α∈A

αm
∏

β∈Fq\A

(α− β),

then

LA(m) =











0, ifm ≤ |A| − 2;

−1, ifm = |A| − 1;

−
∑

α∈A

α, ifm = |A|.
(3.1)

Proof. For any l ∈ Z+, it is well-known that

∑

γ∈Fq

γl =

{

−1, if (q − 1) | l;

0, otherwise.
(3.2)

Note that
∏

β∈Fq\A

(α− β) =αq−|A| −
∑

β∈Fq\A

βαq−|A|−1 + · · ·+ (−1)q−|A|
∏

β∈Fq\A

β

=αq−|A| +
∑

γ∈A

γαq−|A|−1 + · · ·+ (−1)q−|A|
∏

β∈Fq\A

β,

we have

LA(m) =
∑

α∈A

αm
∏

β∈Fq\A

(α− β)

=
∑

α∈Fq

(

αq−|A|+m +
∑

γ∈A

γαq−|A|−1+m + · · ·+ (−1)q−|A|+m
∏

β∈Fq\A

βαm
)

.
(3.3)

Now by (3.2)-(3.3), we obtain (3.1) directly. �

In the following theorem, we give a parity check matrix of the (+)-ETGRS code.
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Theorem 3.1 Let uj = −
n
∏

i=1,i 6=j

(αj − αi)
−1 (j = 1, . . . , n), then Ck,n(α, v, η,∞) has a parity

check matrix

Hn+1−k =















u1

v1

u2

v2
. . . un

vn
0

u1

v1
α1

u2

v2
α2 . . . un

vn
αn 0

...
...

...
...

u1

v1
αn−k−1
1

u2

v2
αn−k−1
2 · · · un

vn
αn−k−1
n η

u1

v1
αn−k
1

u2

v2
αn−k
2 · · · un

vn
αn−k
n 1 + ηSα















.

Namely,

C⊥
k,n(α, v, η,∞) =

{(u1

v1
g(α1), . . . ,

un

vn
g(αn), ηgn−k−1 + (1 + ηSα)gn−k

) ∣

∣

∣
deg g(x) ≤ n− k

}

,

where gn−k−1 and gn−k are the coefficients of xn−k−1 and xn−k in g(x), respectively.

Proof. Let

Gk =





g0
...

gk−1



 and Hn+1−k =





h0
...

hn−k



 .

Note that Rank(Hn+1−k) = n+ 1− k, thus it is enough to prove that

〈gs,hl〉 = 0 (∀s ∈ {0, . . . , k − 1}, l ∈ {0, . . . , n− k}). (3.4)

By Lemma 3.1 and

uj = −
n
∏

i=1,i 6=j

(αj − αi)
−1 =

∏

β∈Fq\Aα

(αj − β),

we can obtain (3.4) by the following four cases.
Case 1. For s ∈ {0, . . . , k − 2} and l ∈ {0, . . . , n− k}, we have s+ l ≤ n− 2, thus

〈gs,hl〉 =
n

∑

i=0

uiα
s
iα

l
i =

∑

α∈Aα

αs+l
∏

β∈Fq\Aα

(α− β) = 0.

Case 2. For s = k − 1 and l ∈ {0, . . . , n− k − 2}, we have k + l ≤ n− 2, thus

〈gs,hl〉 =
n

∑

i=0

ui(α
k−1
i + ηαk

i )α
l
i =

∑

α∈Aα

(αk−1+l + ηαk+l)
∏

β∈Fq\Aα

(α− β) = 0.

Case 3. For s = k − 1 and l = n− k − 1, one has

〈gs,hl〉 =
n

∑

i=0

ui(α
k−1
i + ηαk

i )α
n−k−1
i + η

=
∑

α∈Aα

(αn−2 + ηαn−1)
∏

β∈Fq\Aα

(α− β) + η = 0.
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Case 4. For s = k − 1 and l = n− k, one has

〈gs,hl〉 =
n

∑

i=0

ui(α
k−1
i + ηαk

i )α
n−k
i + (1 + ηSα)

=
∑

α∈Aα

(αn−1 + ηαn)
∏

β∈Fq\Aα

(α− β) + (1 + ηSα) = 0.

Now, by the above discussions, we complete the proof. �

Corollary 3.1 C⊥
k,n(α, v, η,∞) is MDS or AMDS.

Proof. By Theorem 3.1, for any codeword c ∈ C⊥
k,n(α, v, η,∞)\{0}, there exists some

g(x) =
n−k
∑

i=0

gix
i ∈ Fq[x] such that

c =
(u1

v1
g(α1), . . . ,

un

vn
g(αn), ηgn−k−1 + (1 + ηSα)gn−k

)

,

thus the Hamming weight

wc ≥ n− (n− k) = k. (3.5)

Note that C⊥
k,n(α, v, η,∞) is with length n+1 and dimension n+1− k, by (3.5), we complete

the proof. �

3.2 The weight distribution of the (+)-ETGRS code

Theorem 3.2 Let An+1−k be the number of codewords in Ck,n(α, v, η,∞) with weight n+1−k,
then

An+1−k = (q − 1)#N(k,−η−1, Aα).

Furthermore, we have
(1) Ck,n(α, v, η,∞) is MDS if and only if #N(k,−η−1, Aα) = 0;
(2) Ck,n(α, v, η,∞) is NMDS if and only if #N(k,−η−1, Aα) > 0.

Proof. Firstly, we show that Ck,n(α, v, η,∞) is MDS or AMDS.
By the definition, for any cf ∈ Ck,n(α, v, η,∞), there exists some

f(x) = fk−1η(x
k + η−1xk−1) +

k−2
∑

i=0

fix
i ∈ Fq[x]

such that

cf = (v1f(α1), . . . , vnf(αn), fk−1).

Let wcf
be the Hamming weight of cf , then we have the following two cases.
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Case 1. If fk−1 = 0, then deg f(x) ≤ k − 2. Thus

wcf
≥ n− (k − 2) = n− k + 2.

Case 2. If fk−1 6= 0, then deg f(x) = k. Thus

wcf
≥ n− k + 1.

Note that cf ∈ Ck,n(α, v, η,∞) is with length n + 1 and dimension k, by Cases 1-2, we
know that Ck,n(α, v, η,∞) is MDS or AMDS.

Next, we determine An−k+1. In fact, by Cases 1-2, we know that

wcf
= n− k + 1 if and only if #{α ∈ Aα

∣

∣ f(α) = 0} = k,

namely, there exists some k-element subset A ( Aα and λ 6= 0, such that

f(x) = λ
∏

α∈A

(x− α) = λ
(

xk −
∑

α∈A

αxk−1 +

k−2
∑

i=0

(−1)k−i
∑

I(A,|I|=i

∏

α∈I

αxi
)

. (3.6)

It implies that

An−k+1 =#

(

Vk,1,k−1,η ∩
{

f(x) = λ
∏

α∈A

(x− α)
∣

∣

∣
λ 6= 0, A ( Aα, |A| = k

}

)

=(q − 1)#
{

A
∣

∣

∣

∑

α∈A

α = −η−1, A ( Aα, |A| = k
}

=(q − 1)#N(k,−η−1, Aα).

Thus, we have the following two assertions.

(1) Ck,n(α, v, η,∞) is MDS if and only if #N(k,−η−1, Aα) = 0;
(2) Ck,n(α, v, η,∞) is AMDS if and only if #N(k,−η−1, Aα) > 0.

By the above discussions, Corollary 3.1, and the fact that the dual code of an MDS code
is MDS, we get the desired results. �

By Theorem 3.2 and Lemma 2.3, we get the following theorem directly.

Theorem 3.3 The weight distributions of Ck,n(α, v, η,∞) and C⊥
k,n(α, v, η,∞) are

An+1−k+s

=











(q − 1)#N(k,−η−1, Aα), if s = 0;
(

n+1
k−s

)

s−1
∑

j=0
(−1)j

(

n+1−k+s
j

)

(qs−j − 1)+(−1)s(q − 1)
(

k
s

)

#N(k,−η−1, Aα), if s = 1, . . . , k,

and

A⊥
k+s

=











(q − 1)#N(k,−η−1, Aα), if s = 0;
(

n+1
k+s

)

s−1
∑

j=0
(−1)j

(

k+s
j

)

(qs−j − 1)+(−1)s(q − 1)
(

k
s

)

#N(k,−η−1, Aα), if s = 1, . . . , n+ 1− k,

respectively.

10



By Lemma 2.4 and Theorem 3.3, we have the following corollaries directly.

Corollary 3.2 The weight distributions of Ck,q(Fq, v, η,∞) and C⊥
k,q(Fq, v, η,∞) are

Aq+1−k+s

=











































(q−1)
q

(

q
k

)

, if p ∤ k, s = 0;
(

q+1
k−s

)

s−1
∑

j=0
(−1)j

(

q+1−k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)(

q
k

)

, if p ∤ k, s = 1, . . . , k;

(q−1)
q

(

(

q
k

)

+ (−1)k+
k
p
+1(

q
p
k
p

)

)

, if p | k, s = 0;

(

q+1
k−s

)

s−1
∑

j=0
(−1)j

(

q+1−k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)

(

(

q
k

)

+ (−1)
k+ k

p
+1(

q

p
k
p

)

)

, if p | k, s = 1, . . . , k,

and

A⊥
k+s

=











































(q−1)
q

(

q
k

)

, if p ∤ k, s = 0;
(

q+1
k+s

)

s−1
∑

j=0
(−1)j

(

k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)(

q
k

)

, if p ∤ k, s = 1, . . . , q + 1− k;

(q−1)
q

(

(

q
k

)

+ (−1)k+
k
p
+1(

q

p
k
p

)

)

, if p | k, s = 0;

(

q+1
k+s

)

s−1
∑

j=0
(−1)j

(

k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)

(

(

q
k

)

+ (−1)k+
k
p
+1(

q
p
k
p

)

)

, if p | k, s = 1, . . . , q + 1− k,

respectively.

Corollary 3.3 If Aα = F∗
q, then the weight distributions of Ck,q−1(α, v, η,∞) and

C⊥
k,q−1(α, v, η,∞) are

Aq−k+s

=















(q−1)
q

(

(

q
k

)

+ (−1)
k+⌊k

p
⌋+1(

q

p
−1

⌊k
p
⌋

)

)

, if s = 0;

(

q
k−s

)

s−1
∑

j=0
(−1)j

(

q−k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)

(

(

q
k

)

+ (−1)k+⌊k
p
⌋+1(

q

p
−1

⌊k
p
⌋

)

)

, if s = 1, . . . , k,

and

A⊥
k+s

=















(q−1)
q

(

(

q
k

)

+ (−1)k+⌊k
p
⌋+1(

q

p
−1

⌊k
p
⌋

)

)

, if s = 0;

(

q
k+s

)

s−1
∑

j=0
(−1)j

(

k+s
j

)

(qs−j − 1)+(−1)s (q−1)
q

(

k
s

)

(

(

q
k

)

++(−1)
k+⌊k

p
⌋+1(

q

p
−1

⌊k
p
⌋

)

)

, if s = 1, . . . , q − k,

respectively.

3.3 The non-GRS (non-EGRS) property for the (+)-ETGRS code

In this subsection, we show that (+)-ETGRS codes are not GRS or EGRS by using the
Schur product.

In the following lemma, we give the Schur square of the (+)-ETGRS code.
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Lemma 3.2 If k ≥ 3, then the following two assertions hold.

(1) For k ≥ n+1
2
,

C2
k,n(α, v, η,∞) = Fn+1

q .

(2) For 3 ≤ k ≤ n
2
,

C2
k,n(α, v, η,∞)

=







C2k,n
(

α, v2, 2−1η
)

, if q is odd;
{

(v21f(α1), . . . , v
2
nf(αn), f2k) | f(x) = f2kx

2k +
2k−2
∑

i=0

fix
i ∈ Fq[x]

}

, if q is even.

Proof. It is enough to prove that (1) and (2) are both true for v = 1. In fact, by the
definition of Ck,n(α, 1, η,∞) and Remark 2.2, for k ≥ 3, we have

C2
k,n(α,1, η,∞)

=
〈

(αi+j , 0), (αi ⋆ (αk−1 + ηαk), 0), (αk−1 + ηαk, 1)2 (i = 0, . . . , k − 2; j = 0, . . . , k − 2)
〉

=
〈

(αi, 0), (α2k−4+j + ηα2k−3+j , 0), (α2k−2 + 2ηα2k−1 + η2α2k, 1) (i = 0, . . . , 2k − 4; j = 0, 1)
〉

=
〈

(αi, 0), (α2k−3 + ηα2k−2, 0), (α2k−2 + 2ηα2k−1 + η2α2k, 1) (i = 0, . . . , 2k − 3)
〉

=
〈

(αi, 0), (α2k−2 + 2ηα2k−1 + η2α2k, 1) (i = 0, . . . , 2k − 2)
〉

=
〈

(αi, 0), (2α2k−1 + ηα2k, 1) (i = 0, . . . , 2k − 2)
〉

.

=

{

〈

(αi, 0), (2α2k−1 + ηα2k, 1) (i = 0, . . . , 2k − 2)
〉

, if 2k − 2 ≤ n− 2;
〈

(αi, 0), (0, 1) (i = 0, . . . , n− 1)
〉

, if 2k − 2 ≥ n− 1;

=

{

〈

(αi, 0), (2α2k−1 + ηα2k, 1) (i = 0, . . . , 2k − 2)
〉

, if k ≤ n
2 ;

Fn+1
q , if k ≥ n+1

2 .

�

Theorem 3.4 For 3 ≤ k ≤ n− 2, Ck,n(α, v, η,∞) is not GRS or EGRS.

Proof. We give the proof by the following two cases.
Case 1. If 3 ≤ k ≤ n

2
, then 2k ≤ n. Now by Lemma 3.2, one has

dim
(

C2
k,n(α, v, η,∞)

)

= 2k.

And then by Proposition 2.1 and Remark 2.3, we know that Ck,n(α, v, η,∞) is not GRS or
EGRS.

Case 2. If n− 2 ≥ k ≥ n
2
+ 1, then n− k− 2 ≥ 0 and 2k− n ≥ 2. Now by Theorem 3.1,

we know that ci ∈ C⊥
k,n(α, v, η,∞) (i = 1, 2, 3), where

c1 =
( u1

v1
αn−k−2
1 ,

u2

v2
αn−k−2
2 , . . . ,

un

vn
αn−k−2
n , 0

)

,

c2 =
( u1

v1
αn−k−1
1 ,

u2

v2
αn−k−1
2 , . . . ,

un

vn
αn−k−1
n , η

)

,

c3 =
( u1

v1
αn−k
1 ,

u2

v2
αn−k
2 , . . . ,

un

vn
αn−k
n , 1 + ηSα

)

.
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Thus

c = c1 ⋆ c3 − c2 ⋆ c2 =
(

0, 0, . . . , 0, η2
)

∈ (C⊥
k,n(α, v, η,∞))2.

For an [n + 1, k] GRS (EGRS) code C, by proposition 2.1, we know that (C⊥)2 is an
[n+ 1, 2(n− k) + 1] GRS (EGRS) code, and then the minimum Hamming distance

d = (n+ 1)− (2(n− k) + 1) + 1 = 2k − n+ 1 ≥ 2.

Thus c /∈ (C⊥)2, and so C⊥
k,n(α, v, η,∞) is not GRS or EGRS, which implies that Ck,n(α, v, η,∞)

is not GRS or EGRS. �

4 Self-dual or almost self-dual (+)-ETGRS codes

4.1 A sufficient and necessary condition for a (+)-ETGRS code to
be self-orthogonal

(

C2
k,n(Fq, 1, η,∞)

)⊥
is given in the following lemma.

Lemma 4.1 For 3 ≤ k ≤ q − 2, we have the following two assertions.

(1) If k ≥ q+1
2
, then

(

C2
k,n(Fq, 1, η,∞)

)⊥
= {0}.

(2) If 3 ≤ k ≤ q

2
, then

(

C2
k,n(Fq, 1, η,∞)

)⊥

=







{

(

g(α1), . . . , g(αq), 2
−1ηgq−1−2k + gq−2k

)

| deg g(x) ≤ q − 2k
}

, if q is odd;
{

(g(α1), . . . , g(αq), gq−1−2k) | deg g(x) ≤ q − 2k
}

, if q is even,

where gq−1−k and gq−k are the coefficients of xq−1−2k and xq−2k in g(x), respectively.

Proof. By Lemma 3.2, we can obtain C2
k,n(Fq, 1, η,∞).

For q odd, note that C2
k,n(Fq, 1, η,∞) is a (+)-ETGRS code,

(

C2
k,n(Fq, 1, η,∞)

)⊥
can be

obtained based on Theorem 3.1.
For q even, by (3.2) we can verify that (2) is true directly. �

Basing on Lemma 2.2, Remark 2.4 and Lemma 4.1, we can get the following Theorems
4.1-4.2 directly.

Theorem 4.1 For 3 ≤ k ≤ q

2
, we have the following two assertions.

(1) If q is odd, then Ck,n(α, v, η) is self-orthogonal if and only if there exists some g(x) =
q−2k
∑

i=0

gix
i ∈ Fq[x] such that

ηgq−1−2k + 2gq−2k = 0, g(αj) = v2j (j = 1, . . . , n), g(β) = 0 (∀β ∈ Fq\Aα). (4.1)
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(2) If q is even, Ck,n(α, v, η) is self-orthogonal if and only if there exists some g(x) =
q−2k
∑

i=0

gix
i ∈ Fq[x] such that

gq−1−2k = 0, g(αj)
q

2 = vj (j = 1, . . . , n), g(β) = 0 (∀β ∈ Fq\Aα). (4.2)

By Theorem 4.1, we have the following corollary.

Corollary 4.1 For 3 ≤ k ≤ q

2
and l ∈ {3, . . . , k}, if Ck,n(α, v, η) is self-orthogonal, then

Cl,n(α, v, η) is self-orthogonal.

Proof. If Ck,n(α, v, η) is self-orthogonal, then there exists some g(x) =
q−2k
∑

i=0

gix
i ∈ Fq[x]

such that (4.1) or (4.2) holds. For l ∈ {3, . . . , k − 1}, let

h(x) =

q−2l
∑

i=q−2k+1

gix
i + g(x) with gi = 0 (i = q − 2k + 1, . . . , q − 2l),

then we can check that h(x) satisfies (4.1) or (4.2), thus Cl,n(α, v, η) is self-orthogonal. �

Especially, we can get a sufficient and necessary condition for Ck,n(α, v, η) to be self-dual.

Corollary 4.2 For 3 ≤ k ≤ q

2
, if uj = −

2k
∏

i=1,i 6=j

(αj − αi)
−1 (j = 1, . . . , 2k), then we have the

following two assertions.
(1) If q is odd, then Ck,2k(α, v, η) is self-dual if and only if there exists some λ ∈ F∗

q such
that

ηSα + 2 = 0 and λuj = v2j (j = 1, . . . , n).

(2) If q is even, then Ck,2k(α, v, η) is self-dual if and only if there exists some λ ∈ F∗
q such

that

Sα = 0 and λu
q

2

j = vj (j = 1, . . . , 2k).

Proof. By Theorem 4.1, we know that Ck,n(α, v, η) is self-dual if and only if there exists
some λ ∈ F∗

q such that g(x) = λ
∏

β∈Fq\Aα

(x− β) satisfies (4.1) or (4.2). Now by

λ
∏

β∈Fq\A

(αj − β) = −λ
2k
∏

i=1,i 6=j

(αj − αi)
−1 (j = 1, . . . , 2k),

we get the desired results directly. �
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Theorem 4.2 For 3 ≤ k ≤ q

2
, we have the following two assertions.

(1) If q is odd, then Ck,n(α, v, η,∞) is self-orthogonal if and only if there exists some

g(x) =
q−2k
∑

i=0

gix
i ∈ Fq[x] such that

2−1ηgq−1−2k + gq−2k = 1, g(αj) = v2j (j = 1, . . . , n), g(β) = 0 (∀β ∈ Fq\Aα). (4.3)

(2) If q is even, Ck,n(α, v, η,∞) is self-orthogonal if and only if there exists some g(x) =
q−2k
∑

i=0

gix
i ∈ Fq[x] such that

gq−1−2k = 1, g(αj)
q

2 = vj (j = 1, . . . , n), g(β) = 0 (∀β ∈ Fq\Aα). (4.4)

By Theorem 4.2, we have the following corollary.

Corollary 4.3 For 3 ≤ k ≤ q

2
and l ∈ {3, . . . , k}, if 0 /∈ Aα and Ck,n(α, v, η,∞) is self-

orthogonal, then Cl,n(α,αk−l ⋆ v, η,∞) is self-orthogonal.

Proof. If Ck,n(α, v, η,∞) is self-orthogonal, then there exists some g(x) =
q−2k
∑

i=0

gix
i ∈

Fq[x] such that (4.3) or (4.4) holds. For 0 /∈ Aα and l ∈ {3, . . . , k − 1}, let

h(x) = x2(k−l)g(x) =

q−2l
∑

i=0

ḡix
i,

then for q odd, we have

ηḡq−1−2l + 2ḡq−2l = 0, h(αj) = α
2(k−l)
j v2j (j = 1, . . . , n), h(β) = 0 (∀β ∈ Fq\Aα). (4.5)

For q even, we have

ḡq−1−2l = 0, h(αj)
q

2 = αk−l
j vj (j = 1, . . . , n), h(β) = 0 (∀β ∈ Fq\Aα). (4.6)

Now by Theorem 4.2 and (4.5)-(4.6), Cl,n(α,αk−l ⋆ v, η,∞) is self-orthogonal. �

By Theorem 4.2, if Ck,n(α, v, η,∞) is self-orthogonal, then q−2k ≥ q−n, namely, n ≥ 2k.
Note that the length of Ck,n(α, v, η,∞) is n+ 1, thus we have the following corollary.

Corollary 4.4 There is no any self-dual (+)-ETGRS code.

By Theorem 4.2, in the similar proof as that for Corollary 4.2, we have the following
corollary.

Corollary 4.5 For 3 ≤ k ≤ q

2
, let uj = −

2k
∏

i=1,i 6=j

(αj − αi)
−1 (j = 1, . . . , 2k), we have the

following two assertions.
(1) If q is odd, then Ck,2k(α, v, η,∞) is almost self-dual if and only if there exists some

λ ∈ F∗
q such that

λ(2−1ηSα + 1) = 1, and λuj = v2j (j = 1, . . . , n).

(2) If q is even, then Ck,2k(α, v, η,∞) is almost self-dual if and only if there exists some
λ ∈ F∗

q such that

λSα = 1, and (λuj)
q
2 = vj (j = 1, . . . , n).

15



4.2 The Construction for the self-orthogonal (+)-TGRS (ETGRS)
code

4.2.1 The case for q even

For any b ∈ F∗
q and 3 ≤ t ≤ q − 4, by Remark 2.6, we know that

N(t, b,F∗
q) =

{

{x1, . . . , x2k} ⊆ D
∣

∣x1 + · · ·+ xt = b
}

6= ∅,

and
N(t, b,Fq) =

{

{x1, . . . , x2k} ⊆ D
∣

∣x1 + · · ·+ xt = b
}

6= ∅.

Now by Corollaries 4.2 and 4.5, we can obtain the following theorem directly.

Theorem 4.3 For q even and 3 ≤ k ≤ q−2
2
, let η ∈ F∗

q, α = (α1, . . . , α2k), and

v = (v1, . . . , v2k) with vj =
2k
∏

i=1,i 6=j

(αj − αi)
− q

2 (j = 1, . . . , 2k).

Then
(1) for Aα ∈ N(2k, 0,Fq), Ck,2k(α, v, η) is self-dual;
(2) for Aα ∈ N(2k, 1,F∗

q), Ck,2k(α, v, η,∞) is almost self-dual.

By Theorem 4.3, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.6 Let q, k, η, α and v be given in Theorem 4.3. If l ∈ Z+ with 3 ≤ l ≤ k − 1,
then

(1) for Aα ∈ N(2k, 0,Fq), Cl,2k(α, v, η) is self-orthogonal;
(2) for Aα ∈ N(2k, 1,F∗

q), Cl,2k(α,αk−l ⋆ v, η,∞) is self-orthogonal.

4.2.2 The case for q odd

Note that any element in Fpm is a square element in Fp2m , then by Theorem 3.2, Corollaries
4.2 and 4.5, we have the following theorem.

Theorem 4.4 For any positive integer m and odd prime p, let 3 ≤ k ≤ pm−1
2

, q = p2m and
F∗
pm = 〈γ〉, α = (α1, . . . , α2k) and

v = (v1, . . . , v2k) with vj =
(

−
2k
∏

i=1,i 6=j

(αj − αi)
−1
)

1

2

(j = 1, . . . , 2k).

Then the following two assertions hold.

(1) If α = (γ, . . . , γi0−1, 0, γi0+1, . . . , γk,−γ, . . . ,−γk) and η = 2γ−i0, then Ck,2k(α, v, η)
is self-dual.

(2) If α = (γ, . . . , γk,−γ, . . . ,−γk), then

(1.1) for η ∈ Fq\Fpm, Ck,2k(α, v, η,∞) is an almost self-dual MDS code;
(1.2) for N(k,−η−1, Aα) > 0, Ck,2k(α, v, η,∞) is an almost self-dual NMDS code.
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By Theorem 4.4, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.7 Let q, k, m, η, α and v be given in Theorem 4.4. For any integer l with
3 ≤ l ≤ k, we have the following two assertions.

(1) If α = (γ, . . . , γi0−1, 0, γi0+1, . . . , γk,−γ, . . . ,−γk) and η = 2γ−i0, then Cl,2k(α, v, η)
is self-orthogonal.

(2) If α = (γ, . . . , γk,−γ, . . . ,−γk), then

(1.1) for η ∈ Fq\Fpm, Cl,2k(α,αk−l ⋆ v, η,∞) is a self-orthogonal MDS code;
(1.2) for N(k,−η−1, Aα) > 0, Cl,2k(α,αk−l ⋆ v, η,∞) is a self-orthogonal NMDS code.

Now we give a construction for almost self-dual (+)-ETGRS codes by using the trace
map. For integers r and m with r | m, the trace map from Fpm to Fpr is defined as

Trmr (x) = xpm−r

+ xpm−2r

+ · · ·+ x (∀x ∈ Fpm).

Denote Ker(Trmr ) = {x ∈ Fpm|Tr
m
r (x) = 0}. Since the trace map is uniform, we have

|Ker(Trmr )| = pm−r, (4.7)

and then

Trmr (x) =
∏

α∈Ker(Trmr )

(x− α). (4.8)

Note that any element in Fpr is a square element in Fpm, by (4.7)-(4.8), based on Theorem
4.2, we get the following theorem directly.

Theorem 4.5 For any odd prime p, integers r and m with 2 | m
r
, let q = pm and 3 ≤ k ≤ q−2

2
.

If η ∈ F∗
q, α = (α1, . . . , αpm−pm−r) with Aα = Fpm\Ker(Trmr ), and

v = (v1, . . . , vj) with vj = Trmr (αj)
1

2 (j = 1, . . . , pm − pm−r).

Then C pm−pm−r

2
,pm−pm−r

(α, v, η,∞) is almost self-dual.

By Theorem 4.5, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.8 Let q, r, m, η, α and v be given in Theorem 4.5. Then for any integer l with

3 ≤ l ≤ pm−pm−r

2
− 1, Cl,pm−pm−r(α,α

pm−pm−r
−2l

2 ⋆ v, η,∞) is self-orthogonal.

5 Conclusions

In this paper, we have the following main results.

(1) The parity check matrix for the (+)-ETGRS code is given.

17



(2) The (+)-ETGRS code is MDS or NMDS.

(3) The (+)-ETGRS code is not GRS or EGRS.

(4) The weight distribution of the (+)-ETGRS code is determined.

(5) A sufficient and necessary condition for any punctured code of the (+)-ETGRS code
to be self-orthogonal is presented.

(6) Several classes of (almost) self-dual MDS or NMDS codes are constructed.
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