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Abstract

The Reconstruction Conjecture due to Kelly and Ulam states that every graph with at
least 3 vertices is uniquely determined by its multiset of subgraphs {G − v : v ∈ V (G)}. Let
diam(G) and κ(G) denote the diameter and the connectivity of a graph G, respectively, and
let G2 := {G : diam(G) = 2} and G3 := {G : diam(G) = diam(G) = 3}. It is known that
the Reconstruction Conjecture is true if and only if it is true for every 2-connected graph in
G2∪G3. Balakumar and Monikandan showed that the Reconstruction Conjecture holds for every
triangle-free graph G in G2 ∪ G3 with κ(G) = 2. Moreover, they asked whether the result still
holds if κ(G) ≥ 3. (If yes, the class of graphs critical for solving the Reconstruction Conjecture
is restricted to 2-connected graphs in G2 ∪ G3 which contain triangles.) In this paper, we give a
partial solution to their question by showing that the Reconstruction Conjecture holds for every
triangle-free graph G in G3 and every triangle-free graph G in G2 with κ(G) = 3. We also prove
similar results about the Edge Reconstruction Conjecture.

1 Introduction

Throughout this paper, we use standard graph theory terminology and notation, as in [12]. Unless
stated otherwise, assume |V (G)| ≥ 3 and |E(G)| ≥ 4 for every graph G. For vertices u and v in
a graph G, we denote by dG(u, v) dG(u, v)the length of a shortest path from u to v in G. The diameter

of a graph G, denoted diam(G) diam(G), is maxu,v∈V (G)dG(u, v). We denote by NG(v) the neighborhood of

a vertex v in G. For a connected graph G, a set S ⊆ V (G) is a cut set cut setif G − S is disconnected;
moreover, if S = {v}, then v is a cut vertex

cut vertex
. The connectivity connectivityof G, denoted by κ(G)

κ(G)
, is the size of

its smallest cut set. For k ≥ 2, a graph G is k-connected
k-connected

if its connectivity is at least k.
Graph Reconstruction is the study which explores whether a graph can be uniquely determined

by its subgraphs. A card cardof a graph G is a subgraph of G obtained by deleting a single vertex;
that is, G − v for some v ∈ V (G). The multiset D(G) of cards of G is the deck deck, D(G)of G, i.e.,
D(G) := {G − v : v ∈ V (G)}. If G is isomorphic to every graph H with D(H) = D(G), then
G is reconstructible

recon-

structible
. The most well-studied problem in the area of graph reconstruction is the

Reconstruction Conjecture

Reconstruc-
tion
Conjecture

proposed by Ulam [11] and Kelly [6, 7].

Conjecture 1 (Reconstruction Conjecture). For n ≥ 3, every n-vertex graph is reconstructible,

i.e., it is uniquely determined by its deck.
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This conjecture has attracted a lot of attention. It has been confirmed for certain graph classes
such as disconnected graphs, trees, regular graphs, perfect graphs, etc. Although much work has
gone into proving the conjecture, it remains widely open even for sparse classes of graphs such as
bipartite graphs, planar graphs and graphs of bounded maximum degree. For a detailed survey of
results on the Reconstruction Conjecture and graph reconstruction in general, we refer the reader
to [8].

Yang proved [13] that the Reconstruction Conjecture is true if and only if it is true for every
2-connected graph. Let G2 := {G : diam(G) = 2} and G3 := {G : diam(G) = diam(G) = 3} G2,G3. Gupta
et al. [4] showed that the Reconstruction Conjecture is true if and only if it is true for every graph
in G2 ∪ G3. Combining the above two results, Monikandan and Ramachandran [10] showed that it
suffices to consider 2-connected graphs in G2 ∪ G3 to prove the Reconstruction Conjecture.

Theorem 1.1 ([10]). The Reconstruction Conjecture is true if and only if every 2-connected graph

in G2 ∪ G3 is reconstructible.

As a step towards proving the Reconstruction Conjecture, Balakumar and Monikandan [1]
studied the graphs in Theorem 1.1 which are bipartite and those which are triangle-free. They
proved the following:

Theorem 1.2 ([1]). If G ∈ G2 and is bipartite, or if G ∈ G3 and is 2-connected and bipartite, then

G is reconstructible.

Theorem 1.3 ([1]). If G ∈ G2 ∪ G3 and is triangle-free with κ(G) = 2, then G is reconstructible.

Note that Theorem 1.2 restricts the graphs in Theorem 1.1 to those containing odd cycles.
Furthermore, Theorem 1.3 gives partial results on the graphs in Theorem 1.1 which are triangle-
free. Balakumar and Monikandan asked whether the class of graphs in Theorem 1.3 could be
extended to those with connectivity at least 3. They remarked that a positive answer to their
question would restrict the graphs in Theorem 1.1 to those containing triangles. Furthermore,
narrowing down the classes of graphs critical for proving the Reconstruction Conjecture makes it
easier to search for a counterexample, if any. As a partial solution to their question, we prove the
following two results.

Theorem 1.4. If G ∈ G2 and is triangle-free with κ(G) = 3, then G is reconstructible.

Theorem 1.5. If G ∈ G3 and is triangle-free with κ(G) ≥ 3, then G is reconstructible.

Observe that this leaves only the open case of every triangle-free graph G ∈ G2 with κ(G) ≥ 4.

An edge-focused variant of the Reconstruction Conjecture was first proposed by Harary [5].
An edge-card

edge-

card/deck
ED(G)

of a graph G is G − e for some e ∈ E(G), and the edge-deck of G is the multiset
ED(G) := {G− e : e ∈ E(G)}. A graph G is edge-reconstructible

edge-

reconstructible

if G is isomorphic to every graph
H with ED(H) = ED(G). Harary [5] proposed the Edge Reconstruction Conjecture

Edge Recon-
struction
Conjecture

which states
the following.

Conjecture 2 (Edge Reconstruction Conjecture). Every graph with at least 4 edges is edge-

reconstructible, i.e., it is uniquely determined by its edge-deck.

Greenwell [3] established a connection between the Reconstruction Conjecture and the Edge
Reconstruction Conjecture by showing that the deck of G can be recovered from its edge-deck.
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Theorem 1.6 ([3]). If G has at least 4 edges and no isolated vertices, then D(G) is uniquely

determined by ED(G).

Theorem 1.6 implies that a graphG with no isolated vertices and |E(G)| ≥ 4 is edge-reconstructible
if it is reconstructible.

We prove edge-reconstruction analogues of Theorems 1.4 and 1.5 (in fact, we prove a stronger
edge-reconstruction analogue of Theorem 1.4).

Theorem 1.7. If G ∈ G2 and is triangle-free, then G is edge-reconstructible.

Theorem 1.8. If G ∈ G3 and is triangle-free, then G is edge-reconstructible.

Note that in light of Theorems 1.3, 1.5, and 1.6, to prove Theorem 1.8, it suffices to prove the
following.

Theorem 1.9. If G ∈ G3 and is triangle-free with κ(G) = 1, then G is reconstructible.

A more general problem is to decide if a graph parameter is uniquely determined by its deck or
edge-deck. Given a graph G, a graph parameter p(G) is reconstructible (resp. edge-reconstructible)
if the value of p(G) is the same for each graph H with D(H) = D(G) (resp. ED(H) = ED(G)). A
family of graphs G is recognizable

(edge-)

recognizableif, for each G ∈ G, every graph H with D(H) = D(G) is also in
G. Moreover, G is weakly reconstructible weakly (edge-)

recon-
structible

if, for each G ∈ G and each H ∈ G with D(H) = D(G),
the graph H is isomorphic to G. If G is both recognizable and weakly reconstructible, then it is
reconstructible. We define edge-recognizable and weakly edge-reconstructible analogously. We will
need the following results on reconstructible graph parameters and recognizable graph classes.

Lemma 1.1 ([9]). Given a card G− v, the degree of v in G, as well as the degrees of the neighbors

of v in G are reconstructible. Similarly, given an edge-card G− e, the degrees in G of the endpoints

of e are edge-reconstructible.

Lemma 1.2 (Kelly’s Lemma [7]). The number of occurrences of any proper subgraph of G is

reconstructible.

Lemma 1.3 ([2]). The connectivity of G is reconstructible.

Lemma 1.4 ([4]). Both G2 and G3 are recognizable.

This paper is organized as follows. In Section 2, we prove Theorems 1.4, 1.5, and 1.9 which
address our results on reconstruction. In Section 3, we prove Theorems 1.7 and 1.8 which address
edge reconstruction.

We end this section with the following note. Ideally, we would like an edge reconstruction
result similar to Theorem 1.1 that would restrict the class of graphs critical for proving the Edge
Reconstruction Conjecture to those which lie in G2∪G3. If such a result is proved, then Theorems 1.7
and 1.8 would further restrict the class of critical graphs to those containing triangles. We remark
that such a result is unlikely to be proved using techniques similar to those used in the proof of
Theorem 1.1. In particular, the restricted-diameter result of Gupta et al. [4] relies on the fact that
D(G) is reconstructible from D(G) for every graph G. This is not true for edge reconstruction.
Nevertheless, the advantages of having such a result merit further investigation.
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2 Reconstruction: Proofs of Theorems 1.4, 1.5, and 1.9

For every positive integer k, denote by [k] the set {1, 2, . . . , k}. Let G be a graph with κ(G) = k ≥ 3,
and let S = {x1, x2, . . . , xk} be a cut set of G. For p ≥ 2, denote by C1, C2, . . . , Cp the components
of G−S. A component is trivial trivialif it is a single vertex. We group the vertices in each component into
classes classesbased on their neighborhood in S. Fix i ∈ [p] and a vertex v ∈ Ci, and let {xi1 , xi2 , . . . , xim}
be the neighbors of v in S, where {i1, i2, . . . , im} ⊆ [k]. We say v is in the class Ci({i1, i2, . . . , im}),
where Ci({i1, i2, . . . , im}) denotes the subset of vertices in Ci whose neighbors in S are precisely
{xi1 , xi2 , . . . , xim}. For convenience, we write Ci(j) Ci(j)for Ci({j}). We say the class Ci({i1, i2, . . . , im})
contains the index j if j = iq for some q ∈ [m]. If a vertex v ∈ Ci is not adjacent to any vertex in
S, then v is in the class Ci(∅) Ci(∅). Similarly, if a vertex v ∈ Ci is adjacent to every vertex in S, then v
is in the class Ci(S) Ci(S). Note that vertices which are trivial components are adjacent to every vertex
in S (by minimality of S), i.e., Cj = Cj(S) for every trivial component Cj of G − S. Moreover,
in a triangle-free graph, every class of a component forms an independent set, except possibly for
Ci(∅).

In their paper [1], Balakumar and Monikandan implicitly introduced the notion of the classes of

a component when dealing with triangle-free graphs. This helped give more structure to the graph.
Their proofs (for the most part) relied on reconstructing the graph from cards which delete a vertex
of degree 1 or a cut vertex. Such vertices are “special” in the sense that their set of neighbors is
restricted which narrows down the number of cases to consider. We will use a similar approach.
However, we note that the higher the connectivity of the graph is, the less “special” those vertices
become. To avoid this problem, we will try to deduce as much about the structure of the graph as
possible (using only what we know about its diameter and connectivity) before reconstructing it.

It follows from Lemmas 1.2, 1.3, and 1.4 that the class of triangle-free graphs with connectivity
k ∈ N which lie in G2 ∪ G3 are recognizable. Therefore, to prove that the graphs in Theorems 1.4,
1.5, and 1.9 are reconstructible, it suffices to show that they are weakly reconstructible.

Proof of Theorem 1.4. Let G be a triangle-free graph in G2 with κ(G) = 3. Pick a card H with
connectivity 2 and let H := G− x1 (such a card exists because G has a cut set of size 3 and some
card deletes one of its vertices). Let {x2, x3} be a cut set of size 2 in H. Since κ(G) = 3, the set
S := {x1, x2, x3} is a cut set of G.

Let C1, . . . , Cp be the components of G − S. We show that G − S has at most one nontrivial
component. By contradiction, assume C1 and C2 are nontrivial. Consider an edge u1u2 in C1

and an edge v1v2 in C2. Since G is triangle-free, at least one of u1 and u2 is adjacent to at most
one vertex in S; say u1. If u1 is adjacent to no vertex in S, then dG(u1, v1) ≥ 3 contradicting
diam(G) = 2. So, by symmetry, assume u1 is only adjacent to x1 in S. Note that v1 and v2 are
not both adjacent to x1; otherwise, we get a triangle. So, assume v1 is nonadjacent to x1. Now,
dG(u1, v1) ≥ 3 contradicting diam(G) = 2. Thus, G−S has at most one nontrivial component, say
C1.

To reconstruct G from H, we need to identify the vertices in H adjacent to x1 in G. Observe
that each vertex in a trivial component of G − S must be adjacent to each vertex of S in G (in
particular, it is adjacent to x1); otherwise, G contains a smaller cut set. Moreover, if C1 is trivial,
then G is a complete bipartite graph and is reconstructible by Theorem 1.2. Thus, we assume C1

is nontrivial.
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C1

C2

C3

Cp

x2

x3

C1({2, 3}) C1(1)

Lx2
A2

C1(2) ∪ C1({1, 2})

Lx3
A3

C1(3) ∪ C1({1, 3})

C1(S) ∪ C1(∅)

C1

C2

C3

Cp

x2

x1

x3

S
C1({2, 3}) C1(1)

B2 B12 A2

C1(2) ∪ C1({1, 2})

B3 B13 A3

C1(3) ∪ C1({1, 3})

C1(S) ∪ C1(∅)

Figure 1: The figure shows the structures of G and H in Theorem 1.4. Top: the view in the card H .
Bottom: the view in G. Solid lines between two sets indicate that every vertex in the first set is adjacent
to every vertex in the second set. Analogously, dashed lines indicate non-adjacency. The component C1

is divided into classes as defined in Section 2. The set C1(S) ∪ C1(∅) is grayed out to indicate that it is
empty.
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We identify the classes of C1 with respect to the cut set S. Note that C1(∅) = ∅; otherwise,
pick v ∈ C1(∅) and observe that dG(v, u) ≥ 3 for every u ∈ Ci (i 6= 1), a contradiction. Therefore,
C1(1) consists of all vertices in C1 adjacent to neither x2 nor x3 in H. Furthermore, C1(S) = ∅;
otherwise, pick v ∈ C1(S) and let u ∈ NC1

(v). Since G is triangle-free, u ∈ C1(∅), a contradiction.
Thus, C1({2, 3}) consists of all vertices in C1 adjacent to both x2 and x3 in H.

This leaves identifying the vertices of C1 in classes C1(2), C1(3), C1({1, 2}), and C1({1, 3}). Let
A2 := NC1(2)∪C1({1,2})(C1(1)) and A3 := NC1(3)∪C1({1,3})(C1(1)) A2, A3. Note that every v ∈ A2 ∪ A3

is nonadjacent to x1, since G is triangle-free. So, it suffices to identify the vertices of each of
the following “B” sets. Let B2 := C1(2) − A2, B3 := C1(3) − A3, B12 := C1({1, 2}) − A2, and B2, B3

B13 := C1({1, 3}) − A3; see Figure 1 B12, B13. (Observe that B12 = C1({1, 2}) and B13 = C1({1, 3}) since
G is triangle-free, so no vertex in C1({1, 2}) or C1({1, 3}) is adjacent to a vertex in C1(1).)

Recall that, since G is triangle-free, (1) each “B” set is independent, and (2) no vertex in B12

(resp. B13) is adjacent to a vertex in B2 (resp. B3) or a vertex in B13 (resp. B12). Furthermore, for
each v ∈ B2 and u ∈ B13, there exists no w ∈ NC1

(u) ∩NC1
(v); otherwise, since G is triangle-free,

w ∈ C1(∅), a contradiction. Hence, NG(u) ∩NG(v) = ∅ as NS(u) ∩NS(v) = ∅ by definition. Thus,
(3) every v ∈ B2 is adjacent to every u ∈ B13; otherwise, dG(u, v) ≥ 3, contradicting diam(G) = 2.
Similarly, (4) every vertex in B3 is adjacent to every vertex in B12. Finally, for each u ∈ B2 and
v ∈ B3, there exists no w ∈ NC1

(u) ∩ NC1
(v); otherwise, w ∈ C1(1) and {u, v} ⊆ NC1

(C1(1)),
contradicting the definitions of B2 and B3. Hence, NG(u) ∩ NG(v) = ∅ as NS(u) ∩ NS(v) = ∅
by definition. Thus, (5) every u ∈ B2 is adjacent to every v ∈ B3; otherwise, dG(u, v) ≥ 3,
contradicting diam(G) = 2.

Now let Lx2
:= B2 ∪B12 and Lx3

:= B3 ∪ B13 Lx2
, Lx3

. Note that H[Lx2
∪ Lx3

] is bipartite with parts
Lx2

and Lx3
, by (1-2). And, in the card, we are unable to distinguish between B2 and B12 in Lx2

or B3 and B13 in Lx3
. So, we consider the following cases.

Case 1: B12 and B13 are both nonempty in G. Now, in H, there must exist vertices L2 ⊆ Lx2

that are not adjacent to every vertex in Lx3
, and vertices L3 ⊆ Lx3

that are not adjacent to every
vertex in Lx2

, by (1-5). This means L2 and L3 are precisely B12 and B13, respectively. Further,
B2 = Lx2

−B12 and B3 = Lx3
−B13.

Case 2: B12 and B13 are both empty in G. Now it must be that dC1
(x1) = |C1(1)|. Note that

we can calculate the value of dC1
(x1) as follows: dC1

(x1) = dG(x1) − | ∪i 6=1 Ci|, where dG(x1) is
given by Lemma 1.1. So, in H, after identifying the vertices of C1(1), if |C1(1)| = dC1

(x1), then
the vertices in C1(1) are the only neighbors of x1 in C1. This means B12 = B13 = ∅, and that
B2 = Lx2

and B3 = Lx3
.

Case 3: Neither Case 1 nor Case 2 is true. Let B23 be defined analogously to B12 and B13. Note
that by Pigeonhole Principle, at least two of the sets B12, B23, and B13 are nonempty, or at least
two of them are empty. Let i be the index shared by those two sets. If i = 1, then we are done
by Case 1 or Case 2. Otherwise, there exists a card H ′ that deletes xi and whose corresponding
Bij and Bik sets, where {j, k} = {1, 2, 3} − {i}, are either both empty or both nonempty. Now we
can repeat the above arguments for H ′ (where the roles of H and H ′, and those of x1 and xi are
interchanged).

Proof of Theorem 1.5. Recall that we only need to show that this class of graphs is weakly
reconstructible. Let G be a triangle-free graph in G3 with κ(G) ≥ 3, let S be a cut set of G with
|S| = κ(G), and let C1, . . . , Cp be the components of G− S. Since κ(G) ≥ 3, the set S has at least
3 vertices, say S = {x1, x2, . . . , xk} where k ≥ 3. Moreover, since diam(G) = 3, there exist vertices
u, v ∈ V (G) such that dG(u, v) = 3. This means dG(u, v) = 1; that is, uv ∈ E(G). Observe that
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C1

C2

C3

Cp

x1

x2

xk

C1(∅)

C1(S)

C1(1)

C1({1, 2})

C1({1, 3})

C1({1, 2, 3})

Figure 2: The figure shows the structure of G in Case 1 of Theorem 1.5.

dG(x, y) ≤ 2 for every x, y ∈ G− S. Indeed, if x and y are in the same component Ci of G− S for
some i ∈ [p], then pick z ∈ Cj for some j 6= i. Now, x, y ∈ NG(z) which implies dG(x, y) ≤ 2. If,
otherwise, x and y are in components Ci and Cj of G− S for some distinct i, j ∈ [p], respectively,
then xy ∈ E(G) and dG(x, y) = 1. Therefore, either v = xi and u ∈ G − S, or v = xi and u = xj
for some i, j ∈ [k].

Case 1: S is independent. This implies dG(xi, xj) = 1 for every i, j ∈ [k]. Thus, u ∈ G− S and
v = xi for some i ∈ [k]. By symmetry, assume i = 1. Observe that G−S must contain a nontrivial
component. Otherwise, G is a complete bipartite graph and is reconstructible by Theorem 1.2. By
symmetry, let C1 be a nontrivial component of G−S. We show that u ∈ C1(S). First, note that u
must be adjacent to every vertex in S; otherwise, there exists xj (j 6= 1) in S such that uxj /∈ E(G),
which implies uxj ∈ E(G). Since x1xj ∈ E(G), this means dG(x1, u) = 2, a contradiction. So,
u ∈ Ct(S) for some t ∈ [p]. Since G is triangle-free and C1 is nontrivial, there exists x ∈ C1 which
is not adjacent to x1. So, if t 6= 1, then x1, u ∈ NG(x) and dG(x1, u) = 2, a contradiction. Thus,
u ∈ C1(S). By a similar argument, Cq is trivial for each q 6= 1. Indeed, if Cq is nontrivial for some
q 6= 1, then there exists x ∈ Cq which is not adjacent to x1 implying that dG(x1, u) = 2 (through
x), a contradiction. So, C1 is the only nontrivial component of G− S.

Note that C1(∅) 6= ∅. To see this, recall that C1(S) 6= ∅ and is an independent set, C1 is a
nontrivial component, and G is triangle-free. Therefore, the neighbors in C1 of vertices in C1(S) can
only be in C1(∅), i.e., C1(∅) 6= ∅. Further, every nonempty class in C1 (except for C1(∅)) contains
the index 1 (see Figure 2); otherwise, as before, there exists a vertex x not adjacent to x1 and
x1, u ∈ NG(x) contradicting dG(x1, u) = 3. Finally, u must be adjacent to every vertex in C1(∅);
otherwise, there exists x ∈ C1(∅) not adjacent to u, so x1, u ∈ NG(x) contradicting dG(x1, u) = 3.

7



Since G is triangle-free, this implies C1(∅) is independent. Observe that G is now bipartite as
follows: Let every class of C1 except C1(∅) be in one part along with the trivial components of
G − S, and let C1(∅) and S be in the other part. It is easy to check that this forms a bipartition
of G. Thus, G is reconstructible by Theorem 1.2.

Case 2: S contains an edge. Assume first that v = xi for some i ∈ [k] and u ∈ G − S. Let Cj

be the component containing u with j ∈ [p]. Since S contains an edge and G is triangle-free, every
component of G − S is nontrivial. Pick a component Ct with t 6= j. Since Ct is nontrivial, there
exists x ∈ Ct that is not adjacent to xi. Now xi, u ∈ NG(x) contradicting dG(xi, u) = 3. Thus,
we may assume v = xi and u = xj for some i, j ∈ [k]. By symmetry, assume i = 1 and j = 2.
Since x1x2 ∈ E(G) and G is triangle-free, no vertex is adjacent to both x1 and x2. Moreover, every
vertex is adjacent to at least one of x1 and x2. Indeed, if some vertex x is nonadjacent to both
x1 and x2, then x1, x2 ∈ NG(x) contradicting dG(x1, x2) = 3. Observe that G is again bipartite
as follows: Let NG(x1) be one part and NG(x2) be the other part. Thus, G is reconstructible by
Theorem 1.2.

Note that in light of Theorem 1.1, Theorem 1.9 is not needed in order to prove the Reconstruc-
tion Conjecture. However, we will refer to this theorem when we consider edge reconstruction in
the next section.

Proof of Theorem 1.9. Recall that we only need to show that this class is weakly reconstructible.
Let G be a a triangle-free graph in G3 with κ(G) = 1, let x be a cut vertex of G, and let C1, . . . , Cp

be the components of G− x.

Claim 1. G− x has exactly one nontrivial component, say C1.

Proof of Claim 1. IfG−x has no nontrivial components, thenG is a star contradicting diam(G) = 3.
Suppose instead that C1 and C2 are two nontrivial components of G− x. Since G is triangle-free,
Ci contains at least one vertex, vi, that is not adjacent to x for each i ∈ {1, 2}. Now dG(v1, v2) ≥ 4,
a contradiction. Hence, G− x has exactly one nontrivial component, C1, as desired.

Let Cx
1 (∅) := C1(∅) with respect to cut vertex x. Cx

1

Claim 2. C1 is bipartite with parts Cx
1 (∅) and C1(x). Furthermore, G is bipartite with parts

Cx
1 (∅) ∪ {x} and C1(x) ∪ Tx, where Tx denotes the set of all vertices in the trivial components of

G− x.

Proof of Claim 2. Since G is triangle-free, C1(x) is independent. Also, note that C
x
1 (∅) 6= ∅ because

C1 is nontrivial. Since diam(G) = 3, there exist u, v ∈ V (G) such that dG(u, v) = 3. If u, v ∈ Ci

for some i ∈ [p], then pick w ∈ Cj for j 6= i. Now u, v ∈ NG(w) and dG(u, v) ≤ 2, a contradiction.
Similarly, if u ∈ Ci and v ∈ Cj for some i 6= j, then uv ∈ E(G) and dG(u, v) = 1, a contradiction.
So, we assume that u = x and v ∈ G−x. Observe that v /∈ Cx

1 (∅) and v /∈ Tx; otherwise, xv ∈ E(G)
and x, v ∈ NG(w) for some w ∈ Cx

1 (∅), respectively. In both cases, dG(x, v) ≤ 2, a contradiction.
It follows that v ∈ C1(x). Furthermore, if there exists w ∈ Cx

1 (∅) such that vw /∈ E(G), then
x, v ∈ NG(w) and dG(x, v) = 2, a contradiction. Hence, Cx

1 (∅) ⊆ NG(v) which implies Cx
1 (∅) is

independent since G is triangle-free. Now observe that C1 is bipartite with parts Cx
1 (∅) and C1(x).

Further, G is bipartite with parts Cx
1 (∅) ∪ {x} = NG(v) and C1(x) ∪ Tx = NG(x), as desired; see

Figure 3.
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C1

C2

C3

Cp

x

C1(x)

Cx
1 (∅)

Figure 3: The figure shows the structure of G in Theorem 1.9.

We now split the rest of the proof into three cases. By slight abuse of notation, we refer to the
nontrivial component for any cut vertex as C1.

Case 1: There exists a cut vertex x of G such that |Cx
1 (∅)| 6= |C1(x)|. By Claims 1 and 2,

this means that there exists a card H of G such that H is disconnected and the only nontrivial
component C1 of H is bipartite with unequal parts. Let H = G− y for some cut vertex y ∈ V (G).
By the above claims, NG(y) consists of all trivial components of H, as well as, all vertices in one
part of C1. By Lemma 1.1, we can recover dG(y). Then, since the parts of C1 are unequal, we can
identify NC1

(y). Thus, G is reconstructible.
Case 2: |Cx′

1 (∅)| = |C1(x
′)| for every cut vertex x′ of G and there exists a cut vertex x of G

such that G− x has k trivial components for some integer k ≥ 2. We claim that x is the only cut
vertex of G. Indeed, assume some x′ 6= x is another cut vertex of G where G − x′ has k′ ≥ 1
trivial components. Note that x′ ∈ C1(x) since G − v is connected for every v ∈ Cx

1 (∅) ∪ Tx.
This means NG(x

′) ⊆ Cx
1 (∅) ∪ {x}, i.e., dG(x

′) ≤ |Cx
1 (∅)| + 1. Further, dG(x

′) = |C1(x
′)| + k′ and

|Cx′

1 (∅)| = |C1(x
′)| = dG(x

′)−k′. Since |V (G)| = |Cx′

1 (∅)|+|C1(x
′)|+1+k′ = |Cx

1 (∅)|+|C1(x)|+1+k,
we have 2(dG(x

′)− k′) + 1 + k′ = 2|Cx
1 (∅)| + 1 + k which implies dG(x

′) = |Cx
1 (∅)| + (k + k′)/2 ≥

|Cx
1 (∅)|+ (2 + 1)/2 > |Cx

1 (∅)|+ 1, a contradiction. Thus, x is the only cut vertex of G.
We can identify that G has a unique cut vertex by checking that every card in the deck is

connected except for one. Then we pick a card H = G − z for some z ∈ V (G) with dG(z) = 1
(again, dG(z) is reconstructible by Lemma 1.1). Note that the unique neighbor of any degree 1
vertex in G is a cut vertex, and deleting a degree 1 vertex in G does not create a new cut vertex
in the card. So, the unique cut vertex of G is still unique in G− z and is the neighbor of z. Thus,
G is reconstructible.

Case 3: |Cx
1 (∅)| = |C1(x)| andG− x has exactly one trivial component for every cut vertex x ofG.

Note that |V (G)| is easily reconstructible from the cards of G since each card deletes a single vertex.
Since G− x contains a single trivial component, it follows that |Cx

1 (∅)| = |C1(x)| = (|V (G)| − 2)/2
for every cut vertex x of G. By Claim 2, G is bipartite with parts Cx

1 (∅)∪{x} and C1(x)∪Tx, where
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|Tx| = 1, which implies |Cx
1 (∅) ∪ {x}| = |C1(x) ∪ Tx| = (|V (G)| − 2)/2 + 1 = |V (G)|/2. Further,

|Cx
1 (∅) ∪ {x}| = |C1(x) ∪ Tx| ≥ 2 since Cx

1 (∅) ∪ {x} contains x and at least one non-neighbor of x.
Observe that for every cut vertex x of G, the trivial component of G−x has degree one in G. So,

there exists a connected bipartite card H = G− y for some y ∈ V (G) such that dG(y) = 1 (again,
dG(y) is reconstructible by Lemma 1.1). Note that y is the unique trivial component of G − z for
some cut vertex z of G; in particular, z is the unique neighbor of y in G. Since H is connected, it
can be uniquely bipartitioned into parts X and Y with |X| > |Y | and |X| − |Y | = 1, by the above
arguments. Thus, y has no neighbors in Y and the unique neighbor z of y is a vertex in X such
that NH(z) = Y . If there exist distinct vertices x1 and x2 in X such that NH(x1) = NH(x2) = Y ,
then we pick z arbitrarily between x1 and x2 since H + x1y and H + x2y are isomorphic. Thus, G
is reconstructible.

3 Edge Reconstruction: Proofs of Theorems 1.7 and 1.8

In this section, we consider edge reconstruction for triangle-free graphs in G2 ∪ G3. The proof of
Theorem 1.7 uses a systematic approach to try and identify the endpoints of the deleted edge. On
the other hand, the proof of Theorem 1.8 follows easily from previous results.

Proof of Theorem 1.7. Note that this class of graphs is edge-recognizable by Lemmas 1.2 and
1.4 and Theorem 1.6. So, we only need to show it is weakly edge-reconstructible. Let G be a
triangle-free graph in G2. For every uv ∈ E(G), if dG−uv(x, y) ≥ 3 for some x, y ∈ V (G− uv), then
x = u and y ∈ NG[v], or x = v and y ∈ NG[u]; in particular, dG−uv(u, v) ≥ 3 since G is triangle-free.
To see this, note that each pair x, y ∈ V (G − uv) with {x, y} 6= {u, v} and dG−uv(x, y) ≥ 3 must
be nonadjacent in G and must use the edge uv in G to satisfy dG(x, y) = 2.

Pick an edge-card H = G− uv for some uv ∈ E(G) and let PHPH := {{x, y} : x, y ∈ V (H) and
dH(x, y) ≥ 3}. Assume first that PH = {{x, y}}, i.e., |PH | = 1. Now, {x, y} = {u, v} and
G = H + xy since {u, v} ∈ PH . Assume instead that |PH | = k ≥ 3. If {x, y}, {x, z} ∈ PH , then
x = u or x = v; otherwise {y, z} = {u, v} and x ∈ NG(u) ∩NG(v), i.e., x, y, and z form a triangle,
a contradiction. Moreover, since {u, v} ∈ PH , each pair in PH contains u or v, and k ≥ 3, there
exist at least two pairs in PH with a common vertex x. So, x = u or x = v; say x = u. If there
exists another vertex y which also appears in more than one pair in PH , then (x, y) = (u, v) and
G = H + xy. So, suppose x is the only vertex that appears in more than one pair in PH . If
{y, z} ∈ PH with y 6= x and z 6= x, then either y = v or z = v (since each pair in PH contains u or
v), say y = v. Now, {x, y} = {u, v} ∈ PH which means y appears in more than one pair in PH , a
contradiction. So, suppose x appears in every pair in PH , i.e., PH = {{x, y1}, {x, y2}, . . . , {x, yk}}.
Now, yi ∈ NG[v] for each i ∈ [k]. More precisely, the set {y1, y2, . . . , yk, x} forms an induced star in
H with center v = yi for some i ∈ [k]; so, G = H + xyi. Thus, we may assume |PH | = 2 for every
edge-card H.

By symmetry, assume PH = {{u, v1}, {u, v2}} where v ∈ {v1, v2}. Let w = {v1, v2} − v, i.e.,
{v1, v2} = {v,w}. Note that v1v2 ∈ E(H) (and therefore, v1v2 ∈ E(G)). If dH(v1) 6= dH(v2),
then we can identify v since dG(v) is edge-reconstructible by Lemma 1.1. So, assume that dH(v1) =
dH(v2). Now, there exists an edge-card H ′ which deletes v1v2. Interchanging the roles of u and w in
the above arguments, PH′ = {(v,w), (u,w)} since dH(u,w) ≥ 3 (i.e, v is the only common neighbor
of u and w in G). So, as in H, we may assume dH′(u) = dH′(v). Hence, dG(u) = dG(w) = dG(v)−1.
This defines a bijection σ : E(G) → E(G) such that, for every ab ∈ E(G), there exists bc ∈ E(G)
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with σ(ab) = bc, σ(bc) = ab, and dG(a) = dG(c) = dG(b)− 1, where a, b, c ∈ V (G) and b is the only
common neighbor of a and c in G. Since every edge in G connects vertices whose degrees differ
by one and, therefore, are of different parity, G is bipartite. Thus, G is edge-reconstructible by
Theorems 1.2 and 1.6.

Proof of Theorem 1.8. As before, we only need to show that this class of graphs is weakly edge-
reconstructible. Let G be a triangle-free graph in G3. Since diam(G) is finite, G is connected. If
κ(G) = 1, then we are done by Theorems 1.6 and 1.9. If κ(G) = 2, then we are done by Theorems 1.3
and 1.6. Finally, if κ(G) ≥ 3, then we are done by Theorems 1.5 and 1.6. Observe that the result
remains true even if |E(G)| < 4 since the only such graph is P4, and P4 is edge-reconstructible as
no other graph can have an edge-card isomorphic to 2K2.
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