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Abstract. In this paper, we give a parity check matrix for the (+)-extended twisted gener-
alized Reed Solomon (in short, ETGRS) code, and then not only prove that it is MDS or NMDS,
but also determine the weight distribution. Especially, based on Schur method, we show that the
(+)-ETGRS code is not GRS or EGRS. Furthermore, we present a sufficient and necessary condition
for any punctured code of the (+)-ETGRS code to be self-orthogonal, and then construct several
classes of self-dual (+)-TGRS codes and almost self-dual (4)-ETGRS codes.
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1 Introduction

An [n, k,d] linear code C over F, is a k-dimensional subspace of Fj with minimum
(Hamming) distance d and length n. If the parameters reach the Singleton bound, namely,
d=mn—k+1, then C is maximum distance separable (in short, MDS). If d = n — k, then C is
called almost MDS (in short, AMDS). In addition, C is said to be near MDS (in short, NMDS)
if both C and C*+ are AMDS. Since MDS codes and NMDS codes are very important in coding
theory and applications [5, 17, 26, 31, 35], the study of MDS codes or NMDS codes, including
weight distributions, constructions, equivalence, self-orthogonal, (almost) self-dual property,
and so on, has attracted a lot of attention [1, 9-13, 20, 21, 28, 29, 32]. Especially, generalized
Reed-Solomon (in short, GRS) codes are a class of MDS codes. A lot of self-dual or almost
self-dual MDS codes are constructed based on GRS codes [4, 6, 7, 14, 18 19, 23, 30, 33, 34].

In 2017, inspired by the construction for twisted Gabidulin codes [27], Beelen et al. firstly
introduced twisted Reed-Solomon (in short, TRS) codes, which is a generalization for Reed-
Solomon codes, they also showed that TRS codes could be well decoded. Different from GRS
codes, they showed that a twisted generalized Reed-Solomon (in short, TGRS) code is not
necessary MDS and presented a sufficient and necessary condition for a TGRS code to be
MDS [2]. Especially, the authors showed that most of TGRS MDS codes are not GRS when

the code rate is less than one half [3, 25]. Later, by TGRS codes, Lavauzelle et al. presented
an efficient key-recovery attack used in the McEliece cryptosystem [22]. TGRS codes are also
used to construct LCD MDS codes by their applications in cryptography [16, 25]. Recently,
Huang et al. not only gave the parity check matrix for the (+)-TGRS code, but also showed
that it is MDS or NMDS. Furthermore, they presented a sufficient and necessary condition

for the (+)-TGRS code to be self-dual, and then constructed several classes of self-dual MDS
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or NMDS codes [15]. More relative results about self-orthogonal MDS or NMDS TGRS codes
can be seen in [3, 36, 37].

In this paper, we focus on the (+)-extended twisted generalized Reed Solomon (in short,
ETGRS) code. This paper is organized as follows. In section 2, some basic notations and
results about linear codes are given. In section 3, a parity check matrix and the weight
distribution for the (+)-ETGRS code are obtained, and then based on the Schur product
method, we show that the (+)-ETGRS code is not GRS or EGRS. In section 4, a sufficient
and necessary condition for any punctured code of the (4+)-ETGRS code to be self-orthogonal
is presented, and then several classes of self-dual or almost self-dual are constructed. In section
5, we conclude the whole paper.

2 Preliminaries
Throughout this paper, we fix some notations as follows for convenience.
e ¢ is a power of a prime.
e [F, is the finite field with ¢ elements, and F; = F,\{0}.
e [ [z] is the polynomial ring over F,.

e i and n are both positive integers with 2 < k < n.

e For any a = (ay, ..., a,) € F, denote (a,a) = (a1, ..., ay,a) (Va € F,y),

L (1,0, ifi=0; R -
{ . ifiezt, Ao ={a;|i=1,... n}, Sa—Zoz.

aEAq

In this section, we review some basic notations and knowledge about GRS codes, EGRS
codes, (+)-TGRS codes, (+)-ETGRS codes, Schur product, punctured codes, self-orthogonal
codes, NMDS codes and the subset sum problem, respectively.

2.1 GRS, EGRS, TGRS and ETGRS codes
2.1.1 The GRS and EGRS code

The definitions of the GRS code and the EGRS code are given in the following, respec-
tively.

Definition 2.1 ([17]) Let a = (ay, ..., ap) € Fy with o; # o (i # j) and v = (vy,...,v,) €
(F)". Then the GRS code is defined as

GRSkn(o,v) ={(v1f(ar),. .., vnf(on)) | f(x) € Fola], deg f(z) <k —1}.
The EGRS code is defined as
GRSk n(a,v,00) = {(v1f(ar), ..., vnflan), fimr) | f(z) € Folx], deg f(x) <k —1}



where fi._y is the coefficient of x*~1 in f(z).
If v =1, then GRSk n(a, 1) and GRSk (ax, 1,00) are the RS code and the ERS code,
respectively.

The dual codes of the GRS code and the EGRS code are given in the following, respec-
tively.

n

Lemma 2.1 ([19]) Let u = (uq,...,u,) withu; =— [[ (o —a;)!, then
i=1,i#]

(GRSkn(a, 1)) = GRS, jnlcr, )
and

(gRSk,n(au 17 OO))J_ = gRSn—l—l—k,n(av u, OO)

2.1.2 The (+)-TGRS and (+)-ETGRS code

Definition 2.2 ([2]) Let t, h and k be positive integers with 0 < h < k < q and n € F},.
Define the set of (k,t, h,n)-twisted polynomial as

k-1
Vit hn = {f(:L") = ' +napa ™ e, €Fy (i =0, k- 1)},
i=0

which is a k-dimensional Fy-linear subspace. h and t are the hook and the twist, respectively.

From the twisted polynomials linear space Vj14-1,, the definitions of the (+)-TGRS
code and the (+)-ETGRS code are given in the following, respectively.

Definition 2.3 ([2]) Let n € F}, a = (u,..., ) € F} with oy # a; (i # j) and v =
(v1,...,vn) € (F)". Then the (+)-TGRS code is defined as

Cin(a,v,m) = {(vif(ar),...,vnf(w)) | [(2) € Vi1 -1}
The (+)-ETGRS code is defined as
Crn(o,v,m,00) = {(vif(an), ... onflan), fier) | f(2) € Virp-1},
where fy_y is the coefficient of x*~1 in f(z).
If v =1, then Cy (o, 1,n) and Cy (e, 1,m,00) are the (+)-TRS code and the (+)-ETRS

code, respectively.

Remark 2.1 By Definition 2.2, it is easy to see that the generator matriz for Cy, (o, v, 1, 00)
18

Uy Uy c Up, 0

V10 Voo . Uiy, 0

G = : : : :
vyab 2 vyak 2 - vpak=2 0

vi(a¥ 4 nak) va(ah Tt 4 nak) Lo vu(ef T Fpad) 1
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2.2 Some notations for linear codes
2.2.1 The Schur product

The Schur product is defined as follows.

Definition 2.4 Forx = (v1,...,2,),y = (y1,---,Yn) € Fy, the Schur product between x and
y is defined as

X*y = (zlyla s >$nyn)'
The Schur product of two g-ary codes Cy and Cy with length n is defined as

Cl*CQZ <C1*C2|C1 €C1,02 ECQ>.

Especially, for a code C, we call C* == C x C the Schur square of C.

Remark 2.2 For any linear codes Cy and Cy, if C; = (vy,...,v,) and Cy = (wy, ..., wy,)
with Vi, W; GFZL (’izl,...,kl,jzl,...,kg), then
Cl*ng(vi*wj(izl,...,kl,jzl,...,k2)>, (21)

By the definitions of the GRS code and the EGRS code, Lemma 2.1 and Remark 2.2, we
have the following proposition about the Schur square of GRS (EGRS) code.

Proposition 2.1 Let u = (uy,...,u,) withu; =— [[ (o5 —a;) (j=1,...,n).
i=1,ij

n+1
(1) If k < ™2, then
GRSE i1 (0, 1) = GRSk 1n41(0, 1) and GRS}, (. 1,00) = GRS2p—1,n(cx, 1,0).

2) Ifn+1>k> 5 + 1, then
(GRS} g1 (e, 1))2 = GRSan-okr1n+1(a,u®) and (GRSy (a1, OO))2 = GRSan—apt1.0(c, u®, 00).

2.2.2 The equivalence and punctured codes for linear codes
The definition of the equivalence for linear codes is given in the following.

Definition 2.5 Let C, and Cy be linear codes over IF, with length n, and S,, be the permutation
group with order n. We say that C; and Cy are equivalent if there is a permutation m € S,
and v = (vi,...,v,) € (F;)" such that Cy = @, (C1), where

Qro  Fy =T, (c1,0060) = (V1C), -+ -5 UnCr(n))-
Remark 2.3 It is easy to see that C3 and C3 are equivalent when C; and Cy are equivalent.

The definition of the punctured code is given in the following.

Definition 2.6 For any positive integers m and n with m < n, let C be a linear code over I,
with length n, and I = {iy,...,im} C {1,...,n}. The punctured code for C over I is defined
as

C[ = {(Ci17---7cim) | (Cl,...,0n> c C}
Remark 2.4 (1) If vy, vy € (F})", oy, € F} with Aa, = Aa,, then Cp (a1, v1,m,00) and
Cin(0a, V2,1, 00) are equivalent.

(2) If Ao = F,, we denote Cy,(F,,v,1,00) = Cpn(ax,v,n,00). Obviously, any (+)-TGRS
code or (+)-ETGRS code is equivalent to a punctured code of Cy »(F,, v,1,00).
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2.2.3 Self-orthogonal linear codes

The notations about self-orthogonal, self-dual or almost self-dual codes are given in the
following, respectively.
For a = (ay,...,a,), b= (b1,...,b,) € Fy, the inner product is defined as

<a, b> = i a,bl
=1

And then the dual code of C is defined as
ct={c e Fy | (c',c) = 0,for any ¢ € C}.

Especially, if C C C*, then C is self-orthogonal. Especially, if C = C*, then C is self-dual; if C
is self-orthogonal with length n odd and dim(C) = "T_l, then C is almost self-dual.

Let 1, be the identity in S, a sufficient and necessary condition for &, _,(C;) to be
self-orthogonal is presented in the following lemma.

Lemma 2.2 Let n and m be positive integers with m < n, I = {iy,...,in} € {1,...,n},
and v = (vy,...,v,) € (F;)™. Then for a q-ary linear code C with length n, ®1_,(Cr) is
self-orthogonal if and only if there is some ¢ € (C?)* such that

Supp(c) =1 and ¢;; =v; (j=1,...,m).

Proof. By the definition of the self-orthogonal code, ®,, ,(C) is self-orthogonal if and
only if

Z VjC1,4;ViCo4; = 0 for any c; = (Ct7i1, ce Ct,im) € C[ (t = 1, 2),
j=1

namely,
ZUJQ-(CLijczij) =0 forany ¢, = (Ct,ilv e 7Ct,im) €y (t =1, 2)7
j=1

equivalently, there is some ¢ = (cy, ..., c,) € (C?)* such that

Supp(c) =1 and ¢, =v; (j=1,...,m).
U

2.3 Near MDS codes and the subset sum problem over finite fields
2.3.1 Weight distributions of near MDS codes

It is well-known that the weight distribution for the MDS code [n,k,n"k + 1] over F,
depends only on the values of n, k and ¢. But for the NMDS code [n, k,n" k] over F,, the
weight distribution depends not only on the values of n, k and ¢, but also on the number of
its minimum weight codewords, which can be seen in the following lemma.

bt



Lemma 2.3 ([5]) Let C be an [n,k,n — k| NMDS code over F, and A; (i = 0,1,...,n) the
number of codewords in C with weight i. Then weight distributions of C and C*+ are given by

-1

Aprs = ( " 8) Z (" kT 3) (¢ — 1)+(—1)8<’;) A (s=1,...,k), (2.2)

and
Al = (kis) S_l(—l)j (HS) (¢ — 1)+(—1)S(I;)A; (s=1,....,n—k). (2.3)

Furthermore,
Ay = AL

Remark 2.5 Let C be an [n,k,n — k + 1] MDS code, then A, = AL = 0, the weight
distributions for C and C*+ are given in (2.2) and (2.3), respectively.

2.3.2 The subset sum problem over finite fields

In the following, we give the notation and a lemma for the subset sum problem over finite
fields, which are needed to determine the weight distribution of Cy (e, v,n, 00).

The subset sum problem is a well-known NP-complete problem. Given ¢t € Z*, b € F,
and D C F, with |D| > ¢, let

Nth {{,’,Ul,...,flft}gD‘x1+...+xt:b}7
then #N(t,b, D) is the number of t-element subsets of D whose sum is b. Determine the value

of #N(t,b, D) is the subset sum problem.
For D =, or I}, the value of #N(t,b, D) is given explicitly in the following lemma.

Lemma 2.4 ([2)]) Let v(b) = {q_; Lo irb=0; Then

if b # 0.
o La=1\ t+L%JU(b)(%_1)
#N(tvvaq) q< t )_'_( 1) q L%J 7
and
L(), ifptt;
ANWOE) =1y i gy app

Remark 2.6 Fort > 2, it is easy to see that #N(t,b,F;) = 0 or #N(t,0,F,) = 0 if and only
if 2] q and (t,0) € {(2,0), (¢ —2,0)}.



3 Properties for (+)-ETGRS codes

In this section, we give a parity check matrix for the (4+)-ETGRS code, and then prove
that (+)-ETGRS is MDS or NMDS. Furthermore, we give a sufficient and necessary condition
for a (+)-ETGRS code to be MDS or NMDS, and then determine the weight distribution
based on the subset sum problem. Finally, by using Schur method, we show that it is not
GRS or EGRS.

3.1 A parity check matrix for the (+)-ETGRS code

The following lemma is necessary to calculate a parity check matrix for the (+)-ETGRS
code.

Lemma 3.1 For any m € N and A CF, with |A| > 2, let

=Y a" ] (a-9),

acA BeFNA

then
La(m) =4 L ifm = [A] - 1; (3.1)
- >, ifm=|Al.
acA
Proof. For any [ € Z*, it is well-known that
-1, if(¢g—1)|
l ) )
Z T {O, otherwise. (3:2)
v€Fq
Note that
H (a — B) =t~ — Z Bad A= g (—1) A H B
BEF\A BEF\A BEF\A
veA BEFN\A
we have
=2 a" ]I (@=5)
acA BeFN\A
o e (3.3)
=3 (arm 3 ety (cqyeate T ga)
aclk, yEA BEFN\A
Now by (3.2)-(3.3), we obtain (3.1) directly. O

In the following theorem, we give a parity check matrix of the (4)-ETGRS code.
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Theorem 3.1 Let uj =— [[ (o —a)™t (j=1,...,n), then Cpn(a,v,n,

i=1,i#j
check matrix
u1 ug Un 0
ul'Ul u2'02 uvn
el ey =_n
o el VO 0
Hn—l—l—k ==
ui n—k—1 wus n—k—1 Un ~n—k—1
V1 1 k V2 2 k Un n 77
Loy~ Zay Tt e tRag o1+ 1S,

Namely,

o0) has a parity

U Up,
Cialer,v.1.00) = { (Fa(0n). ... 22 g(0). ngrir + (14 Sa)gur) | deggle) <n— k.

n

where gn_r_1 and g,_. are the coefficients of " %=1 and x"~* in g(z), respectively.
Proof. Let
9o ho
Gr = : and Hpy1 g = :
g1 |-

Note that Rank(H, 1) = n + 1 — k, thus it is enough to prove that
(goh) =0 (Vs {0,....k—1}, 1€{0,....,n—k}).

By Lemma 3.1 and
u=— [[ (@=e)' = ] (05-0)
i=1,i#j BEFG\Aa

we can obtain (3.4) by the following four cases.

(3.4)

Case 1. Fors € {0,...,k—2} and [ € {0,...,n — k}, we have s + [ < n — 2, thus

(gs, hy) Zul = Zof” H (a—B)=0.

a€Aq BEF,\ A

Case 2. Fors=k—1andl€{0,...,n—k —2}, we have k+1 < n — 2, thus

(gs. ) Zu P nah)al = ) (@ g patt) ] (a-p8)=0.

OCEAQ BE]Fq\Aa

Case 3. Fors=k—1and [l =n—k — 1, one has
(gs, hu) Zu P na)ap Tt 4

:Z (@2 +na"") J[ (@=B)+n=0.

acAq BEFQ \Aa



Case 4. For s=k —1 and [ = n — k, one has

(9o bu) = us(af ™ 4 maf)al ™ + (14 nSa)
=0

=S (@ +na" [ (@=B8)+(1+nSa)=0.

a€Aq BEF,\ A

Now, by the above discussions, we complete the proof. O

Corollary 3.1 Cj,(a,v,1,00) is MDS or AMDS.

Proof. By Theorem 3.1, for any codeword ¢ € Cp,(a,v,n,00)\{0}, there exists some
n—k
g(z) = " giz" € F [z] such that
i=0

Uy Unp,
c= (U—g(oq), R U_g(an)u Ngn—k-1+ (1 + nSa)gn—’f)’

1 n

thus the Hamming weight
we >n—(n—k)=k. (3.5)

Note that Ck{n(a, v, 1n,00) is with length n+ 1 and dimension n+ 1 —k, by (3.5), we complete
the proof. O

3.2 The weight distribution of the (+)-ETGRS code

Theorem 3.2 Let A, 1 be the number of codewords in Cy (e, v, 1, 00) with weight n+1—k,
then

An—l—l—k = (q - 1)#N(k7 _7]_17 Aa)
Furthermore, we have
(1) Crn(ex,v,m,00) is MDS if and only if #N(k,—n~*, Ay) = 0;
(2) Crn(at,v,n,00) is NMDS if and only if #N(k,—n~", As) > 0.
Proof. Firstly, we show that Cy (o, v,n,00) is MDS or AMDS.

By the definition, for any c¢; € Cy,(ax, v, 7, 00), there exists some

k2
f@) = feom(@® + 072" 43 fia' € Fyfa]
=0

such that

cr= (vif(ar),...,vnf(am), fu-1).

Let w., be the Hamming weight of ¢y, then we have the following two cases.
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Case 1. If f;,_; =0, then deg f(z) < k — 2. Thus
we, >n—(k—2)=n—k+2.
Case 2. If f;,_1 # 0, then deg f(z) = k. Thus
We, >N — k—+1.

Note that ¢; € Cypn(a,v,n, 00) is with length n + 1 and dimension k, by Cases 1-2, we
know that Cy (o, v, 7, 00) is MDS or AMDS.
Next, we determine A,, ;1. In fact, by Cases 1-2, we know that

=n—k+1if and only if #{a € A, | f(a) =10} =k,
namely, there exists some k-element subset A C A, and A\ # 0, such that

k—2
f@)=A][(z - ) = A(mk DI ED N DR | | ax) (3.6)

acA acA ICA,|I|=iael

’I.Ucf

It implies that

— (vk,l,k_m @ =aTl@=a) | x40, AC Aa, 4] = k})

a€cA

—(g— 1)#{A ‘ Sa=—n AC Ag, A = k;}
aEA

:(q - 1)#N(ka —77_1, Aa)'

Thus, we have the following two assertions.

(1) Cr.n(ex,v,m,00) is MDS if and only if #N(k, —n~!, Ay) = 0;
(2) Cr.n(ar,v,m,00) is AMDS if and only if #N(k, -~ Ay) > 0.

By the above discussions, Corollary 3.1, and the fact that the dual code of an MDS code
is MDS, we get the desired results. O

By Theorem 3.2 and Lemma 2.3, we get the following theorem directly.

Theorem 3.3 The weight distributions of Cy (o, v,m,00) and C,in(a, v,1,00) are

An—i—l—k—i—s
(¢ = D#N(k, —n", Aa), ifs = 0;
8_1 . .
() D)@ = DD = DO#N G Aa), ifs =1k,
i=
and
AlJc_—i-s
(g — D#N(k,—n", Aa), ifs = 0;
S—l . .
(hie) > (-1 IV =)+ (=1 (g = D) #N(k, =0 Aa), ifs=1,...,n+1—F,
i=
respectively.
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By Lemma 2.4 and Theorem 3.3, we have the following corollaries directly.

Corollary 3.2 The weight distributions of Cy 4(F,, v,n,00) and Ck{q(Fq, v,1,00) are

Aq+1—k+s
(qgl) (9), ifptk,s=0;
s—1
(1) £ 07 (55 @ = D+ () R () (), piks=1...k
j=
= _ k 1 .
2 () + (1 (), Ik s =0
P
s—1 _ k 4 .
(%—ti) | 0(_1) (q+1 k-i-s)(qs J _1) ( 1)8(‘1ql) (/;) ((g) +(_1)k+p+1(z))’ ifp | k,s=1,...,k,
j= P
and
AlJc_—i-s
(=1 (), ifptk,s=0;
s—1 . . _ .
(i) 2 (07 (57) @ - D+ (0 (7). ipthk,s=1,..,¢+1—k
j=
e _ E g y
(qql) <(Z) i (_1)k+p+1(§)>7 ifp|k,s=0;
s—1 . P _ k 4 .
(53 SV =D+ E0HER O () + 0 @), e lks =1oa+ -k
J= P
respectively.

Corollary 3.3 If Ay =T, then the weight distributions of Cyq—1(cx,v,m,00) and
Cli_,q—l(au v, 1, OO) are

Ag—kts
SO0+ 0N L), domt
() Z)(_l)j (E) @ = D+ () () + (—1)'““?’”1(@1))7 ifs =1,k
and
Ay
=) ((9) +(—1)’““%J“(%Lgf))7 o=l
= s—1

. s i s (g— k q_1 .
(1) S (1)@ =040 RO () + + -0 EL), is=1a -k,
J= P
respectively.

3.3 The non-GRS (non-EGRS) property for the (+)-ETGRS code

In this subsection, we show that (+)-ETGRS codes are not GRS or EGRS by using the
Schur product.
In the following lemma, we give the Schur square of the (+)-ETGRS code.
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Lemma 3.2 If k > 3, then the following two assertions hold.

(1) For k > ™,
Conla,v,m,00) =F

(2) For3<k <2,

Ck,n(aa v, 1, OO)

Corn (, 2,27 1), if ¢ 1s odd,
— 2%—2

{(U%f(al), cvpf(am), for) | f(@) = fax® + ;) fix' € Fq[a?]}, if q is even.

Proof. It is enough to prove that (1) and (2) are both true for v = 1. In fact, by the
definition of Cy (e, 1,7, 00) and Remark 2.2, for k > 3, we have

C]% n(a7 17 ,’77 OO)

- <( i+ 0), (o % (aF 1 4 nak), 0), (@F L £ ek, 1)2 (i=0,... k—25=0,... .k — 2)>
<(a’,0) (aF=4H7 4 a3+ 0) (a2 4 2pa2* L 4 n2a 1) (i =0,...,2k —4;j = 0,1)>
<(al, 0), (@®*73 4+ na®=2,0), (a2 + 2na®* 1 + n?a® 1) (i=0,...,2k — 3)>
<(a’, 0), (@22 + 2pa®~1 4 2a® 1) (i =0,...,2k — 2)>
<(a’,0), 2021 £ pa® 1) (i=0,...,2k — 2)> .

B {((ai,O), (20251 4ok 1) (i=0,...,2k—2)), if2%k—2<n—2;

1 {(@%,0),(0,1) (i=0,...,n—1)), if2k—2>n—1;

B {((ai,O), (20251 4 pa?* 1) (i=0,...,2k—2)), ifk<Z;

= FZH) if ke > n+1

Theorem 3.4 For3 <k <n-—2, Cy,(a,v,n,00) is not GRS or EGRS.

Proof. We give the proof by the following two cases.
Case 1. f 3<k < g, then 2k < n. Now by Lemma 3.2, one has

dim (C7 (e, v,7m,0)) = 2k.

And then by Proposition 2.1 and Remark 2.3, we know that Cj (e, v,7,00) is not GRS or
EGRS.
Case 2. f n—2>k > 5 +1,then n—k—22>0and 2k —n > 2. Now by Theorem 3.1,

we know that ¢; € Ck{n(a, v,1n,00) (i =1,2,3), where

Ul pp—2 U2 4 f_9 Up p_f—2
clz<—0z1 , — e, — Q) 0

U1 o) Un,

U1 p—f—1 U2 g1 Un p—k—1
02:<—a1 , e, QY 1,

U1 V2 Unp,

Uy n—=k U2 n—=k Up n—=k
03:<—a1 , —any o, —ar " 14+ nSy ).

U1 o) Un,

12



Thus
c=ci*xc3— ke = (0,0,...,0,7%) € (Ck{n(a,v,n,oo))?

For an [n + 1,k] GRS (EGRS) code C, by proposition 2.1, we know that (C+)? is an
n+1,2(n — k) + 1] GRS (EGRS) code, and then the minimum Hamming distance

d=n+1)—2n—-k)+1)+1=2k—n+12>2.

Thus ¢ ¢ (C1)?, and so Ck{n(a, v, 1, 00) is not GRS or EGRS, which implies that Cy ,, (e, v, 7, 00)
is not GRS or EGRS. l

4 Self-dual or almost self-dual (+)-ETGRS codes

4.1 A sufficient and necessary condition for a (+)-ETGRS code to
be self-orthogonal

(Cgm(lﬁ'q, 1,7, oo))L is given in the following lemma.

Lemma 4.1 For 3 <k < q— 2, we have the following two assertions.

(1) If k > <L, then
1
(Cg,n(Fq’ 1,7, OO)) = {0}
(2) If 3<k <, then

1
(Cg,n(an 1,7, OO))
(9(ar), .-, 9(eg), 27 ngg-1-2k + gg—26) | degg(x) < q— 21{?}, if q is odd;
(g(ar), ... 9(ag), gg—1-2x) | degg(z) < q— 2k}, if q is even,

q—1—2k q—2k

where g,—1-x and g,—x are the coefficients of and x in g(x), respectively.

Proof. By Lemma 3.2, we can obtain Cgm(lﬁ‘q, 1,7,00).

For ¢ odd, note that Cf,(F4,1,7,00) is a (4+)-ETGRS code, (C?,(Fg, 1,1, oo))L can be
obtained based on Theorem 3.1.
For g even, by (3.2) we can verify that (2) is true directly. O

Basing on Lemma 2.2, Remark 2.4 and Lemma 4.1, we can get the following Theorems
4.1-4.2 directly.
Theorem 4.1 For 3 <k < 4, we have the following two assertions.

(1) If q is odd, then Cy ., (cx,v,n) is self-orthogonal if and only if there exists some g(z) =
q—2k )
> gixt € F,lx] such that
i=0

N9g-1-2k + 25— = 0, gloy) =vj (j=1,....n), g(B) =0 (VB €F\Aa).  (4.1)

13



(2) If q is even, Cy(c,v,n) is self-orthogonal if and only if there exists some g(x) =
q—2k )
> gixt € F,lx] such that
=0

9q—1-2k = Ov g(aj)% =Uj (.] = 17 cee 7”)7 g(ﬁ) =0 (Vﬁ c IFq\14a> (42)
By Theorem 4.1, we have the following corollary.

Corollary 4.1 For 3 < k < % and | € {3,... k}, if Cen(a,v,n) is self-orthogonal, then
Cin(o,v,m) is self-orthogonall.

q—2k )
Proof. If C; ,(cx, v, n) is self-orthogonal, then there exists some g(x) = gzt € Fyx]
i=0
such that (4.1) or (4.2) holds. For l € {3,...,k — 1}, let
q—21
h(xz) = Z gir' +g(x)withg; =0 (i =q—2k+1,...,q—2l),
1=q—2k+1

then we can check that h(x) satisfies (4.1) or (4.2), thus C;, (e, v, 7) is self-orthogonal. O

Especially, we can get a sufficient and necessary condition for Cy, (e, v,n) to be self-dual.

ok
Corollary 4.2 For3 <k <% ifu;=— T[] (aj—a;)" (j =1,...,2k), then we have the

following two assertions.
(1) If q is odd, then Cyox(cx,v,1) is self-dual if and only if there exists some A € F; such
that
NSa+2=0 and Mu; =0 (j=1,...,n).

(2) If q is even, then Cyar(cx,v,m) is self-dual if and only if there exists some \ € F; such
that

Sa=0 and \u} =v; (j=1,...,2k).

Proof. By Theorem 4.1, we know that Cy (o, v,7n) is self-dual if and only if there exists
some A € F such that g(z) = )\B ]FH\A (x — ) satisfies (4.1) or (4.2). Now by
€Fy\Aa

A H (aj_ﬁ):_)‘ H (aj_ai)_l(jzla"'>2k)a

BEFQ\A i=1,i#j

we get the desired results directly. O
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Theorem 4.2 For3 < k< %, we have the following two assertions.
(1) If q is odd, then Cy,(o,v,m,00) is self-orthogonal if and only if there exists some

q—2k )
g(x) = gzt € Flx] such that
i=0
2_177gq—1—2k + 9q—2k = 17 g(aj) = sz' (.] = 17 BRI 7n>7 g(ﬁ) =0 (vﬁ S FQ\AQ) (43)

(2) If q is even, Cy (o, v,m,00) is self-orthogonal if and only if there exists some g(z) =
q—2k )
> gzt € Flx] such that
i=0

Gor-ow =1, glay)2 =v; (j=1,....n), g(B)=0 (V8 € F,\Aq). (4.4)
By Theorem 4.2, we have the following corollary.
Corollary 4.3 For 3 < k < Z andl € {3,...,k}, if 0 ¢ Ay and Cy (e, v,7m,00) is self-
orthogonal, then Cp.,(a, a*~'xv,n,00) is self-orthogonal.
q—2k )
Proof. If Cy,(a,v,n,00) is self-orthogonal, then there exists some g(z) = > gz’ €
i=0
[F,[z] such that (4.3) or (4.4) holds. For 0 ¢ A, and l € {3,...,k — 1}, let
q—21
h(x) _ xz(k_l)g(:c) _ Zgle,
i=0
then for ¢ odd, we have
NGg—1-21+ 2gg-2 =0, h(ay) =a;" “vj (j=1,...,n), h(B)=0 (VB € F;\Aa). (4.5)
For ¢ even, we have
Go1-21 =0, h(a;)? =, (j=1,...,n), h(B)=0 (V8 € F,\Aq). (4.6)
Now by Theorem 4.2 and (4.5)-(4.6), C;..(a, &*~' x v, 1, 00) is self-orthogonal. O

By Theorem 4.2, if Cy, ,,(a, v, n, 00) is self-orthogonal, then ¢—2k > g—n, namely, n > 2k.
Note that the length of C ,, (o, v,1,00) is n + 1, thus we have the following corollary.

Corollary 4.4 There is no any self-dual (+)-ETGRS code.

By Theorem 4.2, in the similar proof as that for Corollary 4.2, we have the following
corollary:.

2%
Corollary 4.5 For 3 < k < %, let u; = — ]_[7,é (aj — )™t (j = 1,...,2k), we have the
i=1,i#j
following two assertions.
(1) If q is odd, then Cyar(cx,v,1n,00) is almost self-dual if and only if there exists some
A € [, such that

M27'Sa +1) =1, and \u; = vjz- (j=1,...,n).

(2) If q is even, then Cyar(cx,v,n,00) is almost self-dual if and only if there exists some
A € [ such that

ASo =1, and (Muj)? =v; (j=1,...,n).
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4.2 The Construction for the self-orthogonal (+)-TGRS (ETGRS)
code

4.2.1 The case for ¢ even

For any b € F; and 3 <¢ < ¢ — 4, by Remark 2.6, we know that

N(t,b,F:) = {{a1,...,x6} C D|wy + -+ x, = b} #0,

and
N(t,b,F,) {{xl,...,xgk}QD}x1+---+xt:b}7“]).

Now by Corollaries 4.2 and 4.5, we can obtain the following theorem directly.

Theorem 4.3 For q even and 3 <k < 5= letn € F;, oo = (v, ..., ), and
2%
v=(vy,...,vy) withv; = H (aj —a)"% (j=1,...,2k).
i=1,i#]
Then

(1) for Ao € N(2k,0,F,), Cyor(cx,v,n) is self-dual;
(2) for Aq € N(2k,1,F}), Cpor(cx,v,m,00) is almost self-dual.

By Theorem 4.3, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.6 Let q, k, n, o and v be given in Theorem 4.3. If | € Z" with 3 <1 < k — 1,
then

(1) for Ao € N(2k,0,F,), Cor(ax,v,7) is self-orthogonal;

(2) for A € N(2k,1,F;), Cron(c, &' xw,1m,00) is self-orthogonal.

4.2.2 The case for ¢ odd

Note that any element in F,» is a square element in [F,2m, then by Theorem 3.2, Corollaries
4.2 and 4.5, we have the following theorem.

2m

Theorem 4.4 For any positive integer m and odd prime p, let 3 < k < E _1, q=p™ and
Frn = (), = (ay,...,az) and

2k 1
v=(vy,...,vy) withv; = (— H (o —oz,-)_1>2 (7=1,...,2k).
i=1,i#j
Then the following two assertions hold.
(1) Ifaa = (,...,y°7 10,y oAk —y, .., —~F) and n = 2y~%, then Cror(0, v, 1)
is self-dual.
2) If = (7,...,7%, —,...,—=%), then

(1.1) for n € F\Fpm, Cpon(a,v,1m,00) is an almost self-dual MDS code;
(1.2) for N(k,—n~', Ay) > 0, Crar(a,v,m,00) is an almost self-dual NMDS code.
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By Theorem 4.4, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.7 Let q, k, m, n, o and v be given in Theorem 4.4. For any integer | with
3 <1 <k, we have the following two assertions.

(1) [f o = (77 s 77i0_17 07 7i0+17 s 7fyk7 EEEERE _7k> and n = 27_i07 then Cl,2k(a7 v, 7])
1s self-orthogonal.
2) Ifa=(7,...,%", —7,..., =), then

(1.1) forn € FN\Fpm, Cor(a ,a Lxv,n,00) is a self-orthogonal MDS code;
(1.2) for N(k,—n71, As) > 0, Cror(a, @~ x v, 1, 00) is a self-orthogonal NMDS code.

Now we give a construction for almost self-dual (+)-ETGRS codes by using the trace
map. For integers r and m with r | m, the trace map from F,m to F,- is defined as

m—r m—2r

Tr'(x) =2 +aP = 4+ -+ (Ve € Fym).

Denote Ker(Tr)") = {x € Fym|Tr)"(2) = 0}. Since the trace map is uniform, we have
|[Ker(Tr")[ = p™", (4.7)
and then

Tv™ (1) = (z — ). (4.8)

acKer(Tr")

Note that any element in F,- is a square element in F,m, by (4.7)-(4.8), based on Theorem
4.2, we get the following theorem directly.

Theorem 4.5 For any odd prime p, integers r and m with 2 | 2, let ¢ = p™ and 3 < k < ‘1;—2.
IfnelF,, a=(ay,...,apm_pn—r) with Aqy = Fpm\Ker(Tr]"), and

v=(v1,...,v;) withv; = Tr;”(ozj)% (j=1,...,p"=p™").

Then Cym _ym—r pm_pmfr(a, v,1,00) is almost self-dual.
2 ).

By Theorem 4.5, Corollaries 4.1 and 4.3, we have the following corollary.

Corollary 4.8 Let q, v, m, n, a and v be given in Theorem 4.5. Then for any integer | with

m—r m-r_2

3§5§Pm+

— 1, Cpm_pm—r(c, o *v,1m,00) 18 self-orthogonal.

5 Conclusions
In this paper, we have the following main results.

(1) The parity check matrix for the (+)-ETGRS code is given.
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(2) The (+)-ETGRS code is MDS or NMDS.
(3) The (+)-ETGRS code is not GRS or EGRS.
(4) The weight distribution of the (4)-ETGRS code is determined.

(5) A sufficient and necessary condition for any punctured code of the (+)-ETGRS code

to be self-orthogonal is presented.

(6) Several classes of (almost) self-dual MDS or NMDS codes are constructed.
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