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Abstract

The family of cycle completable graphs has several cryptomorphic descriptions,
the equivalence of which has heretofore been proven by a laborious implication-
cycle that detours through a motivating matrix completion problem. We give a
concise proof, partially by introducing a new characterization. Then we general-
ize this family to “k-quasichordal” graphs, with three natural characterizations.
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1. Introduction

A class of graphs called cycle completable graphs has arisen in various matrix
completion problems [3], especially those that pertain to geometry [5, 8]. There
are several cryptomorphic characterizations; Theorem 1.1, which we prove in
Section 3, states their equivalence. We preserve their numbering in [6] but
adapt their wording. Condition (α) is new. See Section 2 for definitions.

Theorem 1.1. The following are equivalent:

(1) No induced subgraph of G is equal to or built from Ŵ4 or Wn for n ≥ 5.

(2) Every induced subgraph of G is series-parallel or contains a K4 subgraph.

(α) G is F-free.

(A) G is a clique-sum of chordal and series-parallel graphs.

(B) G has a mixed elimination ordering.

(3) G has a chordal supergraph H such that any K4 ⊆ H is also a K4 ⊆ G.

Characterizations (1), (2), and (3) arose in connection with positive definite
matrices in [3]. That paper stated a matrix-theoretic condition (0) and proved
(0) → (1) → (2) → (3) → (0). All but a page of the implication (2) → (3)
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was devoted to a technical lemma that [6] used to prove (2) → (A), appending
thereunto a two-paragraph proof that (A) → (B) → (3). Both [5] and [8]
prove (3) → (1) via conditions that pertain more to metric geometry than
to linear operators or quadratic forms. Besides being long, these proofs are
still thoroughly matricial/numerical. The implications (1) → (2) → (A) →
(B) → (3) were proven by thirty-four pages of laborious (albeit graph-theoretic)
casework. We seek a short, matrix-free proof that (1), (2), (A), (B), and (3) are
equivalent.

To that end, we introduce (α). The implications (1) → (α) and (A) → (α)
are easier than (1) → (2) and (A) → (2), and (α) → (2) follows from a short
lemma in [7]. Our (2) → (A) does not use (α) but is much shorter than before.
The original (A) → (B) → (3) is effective; we offer no replacement. Finally,
(3) → (A) and (2) → (1) are easy. Our proof could be shortened further; we
have occasionally sacrificed some brevity in order to highlight interesting, su-
pererogatory lemmata.

Other matrix completion problems yield a natural generalization of (3) in
which K4 is replaced by Kn, where n varies with the problem.1 With a lit-
tle definition-craft, we can find equivalents of (A) and (B). The graphs thus
described we call k-quasichordal. Chordal graphs are the cases k = 1; cycle
completable graphs are the case k = 2. Each characterization captures the no-
tion that “locally, G is clique-like or partial-k-tree-like.” See Section 4 for the
proof.

Theorem 1.2. The following are equivalent for k ≥ 1:

(Ak) G is a clique-sum of cliques and graphs having treewidth ≤ k.

(Bk) G has a k-blended elimination ordering.

(3k) G has a (k + 1)-clique chordal supergraph.

Proving (3k) → (Ak) is no harder than (3) → (A); Lemma 3.5 entails it. The
original (A) → (B) → (3) generalizes succinctly but dully, so for the sake of
novelty and nicer lemmata, we prove (Ak) → (3k) and (Bk) ↔ (3k).

Generalizing (1), (2), or (α) would consist of giving an induced subgraph ob-
struction set for k-quasichordal graphs. This would be quite useful, since forbid-
den induced subgraphs arise naturally in the proof structure of the motivating
matricial problems [3, 5, 8]. Unfortunately, an obstruction set for k-quasichordal
graphs is contained in (and includes most members of) an obstruction set for
graphs of treewidth ≤ k, which have proven quite difficult to find. See [1] and
its sequels.

1The problems pertain to families of metric spaces. The n in Kn pertains to a parameter
of the family called the “dullness.” See [8] for details.
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2. Definitions

Throughout, graphs are undirected and simple. We ignore the distinction
between isomorphism of graphs and their equality.

The complete graph on p vertices is denoted Kp. The cycle on p vertices is
Cp. The complete bipartite graph with p vertices on one side and q on the other
is Kp,q. If vertices u, v are adjacent, we write u ∼ v; otherwise we write u ̸∼ v.
The vertices of G are V (G); its edges are E(G). Denote by N(v) the neighbors
of v. If H can be obtained from G by deleting vertices, we call H an induced
subgraph of G and write H = G|V (H). A p-clique is an induced Kp subgraph. If
H can be obtained from G by deleting vertices, deleting edges, and contracting
edges, we call H a minor of G. (Recall that a graph is series-parallel if and only
if it has no K4 minor.)

A tree is a connected, nonempty graph with no cycles. For a graph G, a tree
decomposition is a pair (T, f) consisting of a tree T and a function f : V (G) →
2V (T ), satisfying the following properties:

• For any x ∈ V (G), T |f(x) is a tree.

• If xy ∈ E(G), f(x) ∩ f(y) ̸= ∅.

For a vertex v ∈ V (T ), f−1(v) is the bag associated to v. The width of a
tree decomposition (T, f) is equal to maxv∈V (T ) |f−1(v)| − 1. The treewidth
of a graph G is the minimum width of a tree decomposition of G. If G has
treewidth ≤ k, we say that it is a partial k-tree. (Treewidth’s naturality and
importance have been independently discovered in dynamic programming [2],
graph functions [4], and graph minor theory [9].)

A prism consists of two triangles on distinct vertices u1, u2, u3, v1, v2, v3, plus
three pairwise disjoint paths: one from ui to vi for each i ∈ {1, 2, 3}. A wheel
consists of a Ck for some k ≥ 4 and an additional vertex v not in Ck adjacent
to at least three vertices of the Ck. We denote the minimal wheel by Ŵ4. If v is
adjacent to each of the k other vertices, we call it a universal wheel and denote
it Wn, where n = k + 1.

A vertex partition of G is a graph G′ in which a vertex v of G is replaced by
two adjacent vertices x, y, such that (N(x), N(y)) partitions N(v). We say that
G2 is built from G1 just in case G2 is obtained from G1 by a (finite) sequence
of vertex partitions.2

The family F includes K3,3, wheels, prisms, and graphs equal to or built

from Ŵ4. If no induced subgraph H ⊆ G is in F , we say that G is F-free.
The diagram below depicts members of F . The dashed lines indicate paths of
arbitrary length (including single edges), and the dotted lines indicate single
edges that may be present or not.

2In earlier references [3, 5, 6] the sequence was required to be nonempty. We find this
awkward but will use the phrase “equal to or built from” for backwards compatibility.
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Given two graphs G1 and G2 and cliques Kp ⊆ G1, Kp ⊆ G2, a graph G
obtained by bijectively identifying the vertices of these cliques is called a clique-
sum ofG1 andG2. If a graphG′ can be formed by clique-sums amongG1, ..., Gn,
we say that G′ is a clique-sum of G1, ..., Gn. (Some authors say “sequential
clique-sum.”) A list of such Gi is said to be a cut-clique decomposition of G′; a
cut-clique of a graph G is a cliqueKp ⊆ G such that G\Kp has more components
than G.

We say that G′ is a k-clique chordal supergraph of G if V (G) = V (G′),
E(G) ⊆ E(G′), G′ is chordal, and G′ contains no (k + 1)-cliques not contained
by G. (Recall that the treewidth of a graph G is equal to minω(G′) − 1, ω
denotes the size of the largest clique, and where the minimum is taken over all
chordal supergraphs G′ ⊇ G.)

For a graph G, let π = (v1, ..., v|V (G)|) be an ordering of the vertices of G.
Denote by Gπ the fill-in graph of G with respect to π. It is constructed as follows.
Start with G. For each i ∈ {1, ..., |V (G)|}, consider the vertex vi. For every
j, k ∈ {i + 1, ..., |V (G)|}, if j ̸= k and vj ∼ vi ∼ vk ̸∼ vj , add an edge between
vj and vk. Let N+

π (vi) denote the higher-numbered neighbors of vi in Gπ. Fix
an integer p, and let π be a vertex ordering such that for every vi, either

(i) N+
π (vi) is complete in G, or

(ii) |N+
π (vi)| ≤ p.

Then we call π a p-blended elimination ordering.

3. Characterizing

Lemma 3.1. Prisms and K3,3 are built from W5. Wheels are equal to or built

from Ŵ4 or Wk for k ≥ 5.

Proof. K3,3 is built fromW5: partition the hub so that diagonally opposite edges
lie on the same side of the partition. Any prism is equal to or built from the
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six-vertex prism, which is built from W5: partition the hub so that diagonally
opposite edges lie on different sides of the partition.

A wheel whose hub has degree k ≥ 4 is built from Wk by subdividing edges
along the rim. A wheel whose hub has degree 3 has a rim of at least four vertices
(by definition) and so can be built from Ŵ4 similarly.

Lemma 3.2. For a graph G, at least one of the following holds:

• G is series-parallel.

• G is a clique.

• G has a cut-clique.

• G contains an induced subgraph H that is not series-parallel nor contains
a K4 subgraph.

Proof. Let G be a graph. Assume that G is not a clique, is not series-parallel,
and has no cut-clique. We seek to show that G contains an induced subgraph
H where H is not series-parallel but does not have a K4 subgraph.

Let K be a maximum clique in G. Every vertex of K must have a neighbor
in G\K; if some v ∈ V (K) did not, then V (K)\v would be a clique cutset for
G.

Case 1. Assume |V (K)| ≤ 2. Then G contains no K4 subgraph, but since it
is not series-parallel, it has a K4 minor, so we can take H = G.

Case 2. Assume |V (K)| ≥ 3 and the existence of v1, v2 ∈ V (K) such that
N(v1) ∩ N(v2) ∩ V (G\K) = ∅. Let v3 be an arbitrary third vertex in K, and
let u1, u2, u3 ∈ V (G\K) be neighbors of v1, v2, v3 respectively, chosen such that
the path distance from u1 to u2 is minimized.

v1

v2

v3

P ′

P

H =

Since G has no clique cutset, G\K is connected, so let P be a shortest path
in G\K from u1 to u2. Let P ′ be a shortest path among all those in G\K
whose endpoints are u3 and an x ∈ P . Now let H be the subgraph induced on
{v1, v2, v3} ∪ V (P ) ∪ V (P ′); we’ll show it has the desired properties. We know
that H\{v1, v2, v3} is connected, so we can contract all of H\{v1, v2, v3}. This
yields K4, so H has a K4 minor.
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By N(v1) ∩ N(v2) ∩ V (G\K) = ∅ and the definition of P , no K4 ⊆ H
can contain more than two elements of {v1, v2} ∪ V (P ), and they can’t be
v1, v2. Thus, any K4 must include some vertex of V (P ) and at least two ver-
tices of V (P ′)\V (P ). However, by the definition of P ′, at most one vertex of
V (P ′)\V (P ) can have neighbors in V (P ). Thus, H contains no K4 subgraph.

Case 3. Assume that |V (K)| ≥ 3 but every pair of vertices in K has some
common neighbor in G\K. Of course, not all of K can have a common neighbor
in G\K; otherwise it wouldn’t be a maximum clique. Thus, there must exist
some I ⊆ V (K) with |I| ≥ 3 having the property that I has no common neighbor
in G\K but every proper subset of I does.

Let A,B ⊂ I be proper subsets of some such I, and pick any a ∈ A\B,
b ∈ B\A, c ∈ A ∩ B. Since G is has no cut-clique,G\K is connected, so there
there is a minimal path Pb,v in (G\K)∪{b} from b to any given vertex v outside
K. Choose d ∈ N(a) ∩ N(c) ∩ V (G\K) to minimize |V (Pb,d)|. Now consider
the graph induced on {a, c} ∪ V (Pb,d); that will be our H.

Contracting Pb,d to a single edge gives us K4, so H has a K4 minor. No
vertex of Pb,d\{b, d} can neighbor both a and c, since we chose d to minimize
|Pb,d|, and every vi ∈ V (Pb,d)\{b, d} has exactly two neighbors vi−1, vi+1 in
V (Pb,d) by minimality of Pb,d. By minimality of Pb,d, vi−1 ̸∼ vi+1. Thus, no
vi ∈ V (Pb,d)\{b, d} can be part of a K4 in H. There are only four other vertices
(a, b, c, d) of H, but b ̸∼ d. Thus, H contains no K4 subgraph.

To conclude. In each of these cases, there’s an induced H ⊆ G that has a
K4 minor but contains no K4 subgraph.

Lemma 3.3. If H has a G minor, so does everything built from H. If every
edge of G is in a triangle and H contains no G subgraph, nothing built from H
contains a G subgraph.

Proof. Let H ′ be obtained from H by a single vertex partition, splitting vertex
v into vertices x and y. By contracting xy, we see that H is a minor of H ′, so
all minors of H are minors of H ′. This proves the lemma’s first sentence.

Consider an induced subgraph G of H ′. If it includes neither of x, y, it is an
induced subgraph in H. If it includes exactly one of x, y, then (G\{x, y})∪ {v}
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is an induced G ⊆ H of the same size. It cannot include both of x, y because
xy is part of no triangle by the definition of vertex partition, but G has no such
edge. This contradiction proves the second sentence.

Lemma 3.4. If G is in F , then G has treewidth 3 and no cut-clique.

Proof. Inspection.

Lemma 3.5. If G has a (k+1)-clique chordal supergraph, then it is a clique-sum
of cliques and graphs of treewith ≤ k.

Proof. Let H be a (k + 1)-clique chordal supergraph of G. It has a tree de-
composition T each of whose bags is a clique. Moreover, a bag has > k + 1
members if and only if its clique is also a clique in G. Since G ⊆ H, the vertex
assignments of T can be duplicated for a tree decomposition T ′ of G; each bag
has ≤ k + 1 members or is a clique of G.

If all bags of T ′ have ≤ k + 1 members, then by definition G has treewidth
≤ k.

Otherwise, let B0 a clique of size > k + 1 that is a bag of T ′. If B0 is the
only bag, we’re done. Otherwise, it has a neighbor B1. If B0 ̸= B0 ∩ B1 ̸= B1,
then B0 ∩ B1 is a cut-clique of G. If B0 ⊆ B1 or B1 ⊆ B0, we can merge the
bags. By induction, G has a cut-clique or is a clique.

We have shown that if G has a (k + 1)-clique chordal supergraph, then at
least one of the following holds:

• G has treewidth ≤ k.

• G is a clique.

• G has a clique cutset.

In the first two cases, G is trivially an appropriate clique-sum. These (orK1) can
serve as the base case for the induction we use to deal with the third possibility.
Our inductive hypothesis is that the theorem holds for all graphs with fewer
than |V (G)| vertices.

If G has a (k+1)-clique chordal supergraph, so does every induced subgraph.
Let K be a clique cutset of G, and consider the induced subgraphs Gi on vertex-
sets of the form V (K)∪V (Ci) for Ci the components of G\K. By the inductive
hypothesis, each of Gi is the clique-sum of cliques and series-parallel graphs.
In turn, G is the clique-sum of those Gi, so G is the clique-sum of cliques and
series-parallel graphs, and the proof is complete.

Proof of Theorem 1.1. The paragraphs below will leverage a lemma from
[7] and our own Lemmata 3.1-3.4 to help prove (¬2) → (¬α), (¬α) → (¬1),
(¬A) → (¬2), (¬1) → (¬2), and (¬α) → (¬A). This gives us (1) ↔ (2) ↔
(α) ↔ (A). As for (B) and (3), the original proof of (A) → (B) → (3) is too
good to change, so we just append (3) → (A), which is a special case of Lemma
3.5. Each paragraph below is labeled with the implication proven therein.
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(¬2) → (¬α). To rephrase Lemma 2.2 of [7], if a graph contains no induced
subgraph equal to or built from K4 but still has a K4 minor, it contains a prism,
wheel, or K3,3 as an induced subgraph. So if some induced H ⊆ G has a K4

minor but contains no K4 subgraph, it is not F-free, which implies that G itself
is not F-free.

(¬α) → (¬1). Assume G contains an induced F ⊆ G with F ∈ F . If that

F is equal to or built from Ŵ4, we have (¬1). Otherwise, that F is a prism,
wheel, or K3,3, and Lemma 3.1 yields (¬1).

(¬A) → (¬2). If every induced subgraph of G is series-parallel, is a clique, or
has a cut-clique, then G is the clique-sum of cliques and series-parallel graphs.
So if G is not the clique-sum of cliques and series-parallel graphs, it contains
some induced subgraph G′ failing all three of those conditions. By Lemma 3.2,
this G′ contains an induced subgraph H that is not series-parallel nor contains
a K4 subgraph, so G does as well.

(¬1) → (¬2). Check that wheels have K4 minors and contain no K4 sub-
graphs, then use Lemma 3.3.

(¬α) → (¬A). Assume for contradiction that G is a clique-sum of cliques
and series-parallel graphs, minimal among those that are not F-free. It cannot
be a clique, since no induced subgraph of a clique lies in F . By Lemma 3.4
and the monotonicity of treewidth, it cannot be series-parallel. Assume it has
a clique cutset K. Therefore, it must have a clique cutset K. Let {Ci} be
the components of G\K. Let H ∈ F be an induced subgraph of G. By the
minimality assumption, there is no G|V (Ci)∪K with H ⊆ G|V (Ci)∪K . Thus,
multiple Ci must contain vertices of H. Since H is connected, K ∩H must be
a cutset of H, and since H is an induced subgraph of G, K ∩H is a clique in
H. By Lemma 3.4, this contradiction concludes the proof.

(3) → (A). Recall that series-parallel graphs are exactly the graphs of
treewidth ≤ 2. Then consider the case k = 3 of Lemma 3.5.

4. Generalizing

Here we prove Theorem 1.2. Notice that Lemma 3.5 is (3k) → (Ak). We
could prove (Ak) → (Bk) → (3k) by a straightforward generalization of [6]’s
proof that (A) → (B) → (3), but for novelty’s sake, we follow another pattern.

Lemma 4.1. Let G′ be a (k + 1)-clique chordal supergraph of G, and let π
be any perfect elimination ordering for G′. Then π is a k-blended elimination
ordering for G.

Lemma 4.2. Let π be a k-blended elimination ordering for G. Then Gπ is a
(k + 1)-clique chordal supergraph of G.

Lemma 4.3. A clique-sum of cliques and graphs with treewidth ≤ k has a
(k + 1)-clique chordal supergraph.

Proof of Theorem 1.2. Lemma 3.5 and Lemma 4.3 together constitute (Ak) ↔
(3k). Lemma 4.1 implies that if a graph has a (k+1)-clique chordal supergraph,

8



then it has a k-blended elimination ordering. Lemma 4.2 implies the converse.
Together, they imply (3k) ↔ (Bk).

Proof of Lemma 4.1. Notice that Gπ is a subgraph of G′. Then our conclusion
follows from the definitions of k-blended elimination ordering and (k+1)-clique
supergraph.

Proof of Lemma 4.2. See definition of k-blended elimination ordering.

Proof of Lemma 4.3. Consider the cut-clique decomposition of some G into
cliques and partial k-trees. The latter have chordal supergraphs with maxi-
mum clique size k + 1. Take these chordal supergraphs. Reassembling G from
this cut-clique decomposition only requires the identification of existing cliques
with each other; this is a (k + 1)-clique chordal supergraph of G.
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