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Abstract

Given a multigraph G and function f : V (G) → Z≥2 on its vertices, a degree-f subgraph
of G is a spanning subgraph in which every vertex v has degree at most f(v). The degree-f
arboricity af (G) of G is the minimum number of colors required to edge-color G into degree-f
forests. At least for constant f , Truszczyński conjectured that af (G) ≤ max{∆f (G) + 1, a(G)}
for every multigraph G, where ∆f (G) = maxv∈V (G)dd(v)/f(v)e and a(G) is the usual arboricity
of G. This is a strong generalization of the Linear Arboricity Conjecture due to Akiyama, Exoo,
and Harary. In this paper, we disprove Truszczyński’s conjecture in a strong sense for general
multigraphs. On the other hand, extending known results for linear arboricity, we prove that the
conjecture holds for simple graphs with sufficiently large girth, and that it holds for all simple
graphs asymptotically. More strongly, we prove these partial results in the setting of directed
graphs, where the color classes are required to be analogously defined degree-f branchings.

Keywords: linear arboricity, pseudoarboricity, fractional arboricity, f-colorings, branchings

1 Introduction

In this writing, a multigraph may have parallel edges but no loops, unless otherwise stated. Given
a multigraph G and a function f : V (G) → Z≥1 on its vertex set, a degree-f subgraph (or an f -
matching) is a spanning subgraph H of G such that every vertex v ∈ V (G) has degree dH(v) ≤ f(v)
in H. If every vertex v has degree exactly f(v), such a subgraph is commonly known as an f -factor.
An f -coloring of G is an assignment of a color to every edge of G so that each color class is a degree-
f subgraph. The f -chromatic index χ′f (G) of G is the minimum number of colors required in an
f -coloring of G. For a vertex subset S ⊆ V (G), we let e(S) denote the number of edges in G with
both endpoints in S, and we write f(S) =

∑
v∈S f(v).

Hakimi and Kariv [22] introduced the notion of an f -coloring as a generalization of the case
f = 1 of a proper edge-coloring, where χ′1(G) is the usual chromatic index of G. This paper will
study the similar problem of edge-coloring a multigraph into degree-f forests rather than degree-f
subgraphs. This problem generalizes the most-studied cases f =∞ (arboricity) and f = 2 (linear
arboricity) to more general vertex weight functions.

The arboricity a(G) of a multigraph G is the minimum number of colors required to edge-color
G so that every color class is a forest. A celebrated theorem of Nash-Williams [32] states that the
arboricity of a multigraph G is given by

a(G) = max
S⊆V (G),|S|≥2

⌈
e(S)

|S| − 1

⌉
.
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Given a function f : V (G)→ Z≥2, the degree-f arboricity af (G) of multigraph G is the minimum
number of colors required to edge-color G so that every color class is a degree-f forest. A degree-2
forest is more commonly known as a linear forest, and a2(G) = la(G) is called the linear arboricity
of G. Unlike arboricity, determining the linear arboricity la(G) of a general multigraph G is NP-
hard [33]. However, a conjecture known as the Linear Arboricity Conjecture, due to Akiyama,
Exoo, and Harary [3], asserts that we can always determine the linear arboricity of simple graph to
within an additive error of one. Observe that la(G) ≥ d∆(G)/2e for every multigraph G because
we require at least dd(v)/2e linear forests to cover the edges incident to vertex v. The following
was conjectured in [3].

Conjecture 1 (Linear Arboricity Conjecture). For every simple graph G, we have la(G) ≤
d(∆(G) + 1)/2e.

The Linear Arboricity Conjecture has been verified for many classes of simple graphs, including
complete bipartite graphs [3], series-parallel graphs [43], planar graphs [42], and when ∆(G) ∈
{3, 4, 5, 6, 8, 10} (see [3, 4, 14, 20]). Alon [5] proved that the Linear Arboricity Conjecture nearly
holds for graphs with sufficiently large girth, and that it holds for all simple graphs asymptotically.
Subsequent asymptotic improvements were given by Alon [6], by Ferber, Fox, and Jain [17], and by
Lang and Postle [28], the latter of whom have given the currently best known asymptotic bound
la(G) ≤ ∆(G)/2 + O(∆(G)1/2(log ∆(G))1/4). The Linear Arboricity Conjecture has also been
proven for graphs of bounded sparsity (e.g., bounded degeneracy, treewidth, pseudoarboricity)
when the maximum degree is sufficiently large (see [9, 11, 37, 40]).

There has not been as much work on the linear arboricity of multigraphs or on the degree-
f arboricity af (G) for f 6= 2. Conjecture 1 does not extend to general multigraphs G since, for
example, la(G) = ∆(G) when G consists of ∆(G) parallel edges between two vertices. Aı̈t-djafer [2]
generalized Conjecture 1 to the statement la(G) ≤ d(∆(G)+µ(G))/2e for every multigraphG, where
µ(G) is the edge-multiplicity of G. She verified this when µ(G) ≥ ∆(G)− 2, as well as when ∆(G)
is close to a power of 2 and µ(G) is close to ∆(G)/2. Caro and Roditty [10] proved that for constant
functions f = t, every k-degenerate simple graph G satisfies at(G) ≤ d(∆(G) + (t− 1)k − 1)/te.

This paper focuses on a strong generalization of the Linear Arboricity Conjecture due to
Truszczyński [38]. For a multigraph G and function f : V (G)→ Z≥2, define the weighted maximum
degree parameter

∆f (G) = max
v∈V (G)

⌈
d(v)

f(v)

⌉
.

Observe that af (G) ≥ ∆f (G) and af (G) ≥ a(G). Truszczyński conjectured the following when f
is a constant function.

Conjecture 2. For every multigraph G and function f : V (G)→ Z≥2, we have

af (G) ≤ max{∆f (G) + 1, a(G)}.

More strongly, Truszczyński conjectured that for every multigraph G and integer t ≥ 2, we
have at(G) = max{d∆(G)/te, a(G)} unless a(G) = ∆(G)/t, in which case we have at(G) ∈
{∆(G)/t,∆(G)/t + 1}. He proved this when G is a complete multigraph with all edges having
the same multiplicity, when G is a complete bipartite multigraph with all edges having the same
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multiplicity, when the underlying simple graph of G is a forest, and when t ≥ ∆(G)−a(G)+1. For
the particular case f = 2 of linear arboricity, Conjecture 2 asserts that every multigraph G satisfies

la(G) ≤ max {d∆(G)/2e+ 1, a(G)} .

On the other hand, Nash-Williams’ Theorem [32] for arboricity above implies that a(G) ≤ d(∆(G)+
1)/2e for every simple graph G. This shows that Conjecture 2 is close to a generalization of the
Linear Arboricity Conjecture, both to multigraphs and to other vertex weight functions f .

Our first main result is that Conjecture 2 is false in a strong sense for general multigraphs G,
for any fixed constant function f = t.

Theorem 3. For every integer t ≥ 2, there exists a constant ct > 1 such that the following holds.
For infinitely many integers d ≥ 2, there exists a multigraph G such that max{∆t(G), a(G)} = d
and at(G) ≥ ctd.

We will prove Theorem 3 by exhibiting multigraphs Gt that have large fractional degree-t
arboricity. We will then obtain the graph G of the theorem by replacing every edge in Gt with
many parallel edges, which will make at(G) and max{∆t(G), a(G)} grow arbitrarily far apart by
a constant factor ct > 1. We will show that we can take the constant ct in the theorem to satisfy
ct ≥ (4t+ 7)/(4t+ 6) for every integer t ≥ 2, with slight improvements c2 ≥ 9/8, c3 ≥ 15/14, c4 ≥
21/20 for t ∈ {2, 3, 4}.

The falsity of Conjecture 2 stands in contrast to other theorems and open conjectures on f -
colorings. For example, in [40] this paper’s author proved that a result analogous to Conjecture 2
holds for the degree-f pseudoarboricity of a multigraph. A pseudoforest is a multigraph where every
component has at most one cycle (possibly a loop). The pseudoarboricity pa(G) of a multigraph G
is the minimum number of colors required to edge-color G into pseudoforests. Analogous to Nash-
Williams’ Theorem, a theorem of Hakimi [23] states that the pseudoarboricity of a multigraph G
(possibly with loops) is given by

pa(G) = max
S⊆V (G),|S|≥1

⌈
e(S)

|S|

⌉
.

Given a multigraph G (possibly with loops) and function f : V (G) → Z≥2, the degree-f pseu-
doarboricity paf (G) of G is the minimum number of colors required to edge-color G into degree-f
pseudoforests. It was shown in [40] that the degree-f pseudoarboricity has the exact formula

paf (G) = max{∆f (G), pa(G)}.

This result has a similar form to a conjecture on the f -chromatic index χ′f (G) due to Nakano,
Nishizeki, and Saito [30]. Their conjecture, in turn, is a generalization of the well-known Goldberg-
Seymour Conjecture for the chromatic index [19, 34] (see also [12, 35]).

On the other hand, it was observed in [40] that the above formula for paf (G) implies the
following approximation of Conjecture 3.

Theorem 4. For every multigraph G and function f : V (G)→ Z≥2, we have

af (G) ≤ 2pa2f (G) ≤ max{∆f (G) + 1, 2pa(G)}.

Note that pa(G) ≤ a(G) ≤ 2pa(G) for every multigraph G. Thus, Theorem 2 shows that we
cannot generally decrease 2pa(G) to a(G) in the above upper bound on af (G). This raises the
following question.
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Question 5. For a given bounded function f , what is the optimal constant c = cf so that af (G) ≤
(c+ o(1)) max{∆f (G), a(G)} for every multigraph G? More generally, what pairs of constants c, c′

are optimal so that af (G) ≤ max{(c+ o(1))∆f (G), (c′ + o(1))a(G)} for every multigraph G?

Theorem 4 shows that the constant cf of this question satisfies cf ≤ 2 for every function f .
(This could have been derived from the simpler inequality af (G) ≤ 2paf (G).) Theorem 3 shows
that generally cf > 1, more precisely cf ≥ (4t+ 7)/(4t+ 6) whenever f has maximum value t, with
slight improvements for t ∈ {2, 3, 4}.

We conjecture that Truszczyński’s Conjecture 2 holds when we restrict G to being a simple
graph. Our next main results are support for this conjecture. Notice that if G is a simple graph
that is ∆(G)-regular, then a(G) = d(∆(G)+1)/2e by Nash-Williams’ Theorem, and then Conjecture
2 for simple graphs would be implied by the Linear Arboricity Conjecture. But for more general
simple graphs G, a reduction to the Linear Arboricity Conjecture is not clear. One of our results
is that Conjecture 2 nearly holds for simple graphs with sufficiently large girth.

Theorem 6. Let G be a simple graph, let f : V (G)→ Z≥2 be a function, and let d = max{∆f (G), a(G)}.
If G has girth g ≥ 4d, then af (G) ≤ d+ 1.

Our other result is that Conjecture 2 holds for all simple graphs asymptotically when the
function f is bounded.

Theorem 7. For every integer t ≥ 2, there exists a real constant ct > 0 such that for every simple
graph G and function f : V (G)→ Z≥2 with maximum value at most t, we have

af (G) ≤ d+ ctd
3/4(log d)1/2,

where d = max{∆f (G), a(G)}.

In particular, the answer to Question 5 is cf = 1 when we restrict to the class of simple graphs.
This contrasts with the proof of Theorem 3, where the constructed multigraphs have arbitrarily
many parallel edges.

The proofs of Theorem 6 and Theorem 7 will be extensions of Alon’s [6] probabilistic proofs for
the case f = 2 of linear arboricity. These proofs are also found in the book of Alon and Spencer [7].
As with Alon’s proofs, it is more convenient to prove our results in the setting of directed graphs D.
Thus, before our probabilistic proofs we will consider a directed version of a degree-f forest that we
call a degree-f branching, and we will write a conjecture (Conjecture 12) analogous to Conjecture
2 on what we call the directed degree-f arboricity ~af (D). We will first prove our large-girth and
asymptotic results for directed graphs, and from those we will deduce Theorem 6 and Theorem 7.

We organize the proofs in this paper as follows. In Section 2, we will prove Theorem 3. In
Section 3, we will formulate a version of Conjecture 2 for directed multigraphs and then show how
this directed version implies the undirected version. Finally, in Section 4 we will prove Theorem 6
and Theorem 7.

2 Proof of Theorem 3

In this section, we will prove Theorem 3 and thus disprove Conjecture 2. We will use a fractional
relaxation of degree-f arboricity af (G). Let G be a multigraph and let f : V (G) → Z≥2 be a
function. Let F be the collection of edge-sets of degree-f forests in G. We have a variable yF for
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every edge-set F ∈ F . The fractional degree-f arboricity a∗f (G) of a multigraph G is the optimal
value of the following linear program.

min
∑
F∈F

yF

(P0) s.t.
∑

F∈F : e∈F
yF ≥ 1 ∀e ∈ E(G),

yF ≥ 0 ∀F ∈ F .

Notice that if we add the integrality constraints yF ∈ {0, 1} for all F ∈ F , then a feasible solution
of (P0) corresponds to a collection of degree-f forests that covers all of E(G). This implies that
af (G) ≥ a∗f (G).

We will work with a slightly simplified linear program. Let G′ be the underlying simple graph of
G, and let F ′ be the collection of edge-sets of degree-f forests of G′. For every edge e = uv ∈ E(G′),
let µe = µG(u, v) denote the number of parallel edges between vertices u and v in G. It is easy to
show that (P0) has the same optimal value as the following linear program.

min
∑
F∈F ′

yF

(P ) s.t.
∑

F∈F ′ : e∈F
yF ≥ µe ∀e ∈ E(G′),

yF ≥ 0 ∀F ∈ F ′.

The dual of (P ) is the following, where xe is the dual variable associated with edge e ∈ E(G′).

max
∑

e∈E(G′)

µexe

(D) s.t.
∑
e∈F

xe ≤ 1 ∀F ∈ F ′,

xe ≥ 0 ∀e ∈ E(G′).

Feige, Ravi, and Singh [16] proved that the fractional linear arboricity la∗(G) = a∗2(G) of a
d-regular simple graph satisfies la∗(G) ≤ d/2 +O(

√
d). This is only slightly better than Lang and

Postle’s [28] more recent asymptotic upper bound for la(G), but their proof is simpler. Outside of
their work, fractional linear arboricity has not been studied.

To prove Theorem 3, we will use the following easy observation. For a multigraph G and integer
m ≥ 1, let mG denote the multigraph obtained from G by replacing every edge of G by m parallel
copies of that edge.

Observation 8. For every multigraph G, function f : V (G)→ Z≥2, and integer m ≥ 1, we have

af (mG) ≥ a∗f (mG) = m · a∗f (G).
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Figure 1

We also observe that ∆f (mG) ≤ m ·∆f (G) and a(mG) ≤ m ·a(G). If we can find a multigraph
G where a∗f (G) = cf ·max{∆f (G), a(G)} and cf > 1, then

af (mG) ≥ m · a∗f (G) ≥ m · cf ·max{∆f (G), a(G)} ≥ cf ·max{∆f (mG), a(mG)},

which is the required inequality for Theorem 3. Therefore our goal is to find, for every constant
function f = t ≥ 2, a multigraph G = Gt and constant ct > 1 such that

a∗t (G) ≥ ct ·max{∆t(G), a(G)}. (1)

An example of such a multigraph Gt is shown in Figure 1(a). It consists of a 6-cycle that
alternates in one and two parallel edges, an edge connecting two antipodal vertices u and v of the
cycle, and t− 2 parallel pairs to new vertices attached to each of u and v. The underlying simple
graph G′t of Gt is shown in Figure 1(b), with some edges labeled e1, . . . , e7. Consider the following
solution x for (D) with respect to G′t:

xe =

{
2/(2t+ 3) if e ∈ {e1, e3, e7},
1/(2t+ 3) otherwise.

We will show that x is feasible, using the following claim.

Claim 9. In the simple graph G′t, every degree-t forest has at most 2t+ 1 edges, and every degree-t
forest containing each of e1, e3, e7 at most 2t edges.

Proof. The simple graph G′t has 6 + 2(t − 2) = 2t + 2 vertices, so every degree-t forest in G′t has
at most 2t + 1 edges. Suppose that degree-t forest F of G′t contains e1, e3, e7. Then F does not
contain e2, but it may contain e5. Besides e1 and e7, F contains at most t − 2 additional edges
incident to u; and besides e3 and e7, F contains at most t− 2 additional edges incident to v. This
implies that F has at most 3 + 1 + 2(t− 2) = 2t edges.

Fix a degree-t forest edge-set F in G′t. If F contains at most two of e1, e3, e7, then by Claim 9
we have |F | ≤ 2t+ 1, so that∑

e∈F
xe ≤ 2 · 2

2t+ 3
+ (|F | − 2) · 1

2t+ 3
≤ 1.
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Figure 2

If F contains each of e1, e3, e7, then by Claim 9 we have |F | ≤ 2t, so that∑
e∈F

xe = 3 · 2

2t+ 3
+ (|F | − 3) · 1

2t+ 3
≤ 1.

Since also x ≥ 0, this proves that x is feasible for (D).
We calculate objective value of x in (D) to be (4t + 7)/(2t + 3). Thus, by weak duality and

the equivalence of (P ) and (P0), we have that a∗t (Gt) ≥ (4t + 7)/(2t + 3). (One could prove that
x is in fact an optimal solution for (D), by exhibiting a feasible solution y for (P ) with the same
objective value, but this is not necessary for our proof.) On the other hand, we easily observe that
∆t(Gt) = a(Gt) = 2. Therefore,

a∗t (Gt) ≥
4t+ 7

2t+ 3
=

4t+ 7

4t+ 6
max{∆t(Gt), a(Gt)},

which achieves inequality (1) above and thus proves Theorem 3 with ct ≥ 4t+7
4t+6 . (Note that

∆t(mGt) = a(mGt) = 2m for every m ≥ 1, so Theorem 3 applies to all even d ≥ 2.)
For t ≤ 4 we can improve this bound on ct by replacing Gt with the multigraph Ht shown in

Figure 2(a). The underlying simple graph H ′t of Ht is shown in Figure 2(b). One can show that a
feasible solution for (D) with respect to H ′t is xe = 1/(3t− 2) for every edge e, and that this x has
objective value (6t− 3)/(3t− 2). Thus a∗t (Ht) ≥ (6t− 3)/(3t− 2) while ∆t(Ht) = a(Ht) = 2, and
this gives the bound ct ≥ (6t − 3)/(6t − 4). This bound improves the one above for t ≤ 4, giving
c2 ≥ 9/8, c3 ≥ 15/14, and c4 ≥ 21/20.

The idea for constructing the multigraphs Gt and Ht above is to start with a suitable base
graph and then to add certain gadgets to a subset of the vertices. These gadgets have the form of
a number of parallel edges connecting to a new vertex. If the base graph has large fractional linear
arboricity, then by adding a certain number of gadgets we will create a graph with large fractional
degree-t arboricity, for any given t ≥ 2. One can use this approach of adding gadgets to show that
it is NP-complete to decide whether a given multigraph G has degree-f arboricity af (G) = 2, for
any fixed function f : V (G)→ Z≥2, starting with the base case f = 2 due to Péroche [33]. Details
are found in [41].
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We observed the inequalities af (G) ≥ a∗f (G) ≥ max{∆f (G), a(G)} and showed that a∗f (G) and
max{∆f (G), a(G)} can be arbitrarily far apart. We leave open the question of whether af (G) and
a∗f (G) can be arbitrarily far apart.

3 A directed version

We have proven that Conjecture 2 is false for general multigraphs, but we believe the conjecture
holds when we restrict to simple graphs G. In Section 4, we will prove Theorem 6 and Theorem 7
supporting this conjecture. To make it easier to prove these theorems, in this section we introduce
an analogue of degree-f arboricity for directed multigraphs and formulate a directed version of
Conjecture 2. This reformulated conjecture (Conjecture 12) is a generalization of the Directed
Linear Arboricity Conjecture (Conjecture 11) due to Nakayama and Péroche [31].

For a directed multigraph D, let ∆−(D) denote the maximum indegree d−(v) among vertices
v of D, let ∆+(D) denote the maximum outdegree, and let D denote the underlying undirected
multigraph. Two arcs are said to be parallel if they have the same head and tail, and anti-parallel
if the head of one is the tail of the other and vice versa. The arc-multiplicity µ(D) is the maximum
number of parallel arcs in D. We will call D a directed graph if µ(D) = 1, that is, if D has no
parallel arcs (but it may have anti-parallel arcs).

A directed graph B is a branching if every vertex v of B has indegree d−B(v) ≤ 1 and its
underlying undirected graph B is a forest. An arborescence is a branching whose underyling
undirected graph is a tree. For a directed multigraph D, the directed arboricity ~a(D) of D is the
minimum number of colors required to color the arcs of D so that every color class is a branching.
Observe that ~a(D) ≥ ∆−(D) and ~a(D) ≥ a(D). Using Edmonds’ celebrated theorem on packing
arborescences [13, 29], Frank [18] proved the following formula for directed arboricity ~a(D).

Theorem 10. For every directed multigraph D, we have

~a(D) = max
{

∆−(D), a(D)
}
.

Frank also showed via Nash-Williams’ Theorem [32] that every directed multigraph D satisfies
a(D) ≤ ∆−(D) + µ(D), so Theorem 10 implies that ~a(D) ≤ ∆−(D) + µ(D). In particular, if D is
a directed graph then

∆−(D) ≤ ~a(D) ≤ ∆−(D) + 1,

a result also noted by Kareyan [27].
Theorem 10 has some resemblance to Conjecture 2. We introduce an f -coloring version of

branchings to connect the statements rigorously. Let D be a directed multigraph, and let f :
V (D)→ Z≥2 be a function. A directed subgraph B of D is a degree-f branching if it is a branching
where every vertex v has outdegree d+B(v) ≤ f(v)− 1. Notice that the underlying undirected graph
B of a degree-f branching B is a degree-f forest. The directed degree-f arboricity ~af (D) of directed
multigraph D is the minimum number of colors required to color the arcs of D so that every color
class is a degree-f branching.

For the case f = 2, a degree-2 branching is also called as a directed linear forest, and the
directed degree-2 arboricity ~a2(D) = ~la(D) is called the directed linear arboricity of D. Noting that
~la(D) ≥ ∆−(D) and ~la(D) ≥ ∆+(D) for every directed multigraph D, Nakayama and Péroche [31]
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formulated the Directed Linear Arboricity Conjecture for directed graphs D:

~la(D) ≤ max
{

∆−(D),∆+(D)
}

+ 1.

Nakayama and Péroche proved that this conjecture holds if D is acyclic, if ∆−(D),∆+(D) ≤ 2 and
|V (D)| ≥ 4, and if D is one of certain symmetric directed graphs G∗. (Here, G∗ is obtained from
the undirected graph G by replacing each edge by a pair of anti-parallel arcs.) However, He, Li, Bai,
and Sun [26] later showed that their conjecture does not hold for the complete symmetric directed
graphs K∗3 and K∗5 : ∆−(K∗n) = ∆+(K∗n) = n− 1 for all n but ~la(K∗n) = n+ 1 for n ∈ {3, 5}. Still,
they believe that these two directed graphs are the only counterexamples, leading to the following
updated version of Nakayama and Péroche’s conjecture.

Conjecture 11 (Directed Linear Arboricity Conjecture). For every directed graph D, we have

~la(D) ≤ max
{

∆−(D),∆+(D)
}

+ 1,

except for D = K∗3 ,K
∗
5 , in which case ~la(D) = max {∆−(D),∆+(D)}+ 2.

Now we consider a generalization of Conjecture 11 for general vertex weight functions f and
multigraphs D. As before, ~af (D) ≥ ∆−(D) and ~af (D) ≥ a(D). Now we also see that ~af (D) ≥
∆+

f−1(D) = maxv∈V (D)

⌈
d+(v)
f(v)−1

⌉
. Based on previously written theorems and conjectures (ignoring

Theorem 3), it is natural to conjecture the following.

Conjecture 12. For every directed multigraph D, we have

~af (D) ≤ max
{

∆−(D),∆+
f−1(D), a(D)

}
+ 1.

We will show that Conjecture 12 nearly implies Conjecture 2. Because Conjecture 2 is false
for general multigraphs as we have shown, so is Conjecture 12. However, it could still be true
for directed graphs (with no parallel arcs). Since a directed graph D satisfies ∆−(D) ≤ a(D) ≤
∆−(D) + 1 as noted above, Conjecture 12 for directed graphs is basically the statement that D
satisfies

~af (D) ≤ max
{

∆−(D) + 1,∆+
f−1(D)

}
+ 1.

In the case f = 2, it is an easy observation that the Directed Linear Arboricity Conjecture
(Conjecture 11) nearly implies the Linear Arboricity Conjecture (Conjecture 1): Given an undi-
rected simple graph G, let D be a balanced orientation of G, meaning that every vertex v has both
indegree and outdegree at most ddG(v)/2e in D. (The existence of balanced orientations is an easy
exercise from the theory of Euler tours or network flows, and it is also a special case of Theorem
13 below.) Then ∆−(D),∆+(D) ≤ d∆(G)/2e, and so by Conjecture 11 (for D 6= K∗3 ,K

∗
5 ) we have

la(G) ≤ ~la(D) ≤ max{∆−(D),∆+(D)}+ 1 ≤ d∆(G)/2e+ 1, which is almost the Linear Arboricity
Conjecture. To make this kind of reduction work for more general functions f , we will replace
balanced orientations with the following more general orientation theorem due to Entringer and
Tolman [15] (see also [40]).

Theorem 13 (Entringer-Tolman). Given a multigraph G (possibly with loops) and functions g, h :
V (G) → Z≥0, G can be oriented so that every vertex v ∈ V (G) has indegree d−(v) ≤ g(v) and
outdegree d+(v) ≤ h(v) if and only if

9



(1) d(v) ≤ g(v) + h(v) for all v ∈ V (G), and

(2) e(S) ≤ min{g(S), h(S)} for all S ⊆ V (G).

Corollary 14. For every multigraph G and function f : V (G) → Z≥2, if max{∆f (G), a(G)} ≤ d
then G has an orientation D such that max{∆−(D),∆+

f−1(D), a(D)} ≤ d.

Proof. Define g, h : V (G) → Z≥1 by g(v) = d and h(v) = d(f(v) − 1) for all v ∈ V (G). Then
dG(v) ≤ d · f(v) ≤ g(v) + h(v) for all v ∈ V (G), and e(S) ≤ d(|S| − 1) < d|S| = min{g(S), h(S)}
for all S ⊆ V (G). By Theorem 13, G has an orientation D such that every vertex v has indegree
at most d and outdegree at most d(f(v)− 1). That is, ∆−(D) ≤ d and ∆+

f−1(D) ≤ d. We also see

that a(D) = a(G) ≤ d.

Therefore, for any multigraph G, if d = max{∆f (G), a(G)} and D is from Corollary 14, then
Conjecture 12 implies that

af (G) ≤ ~af (D) ≤ max{∆−(D),∆+
f−1(D), a(D)}+ 1 ≤ d+ 1 = max{∆f (G), a(G)}+ 1,

which is almost Conjecture 2 as what we wanted to show. This reduction to directed graphs will
be used in our proofs of Theorem 6 and Theorem 7.

We remark that Conjecture 12 can be viewed as a matroid problem, about how closely the
covering number β(M1,M2,M3) of three matroids M1,M2,M3 on ground set E(D) is determined
by the covering number β(M1), β(M2), β(M3) of each of these matroids individually. We will not
comment further on this perspective.

4 Large girth and asymptotics

In this section, we will prove Theorem 6 and Theorem 7. Specifically, we will first prove that
Conjecture 12 on degree-f branchings holds for directed graphs with large directed girth, and then
prove that it holds for all directed graphs asymptotically when the function f is bounded. Applying
Corollary 14, these results imply the desired theorems. Recall that a directed graph D is taken to
have no parallel arcs, but it may have anti-parallel arcs.

Our proofs are extensions of the probabilistic proofs of Alon [6], who proved such partial results
for the Directed Linear Arboricity Conjecture (the case f = 2) while improving and simplifying his
original arguments in [5]. (See also Alon and Spencer [7].) Alon reduced to and wrote his proofs
specifically for d-regular (directed) graphs, but we cannot do the same reduction for f 6= 2, so we
write our proofs in the general non-regular setting. Recall that Conjecture 12 for a directed graph
D is close to, but not exactly, the inequality

~af (D) ≤ max
{

∆−(D) + 1,∆+
f−1(D)

}
+ 1.

4.1 Large girth

First we prove that Conjecture 12 holds for directed graphs with large directed girth. Here, the
directed girth is the length of a shortest directed cycle. We will need Hakimi and Kariv’s [22]
f -coloring generalization of König’s edge-coloring theorem, stated as follows.
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Theorem 15. For every bipartite multigraph G and function f : V (G) → Z≥1, we have χ′f (G) =
∆f (G).

We will also need a result on independent transversals in graphs. Given a simple graph G and
a partition (Vi)i∈[k] of its vertex set V (G), an independent transversal of G with respect to (Vi)i∈[k]
is an independent set of G containing one vertex from each vertex class Vi. Aharoni, Alon, and
Berger [1] proved the following result on independent transversals in line graphs.

Theorem 16. Let G be the line graph of a simple graph and let (Vi)i∈[k] be a partition of its vertex
set V (G). If |Vi| ≥ ∆(G) + 2 for every i, then G has an independent transversal with respect to
(Vi)i∈[k].

We now prove our result on directed graphs with large directed girth. The main differences
in our proof compared to that of Alon [6] for the case f = 2 are that we use a different initial
arc-coloring of the directed graph, and that we apply Theorem 16 to only an induced subgraph of
our line graph rather than the entire line graph.

Theorem 17. Let D be a directed graph, let f : V (D) → Z≥2 be a function, and let d =
max{∆−(D),∆+

f−1(D)}. If D has directed girth g ≥ 4d, then ~af (D) ≤ d+ 1.

Proof. Construct an auxiliary bipartite graph G with parts X and Y as follows: for every vertex
v of D put a copy vX in X and vY in Y , and for every arc e of D with tail u and head v put
an edge in G between uX and vY . Then vX has degree d+D(v) and vY has degree d−D(v) in G, for
every v ∈ V (D). Define the function g : V (G) → Z≥1 by g(vX) = f(v) − 1 and g(vY ) = 1 for all
v ∈ V (D). By Theorem 15,

χ′g(G) = ∆g(G) = max

{
max

v∈V (D)

⌈
d+D(v)

f(v)− 1

⌉
, max
v∈V (D)

d−D(v)

}
= max

{
∆+

f−1(D),∆−(D)
}

= d.

Thus G can be edge-colored into d degree-g subgraphs. These subgraphs of G correspond to directed
subgraphs B1, . . . , Bd of D with d−Bi

(v) ≤ 1 and d+Bi
(v) ≤ f(v)− 1 for all 1 ≤ i ≤ d and v ∈ V (D).

The Bi’s are thus directed degree-f pseudoforests, meaning that every vertex v of Bi has indegree
at most one and the underlying undirected graph Bi is a degree-f pseudoforest.

Observe that if we remove one arc from every monochromatic directed cycle in D, the remaining
color classes will be degree-f branchings. Let D′ be the spanning directed subgraph of D that is
the union all monochromatic directed cycles in D, let H be the line graph of D′, and let (Vi)i∈[k]
be the edge sets of the monochromatic directed cycles in D′. Then (Vi)i∈[k] is a partition of
V (H), and by the directed girth condition we have |Vi| ≥ 4d for all i ∈ [k]. Since ∆(H) ≤ 4d− 2,
|Vi| ≥ 4d = (4d−2)+2 for every i, and H is the line graph of a simple graph (as D cannot have anti-
parallel arcs by the directed girth assumption), Theorem 16 implies that there is an independent
transversal of H with respect to (Vi)i∈[k]. But this means that there is a (directed) matching M of
D′ containing an arc from every monochromatic directed cycle in D. Then M,B1 \M, . . . , Bd \M
are all degree-f branchings, giving us an arc-coloring of D into d+ 1 degree-f branchings.

By Corollary 14, Theorem 17 implies the desired large-girth result on Conjecture 2.

Theorem 6. Let G be a simple graph, let f : V (G)→ Z≥2 be a function, and let d = max{∆f (G), a(G)}.
If G has girth g ≥ 4d, then af (G) ≤ d+ 1.

11



Alon originally proved these large-girth results for the case f = 2 under the girth condition
g ≥ 100d [5], which he later improved to g ≥ 8ed [6]. He derived these girth conditions from earlier
versions of Theorem 16 on independent transversals. Using the Lovász local lemma, Alon proved
Theorem 16 for general graphs G (not just line graphs) under the conditions |Vi| ≥ 25∆(G) [5] and
|Vi| ≥ 2e∆(G) [6], respectively. Haxell [25] subsequently improved these class size conditions to
|Vi| ≥ 2∆(G). Haxell’s bound is best possible if one does not assume that G is the line graph of a
simple graph [36].

4.2 Asymptotics

Now we prove that Conjecture 12 holds asymptotically for all directed graphs D when the function
f is bounded. Similar to Alon’s [6] proof for the case f = 2, we show that every directed graph
D can be decomposed into a specified number of directed subgraphs each with large directed girth
and approximately the same maximum degree, and then we apply Theorem 17 to each of these
directed subgraphs individually. We use the following slight modification of a lemma of Alon [6].

Lemma 18. Let D be a directed graph and let f : V (D) → Z≥2 be a function. Suppose that
d = max{∆−(D),∆+

f−1(D)} is sufficiently large compared to the maximum value of f , and let

k ≤ d9/10 be a positive integer. Then there is a k-coloring of V (D) using the colors 0, 1, . . . , k − 1
with the following property: for every vertex v and color i, the numbers

d−(v, i) = |{u ∈ V (D) : (u, v) ∈ E(D) and u is colored i}|,
d+(v, i) = |{u ∈ V (D) : (v, u) ∈ E(D) and u is colored i}|

satisfy d−(v, i), d
+(v,i)

f(v)−1 ≤
d
k + 3

√
d log d

k .

Proof. Start by augmenting D to a directed graph D′, adding auxiliary vertices and arcs so that
every vertex v ∈ V (D) has indegree d−D′(v) = d and outdegree d+D′(v) = d(f(v) − 1) in D′ (not
caring about the indegrees and outdegrees of the added vertices). Consider a random coloring of
the vertices of D′ with the colors 0, 1, . . . , k − 1, where the color of every vertex chosen uniformly
at random. For every vertex v ∈ V (D) and color i, let A−v,i be the event that d−D′(v, i) > d/k +

3
√

(d log d)/k. Observe that d−D′(v, i) is a binomial random variable with mean d/k. By a version of
Chernoff’s inequality (see Appendix A in [7]), we have that Pr[A−v,i] ≤ 1/d4. Likewise, letting A+

v,i

be the event that d+D′(v, i)/(f(v)−1) > d/k+3
√

(d log d)/k, we have that Pr[A+
v,i] ≤ 1/d4(f(v)−1) ≤

1/d4.
Each of the events A−v,i, A

+
v,i is mutually independent of the events A−u,j , A

+
u,j for all the vertices

u ∈ V (D) that do not have a common neighbor with v in D. Thus each of A−v,i, A
+
v,i is mutually

independent of all but at most k(td)2 of the events A−u,j , A
+
u,j , where t is the maximum output of

f . Since e(1/d4)(k(td)2 + 1) < 1 for d sufficiently large compared to t, by the symmetric Lovász
local lemma (see Chapter 5 in [7]) no event A−v,i or A+

v,i occurs. Thus there is a coloring of V (D′)

satisfying d−D′(v, i), d
+
D′(v, i)/(f(v)− 1) ≤ d/k + 3

√
(d log d)/k for all v ∈ V (D) and 0 ≤ i ≤ k − 1.

Deleting the auxiliary vertices and arcs from D′, this gives a desired coloring of V (D).

We can now prove the following asymptotic version of Conjecture 12 for directed graphs.

12



Theorem 19. For every integer t ≥ 2, there exists a constant ct > 0 such that for every directed
graph D and function f : V (D)→ Z≥2 with maximum value at most t, we have

~af (D) ≤ d+ ctd
3/4(log d)1/2,

where d = max{∆−(D),∆+
f−1(D)}.

Proof. We may assume that d is sufficiently large compared to t wherever necessary. Pick a prime
k satisfying 5d1/2 ≤ k ≤ 10d1/2. By Lemma 18, there exists a k-coloring φ of V (D) satisfying
the stated inequalities. For each 0 ≤ i ≤ k − 1, let Di be the spanning directed subgraph of D
with arc set E(Di) = {(u, v) ∈ E(D) : φ(v) ≡ φ(u) + i (mod k)}. The inequalities in Lemma
18 imply that di = max{∆−(Di),∆

+
f−1(Di)} ≤ d/k + 3

√
(d log d)/k for every 0 ≤ i ≤ k − 1.

Moreover, for i 6= 0 the length of every directed cycle in Di is divisible by k, and thus Di has
directed girth gi ≥ k ≥ 4di (using that k ≥ 5d1/2 and d is sufficiently large). By Theorem 17, we
deduce that ~af (Di) ≤ di + 1 ≤ d/k + 3

√
(d log d)/k + 1 for every 1 ≤ i ≤ k − 1. For D0 we only

use the trivial inequality ~af (D0) ≤ 2d0 ≤ 2d/k + 6
√

(d log d)/k, obtained by first using Theorem
15 to arc-color D0 into d0 directed degree-f pseudoforests, and then trivially arc-coloring each of
these directed degree-f pseudoforests into 2 degree-f branchings. These inequalities together with
5d1/2 ≤ k ≤ 10d1/2 give us that

~af (D) ≤ (k − 1)

(
d

k
+ 3

√
d log d

k
+ 1

)
+

(
2d

k
+ 6

√
d log d

k

)
≤ d+ ctd

3/4(log d)1/2,

for some constant ct depending on t (since we assumed d is large compared to t).

By Corollary 14, Theorem 19 implies the desired asymptotic version of Conjecture 2 for simple
graphs.

Theorem 7. For every integer t ≥ 2, there exists a real constant ct > 0 such that for every simple
graph G and function f : V (G)→ Z≥2 with maximum value at most t, we have

af (G) ≤ d+ ctd
3/4(log d)1/2,

where d = max{∆f (G), a(G)}.

We conclude with a few remarks. Alon [6] stated that the lower order term in Theorem 19 (and
thus also in Theorem 7) can be improved to c′d2/3(log d)1/3 when f = 2, by using “recursion” instead
of a naive arc-coloring of D0, as well as changing some parameters. This kind of modification could
perhaps also work for more general vertex weight functions f . Alon, Teague, and Wormald [8] later
recovered the same lower order term stated by Alon, in the undirected case, using a different and
in some ways simpler method. Instead of using a large girth result like Theorem 17 or Theorem
6 above, they use a variant of the classical and easier result that the complete graph K2n can be
decomposed into n Hamiltonian paths. However, their proof method does not appear to generalize
as readily as Alon’s for general functions f .

Alon’s [5] original asymptotic proof of the Linear Arboricity Conjecture involved coloring the
edges of the graph rather than the vertices as we did above. This original approach resulted in a
worse error term, but Alon noted without proof that this approach also gives the desired asymptotics
more generally for multigraphs G with bounded edge-multiplicity µ(G). One can check that this
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approach also generalizes well to other vertex weight functions f on the vertices, when one works in
the directed setting. That is, the asymptotic upper bound af (G) ≤ (1 + o(1)) max{∆f (G), a(G)}
that we proved above holds more generally for multigraphs G with bounded edge-multiplicity. In
particular, the optimal constant in Question 5 is cf = 1 more generally for such multigraphs.
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