ON A COLORFUL PROBLEM BY DOL'NIKOV CONCERNING TRANSLATES OF CONVEX BODIES

LEONARDO MARTÍNEZ-SANDOVAL AND EDGARDO ROLDÁN-PENSADO

Abstract

In this note we study a conjecture by Jerónimo-Castro, Magazinov and Soberón which generalized a question posed by Dol'nikov. Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ be families of translates of a convex compact set \mathcal{K} in the plane so that each two sets from distinct families intersect. We show that, for some $j, \bigcup_{i \neq j} \mathcal{F}_{i}$ can be pierced by at most 4 points. To do so, we use previous ideas from Gomez-Navarro and Roldán-Pensado together with an approximation result closely tied to the Banach-Mazur distance to the square.

1. Introduction

In 2011 Dol'nikov posed the following problem MRB12, Problem 8].
Problem 1. Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3} be families of translates of a convex compact set \mathcal{K} in the plane such that $A \cap B \neq \emptyset$ for each $A \in \mathcal{F}_{i}, B \in \mathcal{F}_{j}$ with $i \neq j$. Is it always true that some \mathcal{F}_{i} has piercing number at most 3?

The answer to this problem seems to be affirmative. The uncolored version (when $\mathcal{F}_{1}=\mathcal{F}_{2}=\mathcal{F}_{3}$) was solved affirmatively by Karasev [Kar00, who later generalized it to higher dimensions [Kar08]. Jerónimo-Castro, Magazinov and Soberón [JCMS15] gave a positive answer to Problem 1 when \mathcal{K} is either centrally symmetric or a triangle. They also stated the following stronger conjecture.

Conjecture 2. For $n \geq 2$, let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ be families of translates of a convex compact set \mathcal{K} in the plane such that $A \cap B \neq \emptyset$ for each $A \in \mathcal{F}_{i}, B \in \mathcal{F}_{j}$ with $i \neq j$. Then there is some index j such that $\bigcup_{i \neq j} \mathcal{F}_{i}$ has piercing number at most 3 .

In the same paper they showed that this conjecture is true when \mathcal{K} is an Euclidean disk.
Recently Gomez-Navarro and Roldán-Pensado proved that Problem 1 has a positive answer when \mathcal{K} is either of constant width or is close to a Euclidean disk with respect to the BanachMazur distance GNRP23. They also showed that Dol'nikov's problem has a positive answer with 8 piercing points instead of 3 and that Conjecture 2 is true with 9 piercing points instead of 3 .

The purpose of this paper is to prove Conjecture 2 with 4 piercing points instead of 3 .
Theorem 3. For $n \geq 2$, let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ be families of translates of a convex compact set \mathcal{K} in the plane such that $A \cap B \neq \emptyset$ for each $A \in \mathcal{F}_{i}, B \in \mathcal{F}_{j}$ with $i \neq j$. Then there is some index j such that $\bigcup_{i \neq j} \mathcal{F}_{i}$ has piercing number at most 4 .

The proof follows the ideas used to prove Theorem 2.3 from GNRP23, together with an approximation result which is related to the Banach-Mazur distance to the square. The auxiliary results we require are stated in Section 2. Section 33 contains the proof of Theorem 3.

[^0]

Figure 1. The parallelograms vary the ratio between their sides.

2. Two auxiliary lemmas

Our proof is based on two lemmas. The first one is a special case of a theorem proved by Gomez-Navarro and Roldán-Pensado [GNRP23, Theorem 2.5(a)].

Lemma 4. For $n \geq 2$, let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ be families of translates of a convex compact set \mathcal{K} in the plane such that $A \cap B \neq \emptyset$ for each $A \in \mathcal{F}_{i}, B \in \mathcal{F}_{j}$ with $i \neq j$. If for every index j the family $\bigcup_{i \neq j} \mathcal{F}_{i}$ has piercing number larger than 3 , then there is a line transversal to $\bigcup_{i} \mathcal{F}_{i}$.

The tools behind the proof of Lemma 4 are the uncolored version of Problem 1 and the fact that a family of convex sets \mathcal{F} on the plane has a transversal line in every direction if and only if \mathcal{F} is pairwise intersecting. We refer the reader to GNRP23 for the full details.

The second lemma essentially gives a way of approximating a convex body by a parallelogram. It implies that the Banach-Mazur distance from the square to any planar convex body is at most 2 . This was already known GLMP04, Theorem 5.5], however we require something slightly stronger. Given a convex body \mathcal{K}, it is known that the parallelogram P of maximal area contained in \mathcal{K} satisfies that there is a translation of $2 P$ that contains \mathcal{K}. We require a similar result where, instead of P having maximal area, the direction of one of the sides of P is fixed.

Lemma 5. Let \mathcal{K} be a convex body in the plane and let u be a fixed direction. Then, there is a parallelogram $P \subset \mathcal{K}$ such that one of the sides of P has direction u and there is a translated copy Q of $2 P$ such that $\mathcal{K} \subset Q$.

Proof. We may assume that \mathcal{K} is smooth, as the general case follows from standard approximation arguments. Without loss of generality, the direction u is horizontal and the bottom and top horizontal supporting lines of \mathcal{K} are $y=0$ and $y=1$, respectively.

The length $l(h)$ of the horizontal chord of \mathcal{K} at height $h \in[0,1]$ depends continuously on h and it is unimodular: $l(0)=0$, then it increases until it attains some maximum m and then goes back to 0 . Therefore, each $l \in[0, m)$ is attained exactly twice.

For every $l \in(0, m)$, let $A B C D$ be the inscribed parallelogram to \mathcal{K} such that $A B$ and $C D$ are horizontal, and $A B=C D=l$. Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be the parallelogram circumscribed around \mathcal{K} such that the sides of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are parallel to the sides of $A B C D$. See Figure 1 .

Note that $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is homothetic to $A B C D$ if and only if $A^{\prime} B^{\prime} / B^{\prime} C^{\prime}=A B / B C$. Let α be the interior angle $\angle D A B$ and assume that $0<r<R$ are real numbers such that there is a disk of radius r contained in \mathcal{K} and \mathcal{K} is contained in a disk of radius R. Then $B^{\prime} C^{\prime}=1 / \sin (\alpha)$ and $2 r / \sin (\alpha) \leq A^{\prime} B^{\prime} \leq 2 R / \sin (\alpha)$, therefore $2 r \leq A^{\prime} B^{\prime} / B^{\prime} C^{\prime}<2 R$. However $A B / B C$ tends to 0

Figure 2. The points where \mathcal{K} touches P and P^{\prime}, and the point Q.
(resp. ∞) as l tends to 0 (resp. m). This variation is continuous, so at some point $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are homothetic.

By applying a linear transformation, we may assume that these parallelograms are squares and that $A B C D$ has unit side. Our result follows immediately if we manage to prove the following claim: if P is a unit square and P^{\prime} is a square homothetic to P such that $P \subset \mathcal{K} \subset P^{\prime}$, the vertices of P are in $\partial \mathcal{K}$ and \mathcal{K} is internally tangent to the sides of P^{\prime}, then the homothety ratio between P and P^{\prime} is at most 2. If this is the case, then $P \subset \mathcal{K}$, and for a translation Q of $2 P$ we would have $\mathcal{K} \subset P^{\prime} \subset Q$ as desired.

Recall that the vertices A, B, C, D of P lie in $\partial \mathcal{K}$ and let J, K, L, M be the points where the sides of P^{\prime} touch $\partial \mathcal{K}$, as in Figure 3. These eight points form a convex polygon. Let E be the intersection of the line $M A$ with the bottom side of P^{\prime} and let F be the intersection of the $M D$ with the top side of P^{\prime}.

By convexity at the angle $L D M$, we have that F lies to the left of L. In turn, by convexity at the angle $K C L$ we have that L lies to the left of line $C B$. Therefore, F (and analogously E) lies to the left of line $C B$. Then K lies below the line $F C$ and above the line $E B$. We conclude that K lies to the left of the intersection Q of the lines $F C$ and $E B$.

Proceeding by contradiction, we show that if the desired homothety ratio is larger than 2 , then Q is strictly to the left of the side $B^{\prime} C^{\prime}$ of P^{\prime}, which is impossible since by the previous argument then K would not be on the side $B^{\prime} C^{\prime}$ of P^{\prime}.

As in Figure 3, let ℓ be the horizontal line through M. Define a as the distance from D to ℓ and h as the distance from L to ℓ. Set X and Y as the intersections of the lines $F C$ and $E B$ with ℓ, respectively. Let X^{\prime} be the intersection of the line $A B$ and the vertical line through X and define Y^{\prime} as the intersection of the line $C D$ and the vertical line through Y.

Recall that P is a unit square, so $M X=M X / C D=h /(h-a)$. This shows that X depends on the vertical position of P but not on the horizontal position of P. The same is true for Y and consequently it is also true for X^{\prime} and Y^{\prime}. At this point, we may ignore the specific convex body \mathcal{K} and study the possible diagrams we may obtain.

We claim that, if we translate P horizontally (i.e. in diagrams where P has the same vertical position), Q stays on the line $X^{\prime} Y^{\prime}$. Indeed, the lines $B X^{\prime}, C Y^{\prime}$ and $X Y$ are horizontal, and thus projectively concurrent. The same is true for the lines $B C, Y Y^{\prime}$ and $X X^{\prime}$, since they are vertical. Therefore, by the dual of Pappus' theorem Cox61 the lines $B Y, C X$ and $X^{\prime} Y^{\prime}$ are concurrent, which means that Q lies on the line $X^{\prime} Y^{\prime}$.

Figure 3. Auxiliary points and lines.

Figure 4. The extreme case when the homothety ratio is exactly 2.

Let us assume, that Q is above the line ℓ. Then X is to the right of Q and Y is to the left of Q. This implies that X^{\prime} is below and to the right of Y^{\prime}. As P is translated to the left, the point F also moves to the left and therefore the line $X F$ intersects the line $X^{\prime} Y^{\prime}$ at a lower point. Since this point is Q and the slope of $X^{\prime} Y^{\prime}$ is not positive then Q moves to the right as P is translated to the left (i.e. among all possible diagrams where P has the same vertical position, the one where P is leftmost has rightmost Q). If Q is below ℓ the reasoning is analogous.

If Q lies on ℓ then $X^{\prime} Y^{\prime}$ is vertical and Q does not move horizontally as P is translated left.
Hence, we only need to prove that Q lies strictly to the left of the side $B^{\prime} C^{\prime}$ of P^{\prime} in the limit case when the square P has its left side contained in the left side of P^{\prime}, as in Figure 4 .

In this case, if the homothety ratio is exactly 2 , then $C Q B$ and $F Q E$ are homothetic triangles from Q, so the distance from Q to $C B$ is half the distance from Q to $F E$. This means that Q lies exactly on the side $B^{\prime} C^{\prime}$ of P^{\prime}. Then, if the homothety ratio is larger than 2 , then the distance from Q to $C B$ is less than half the distance from Q to $F E$, and thus Q is strictly to the left of side $B^{\prime} C^{\prime}$. This implies that K is also strictly to the left of the side $B^{\prime} C^{\prime}$ of P^{\prime}, which is the desired contradiction to our original assumption that the homothety ratio was larger than 2 . We conclude that the homothety ratio of both squares is at most 2 , as desired.

3. Proof of Theorem 3

Once we have the Lemmas from the previous section, the proof of Theorem 3 is simple. We start by using Lemma 4 . If for some index j it happens that $\bigcup_{i \neq j} \mathcal{F}_{i}$ has piercing number at most

3 , then we are done. Otherwise, there is a line ℓ transversal to $\bigcup_{i} \mathcal{F}_{i}$ with direction, say, u. By Lemma 5, there is a paralellogram $P \subset \mathcal{K}$ such that one of the sides of P has direction u and there is a translated copy R of $2 P$ such that $\mathcal{K} \subset R$. Let v be the direction of the other side of the paralellogram P.

By projecting the convex bodies in the sets \mathcal{F}_{i} to a line m orthogonal to v, we obtain collections $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ of intervals on m such that $I \cap I^{\prime} \neq \emptyset$ for each $I \in \mathcal{I}_{i}, I^{\prime} \in \mathcal{I}_{j}$ with $i \neq j$. What follows is a common generalization of the colorful Helly theorem (see e.g. Bár21). If every two intervals in $\bigcup_{i} \mathcal{I}_{i}$ intersect, then by Helly's theorem there is a point common to all of them. If not, there are two of these intervals, say I and I^{\prime}, that are disjoint. These intervals must then belong to the same family I_{j} and therefore any interval I^{*} not in this family must intersect both I and I^{\prime}. Thus, I^{*} contains any point separating I from I^{\prime}. In both cases there is an index j such that the elements of $\bigcup_{i \neq j} \mathcal{I}_{i}$ have a point in common. By lifting this point in direction v, we obtain a line transversal ℓ^{\prime} to $\bigcup_{i \neq j} \mathcal{F}_{i}$ with direction v. This implies that every translate of \mathcal{K} in $\bigcup_{i \neq j} \mathcal{F}_{i}$ intersects both the line ℓ with direction u and the line ℓ^{\prime} with direction v. We now exhibit four points that pierce all translates of \mathcal{K} with this property.

Consider the sets

$$
\begin{aligned}
& \mathbf{K}=\left\{x \in \mathbb{R}^{2}: \mathcal{K}+x \text { intersects both } \ell \text { and } \ell^{\prime}\right\} \text { and } \\
& \mathbf{R}=\left\{x \in \mathbb{R}^{2}: R+x \text { intersects both } \ell \text { and } \ell^{\prime}\right\}
\end{aligned}
$$

Note that the set \mathbf{R} is congruent to R and, since P is a parallelogram, the set $-P$ is congruent to P. Hence, the set \mathbf{R} can be covered with four copies of $-P$, say $-P+a,-P+b,-P+c$ and $-P+d$. Then the points a, b, c and d pierce any translate $\mathcal{K}+x$ that intersect both ℓ and ℓ^{\prime}. Indeed, if $x \in \mathbf{K} \subset \mathbf{R}$ then x belongs to either $-P+a,-P+b,-P+c$ or $-P+d$. Without loss of generality we may assume that $x \in-P+a$ which implies that $a \in \mathcal{K}+x$.

4. Acknowledgments

We would like to thank two anonymous referees whose comments helped to improve the presentation of this note. This work was supported by UNAM-PAPIIT project IN111923.

References

Bár21. I. Bárány, Combinatorial convexity, University Lecture Series, vol. 77, American Mathematical Society, Providence, RI, 2021.
Cox61. H. S. M. Coxeter, Introduction to geometry, John Wiley \& Sons, Inc., New York-London, 1961.
GLMP04. Y. Gordon, A. E. Litvak, M. Meyer, and A. Pajor, John's decomposition in the general case and applications, Journal of Differential Geometry 68 (2004), no. 1, 99-119.
GNRP23. C. Gomez-Navarro and E. Roldán-Pensado, Transversals to colorful intersecting convex sets, arXiv preprint arXiv:2305.16760 (2023), 1-14.
JCMS15. J. Jerónimo-Castro, A. Magazinov, and P. Soberón, On a problem by Dol'nikov, Discrete Mathematics 338 (2015), no. 9, 1577-1585.
Kar00. R. N. Karasev, Transversals for families of translates of a two-dimensional convex compact set, Discrete \& Computational Geometry 24 (2000), 345-354.
Kar08. _ Piercing families of convex sets with the d-intersection property in Rd, Discrete \& Computational Geometry 39 (2008), no. 4, 766-777.
MRB12. J. Matoušek, G. Rote, and I. Bárány, Discrete Geometry, Oberwolfach Reports 8 (2012), no. 3, 2459-2548.
(L. Martínez-Sandoval) Facultad de Ciencias, UNAM, Ciudad de México, México

Email address: leomtz@ciencias.unam.mx
(E. Roldán-Pensado) Centro de Ciencias Matemáticas, UNAM Campus Morelia, Morelia, Mexico Email address: e.roldan@im.unam.mx

[^0]: Key words and phrases. Colorful theorems; Piercing number; Banach-Mazur metric.

