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MONOCHROMATIC QUOTIENTS, PRODUCTS AND

POLYNOMIAL SUMS IN THE RATIONALS

RONGZHONG XIAO

Abstract. Let k, a ∈ N and let p1, · · · , pk ∈ Q[n] with zero constant term. We
show that for any finite coloring of Q, there are non-zero x, y ∈ Q such that there
exists a color which contains a set of the form

{

x,
x

ya
, x+ p1(y), · · · , x+ pk(y)

}

and there are non-zero v, u ∈ Q such that there exists a color which contains a set
of the form

{

v, v · ua, v + p1(u), · · · , v + pk(u)
}

.

1. Introduction

In the investigation of partition of sets, looking for Ramsey family on N and Q is
a center topic. A Ramsey family A on N is a finite set of the maps from Ni to
Z where i ∈ N such that for any finite coloring of N, there exists x ∈ Ni such that
{f(x) : f ∈ A} is monochromatic. Similarily, a Ramsey family A on Q is a finite
set of the maps from Qi to Q where i ∈ N such that for any finite coloring of Q,
there exists x ∈ Qi such that {f(x) : f ∈ A} is monochromatic.

Naturally, we seek to search Ramsey family in Z[x1, · · · , xs] and Q[x1, · · · , xs]
where s ∈ N.

On N, there are some results. I. Schur’s theorem [11] states the family {(x, y) 7→
x, (x, y) 7→ y, (x, y) 7→ x + y} is Ramsey on N and van der Waerden’s thereom [12]
states for any k ∈ N, the family {(x, y) 7→ x, (x, y) 7→ x+ y, · · · , (x, y) 7→ x+ ky} is
Ramsey on N. For general linear polynomials, R. Rado built a equivalent condition
for a family of linear polynomials to be Ramsey on N in [9]. Based on it, we can
verify that the family {x 7→ x, x 7→ x + 3} is not Ramsey on N. For general
polynomials, there are only a few results. Furstenberg-Sarközy theorem illustrates
the family {(x, y) 7→ x, (x, y) 7→ x+ y2} is Ramey on N(see [10]) and V. Bergelson
extended it to {(x, y) 7→ x, (x, y) 7→ y, (x, y) 7→ x+ y2} in [1]. V. Bergelson and A.
Leibman’s polynomial extension of van der Waerden’s thereom [4] declares that for
any k ∈ N, for any p1, · · · , pk ∈ Z[n] with zero constant term, the family {(x, y) 7→
x, (x, y) 7→ x+ p1(y), · · · , (x, y) 7→ x+ pk(y)} is Ramsey on N. For aforementioned
Ramsey familes on general polynomials, they do not contain polynomials (x, y) 7→ y
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and (x, y) 7→ x · y. For this, there exists a question which still lacks a complete
answer .

Question 1.1. ([7, Question 3])Is the family {(x, y) 7→ x, (x, y) 7→ y, (x, y) 7→
x · y, (x, y) 7→ x+ y} Ramsey on N?

For the question, J. Moreira answered it under leaving out polynomial (x, y) 7→ y
in [8, Corollary 1.5]. If we consider the question on Q, the fact that (Q\{0}, ·)
is a group makes it easier than one in N. Recently, M. Bowen and M. Sabok
[6, Theorem 1.1] showed that for any k ∈ N, the family {(x, y) 7→ x, (x, y) 7→
y, (x, y) 7→ x · y, (x, y) 7→ x+ y, · · · , (x, y) 7→ x+ ky} is Ramsey on Q. For general
polynomials, J. Moreira ’s theorem [8, Theorem 1.4] guarantees that for any k ∈ N,
for any p1, · · · , pk ∈ Z[n] with zero constant term, the family {(x, y) 7→ x, (x, y) 7→
x · y, (x, y) 7→ x + p1(y), · · · , (x, y) 7→ x + pk(y)} is Ramsey on N. Clearly, it is
Ramsey on Q. Our main result is to extend J. Moreira’s family to a wider case on
Q and it reflects the symmetry between multiplication and division on Q. Specific
statements are as follows.

Theorem 1.2. Let k, a ∈ N and let p1, · · · , pk ∈ Q[t] with zero constant term. For

any finite coloring of Q, then

(1) there are non-zero y ∈ Q and an infinite subset A of Q\{0} such that

A ∪ (y−a · A) ∪ (A+ {pi(y) : 1 ≤ i ≤ k})

is monochromatic;

(2) there are non-zero u ∈ Q and an infinite subset B of Q\{0} such that

B ∪ (ua ·B) ∪ (B + {pi(u) : 1 ≤ i ≤ k})

is monochromatic.

The proof of Theorem 1.2 is based on three ingredients. The first ingredient(see
Theorem 2.5) is the multiple recurrence for polynomial mapping, built by V. Bergel-
son and A. Leibman in [5], which helps us to build a van der Waerden-type result
for piecewise syndetic subsets of (Q,+). The second ingredient(see Lemma 2.4),
established by M. Bowen and M. Sabok in [6], seeks to localize multiplicatively
thick subsets according to the certain finite coloring of Q. The third ingredient(see
Theorem 2.2) is the partition regularity of piecewise syndetic subsets of (Q,+).

The organization of the paper is as follows. In section 2, we recall some large sub-
sets and multiple recurrence for polynomial mappings and bulid a van der Waerden-
type result. In section 3, we prove the Theorem 1.2.

2. Preliminaries

2.1. Some large subsets. At first, we state the definitions of some large subsets.
Before this, we introduce some notations. Let S be a non-empty set. Let F(S)
denote all finite subsets of S and F∗(S) denote all finite non-empty subsets of S.
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Definition 2.1. Let G be an infinite, countable, abelian group and let A ⊂ G.

(a) A is thick if and only if for any F ∈ F∗(G), there is some x ∈ G such that

Fx ⊂ A;
(b) A is syndetic if and only if there exists F ∈ F∗(G) such that FA = G;

(c) A is piecewise syndetic if and only if there exists F ∈ F∗(G) such that

FA is thick;

(d) let r ∈ N, A is IPr if and only if there exist s1, · · · , sr ∈ G such that

FP ({si}
r
i=1) = {

∏

i∈α si : α ∈ F∗({1, · · · , r})} ⊂ A;
(e) let r ∈ N, A is IP

∗

r
if and only if A has non-empty intersection with any

IPr subset of G.

The following results state some properties of the above large subsets.

Theorem 2.2. ([3, Theorem 2.5])Let G be an infinite, countable, abelian group and

let A,B ⊂ G. If A ∪ B is piecewise syndetic, then A or B is piecewise syndetic.

Proposition 2.3. Let G be an infinite, countable, abelian group and let A ⊂ G. If

A is thick, then A\F is thick where F ∈ F∗(G).

Proof. For any H ∈ F∗(G), {x ∈ G : Hx ∩ F 6= ∅} is finite or empty. Note that
{x ∈ G : Hx ⊂ A} is thick. Then we can find x ∈ G such that Hx ⊂ A\F . So A\F
is still thick. This finishes the proof. �

Next, we focus on specific group Q. To avoid ambiguity, the thick subset of group
(Q,+) is called additively thick and the thick subset of group (Q\{0}, ·) is called
multiplicatively thick.

The following lemma provided in [6, Lemma 3.3] which plays a crucial role in the
proof of our main result.

Lemma 2.4. Let Q\{0} =
⋃n

i=1
Ci be a finite coloring. There exist k ∈ N, index

sets Y1, · · · , Yk ⊂ {1, · · · , n} and F ∈ F∗(Q\{0}) such that

(a) for any 1 ≤ l ≤ k,
⋃

m∈Yl
Cm is multiplicatively thick;

(b) for any x ∈ Q\{0}, there exists 1 ≤ l ≤ k such that for each m ∈ Yl, one

has x ∈ F · Cm.

2.2. Polynomial mapping F(S) → G and multiple recurrence. Let S be a
non-empty set. Let G be an infinite, countable, torsion-free abelian group with
identity element eG. We reproduce the notation of polynomial mapping F(S) → G
which introduced by V. Bergelson and A. Leibman in [5, Section 1].

Let {gt}t∈T be a collection of elements of G indexed by a finite set T . We can
define

∏

t∈T gt. If T is empty, we put
∏

t∈T gt = eG. Let d ∈ N. We use Sd to denote
the produce S × · · · × S(d times). Conventionally, we let S0 = {∅}.

Let d ∈ N∪{0}. Amonomial of degree d on S with values inG is a mapping
u : Sd → G. A monomial u induces a monomial mapping pu : F(S) → G,α 7→
∏

s∈αd u(s).
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A polynomial mapping p : F(S) → G is the finite product of monomial map-
pings. The degree of p(denoted by deg p) is the minimum, taken over the set of
all representations of p as the product p =

∏m
i=1

pui
of monomial mappings, of the

maximum of the degree of monomial ui, 1 ≤ i ≤ m.

The following theorem states the multiple recurrence phenomena for such poly-
nomials.

Theorem 2.5. ([5, Theorem 4.1])Let G be an infinite, countable, torsion-free abelian

group of automorphisms of a compact metric space (X, ρ). For any k, d ∈ N and any

ǫ > 0, there exists N ∈ N such that if S is a set with cardinality ≥ N and p1, · · · , pk :
F(S) → G are polynomial mappings with deg pi ≤ d, pi(∅) = IdX , 1 ≤ i ≤ k, then
there exist x ∈ X and α ∈ F∗(S) such that for each 1 ≤ i ≤ k, ρ(x, pi(α)x) < ǫ.

Remark 2.6. Assume that X is minimal with respect to the action of G, that is, X
does not contain proper non-empty closed G-invariant proper subsets. By [5, Proof
of Theorem 4.1], the set of the points x ∈ X satisfy the requirements of the theorem

is dense in X.

2.3. A van der Waerden-type result. Based on the Theorem 2.5, we have the
following result.

Proposition 2.7. Let G be an infinite, countable, torsion-free abelian group with

identity element eG and A be a piecewise syndetic subset of G. For any k, d ∈ N,

there exists N ∈ N such that if S is a set with cardinality ≥ N and p1, · · · , pk :
F(S) → G are polynomial mappings with deg pi ≤ d, pi(∅) = eG, 1 ≤ i ≤ k, then
there exists α ∈ F∗(S) such that A∩p1(α)

−1A∩· · ·∩pk(α)
−1A is piecewise syndetic.

Proof. Let Ω = {0, 1}G. The element of Ω can be written as w = (w(g))g∈G.
Specially, let 0 denote element y with y(g) = 0 for any g ∈ G. Since G is countable,
we can write G as {g1, g2, · · · , gn, · · · }. Define a metric ρ on Ω by

ρ(w,u) =
1

min{i ∈ N : w(gi) 6= u(gi)}

for any w,u ∈ Ω. Then (Ω, ρ) is a compact metric space. G can act on (Ω, ρ) by
(gw)(h) = w(gh) for any w ∈ Ω, g, h ∈ G.

Define v ∈ Ω by v(g) = 1A(g) for any g ∈ G. Let X = {gv : g ∈ G}. Then we
have the following claim. Its proof will be provided in the last paragraph.

Claim 1. There exists 0 6= x ∈ X such that Y is minimal with respect to the action

of G where Y = {gx : g ∈ G}.

Based on this claim, we can reach the conclusion. Let U = {w ∈ Ω : w(eG) =
1}. Apply Theorem 2.5 to (Y, ρ), k, d and 1

2m
where gm = eG, then there exists

N ∈ N such that if S is a set with cardinality ≥ N and p1, · · · , pk : F(S) → G
are polynomial mappings with deg pi ≤ d, pi(∅) = IdY , 1 ≤ i ≤ k, then there exist
z ∈ Y ∩ U and α ∈ F∗(S) such that for each 1 ≤ i ≤ k, z(eG) = z(pi(α)).
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Let V = {w ∈ Ω : w(eG) = w(p1(α)) = · · · = w(pk(α)) = 1}. Since (Y,G) is
minimal, the set B = {g ∈ G : gz ∈ Y ∩ V } = {a1, a2, · · · , an, · · · } is a syndetic
subset of G. Moreover, we can find a pairwise distinct sequence {hj}j≥1 ⊂ G such
that for each j ≥ 1, we have hja1v, · · · , hjajv ∈ V . That is,

A ∩ p1(α)
−1A ∩ · · · ∩ pk(α)

−1A ⊃
⋃

j≥1

{hja1, · · · , hjaj}.

Therefore, A ∩ p1(α)
−1A ∩ · · · ∩ pk(α)

−1A is piecewise syndetic.

The rest of the proof is to verify Claim 1. Let {Fn}n≥1 be a strictly increasing
sequence of F∗(G) with

⋃

n≥1
Fn = G. Since A is piecewise syndetic, there exist

H ∈ F∗(G) and sequence {an}n≥1 ⊂ G such that a−1
n Fn ⊂ H−1A. Without loss of

generality, we can say that anv → u as n → ∞ where u ∈ X . Let C = {g ∈ G :
u(g) = 1}. For any h ∈ G, there exist infinite n ≥ 1 and g ∈ H such that gh ∈ anA.

That is, gh ∈ C. Clearly, H−1C = G. So C is syndetic. Let Z = {gu : g ∈ G} ⊂ X .
Clearly, 0 /∈ Z. Take a non-empty closed G-invariant subset Z ′ of Z such that
(Z ′, G) is minimal. Then any element of Z ′ can satisfy the requirments of Claim 1.
This finishes the proof. �

Based on the above, we can bulid a van der Waerden-type result for piecewise
syndetic subsets of infinite, countable, torsion-free abelian group. Before specific
statements, we introduce the degree for polynomials between general abelian groups.

Definition 2.8. ([2, Definition 7.7])Let G and H be abelian groups. Given d ∈ N,

a map p : G → H is a polynomial of degree d if the application of any d + 1 of

the discrete difference operators δg, g ∈ G defined by (δgp)(x) = p(gx)(p(x))−1 for

any x ∈ G, reduces p to the constant map which takes identity element of H.

Proposition 2.9. Let H be an infinite, countable, torsion-free abelian group with

with identity element eH and A be a piecewise syndetic subset of H. For any k, d ∈ N,

there exists r ∈ N such that for any infinite, countable, torsion-free abelian group G
with identity element eG and all polynomials p1, · · · , pk : G → H of degree at most

d with pi(eG) = eH , 1 ≤ i ≤ k, the set

{g ∈ G : A ∩ p1(g)
−1A ∩ · · · ∩ pk(g)

−1A is a piecewise syndetic}

is an IP ∗
r subset of G.

Proof. By Proposition 2.7, we can get r ∈ N such that if S is a set with cardinality
≥ r and q1, · · · , qk : F(S) → H are polynomial mappings with deg qi ≤ d, qi(∅) =
eH , 1 ≤ i ≤ k, then there exists α ∈ F∗(S) such that A∩ q1(α)

−1A∩ · · · ∩ qk(α)
−1A

is a piecewise syndetic subset of H .

Choose g1, · · · , gr from G arbitrarily. For any 1 ≤ i ≤ k, define polynomial
mapping pi : F({1, · · · , r}) → H by the rule pi(α) = pi(

∏

m∈α gi) for any α ∈
F({1, · · · , r}). Clearly, deg pi ≤ d, pi(∅) = eH for any 1 ≤ i ≤ k. So there exists
β ∈ F∗({1, · · · , r}) such that A∩ p1(β)

−1A∩ · · · ∩ p1(β)
−1A is a piecewise syndetic

subset of H . This finishes the proof. �
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3. Proof of Theorem 1.2

In this section, we prove our main result. Here, we only provide proof for (1) of
Theorem 1.2 since the proof of the rest part is similar. During the process, the key
points are Lemma 2.4, Proposition 2.9 and pigeonhole principle.

Proof of Theorem 1.2. There exists d ∈ N such that deg pi ≤ d, 1 ≤ i ≤ k. Choose
a finite coloring of Q arbitrarily and fix it. Then Q\{0} can inherit a coloring from
Q. We write it as Q\{0} =

⋃n

m=1
Cn. Clearly, 0 has new color n+ 1 or there exists

ω ∈ {1, · · · , n} such that 0 has color ω.

By Lemma 2.4, There exist M ∈ N, index sets Y1, · · · , YM ⊂ {1, · · · , n} and
H ∈ F∗(Q\{0}) such that

(1) for any 1 ≤ l ≤ M ,
⋃

m∈Yl
Cm is multiplicatively thick;

(2) for any x ∈ Q\{0}, there exists 1 ≤ l ≤ M such that for each m ∈ Yl, one
has x ∈ H · Cm.

Let s be a non-zero rational less than minimum of H . Let F = H ∪ {s}. Then for
any x ∈ Q\{0}, we can find minimal 1 ≤ lx ≤ M such that for each m ∈ Ylx , one
has x ∈ fm,x ·Cm where fm,x = min{f ∈ H : x ∈ f ·Cm}. If m ∈ {1, · · · , n}\Ylx, let
fm,x be s. Then we define new finite coloring of Q\{0}. That is, for any x ∈ Q\{0},
it has color (lx, f1,x, · · · , fn,x) ∈ {1, · · · ,M} × F n.

By Theorem 2.2 and Proposition 2.3, we know there exists (l1, f1,1, · · · , fn,1) ∈
{1, · · · ,M} × F n such that the set

A1 = {x ∈ Q\{0} : x has color (l1, f1,1, · · · , fn,1)}

is a piecewise syndetic subset of (Q,+). Let N = 36100M |F |n, T = 36100N |F |k. Apply
Proposition 2.9 to T, d, A1, then we get a natural number r1. We can construct IPr1

subset S1 of (Q,+) such that S1 ⊂
⋃

m∈Yl1

Cm. Let

Q1 = {f · pi(t) : 1 ≤ i ≤ k, f ∈ F}.

Clearly, |Q1| < T . Then there exists y1 ∈ S1 such that

Ã1 = A1

⋂

q∈Q1

(A1 − q(y1))

is a piecewise syndetic subset of (Q,+).

Next, we construct rj , Aj, Ãj, Qj , yj, Sj, (lj, f1,j, · · · , fn,j) by induction until j = N
under the following requirements: for any 1 ≤ j ≤ N , we have

(a) (lj, f1,j, · · · , fn,j) ∈ {1, · · · ,M} × F n, rj ∈ N;
(b) Sj is an IPrj subset of (Q,+) and Sj ⊂

⋃

m∈Ylj

Cm;

(c) yj ∈ Sj ;

(d) Qj =
{

(y1 · · · yc−1)
a · f · pi(t · yc · · · yj−1) : f ∈ F, 1 ≤ i ≤ k, 1 ≤ c < j

}

where

we put y1 · · · y0 = 1 and |Qj| < T ;
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(e) Aj and Ãj = Aj

⋂

q∈Qj
(Aj − q(yj)) are two piecewise syndetic subsets of

(Q,+).

and for any 1 ≤ j < N , we have

(f) Aj+1 ⊂ Aj

⋂

q∈Qj
(Aj − q(yj));

(g) Aj+1 = {x ∈ Ãj : x · (
∏j

b=1
yb)

−a has color (lj+1, f1,j+1, · · · , fn,j+1)}.

Clearly, we have finished construction for j = 1. Let j ≥ 1 and assume that
rj, Aj , Ãj, Qj , yj, Sj , (lj, f1,j, · · · , fn,j) have been constructed.

By Theorem 2.2, there exist a subset Aj+1 of Ãj which is a piecewise syndetic
subset of (Q,+) and (lj+1, f1,j+1, · · · , fn,j+1) ∈ {1, · · · ,M} × F n such that

Aj+1 = {x ∈ Ãj : x · (

j
∏

b=1

yb)
−a has color (lj+1, f1,j+1, · · · , fn,j+1)}.

Let

Qj+1 =
{

(y1 · · · yc−1)
a · f · pi(t · yc · · · yj) : f ∈ F, 1 ≤ i ≤ k, 1 ≤ c < j + 1

}

.

Clearly, |Qj+1| < T . Apply Proposition 2.9 to T, d, Aj+1, then we get a natural
number rj+1. We can construct IPrj+1

subset Sj+1 of (Q,+) such that Sj+1 ⊂
⋃

m∈Ylj+1

Cm. And there exists yj+1 ∈ Sj+1 such that

Ãj+1 = Aj+1

⋂

q∈Qj+1

(A2 − q(yj+1))

is a piecewise syndetic subset of (Q,+).

Obviously, there exist 2 < η < j < N and (l, f1, · · · , fn) ∈ {1, · · · ,M} × F n such
that

(l, f1, · · · , fn) = (lj , f1,j, · · · , fn,j) = (lη, f1,η, · · · , fn,η)

and j−η > 2. Let y = yη · · · yj−1. Let x
′ ∈ Aj and set x = (fm)

−1 ·x′ · (y1 · · · yη−1)
−a

where m ∈ Yl. So x, x
ya

∈ Cm. Moreover, for any q ∈ Qj−1, x
′ + q(yj−1) ∈ Aη. Then

for any q ∈ Qj−1, we have

x′ · (y1 · · · yη−1)
−a + q(yj−1) · (y1 · · · yη−1)

−a ∈ fm · Cm.

Therefore, for each 1 ≤ i ≤ k, we have x + pi(y) ∈ Cm by definition of Qj−1. This
finishes the proof. �

In the above proof, we can not determine the color of y. For linear polynomials
with zero constant term, V. Bergelson and D. Glasscock gave the upper Banach
density version of Proposition 2.9(see [2, Theorem 7.5]). By combining [6, Proof of
Theorem 4.3] and the above proof, we have the following result.

Proposition 3.1. For any k, n ∈ N, the families {(x, y) 7→ x, (x, y) 7→ y, (x, y) 7→
x · yn, (x, y) 7→ x + y, · · · , (x, y) 7→ x + ky} and {(x, y) 7→ x, (x, y) 7→ y, (x, y) 7→
x · y−n, (x, y) 7→ x+ y, · · · , (x, y) 7→ x+ ky} are Ramsey on Q.
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Likely, for general polynomials with zero constant term, if one can build the upper
Banach density version of Proposition 2.9 , it is possible to confirm the color of y.
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